wO 2008/005447 A2 |10 00 OO0 0 00O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization | / | [I

) IO O T O O 500

International Bureau

(43) International Publication Date
10 January 2008 (10.01.2008)

(10) International Publication Number

WO 2008/005447 A2

(51) International Patent Classification:

HO4L 29/06 (2006.01)
(21) International Application Number:
PCT/US2007/015377
(22) International Filing Date: 2 July 2007 (02.07.2007)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
60/818,763 6 July 2006 (06.07.2006) US
11/823.237 27 June 2007 (27.06.2007) US

(71) Applicant (for all designated States except US): HONEY -
WELL INTERNATIONAL INC. [US/US]; 101 Colum-
bia Road, P.O. Box 2245, Morristown, New Jersey 07962
(US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): ZHAO, Jianhua
[US/US]; 6 Tullamore Court, Ringoes, New Jersey 08551
(US). GRANATELLI, David [AU/AU]; 146 Lilyfield

(74)

(81)

(34)

Road, Lilyfield, New South Wales 2040 (AU). KANJI,
Muslim, G. [US/US]; 477 Wild Mint Lane, Allentown,
Pennsylvania 18104 (US).

Agents: MIOLOGOS, Anthony et al.; Honeywell Inter-
national Inc., 101 Columbia Road, P.O. Box 2245, Morris-
town, New Jersey 07962 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L,
IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,
PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

[Continued on next page]

(54) Title: APPARATUS AND METHOD FOR GUARANTEED BATCH EVENT DELIVERY IN A PROCESS CONTROL SYS-

TEM

200

EVENT
LIST

212 214

=ik

NOTIFICATION
MANAGER

EVENT

210~ sDC

216~

NOTIFICATION 208

QUEUE

—{ITTH

3

NOTIFICATION GDA
CLIENT MANAGER

L L
CDA SERVER]

1

206~ M~ 220

204 \/I

CEE
202a - i

203

218

~202n

(57) Abstract: A controller (104a-104b)
controls one or more process elements
(102a-102b) in a process control system
(100). The controller (104a-104b) also
generates and buffers multiple events
associated with operation of the controller
(104a-104b). Each event is associated with
a unique identifier, such as a numerical
identifier. A supervisory device (106a-106b,
216) receives at least some of the events from
the controller (104a-104b). The supervisory
device (106a-106b, 216) determines if
any of the events have not been received
from the controller (104a-104b) based on
the unique identifiers. The supervisory
device (106a-106b, 216) also initiates an
event recovery if at least one of the events
has not been received from the controller
(104a-104b). During the event recovery,
the controller (104a-104b) recovers at least
one event, such as any event having a
numerical identifier greater than a numerical
identifier identified by the supervisory device
(106a-106b, 216). The controller (104a-104b)
communicates the at least one recovered
event to the supervisory device (106a-106b,
216) during the event recovery.

WO 2008/005447 A2 | NI DA 00 000000 00 00 0 O

7ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), For two-letter codes and other abbreviations, refer to the "Guid-
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, ance Notes on Codes and Abbreviations" appearing at the begin-
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, N1, PL., ning of each regular issue of the PCT Gazette.
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished
upon receipt of that report

WO 2008/005447 PCT/US2007/015377

1

APPARATUS AND METHOD FOR GUARANTEED BATCH EVENT DELIVERY
IN A PROCESS CONTROL SYSTEM

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority under 35 U.S.C.
§ 119(e) to U.S. Provisional Patent Application No.
60/818,763 filed on July 6, 2006, which is hereby

10 incorporated by reference.
[0002] This application is related to U.S. Patent
Application No. 11/453,119 filed on June 14, 2006, which is

hereby incorporated by reference.

15
TECHNICAL FIELD

[0003] This disclosure relates generally to control
systems and more specifically tco an apparatus and method
for guaranteed batch event delivery in a process control

20 systemn.

WO 2008/005447 PCT/US2007/015377

10

15

20

2

BACKGROUND

[0004] Processing facilities are oftén managed using
process control systems. Example processing facilities
include chemical, pharmaceutical, paper, and petrochemical
production plants. Among other operations, process control
systems typically interact with and control industrial
equipment in the processing facilities, such as equipment
used to produce chemical, pharmaceutical, paper, OX
petrochemical products. Often times, these or other types
of products are manufactured or processed in batches.

[0065] Regulated industries often require complete batch

records of all aspects related to the manufacture of batch

products. In fact, the data records for batch execution
are often as important as the products themselves. Non-
regulated industries, though not having the same

requirements for batch record completeness, also typically
use batch records to support functions such as quality
assurance analyses. As a result, complete or near-complete
batch records are often desirable or required in a process

control system.

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

3

SUMMARY

[0006] This disclosure provides an apparatus and method
for guaranteed batch event delivery in a process control
system.

[0007] In a first embodiment, a method includes
generating multiple events associated with operation of a
controller in a process control system. The method also
includes storing the events in a buffer and communicating
the events to a supervisory device associated with the
controller. The method further includes receiving a
request to recover one or more of the events. In addition,
the method includes recovering at least one of the events
from the buffer and communicating the at least one
recovered event to the supervisory device.

[0008] In particular embodiments, each event is
associated with a unique identifier, and the request
identifies the unique identifier associated with one of the
events.

[0009] In other particular embodiments, the unique
identifier identified in the request includes a numerical
identifier. Also, recovering the at least one event from
the buffer includes recovering any event associated with a
numerical identifier that is greater than the numerical
identifier identified in the request.

[0010] In still other particular embodiments, the method
further includes generating an alarm in response to
recovering less than all desired events from the buffer.

[0011] In a second embodiment, an apparatus includes at
least one memory configured to store a unique identifier
associated with a first event received from a controller in
a process control system. The apparatus also includes at

least one processor configure to receive a second event

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

4

from the controller and to determine whether any events
between the first event and the second event have not been
received from the controller using the unique identifier.
The at least one processor is also configure to initiate an
event recovery if at least one event between the first
event and the second event has not been received from the
controller.

[0012] In &a third embodiment, a computer program 1is
embodied on. a computer readable medium. The computer
program includes computer readable program code for
generating multiple events associated with operation of a
controller in a process control system. The computer
program also includes computer readable program code for
storing the events in a buffer and computer readable
program code for communicating the events to a supervisory
device associated with the controller. The computer
program further includes computer readable program code for
receiving a request to recover one or more events. In
addition, the computer program includes computer readable
program code for recovering at least one of the events from
the buffer and computer readable program code for
communicating the at least one recovered event to the
supervisory device.

[0013] In a fourth embodiment, a system includes a
controller configured to control one or more process
elements in a process control system. The controller is
also configured to generate and buffer multiple events
associated with operation of the controller. Each event is
associated with a wunique identifier. The system also
includes a supervisory device configured to receive at
least some of the events from the controller and to
determine if any of the events have not been received from

the controller based on the unigque identifiers. The

WO 2008/005447

10

PCT/US2007/015377

5

supervisory device is also configured to initiate an event
recovery by the controller if at least one of the events
has not been received from the controller. The controller
is further configured to recover at least one event and to
communicate the at least one recovered event to the
supervisory device during the event recovery.

[0014] Other technical features may be readily apparent
to one skilled in the art from the following <figures,

descriptions, and claims.

WO 2008/005447 PCT/US2007/015377

10

15

20

25

6

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] For a more complete understanding of this
disclosure, reference is now made to the following
description, taken in conjunction with the accompanying
drawings, in which:

[0016] FIGURE 1 illustrates an example process control
system supporting guaranteed batch event delivery;

[0017] FIGURE 2 illustrates additional details of an
example process control system supporting guaranteed batch
event delivery;

{0018] FIGURES 3A through 3D illustrate example data
flows 1in a process control system supporting guaranteed
batch event delivery;

[0019] FIGURE 4 illustrates example parallel data flows
in a process control system supporting guaranteed batch
event delivery;

[0020]) FIGURES 5 and 6 illustrate a specific example of
a portion of a process control system supporting guaranteed
batch event delivery:;

[0021] FIGURE 7 illustrates an example user interface
supporting guaranteed batch event delivery in a process
control system; and

[0022] FIGURE 8 illustrates an example method for
guaranteed batch event delivery in a process control

system.

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

7

DETAILED DESCRIPTION

[0023] FIGURE 1 illustrates an example process control
system 100 supporting guaranteed batch event delivery. The
embodiment of the process control system 100 shown in
FIGURE 1 is for illustration only. Other embodiments of
the process control system 100 may be used without
departing from the scope of this disclosure.

[0024] In this example embodiment, the process control
system 100 includes one oxr more process elements 102a-102b.
The process elements 102a-102b represent components in a
process or production system that may perform any of a wide
variety of functions. For example, the process elements
102a-102b could represent equipment used to manufacture
chemical, pharmaceutical, paper, or petrochemical products.
Each of the process elements 102a-102b includes any
hardware, software, firmware, or combination thereof for
performing one or more functions in a process or production
system.

[0025] Two controllers 104a-104b are coupled to the
process elements 102a-102b. The controllers 104a-104b
control the operation of the process elements 102a-102b.
For example, the controllers 104a-104b could be capable of
providing control signals to the process elements 102a-102b
for controlling the production of chemical, pharmaceutical,
paper, or petrochemical products. Each of the controllers
104a-104b includes any hardware, software, firmware, or
combination thereof for controlling one or more of the
process elements 102a-102b. The controllers 104a-104b
could, for example, include one or more processors 105 and
one or more memories 107 storing instructions and data
used, generated, or collected by the processor(s) 105. As

particular examples, the processors 105 could include

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

8

processoks of the POWERPC processor family running the
GREEN HILLS INTEGRITY operating system or processors of the
X86 processor family running a MICROSOFT WINDOWS operating
system.

[0026] Two servers 106a-106b are coupled +to the
controllers 104a-104b. The servers 106a-106b perform
various functions to support the operation and control of
the controllers 104a-104b and the process elements 1l02a-
102b. For example, the servers 106a-106b could log
information éollected or generated by the controllers 104a-
104b, such as status information related to the operation
of the process elements 102a-102b. The servers 106a-106b
could also execute applications that control the operation
of the controllers 104a-104b, thereby controlling the
operation of the process elements 102a-102b. In addition,
the servers 106a-106b could provide secure access to the
controllers 104a-104b. Each of the servers 106a-106b
includes any hardware, software, firmware, or combination
thereof for providing access to or control of the
controllers 104a-104b. Each of the servers 106a-106b
could, for example, include one or more processors 109 and
one or more memories 111 storing instructions and data
used, generated, or collected by the processor(s) 109 (such
as software executed by the servers 106a-106b). As
particular examples, the processors 109 coculd include
processors o©f the POWERPC processor family running the
GREEN HILLS INTEGRITY operating system or processors of the
X86 processor family running a MICROSOFT WINDOWS operating
system.

[0027] One or more operator stations 108a-108b are
coupled to the servers 106a-106b, and one or more operator
stations 108c are coupled to the controllers 104a-104b.

The operator stations 108a-108b represent computing or

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

9

communication devices providing user access to the servers
106a-106b, which could then provide user access to the
controllers 104a-104b and the process elements 102a-102b.
The operator stations 108c represent computing or
communication devices providing direct user access to the
controllers 104a-104b. As particular examples, the
operator stations 108a-108c could allow users to review the
operational history of the process elements 102a-102b using
information collected by the controllers 104a-104b and/or
the servers 106a-106b. The operator stations 108a-108c
could also allow the users to adjust the operation of the
process elements 102a-102b, controllers 104a-104b, or
servers 106a-106b. Each of the operator stations 108a-108c
includes any hardware, software, firmware, or combination
thereof for supporting user access and control of the
system 100. Each of the operator stations 108a-108c could,
for example, include one or more processors 113 and one or
more memories 115 storing instructions and data used,
generated, or collected by the processor(s) 113 (such as
software executed by the operator stations 108a-108c). In
particular embodiments, the operator stations 108a-108c
could represent personal computers executing a MICROSOFT
WINDOWS operating system.

[0028] In this example, at least one of the operator
stations 108b is remote from the servers 106a-106b. The
remote station is coupled to the servers 106a-106b through
a network 110. The network 110 facilitates communication
between various components in the system 100. For example,
the network 110 may communicate Internet Protocol (IP)
packets, frame relay frames, Asynchronous Transfer Mode
(ATM) cells, or other information between network
addresses. The network 110 may include one or more local

area networks (LANs), metropolitan area networks (MANs) ,

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

10 -

wide area networks (WANs); all or a portion of a global
network such as the Internet, or any other communication
system or systems at one or more locations.

[0029] In this example embodiment, the system 100
includes two additional servers 112a-112b. The servers
112a-112b execute various applications to control the
overall operation of the system 100. For example, the
system 100 could be used in a processing or production
plant or other facility, and the servers 112a-112b could
execute applications used to control the plant or other
facility. As particular examples, the servers 112a-112b
could execute applications such as enterprise resource
planning (ERP), manufacturing execution system (MES), or
any other or additional plant or process control
applications. Each of the servers 112a-112b includes any
hardware, software, firmware, or combination thereof for
controlling the overall operation of the system 100.

[0030] As shown in FIGURE l, the system 100 includes
various redundant networks 114a-114b and single networks
ll16a-116c that support communication between components in
the system 100. Each of these networks 114a-114b and 116a-—
ll6c represents any network or combination of networks
facilitating communication between components in the system
100. The networks 114a-114b and 1ll6a-116c could, for
example, represent Ethernet networks.

[0031] In one aspect of operation, one or more of the
controllers 104a-104b may generate batch execution events,
which represent events that occur during controller
operation in the process control system 100. The batch
execution events generated by a controller 104a-104b are
typically communicated to a supervisory server (such as one
or more servers 106a-106b) for more permanent storage, such

as in an event Jjournal or other database. The batch

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

11

execution events generated by a controller 104a-104b are
also buffered or temporarily stored within the controller’s
memory . This supports the ability of the supervisory
server to recover some or all of the events generated by a
controller, such as events generated during periods when
communication between the controlier and the supervisory
server has been interrupted. To support this event
recovery, the system 100 provides a mechanism for tracking
events and for resending “lost” or “missed” events to the
supervisory server after an abnormal situation is cleared
and the system 100 is back in normal operation.

[0032] In some embodiments, as batch execution events
are generated within a controller 104a-104b, the events are
numbered or otherwise identified in sequence with a unique
identifier. Each of the events may, for example, be
associated with an 8-byte numerical value as the events are
generated or saved in the controller’s event buffer. These
unique identifiers are sent to the supervisory server along
with the events. Upon receipt, the supervisory server
examines the sequence of unique identifiers associated with
the received batch events to identify potential gaps. If a
gap is detected in the sequence of unique identifiers, this
indicates that at least one event was not received by the
supervisory server. The supervisory server then requests
that the controller resend the missing or lost event or
events (such as a specified event, events within a range of
unique identifiers, or all events starting at a specific
unique identifier). This helps to support the recovery of
missing or lost batch events, thereby helping to ensure
collection of all or substantially all events by the
supervisory server for storage in event journals or other
appropriate destination(s). In addition, if an event is

permanently lost (it cannot be recovered due to ewvent

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

12

buffer overload in the controller or other reason), the
system 100 may generate an alarm to notify a user.

[0033] In particular embodiments, when an event buffer
in a controller 104a-104b is used, a user can configure the
event buffer size. As particular examples, small, medium,
and large event buffers could accommodate 120, 240, and 740
events, respectively. The user could select a proper
buffer size based on any suitable criteria, such as the
application in which the controller is used. Once the
buffer size is selected, the controller 104a-104b may
reserve the appropriate amount of space in its memory for
the buffer.

[0034] Although FIGURE 1 illustrates one example of a
process control system 100 supporting guaranteed batch
event delivery, various changes may be made to FIGURE 1.
For example, a process control system could include any
number of process elements, controllers, servers, operator
stations, and networks. Also, the makeup and arrangement
of the process control system 100 is for illustration only.
Components could be added, omitted, combined, or placed in
any other configuration according te particular needs.
Further, while described as being used to produce certain
types of products, the process control system 100 could be
used in any other manner. In addition, FIGURE 1
illustrates one operational environment in which guaranteed
batch event delivery can be used. Guaranteed batch event
delivery could be used in any other device or system.

[0035] FIGURE 2 ijllustrates additional details of an
example process control system supporting guaranteed batch
event delivery. In particular, FIGURE 2 illustrates
additional details regarding a particular implementation of
the controllers 104a-104b and servers 106a-106b in the
process control system 100 of FIGURE 1. The additional

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

13

details of the process control system shown in FIGURE 2 are
for illustration only. Other embodiments of the process
control system 100 may be used without departing from the
scope of this disclosure.

[0036] In this example, the process control system 100
includes one or more control execution environments 202a-
202n. The control execution environments 202a-202n
represent execution environments used or supported by the
controllers 104a-104b in the process control system 100.
The control execution environments 202a-202n may support a
wide wvariety of functions, such as the scheduling and
execution of wvarious control and background tasks. One
example of a control execution environment is provided in
U.S. Patent Application No. 11/175,848, which is hereby
incorporated by reference.

[0037] The control execution environments 202a-202n
generate batch events, such as events related to the
processing or production of a batch of a product.
Regulated industries often require complete batch records
of all aspects related to batch execution. ‘The batch
records can include the batch events captured as a part of
the manufacturing of batch products. Non—-regulated
industries may not have the same requirements for complete
batch records, but batch execution results may be captured
for other reasons (such. as quality assurance, continuous
improvement, and process manufacturing optimization). BAs a
result, it is often important or essential that all batch
events generated by batch engines in the control execution
environments 202a-202n be captured and stored in an event
journal or other storage location(s). In this example
embodiment, each of the control execution environments
202a-202n includes or supports an event buffer 203 for

temporarily storing batch events generated by the control

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

14

execution environments 202a-202n. As described below, this
helps to facilitate the retrieval or recovery of lost or
missing events, helping to ensure that the batch records in
the process control system 100 are entirely or
substantially complete. Each buffer 203 represents any
suitable structure for storing and facilitating retrieval
of batch events.

[0038] Due to memory limitations within controller
products (such as purpose-built hardened controller
platforms), batch execution events are typically
transmitted on a timely basis to a supervisory server.
Also, due to the nature of controller/server
communications, there are times when a link or one or more
of these platforms are not available. This may occur, for
example, during redundant server failover, redundant
controller failover, or interruption of a communication
link between the controller and the server. The batch
events that are generated 4in a control execution
enviranment are retained within the event buffer 203 in the
controller and sent to the supervisory server when the
defined interruption no longer exists. For instance, the
supervisory server can request the retransmission of events
that the supervisory server determines are lost or missing.
The following describes how the recovery of events from the
control execution environments 202a-202n can occur.

[0039] The control execution environments 202a-202n are
in communication with a control data access (CDA) server
204. The CDA server 204 provides secure data access to and
from the control execution environments 202a-202n. For
example, the CDA server 204 may ensure that only authorized
sources (such as a supervisory server}) are able to access
and interact with the control execution environments 202a-

202n. The CDA server 204 includes any hardware, software,

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

15

firmware, or combination thereof for contrelling data
access.

[0040] A notification client 206 facilitates
communication between the control execution environments
202a-202n (via the CDA sexrver 204) and a notification gueue
208. The notification client 206 may, for example, receive
batch events from the control execution environments 202a-
202n and provide the events to the notification queue 208
for storage. The notification client 206 includes aﬁy
hardware, software, firmware, or combination thereof for
providing access to the notification gqueue 208. The
notification queue 208 includes any suitable structure for
storing multiple events or other notifications.

[0041] The notifications from the notification queue 208
are retrieved by a notification manager 210. The
notification manager 210 may, for example, retrieve batch
events associated with the control execution environments
202a-202n from the notification queue 208. The
notification manager 210 may then provide the notifications
to one or more suitable destinations. For example, if a
notification represents an alarm, the notification may be
provided to an alarm list 212 for storage. If the
notification represents an event, the notification may be
Stored in an event list 214. The notification manager 210
includes any hardware, software, firmware, or combination
thereof for retrieving information from the notification
queue 208. The alarm list 212 and the event list 214
represent any suitable structures for storing multiple
notifications or other information.

[0042] Events from the event list 214 are retrieved by
an event system data component (event SDC) 216, which
stores the events in an event journal 218. The event SDC

216 also determines, using unique identifiers associated

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

16

with the events, whether any events are missing or have
been lost. For example, the tunique identifiers could
represent a sequence of numbers, and the event SDC 216 may
identify missing events by identifying gaps in the unique
identifiers associated with the received events. When the
event SDC 216 needs to recover one or more lost or missing
events from the control execution environments 202a-202n,
the event SDC 216 may communicate with the notification
client 206 or a generic data access (GDA) manager 220
(depending on the circumstances). Either of these
components can request transmission or retransmission of
one or more buffered events by the control execution
environments 202a-202n. The event SDC 216 includes any
hardware, software, firmware, or combination thereof for
journaling events and identifying missing events. The
event Jjournal 218 includes any suitable structure for
storing or journaling events, such as an SQL database. The
GDA manager 220 includes any hardware, software, firmware,
or combination thereof for providing access to the control
execution environments 202a-202n.

[0043] In particular embodiments, the various components
shown in FIGURE 2 are divided between one or more of the
controllers 104a-104b and one or more of the servers 106a-
106b. For example, the control execution environments
202a-202n could reside in or be associated with multiple
controllers, while the remaining components could reside in
or be supported by a supervisory server.

[0044] In one aspect of operation, events ‘may be
buffered in the control execution environments 202a-202n,
and the events can be associated with unique identifiers.
A supervisory server (via the event SDC 216) can identify
missing or lost events based on the unique identifiers

associated with the events. If necessary, lost or missing

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

17

events can be retransmitted £rom the control execution
environments 202a-202n to the supervisory server.

[0045] Although FIGURE 2 illustrates additional details
of one example of a process control system supporting
guaranteed batch event delivery, various changes may be
made to FIGURE 2. For example, the makeup and arrangement
of the components in FIGURE 2 are for illustration only.
Components could be added, omitted, combined, or placed in
any other configuration according to particular needs.

[0046] FIGURES 3A through 3D illustrate example data
flows in a process control system supporting guaranteed
batch event delivery. In particular, FIGURES 3A through 3D
illustrate example data flows between the components of the
process control system 100 that are shown in FIGURE 2. The
embodiments of the data flows shown in FIGURES 3A through
3D are for illustration only. Other data flows may be used
without departing from the scope of this disclosure.

[0047] The data flow in FIGURE 3A may be used when a
supervisory serxrver is first starting up, meaning when the
supervisory server is becoming active. In this case, the
supervisory server may have missed events previously
communicated by one or more controllers during the server’s
startup period. In this situation, the following sequence
of events may occur.

(1} At server start-up, the notification client 206
subscribes to and receives a notification from the CDA
server 204.

(2} The CDA server 204 obtains a list of control
execution environments (CEE) 202a-202n that areAcapable of
generating events, such as by using information from a
system repository. The CDA server 204 returns the list of
control execution environments to the notification client

206, such as by using a callback function.

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

18

(3} The notification client 206 queries the event SDC
216 for the sequence identifiers of the last events
received by the event SDC 216 from the identified control
execution environments.

(4) The event SDC 216 queries the event journal 218 if
the event SDC 216 cannot resolve the notification client’s
query with its internal list.

(5) If necessary, the event journal 218 returns the
list of last-received sequence identifiers from the
identified control execution environments to the event SDC
216.

(6) The event SDC 216 passes this information to the
notification client 206.

(7) The notification c¢lient 206 passes this
information to the CDA server 204.

(8) The CDA server 204 requests an event recovery from
each control execution environment by specifying, for each .,
control execution environment, the appropriate sequence
identifier received from the event SDC 216.

(9) Each control execution environment publishes its
events starting at the sequence identifier requested by the
CDA server 204.

(10} For each control execution environment, the CDA
server 204 generates an event recovery begin bracket for
that control execution environment and sends the begin
bracket to the notification client 206. The begin bracket
contains the sequence identifier of the corresponding
request for event recovery and the sequence identifier of
the first recovered event. The recovery bracket is
followed by a chain of one or more recovered events.

(11) For each control execution environment, the
recovered events are provided to the event SDC 216, which

updates its internal list with the sequence identifier of

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

19

the recovery begin bracket.

(12) The recovered events are journaled or logged into
the event journal 218.

[0048] The data flow in FIGURE 3B may be used when the
controller restarts and reconnects to the supexrvisory
server or ﬁhen a cold reload of the controller occurs.
During this time, the controller may be out of contact with
its supervisory server, and some events may be generated.
In this situation, the following sequence of events may
occur.

(1) A control execution environment 202a-202n notifies
the CDA server 204 that the controller has restarted.

(2) The CDA server 204 returns 1its code for the
control execution environment with the execution
environment’s load time to the notification client 206,
such as by using a callback function.

(3) The notification client 206 queries the event SDC
216 for the sequence identifier of the last event received
by the event SDC 216 from the control execution
environment.)

(4) The event SDC 216 queries the event journal 218 if
the event SDC 216 cannot resolve the notification client’s
query with its internal list.

(5) If necessary, the event journal 218 returns the
last-received sequence identifier that was received from
the control execution environment to the event SDC 216.

(6) The event SDC 216 passes this information to the
notification client 206.

(7) The notification <client 206 passes this
information to the CDA servexr 204.

(8) The CDA server 204 requests an event recovery from
the control execution environment by specifying the

sequence identifier received from the event SDC 216.

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

20

(9) The control execution environment publishes its
events starting at the sequence identifier requested by the
CDA server 204.

(10) The CDA server 204 generates an event recovery
begin bracket for the control execution environment and
sends it to the notification client 206. The recovery
bracket is followed by a chain of one or more recovered
events.

(11) The recovered events are provided to the event
SDC 216, which updates its intefnal list with the segquence
identifier of the recovery begin bracket.

{12) The recovered events are journaled or logged into
the event journal 218.

[0049] The data flow in FIGURE 3C may be used when one
or more events are lost. This could be caused by various
reasons, such as a server failover, a controller failover,
a network disruption, or excessive server load. In this
situation, the following sequence of events may occur.

(1) One or more events are lost (for whatever reason),
meaning one or more events transmitted from a control
execution environment are not received or Jjournaled
properly by the event SDC 216.

(2) An event with an unexpected sequence identifier
arrives at the event SDC 216. This event may have, for
example, a numerical identifier that does not immediately
follow the numerical identifier of the previously received
event.

(3) The event SDC 216 commands an event recovery
through the GDA manager 220 when it detects this
occurrence.

(4) The CDA server 204 receives the recovery command.

(5) The control execution environment continues

sending events that are not expected by the event SDC 216

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

21

(events that do not have the one or more missing numerical
identifiers identified by the event SDC 216).

(6) The CDA server 204 requests an event recovery from
the control execution environment and specifies the
sequence identifier at which the recovery should begin.

(7) The unexpected events propagate to the
notification client 206.

(8{\The unexpected events reach the event SDC 216.
The event SDC 216 may not update it internal list after
receiving these unexpected events, and it may not re-
command another recovery (at this point).

(9) The unexpected events are journaled or logged into
to the event journal 218.

(10) The control execution environment publishes
events starting at the sequence identifier requested by the
CDA serxver 204.

{11) The CDA server 204 generates an event recovery
begin bracket for the notification client 206, followed by
a chain of one or more recovered events.

(12) The recovered events reach the event SDC 216,
which updates its internal list with the sequence
identifier of the recovery begin bracket.

(13) The events are Jjournaled or logged into the event
journal 218.

[0050] The data flow in FIGURE 3D may be used when a
control execution environment completes execution of a
control recipe, which (as explained below) defines the
production requirements for a specific product and is used
to produce a single batch of .the product. In this
situation, the following sequence of events may occur.

(1) Upon completion of execution of a control recipe,
the control recipe reports a recipe complete event to the

CDA server 204.

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

22

(2) The CDA server 204 sends the recipe complete event
to the notification client 206.

{3) The recipe complete event reaches the event SDC
216.

{4) The recipe complete event is journaled or logged
into the event journal 218.

{5) If all recipe events have been journaled (the
recipe complete event 1is in sequence and no events with
unexpected sequence identifiers have been received), the
event SDC 216 notifies the CDA server 204 via the GDA
manager 220 that all recipe events for the control recipe
have been journaled.

(6) The CDA server 204 receives the signal. At this
point, the control recipe can now be safely removed.

[0051] Although FIGURES 3A through 3D illustrate
examples of data flows 1in a process control system
supporting guaranteed batch event delivery, wvarious changes
may be made to FIGURES 3A through 3D. For example, the
events and other information may flow in any other suitable
manner in the process control system. Also, other data
flows could be used in other or additional situations in
the process control system to support guaranteed batch
event delivery.

[0052] FIGURE 4 illustrates example parallel data flows
in a process control system supporting guaranteed batch
event delivery. In particularx, FIGURE 4 illustrates
example data flows between the components of the process
control system 100 that are shown in FIGURE 2. The
embodiments of the data flows shown in ¥FIGURE 4 are for
illustration only. Other data flows may be used without
departing from the scope of this disclosure.

[0053] In this example, the solid lines represent the

normal data flow for notifications such as alarms,

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

23

sequences of events (SOE), live ‘events, and messages.
These notifications generally flow from a control execution
environment 202a-202n through the CDA sexrver 204, the
notification client 206, and the notification manager 210.
Live events are archived in the event list 214 and are
journaled by the event SDC 216. However, the number of
certain types of events, such as events from control
recipes, may be quite large depending on the application.
As a result, the number of events may overwhelm existing
alarm and system event generation mechanisms in process
control systems.

[0054] To support the use of guaranteed batch event
delivery, the process control system could include a
separate data path (represented by the dashed lines) for
batch events. This separate data path includes a batch
event processor 402, which handles the processing of batch
events and the insertion of the batch events into the event
list 214. 1In this example, batch events are sent from the
notification client 206 to the batch event processor 402
for handling, rather than to the notification manager 210.
This allows certain batch events to bypass the notification
manager 210 and be sent to the event list 214 directly,
allowing the event SDC 216 to retrieve and journal the
events without requiring the use of the notification
manager 210.

f{0055] Although FIGURE 4 illustrates one example of
parallel data flows in a process control system supporting
guaranteed batch event delivery, various changes may be
made to FIGURE 4. For example, while shown as including a
path for batch events and a path for all other
notifications, the process control system could support any
number of data paths for the notifications. Also, parallel

data flows may not be required in a process control system,

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

24

and the batch event processor 402 could be omitted.

[0056] FIGURES 5 and 6 illustrate a specific example of
a portion of a process control system supporting guaranteed
batch event delivery. 1In particular, FIGURE 5 illustrates
an example process control system 500, and FIGURE 6
illustrates an example mechanism supporting guaranteed
batch event delivery in the process control system 500.
The embodiment of the process control system supporting
guaranteed batch event ‘delivery shown in FIGURES 5 and 6 is
for illustration only. Other embodiments of the process
control system could be used without dgparting from the
scope of this disclosure.

[0057] The process control system 500 shown in FIGURE 5
could be implemented in any suitable system, such as by
using the wvarious components shown in FIGURES 1 and 2. As
shown in FIGURE 5, the process control system 500 includes
one or more unit control modules (UCMs) 502, recipe control
modules (RCMs) 504, sequential control modules (SCMs) 506,
and control modules (CMs) 508. In some embodiments, the
unit control modules 502, recipe control modules 504,
sequential control modules 506, and control modules 508 are
distributed across multiple control execution environments
in the process contrel system 100, such as the controllers
104a-104b.

[0058] A unit control module 502 generally represents or
is associated with a process unit 510 that contains one or
multiple pieces of processing equipment, where use of the
process unit 510 occurs after acquisition of the unit
control module 502. As described in U.S. Patent
Application No. 11/453,119, requester function blocks and
resource function blocks can be invoked by, incorporated
into, or otherwise used by the various control modules 502-

508. The resource function blocks represent objects that

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

25

can be acquired and released by the requester function
blocks, where the requester function blocks use arbitration
requests to attempt to acquire the resource function
blocks. In these embodiments, a unit control module 502
can be acquired by a recipe control module 504, which
allows the process unit 510 to be used during execution of
the recipe control module 504.

[0059] A recipe control module 504 generally represents
information defining the production requirements for one or
more specific products (or parts thereof), where execution
of a recipe control module 504 could result in the
production of a single batch of the one or more products
(or parts thereof). A recipe control module 504 could
include a header, a procedure, a formula, and any equipment
requirements. The procedure in a recipe control module 504
is defined by a set of phases represented by phase function
blocks 512. Each phase of a recipe control module 504 is
associated with a sequential control module 506, which
interacts with one or more control modules 508 to implement
one of the phases of the recipe control module 504. The
control modules 508 provide access to and control over the
actual process unit 510. The procedure in a recipe control
module 504 could also include a set of step, transition,
and synchronization blocks. Step blocks provide read/write
access to the control modules 508, and synchronization
blocks allow parallel execution of phase function blocks
512 or step blocks.

[0060] A recipe control module 504 manipulates the

.sequential control modules 506 through its phases, where

the phases control the sequential control modules 506,
monitor the execution states of the sequential control
modules 506, and optionally propagate the execution states

to the recipe control module 504. Phase function blocks

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

26

512 may also monitor their parent recipe control modules’
states and propagate the states to their underlying
sequential control modules 506 when their parent recipe
control modules 504 enter abnormal states. In particular
embodiments, the wvarious control modules 504-508 could
operate as defined by the International Electrotechnical
Commission (IEC) 61131 and 61512 {(including 61512-1)
standards oxr in U.S. Patent No. 6,317,638 (all of which are
hereby incorporated by reference).

[0061] When a recipe control module 504 is created, it
may optionally be associated with a specific unit control
module 502. The unit control module 502 can be acquired
when the recipe control module 504 is executed and can
optionally be released by the recipe control module 504 at
any time, such as when the recipe control module 504
reaches a terminal state oxr at any other previous time.
Various parameters can be defined within the phase function
blocks 512. These parameters may include a reference to a
sequential control module 506 for execution contreol, a
resource name to be allocated when a phase is started, and
a flag indicating if the acquired resource will be released
at the end of the execution of a sequential control module
506. By default, the resource name may be based on the
selected seguential or recipe control module’s name. If
there is no selected sequential control module 506, a phase
can be used for resource management purposes. Once in a
terminal state, all resources acquired by the recipe
control module 504 may or may not be released depending on
the configuration flag.

[0062] In some embodiments, the unit control modules
502, sequential control modules 506, and control modules
508 may represent common resources that can be shared

between multiple recipe control modules 504. As a

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

27

particular example, a recipe control module 504 may
generally need to acquire a unit control module 502 to
execute its procedure. The recipe control module 504 could
therefore acquire and release the unit control module 502
as needed. As another particular example, recipe control
modules 504 can acquire the sequential control modules 506
and the control modules 508 they need in order to implement
the production of a product.

{0063] An owner pointer 514 in the unit control module
502 identifies the recipe control module 504 currently
being executed against the unit control module 502 (the
recipe control module 504 that currently owns or has
acquired the unit control module 502). An arbitration
gueue 516 ildentifies a specified number of recipe control
modules 504 waiting to acquire the unit control module 502
to execute. When the current recipe control module 504
(identified by the owner pointer 514) releases the unit
control module 502, the unit control module 502 can select
the next recipe control module 504 from the queue 516 using
any arbitration technique supported by the unit control
medule 502 or defined by the user (such as first-in, first-
out or other technique). Similarly, the sequential control
module 506 may include an arbitration queue 518. One or
more recipe control modules 504 that are waiting to acquire
the sequential control module 506 on behalf of "its phase
blocks are identified in the arbitration gqueue 518 of the
sequential control module 506. The recipe control modules
can be selected from the queue 518 in any order.

[0064] In general, a phase function block 512 in a
recipe control module 504 represents a function block used
to acquire, initiate execution of, and monitor execution of
a sequential control module 506 or another recipe control

module 504. For example, if a phase function block 512 is

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

28

configured to execute a sequential control module 506, the
phase function block 512 may acquire the sequential control
module 506, load formula parameters into the sequential
control module 506, and start the sequential control module
506. The formula parameters represent a set of parameters
used by a phase to communicate appropriate recipe data to a
sequential control module 506, such as data controlling how
the process unit 510 is used during the phase execution.

[0065] While a sequential control module 506 is
executing, the phase function block 512 may monitor the
status of the sequential control module 506. The phase
function block 512 may also project data £from the
sequentilial control module 506 so that SCM execution can be
monitored by a recipe control module 504 through the phase
function block 512. Further, the phase function block 512
may command the sequential control module 506 to upload
various report parameters to the phase function block 512,
such as when execution of the sequential control module 506
is complete‘ or another terminal state is reached.
Depending on the configuration, a phase function block 512
may or may not wait for the sequential control module 506
to complete before the phase completes, which allows the
recipe control module 504 to proceed to the following phase
or step. Moreover, depending on the configuration, +the
phase function block 512 may or may not release any
acquired resources (such as the sequential contrecl module
506) at the completion of the phase. In addition, the
recipe control modules 504, phase function blocks 512, or
other modules may generate and report batch events.

[0066] The process control system 500 may be used with
the guaranteed batch event delivery mechanisms described
above. For example, the following types of events could be

generated in the process control system 500. In some

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

29

embodiments, events c¢an be generated at the control
execution environment level, the sequential control
module/recipe control module (SCM/RCM) 1level, and the
SCM/RCM step and phase level. Event journaling can be
enabled or disabled at each level, and enabling event
journaling allows the reporting of specified events to the
event SDC 216.

[0067] At the control execution environment level, a
user may define how much memory is allocated for buffering
the events (the size of the event buffer 203). The user
can also enable or disable the journaling of all batch
events or batch events for selected categories. The
categories of events can include RCM/SCM execution,
execution details, formula/recipe parameters, recipe
headers, recipe resource allocations, and report/history
parameters. The SCM events that can be added to the
journal could include SCM/RCM execution starts, SCM/RCM
execution termination states, SCM/RCM step starts, SCM/RCM
step completes, RCM phase starts, RCM phase completes, SCM
reclpe parameter downloads (such as one event per
parameter), SCM history parameter uploads (such as one
event per parameter), RCM formula parameter downloads (such
as one event per parameter), and RCM report parameter
uploads (such as one event per parameter). An overall
SCM/RCM event enable parameter can turn the entire SCM/RCM
event reporting on or off (by default it can be set to “on”
for RCM and to “off” for SCM).

[0068] The process control system 500 could provide for
guaranteed batch event delivery using the mechanism shown
in FIGURE 6. 1In particular, the mechanism shown in FIGURE
6 can be implemented within a control execution environment
in a controller 104a-104b. This mechanism allows batch

events to be buffered in the control execution environment .

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

30

It may also prevent certain user actions ox other actions,
such as preventing the release or deletion of a recipe
control module 504 before all events associated with that
recipe control module 504 have been Jjournaled and an
acknowledgement has been received from the event SDC 216
(as explainedAwith reference to FIGURE 3D above}.

[0069] As shown in FIGURE 6, a function block (such as a
sequential control module 506 or a recipe control module
504) is executed in the control execution environment.
During its execution, the function block generates a new
event, which is defined by a class denoted clsBatchEvent.
The function block reports the new éevent using a
ReportNotice () function to an alarming block, which results
in a ReportBlockNotice() function being executed. The
block is then tagged, meaning the event gets reported using
a ReportNotification() function. A block manager makes a
determination as to whether the event represents a batch
event. If not, the notification is provided to the
notification client 206 using a class clsCiNotifClient.
Otherwise, an event manager is notified of the batch event.
The event manager is associated with a class
clsBatchEventManager, which could represent a cardinality 1
class used to process batch events and manage event
recovery. The functionalities of this class may include
the creation and maintenance of a buffer (such as a buffer
203) for storing event information, the generation of batch
events, and the regeneration or recovery of lost or missing
events. This class could also support interfaces for the
addition of event information and maintain the sequence
identifiers for the events. The event manager provides
batch events with their associated sequence identifiers to
the notification client 206.

[0070] In this example, a c¢lsBatchEventManager object

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

31

can be created during control execution environment
startup. On creation of the clsBatchEventManager object,
the sequence identifier for batch events in the control
execution environment may be set to one or some other
initial value.

[0071] In some embodiments, the memory for the buffer
203 may not be allocated during the creation of the
clsBatchEventManager object since the size of the buffer
203 may not be fixed. Rather, the buffer size may be
configured by a user, and the configuration data for the
buffer 203 may not be available at the time that the
clsBatchEventManager object is created. For example, the
user may be provided with multiple options for the buffer
size, such as none, small, medium, and arge. Thesé
options coulé be provided 1in a control execution
environment configuration form or in any other suitable
manner. Once this parameter is selected and stored, a
function in the clsBatchEventManager object may be invoked
to create the memory required for the buffer 203. If the
“none” option is selected, no memory is allocated for the
buffer 203. Also, if memory is not available for the
buffer 203, an exception can be returned.

[0072] In particular embodiments, the
clsBatchEventManager object may be executed every base
cycle of the control execution environment. Execution of
this object may, for example, be part of the control
execution environment’s budgeted tasks. The only
processing that the clsBatchEventManager object may perform
in its execution time may be adding those batch events that
were not previously added to a buffer in the CDA server
204. The number of events reported to the CDA server 204
every cycle may be limited (such as to five). The

clsBatchEventManager object may provide an interface for

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

32

adding event information to the CDA buffer to support this
functionality.

[0073] When the supervisory server initiates an event
recovery, it can send a request to the control execution
environment with the sequence identifier of an event,
indicating that this event was the last event received in
sequence. This command is processed by the block manager,
which could represent an unbudgeted task in the control
execution environment. A method identifier may be used to
distinguish the event recovery request from other requests
(such as a parameter store). Upon processing the event
recovery request, the block manager may invoke the
clsBatchEventManager object to reset its index to a new
index containing the event with the sequence identifier
requested by the supervisory server. If event information
to be recovered has already been overwritten in the buffer
203 of the control execution environment, an “event lost”
alarm may be generated.

[0074] If the user selects a buffer size of “none,” this
indicates that non—-guaranteed batch event delivery is used
with the control execution environment. When the buffer
size is none, no memory may be allocated for the buffer
203, and a batch event received from a recipe control
module 504 or a sequential control module 506 is directly
sent to the CDA server 204. To indicate that batch events
are not guaranteed, a flag can be set in the CDA event
structure to the appropriate wvalue (such as false). A
supervisory server, upon seeing the flag set to false, may
not command eveﬁt regeneration when events are missing.

[{0075] The following represents specific details of a
particular implementation of the guaranteed batch event
delivery mechanism. These details are for illustration

only. Other embodiments of a brocess control system that

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

35

40

33

supports guaranteed batch event delivery could be used.

[0076] In particular embodiments, the class representing
batch events (clsBatchEvent) can include definitions of
appropriate wvalues. These values could include a sequence
identifier (used to identify missing or lost events), a
batch identifier (used to identify a batch of product being
produced or processed), and a sub-condition field. The
structure of an event notification may, for example, have
the following parameters:

UINT64 Seqgld ; // Sequence number

clsCID SubCondCID; // CID for sub-condition
// Data container that contains a text

// string associated with the notification.
DataContainerCreate<MAX NOTIF_DC_BUFFER> StrValue;

The clsBatchEventManager object can include functions that
are exposed to other classes. For example, the functions
that are exposed to the block manager could include:

BOOLEAN IF AddEvent (eventstructure); // Add event
Void IF GenerateEvent () // Generate event
Void IF_EventRegenRequest (UINT64 Seqld)

// Resend lost or missing event(s)
void IF_AllocateBufferMemory (enumsize size)

//Create buffer

The basic information required to regenerate a batch event
can be stored in the event buffer 203 as a structure, such

as a structure defined as:

struct EventStructure

{
DATETIME timestamp:
IEEE_FLOAT64 Value;
IEEE_FLOAT64 InfoFieldl;
IEEE_FLOAT64 infoField2;
UINT64 SequencelD;
UINT64 ExecutionId;
clsIOID BlockIOID;
NM_SUBTYPE EventType;
INT16 infoField3;

}

The size of this structure could be 60 bytes. To save
memory, each field of the above structure can be used
differently depending on the type of event being stored in
the buffer 203.

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

34

[0077] There may also be multiple possible locations for
the event buffer 203. For example, a single circular
buffer could be maintained in the control execution
environment, and all of the recipe control modules 504 and
sequential control modules 506 assignéd to the control
execution environment may share the same buffer. The
clsBatchEventManager object may be responsible for managing
the buffer 203 and regenerating events in response to a
recovery request. Since the buffer 203 is shared by all
recipe control modules 504 and sequential control modules
506 in the control execution environment, it could be used
more efficiently. For example, if some recipe control
modules 504 or sequential control modules 506 do not have
many events, the space in the buffer 203 can be used by the
other recipe control modules 504 and sequential control
modules 506 that have more events.

[0078] In other embodiments, each recipe control module
504 and each sequential control module 506 maintains its
own circular buffer. In these embodiments, the control
execution environment may only generate the unique sequence
identifiers for the events.

[0079] The event buffer 203 could also be created in
various ways. For»example, the event buffer 203 could be
created within a class as an array or in auxiliary memory.
If created as a member of a class, unused or spare memory
in a controller 104a-104b could be used for the buffer 203,
such' as 350KB of memory. If created in auxiliary memory, a
user may have an option to decide the size of memory
allocated for the events buffer 203.

[0080] In some embodiments, a batch creation event may
contain a batch identifier, which could represent a string.
It may be difficult to allocate storage space for strings

associated with all elements of the buffer 203. Since a

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

35

batch ¢reation event may not be generated as frequently as
other events, only a few string objects may be allocated in
a separate array called BatchIdBuffer. For batch creation
events, a parameter in the event’s structure may have an
index to the batch identifier in the BatchlIdBuffer array.
The size of this buffer could be fixed, such as at 1/10 the
size of the event buffer 203. Table 1 illustrates wvarious
possible sizes for the event buffer 203 and the associated

BatchIdBuffer array.

Event Capacity Size Capacity Size Total Size of
Buffer (Number of (in KB) of Batchld (in KB) buffers (in
Type Events) Buffer KB)
Small 120 7.03 12 0.5 7.53
Medium 240 14.065 24 1 15.06
Large 720 42.18 72 3.3 45.48
Table 1

A parameter of the enumeration type may be added tc the
definition file of a control execution environment for
defining the size of the event buffer 203. Access to this
parameter could be restricted, such as to developers only.
This parameter could have a value of none, small, medium,
or large (any of which could be the default). A
SetEventBufférSize() function could store a value in this
parameter. Upon a store of this parameter for a control
execution environment, a call can be made to the
clsBatchEventManager object, such as to an
AllocateBufferMemory ()} function, in order to allocate the
required memory for the buffer 203.

[0081] Once created, event information can be added to
the buffer 203 via a call to an AddEvent () function. This
call can be made in the block manager as part of the
ReportNotification() function. In case the buffer 203 was
not created (such as because of the user’é selection), the
events may not be reported. The AddEvent () function could

be defined as follows:

WO 2008/005447 PCT/US2007/015377

5

10

15

20

25

30

35

40

36

clsCiNotifClient: :pInstance’s AddNotification function:
Void clsBatchEventManager::AddEvent
{strCkNotification * eventInfo)

{
If Buffer Allocated

{
if (LastElementIndex != MaxBufferSize)
{
LastElementIndex++;

else

{
// indicating that buffer is full and the first
// element added has to be overwritten
LastElementIndex = 0

}

struct EventStructure* BufferPtr = (struct
EventStructure *)BufferAuxMem.GetPointer ()
// extract the information from the strCkNotification
// structure and store the value at
// BufferPtr[LastElementIndex]

[0082] The batch events can be added to the CDA buffer
by the clsBatchEventManager object. The
clsBatchEventManager object may be executed as part of
control execution environment’s budgeted tasks. During its
execution time, the event manager object may generate batch
events using the information present in the buffer 203.
Since this is part of the control execution environment’s
budgeted tasks, the processing time of the event manager
object may be kept to a minimum so as to avoid cycle
overrun, while at the same time being long enough to
generate events at an acceptable rate so that the buffer
203 does not overflow. With this consideration, the number
of events generated in one execution c¢ycle of the event
manager object can be limited (such as to five). Since the
event manager object can be executed periodically (such as
every 50ms), it can still generate 100 events pexr second
with this throttling. Another reason that this number may
satisfy the needs of the process control system is that

other components in the process control system could handle

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

35

40

45

37

a lesser amount of events, such as a maximum of 40 events
per second. With this in mind, the clsBatchEventManager

object could further be defined as follows:

void qlsBatchEventManager::EventGeneration()
{

MaxEvenstPerExecution = 5

counter = 0

clsCiRatchEvent tempClsCiBatchEvt;

if Bvent Buffer Allocated

{

struct EventStructure* BufferPtr = .

{struct EventStructure *)BufferAuxMem.GetPointer ()
while (counter < MaxEvenstPerExecution And (there are
events to be generated))

{ .

// copy information from BufferPtr[CurrentEventIndex]
// to tempClsCiBatchEvt depending on the event type.
if (clsCiNotifClient::pInstance->
AddNotification (tempClsCiBatchEvt)) != FALSE)
{
If (CurrentEventIndex<MaxSize)
CurrentEventIndex ++ ;
else
CurrentEventIndex = 0;

A

}

else

{
// CDA buffer might be full retry in next cycle
break;

}

counter++

}

[0083] Event recovery can be commanded with a sequence
identifier, which indicates that all events with seguence
identifiers greater than the given sequence identifier
should be regenerated. To handle an event recovery
request, a method identifier can be used, and the event
recovery can be processed as part of display request
processing. In the case of event recovery, an interrupt
mask register (IMR) may contain the sequence identifier.
When the sequence identifier is 0, this indicates that the
supervisory server is requesting regeneration of all events
available in the buffer 203. A RegenEvents () function of
the c¢lsBatchEventManager object can be called with the

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

35

40

45

38

sequence identifier. The RegenEvents () function may reset
a CurrentEventIndex parameter to point to the event
structure containing the sequence identifier that is one
greater than the received sequence identifier. The events
may then be regenerated during the next cycle of the event
buffer’s execution. With this in mind, the
clsBatchEventManager object could further be defined as

follows:

Veid clsBatchEventManager: :RegenEvents (UINT64 RecoverSeqglD)
{

if Buffer created
{
struct EventStructure* BufferPtr = (struct EventStructure *)
BufferAuxMem.GetPointer ()
if (RecoverSeqID > 0)
{
RecoverEventIdex = GetIndex(Seqgld);
// this function returns the index of the structure
// whose sequenceld = RecoverSeqld
}
else

{

Recover EventIndex = First element in the buffer

}
if (Recover EventIndex == -~1)

{
// this indicates that the event is not available in the
// buffer. Generate an alarm indicating loss of events.
RecoverEventIdex = GetNExtIndex (SeqlD)
//this function returns index of the first structure
// having its sequenceld greater than RecoverSeqID.

}

CurentEventIdex = RecoverEventIdex;
}
}

In the next execution of the clsBatchEventManager object,
events may be regenerated £from the reguested seguence
identifier.

[0084] Static information associated with function
blocks (such as recipe control modules 504 and sequential
control modules 506) may not be stored in the event buffer
203. This information, such as block names, may be stored
elsewhere, such as in a system repository. When a block is

deleted, this information may be lost, although the events

WO 2008/005447 PCT/US2007/015377

10

15

20

25

‘30

39

generated by the deleted block might still exist in the
event buffer 203 after the block has been deleted. In case
these events are regenerated, a static information field
may contain either default values or error values. These
may not be acceptable to the user. To avoid this, a recipe'
control module 504 or a seguential control module 506 may
not be deleted until all of the events generated by the
module have been journaled. For example, a parameter
AllowBlockDelete may be added to a recipe control module
504 or a sequential control module 506. If the module is
not configured to generate eventé, the wvalue of this
parameter may be set to true. If the module is configured
to generate events, the parameter is set to false. . After
the module has completed its execution, i1t generates a
completion event. The supervisory server, on receiving the
completion event, may initiate storage in the
AllowBlockDelete parameter of the ExecutionID present in
the complete event. If the ExecutionID matches the
module’s last run ExecutionID, the parameter
AllowBlockDelete may be set to true. To delete a module,
it may first e inactivated (such as when the module’s
state is idle). When the module is commanded to become
inactive when it 1is in an idle state, the wvalue
AllowBlockDelete is checked. If AllowBlockDelete is true,
the store of the ExecutionID in the parameter is allowed.
If AllowBlockDelete is false, the store is not allowed to
complete, the state of the module does not change, and a
user 1is not allowed to change the module’s state to
inactive until all events generated by the module have been
journaled {(unless a “lost events” error is generated). If
the supervisory server is offline, the store of the value
in the AllowBlockDelete parameter may never occur, and the

module might never be deleted. To overcome this, a

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

40

parameter AllowForceDelete (which could be a Boolean
parameter) can be added to the modules. When inactivation
of a module is commanded, the value of the AllowForceDelete
parameter is checked. If this wvalue is true, the state
change is‘ allowed irrespective of the wvalue of the
AllowBlockDelete parameter.

[0085] When the supervisory server commands an event
recovery for a sequence identifier that is not present in
the buffer 203, the clsBatchEventManager object may
generate an alarm indicating a loss of events and may start
regenerating the events starting with the first event
having a sequence identifier greater than the one
requested. The alarm may contain the seqguence
identifier(s) of the lost event(s).

[0086] The BatchID buffer for storing batch identifiers
might also be very limited. The BatchID buffer may work in
a manner similar to the main event buffer 203. During the
addition of a new batch identifier, the new identifier may
overwrite the oldest identifier when the BatchID buffer is
full. It is ©possible that the BatchID buffer is
overwritten but the corresponding event entry is still
present in the event buffer 203. In this case, when a
RegenEvents () function call for this event is received, the
event can be generated with a BatchID field containing an
empty string.

[0087] Since the event buffer 203 can be created in
auxiliary memory, it may exist throughout the existence of
the control execution environment. In case of a controller
reload or deletion, all of the cardinality 1 objects can be
recreated, including the clsBatchEventManager object.
Therefore, no special processing may be required for a
controller reload or control @execution environment

deletion. Also, in case of a RAM retention restart, an

WO 2008/005447 PCT/US2007/015377

1o

15

20

25

30

35

41

auxiliary memory handle can be reconfirmed if memory had
been allocated for the event buffer 203. Further, the
auxiliary memory could undergo compaction, where data is
moved in the auxiiiary memory. When this occurs, the
contents of the event buffer 203 need not be modified since
the c¢lsBatchEventManager object may not store memory
pointers associated with the buffer 203 (so no pointers
need to be updated in the buffer 203). Beyond that, no
mechanism may be required for removing event information
from the buffer 203. When implementéd as a circular
buffer, old event information is eventually overwritten
with new event information. In addition, the
clsBatchEventManager object may not be checkpointed
(meaning batch events stored in the buffer 203 may be lost
during a checkpoint restore), and the contents of the event
buffer 203 in one controller can be tracked by a secondary
or backup controller.

[0088] The block manager in FIGURE 6 could include
functions for handling batch event processing. Since batch
event processing may be common to all platforms, the
changes may be made in a common file for the block manager.
The functions in the block manager could include a function

for periodic execution, such as the following function:

PeriodicExecution{void)

{

if (isPrimary() != FALSE) /7 if controller is primary and
// not secondary controller
{

clsBatchEventManager: :pInstance—->

GenerateEvents ()
} }
The block manager could also include the
ReportNotification() function, which is responsible for

£filling the CDA notification structure and calling the

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

35

40

45

42

AddNotification{)} function. When 1t receives a batch
event, this function can fill the event structure and call
the AddEvent () function in the clsBatchEventManager. This

can be done using the following.

const BOOLEAN

clsCkBlockManagerCommon: : ReportNotification (strCkNotification*
const CkNotif, const UINT32 TaggedBlockAlarmState)
{
NM_TYPE NotificationType = ((strCkNotice *)
(CkNotif->BlockNotice->Notice))~->NotifClass;
if (NotificationType€ != NM TYPE BATCH_EVENT &&
NotificationType!= NM_TYPE PROCESS_ALERT)
{

}

else if (NotificationType == NM_TYPE_BATCH_EVENT)
{

clsBatchEventManager: :pInstance —> AddEvent (Event
structure)

}
}

[0089] In addition, to support event recovery requests,
a method identifier kBatchEvtRegen can be added to the
enumerated method identifiers in the control execution
environment. In case of an event recovery request, the
clsBatchEventManager object’s RegenEvents({) function can be
called with the sequence identifier present in the request.
This can lead to the following.

BOOLEAN clsCkBlockManagerCommon: :CkExecute (const enmDataAccess
ListID, UINT32 NumIMRS)
{

while (pRequest != NULL)
{

switch (MethodId)
{

case kBatchEvtRegen:

get the requested Sequenceld from CDA packet.
clsBatchEventManager: :pInstance->
RegenEvents (RequestedSequenceID)

[0090] If the various components shown in FIGURE 5 (such

as the recipe control modules 504 and the sequential

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

43

control modules 506) are used in the process control system
100 as shown in FIGURE 2, the components in FIGURE 2 could
be implemented as follows.. These details represent one
specific implementation of the process control system 100
as shown in FIGURE 2 and do not limit the scope of this
disclosure. b

[0091] An interface between the CDA server 204 and the
notification client 206 may support the following special
events to help support guaranteed event delivery: a recipe
event recovery begin bracket and a control recipe complete
event. These events may be uniquely identified by event
sub-types enumerated in the control execution environment.

[0092] To supbort guaranteed event delivery, each of the
recipe events may have a unique 8-byte increasing sequence
identifier, assigned in the orxder that the events are
generated. These events may flow from the control
execution environment to the event SDC 216 before they are
journaled. Throughout this data £flow, events may Dbe
subject to loss, and the sequence identifiers are used to
keep track of any lost events. Each recipe event may also
carry the load time of its control execution environment,
which can be used to record the execution environment cycle
at which the recipe event is generated. The load time may
record the time of the execution environment’s most recent
controllér reload. The sequence identifier, together with
the execution environment code and the execution
environment’s load time, may form a unique identifier for a
recipe event in the whole process control system. These
three combined fields may therefore be used for commanding
a recipe event recovery on a particular control execution
environment. The sequence identifier field could represent
a UINT64 value, and the load time field may represent a

FILETIME value.

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

44

[0093] Since the CDA serxrver 204 may request a recipe
event recovery from a control execution environment
starting at the sequence identifier that is one greater
than the requested sequence identifier received from the
event SDC 216, the sequence identifier for a recipe event
may not be assigned a value of zero. In terms of recipe
event recovery, regquesting a sequence identifier of zero
could represent a request to recover all events starting at
the oldest recipe event in the control execution
environment. Also, when a control execution environment
reloads, its load time may be reset to the current time,
and its sequence identifier may be initiated to a value of
cne. Resetting the control execution environment’s load
time may ensure the current cycle of sequence identifiers
is uniquely identified. Subsequent recipe events may then
have an increasing sequence identifier with the same
execution environment load time.

. [0094] The following functions may be used to form at
least part of the interface between the CDA server 204 and
the notification client 206. A GNotificationSubscribe ()
function can be called when the notification client 206
subscribes for notification from the CDA server 204 on
server startup. This function may have a callback
function, which acts as the entry point to the notification
client 206 for CDA notifications to be passed to the CDA
server 204. This function may also include another
callback function to the CDA server 204 sco that the CDA
server 204 can obtain a sequence identifier of the last
journaled recipe event from each control execution
environment. The GNotificationSubscribe() function can be
implemented as follows.

// Type definition for Notification Callback Function
typedef int (*FPNotification) (NM_NOTIFICATION*) ;
// Type definition for GetSeqlDs Callback Function

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

35

45

typedef int (*FPGetSeqIDs) (WORD*, FILETIME*, UINT64*%*);
// Function for subscribing to notifications
CDAFUNC G_Status APIENTRY GNotificationSubscribe
(
// Callback through which notifications are passed to the
// client
FPNotification pfnNotifCallback
// Callback through which CDA server gets the list of SeqlDs
FPGetSeqIDs pfnGetSeqIDsCallback
)

[0095] A GRecipeEventRecovery() function may be used in
the CDA server/notification client interface so a recipe
event recovery from a control execution environment can be
initiated when a loss of recipe events is detected. For
example, the event SDC 216 may detect an out-of-order

recipe event, such as an event having a sequence identifier

higher than the expected sequence identifier for the

execution environment. In this case, the event SDC 216
determines that one or more recipe events have been lost,
and it calls this function through the GDA manager 220 to
command a recipe event recovery for that execution
environment. Supplied with this function are the execution
environment’s code, the execution environment’s load time,
and the sequence identifier of the recipe event at which
the recovery begins. These three fields may uniquely
identify the starting point for the recovery process. Upon
receiving this command, the CDA server 204 requests a
recipe event recovery from the execution environment
starting at a sequence identifier that is one greater than
the requested sequence identifier from the event SDC 216.
The notification client 206 may receive the recovered
recipe events through the same notification callback
function. The first event in the recovery process may be
the recipe event begin bracket, and it may be followed by
one or more subsequent recipe events that have been
recovered. The GRecipeEventRecovery() function could be

defined as follows.

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

35

46

// Function to trigger a recipe event recovery from the execution
/ environment starting at the sequence ID requested
CDAFUNC G_Status APIENTRY GRecipeEventRecovery
(
const WORD NmEECode,
const UINT64 NmSeqlD,
const FILETIME NmLoadTime
)

[0096] A GControlRecipeComplete () function provides the
supervisory server with the ability to notify the CbDA
server 204 that it has journaled all recipe events for a
.particular control recipe’s execution. The event SDC 216
may call this function through the GDA manager 220 when it
receives a control recipe complete event and the event SDC
216 has journaled all recipe events for the control recipe.
This function may have a parameter that passes the batch
identifier of the completed control recipe to the CDA
server 204. The event SDC 216 may obtain the batch
identifier for the completed control recipe from the
appropriate field in the control =recipe complete event.
The CDA server 204 may or may not need more information to
identify the control recipe (such as an execution
environment code or load time or a control module name).
The GControlRecipeComplete () function could be defined as
follows.

// Function to signal CDA server that all recipe events for the
// control recipe are journaled
CDAFUNC G_Status APIENTRY GControlRecipeComplete
(
const UINT32 NmBatchID

)
[0097] During event recovery, the recovered events are

preceded by a recipe event recovery begin bracket. The
recipe event recovery begin bracket may be sent when the
notification client 206 makes a notification subscription
or when the event SDC 216 commands a recipe event recovery
to the CDA server 204. This begin bracket, along with the
recovered recipe events, are originated from the éontrol

execution environment. The begin bracket may be the first

WO 2008/005447 PCT/US2007/015377

10

15

20

25

47

event in the recovery process, and it marks the start of a
sequence of one or more recovered recipe events to follow.
The CDA server 204 may send this event to the notification
client 206 through the usual notification mechanism. The
notification client 206 may be the only recipient of this
event, and it may not be distributed to console stations orx
other devices. A special sub-type may used to identify a
recipe event recovery begin bracket. This sub-type may
contain the sequence identifier requested by the event
recovery and the sequence identifier of the first available
recipe event recovered.

[0098] In normal circumstances, when the buffer 203 of
recipe events in the control execution environment can
service the recovery request, the returned sequence
identifier may be one greater than the requested sequence
identifier. However, if the buffer 203 'in the control
execution environment has overwritten the requested recipe
event at which the event recovery was to begin, the
execution environment may have to recover any remaining
events starting with the oldest recipe event still in the
buffer 203. 1In this case, the returned sequence identifier
in the begin bracket would be the sequence identifier of
the oldest recipe event recovered. Also, the control
execution environment may generate a self-acknowledged
alarm when it cannot recover all of the requested recipe
events. The recipe event recovery may or may not require
an end bracket. Additional details regarding the recipe

event recovery begin bracket are provided in Table 2.

Field Value
NmCategory NC_BATCH EVENT
NmType NM_TYPE_BATCH EVENT
NmSubType NM_SUBTYPE_RECIPE_EVENT_ RECOVERY
NmEECode Execution environment code
NmPriority NM_PRIORITY_ JOURNAL
NmUnikId Batch identifier

WO 2008/005447 PCT/US2007/015377

10

15

20

25

48

NmSeqld Sequence identifier. of the initial recipe event

published for the recovery process (requested)
NmValue Starting sequence identifier for which recipe events
(overloaded) are commanded to recover (returned)
NmLoadTime Load time of the execution environment
szAuxDesc Description for this event, such as “Recipe event

recovery for execution environment”

Table 2

The supervisory server may treat this recipe event recovery
begin bracket as a journal-only event. It may therefore go
into the event list 214, be displayed in an event summary,
and may eventually reach the event SDC 216 and be journaled
into the event journal 218.

[0099] The notification client 206 may check all
received notifications to see whether it receives a recipe
event recovery begin bracket. If it does, the notification
client 206 may set a flag in the notification queue packet
associated with the begin bracket to identify it. When
this event reaches the event SDC 216, the event SDC 216 may
identify the event using this flag and may update its
internal list with the returned sequence identifier stored
in the event’s wvalue field. This update may be done only
if the sequence identifier in the in-memory list is less

than the returned sequence identifier. This mechanism may

"be used to avoid the event SDC 216 from infinitely

requesting recoveries for lost recipe events that have been
wrapped—-around in the control execution environment buffer
203.

[00100] A recipe event recovery begin bracket could be
lost during transmission. To overcome this problem, if the
event SDC 216 does not receive the begin bracket after
commanding a recipe event recovery, it may continue to
journal subsequent recipe events received and update its
internal 1list if it has the next expected seguence

identifier. It may not re-command another recipe event

WO 2008/005447 PCT/US2007/015377

10

15

20

25

49

recovery until it has received the begin bracket or until
some time (such as 30 seconds}) has passed from the first
commanded recovery. It may be assumed that the recipe
events that follow the recipe event begin bracket are
always in sequence (if disruption does not occur).

[00101]) Upon completion of a recipe execution, the
control recipe may report a control recipe complete event
with its batch identifier. The batch identifier may be
stored in a unique identifier field in the notification
structure. This event may have a special sub-type to
indicate that it is the last event from the control recipe.
Like other recipe events, it may also contain a sequence
identifier, and the identifier may represent the next
increasing segquence identifier that follows the last recipe
event sent by the recipe execution. Additional details
regarding the control recipe complete event are provided in
Table 3.

Field Value
NmCategory NC_BATCH_EVENT
NmType NM_TYPE_BATCH_ EVENT
NmSubType NM_SUBTYPE_CR_COMPLETE
NmEECode Execution environment code
NmPrioxrity NM_PRIORITY JOURNAL
NmUnikId Batch identifier
NmSegId Sequence identifier of the last recipe event + 1
NmLoadTime Load time of the execution environment
szRAuxDesc Description for this event, such as “Recipe completed”
NmValue Batch identifier

Table 3

When the notification client 206 detects this event, it may
set a flag in the notification queue packet associated with
the control recipe complete event before posting it into
the notification gqueue 208.

[00102] When this event reaches the event SDC 216, if
the sequence identifier for the control recipe complete

event matches the next sequence identifier expected by the

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

35

50

event SDC 216, it means that the event SDC 216 has
successfully received and journaled all recipe events for
the recipe. _ It may then call a
hsc gda_control recipe_ complete() GDA API function to
signal the CDA server 204 that the control recipe can be
deleted. The CDA server 204 may prevent the deletion of
the control recipe until signaled by the event SDC 216. If
the event SDC 216 detects a sequence identifigr mismatch
for the control recipe complete event, it means that not
all recipe events for the recipe execution are journaled,
and it may invoke a recipe event recovery to retrieve the
lost events. There can be situations where a control
recipe has completed its execution and the control recipe
complete event is sent but is lost before it reaches the
event SDC 216. As a result, the CDA server 204 may be
stuck waiting for a signal from the event SDC 216. A
mechanism to recover from this state can be provided, such
as when the CDA server 204 or control execution environment
re—announces the recipe complete event after some timeout.

[00103] The notification client 206 itself may also
support various functions to enable guaranteed event
delivery in the process control system. Among other
things, this may include handling the recipe event recovery
begin brackets and the control recipe complete events. As
mentioned above, the notification client 206 may set a flag
for the notification gqueue packets for these special events
before putting them into the notification queue 208. The

flags may be defined as follows.

prtgque_def

// Recipe event recovery begin bracket event

#define PRQ_CR_RECOVERY BRACKET MASK 0x0004 // field mask
f##idefine PRQ_CR_RECOVERY_BRACKET_ 0x0004

#define PRQ_CR_RECOVERY_ BRACKET BIT 3 // bit position

// Control recipe complete event
#define PRQ_CR_COMPLETE_ EVT_MASK 0x0004 // field mask

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

51

#define PRQ_CR_COMPLETE_EVT 0x0004

#define PRQ CR_COMPLETE_EVT_BIT 4 // bit position
Two similar flags may be added to a definition file so that
the notification manager 210, when it processes the
notification packets for the two events from the
notification queue 208, also sets the corresponding flags
on the event file record structure, before putting the
events into the event list 214. Thus, the event SDC 216
may know how to detect these events when they arrive and
respond accordingly.

[{00104] In situations when the CDA server 204 knows that
a recipe event recovery is required, the CDA server 204 may
not know the recipe event at which to start the. recovery
and may not know what events have been journaled. The CDA
server 204 may obtain this from the event SDC 216, where
the information is available. To achieve this, a callback
function may be added to the notification client 206. The
notification client 206 callback function, denoted
nc_get_SeqlID_for EEs(), may provide the CDA server 204 an
entry point for querying the sequence identifier of the
last-journaled recipe event received from each controlled
execution environment. This callback function can be
passed to the CDA server 204 when the notification client
206 subscribes to notification on server startup. As
mentioned above, it may be passed as a parameter in the
GNotificationSubscribe () function. The call fuﬁction
nc_get_SeqlID for EEs() may receive a list of “recipe
event-capable” execution environments and their load times
as input parameters and may return a 1list of sedquence
identifiers that aid in recipe event recovery £from the
execution environments. It may be called by the CDA server
204, for example, in the following situations: the

notification client 206 subscribes to notification from the

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

35

52

CDhA server 204, a controller restart/reconnect, and a
controller cold reload. This kind of recipe event recovery
may be considered as a CDA server-activated recovery. It
may be slightly .different from a recipe event recovery
initiated by the event SDC 216 in that it is initiated in a
different component due to different reasons. When the
callback function is called, it may guery the event SDC 216
for the list of sequence identifiers through a
getSequenceIDs () method. It may then return this
information to the CDA sexrver 204. Upon receiving this
information from the callback function, the CDA server 204
may request a recipe event recovery from the execution
environments. The definition of the notification client

206 callback function is provided below.

int hsc_nc_get_SeqlD_for_ EEs(int NumOfEE, WORD* EEs,

FILETIME* LoadTimes, UINT64** SeqguencelDs)

// Query event SDC to get the last seguence ID received from each
// execution environment and return list of sequence IDs to CDA
// server

// RETURN VALUES:

// FP_GET SEQID_ERROR if an error occurs when querying for the

/7 sequence IDs

// FP_GET_SEQID_OK if sequence IDs are obtain successfully

// FP_GET_SEQID _CANCEL if Main Thread believes this thread should
// be dead

I00105] The GDA manager 220 may further support various
functions to enable guaranteed event delivery in the
process control system. For example, the GDA manager 220
may support API functions for accessing the CDA server 204.
Two CDA API functions that may be used for event recovery
could include: hsc _cda_recipe_ event_recovery() and
hsc _cda_control_ recipe complete(). These methods may call
the GRecipeEventRecovery() and GControlRecipeComplete () CDA
notification functions, respectively. Additional details
about these CDA API functions are shown below.

//HSC_CDA_RECIPE EVENT _RECOVERY - calls for a recipe event
recovery

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

35

40

45

50

// SUMMARY :

// Call GRecipeBEventRecovery

// If status is not OK then raise alarm

void hsc_cda_ recipe_event_recovery(int2 EE, HSCTime LoadTime, int8

SeqID) ;
e e e
//HSC_CDA_CONTROL_RECIPE_COMPLETE - signals that all recipe events
// for the CR is journaled
F R et e it R

// SUMMARY :

// Call GControlRecipeComplete

// If gtatus is not OK then raise alarm

void hsc_cda_control_recipe_ complete(int4 BatchID);

[00106] Other methods that could be used or supported by
the GDA manager 220 méy include RecipeEventRecover () rand
ControlRecipeComplete () . Calling these two methods may
result in the corresponding hsc_cda_ recipe_event_recovery ()

and hsc_cda_ control recipe_complete() CDA API methods being

called. Below are more details about these two methods.
HRESULT RecipeEventRecover (
//PARAMETERS
{in) int2 EE, // Execution environment (EE) code
[in] HSCTime LoadTime, // Load time for the EE
[in] int8 SegID, // Sequence IDs for recovery
[out] GDAERR *pStatus); // Status returned for request
/ /REMARKS

// ©Only CDA recipe event recoveries may be done via this
// wethod. No GDA recoveries may be needed.
//RETURN VALUES

// S_OK ~ The method call was successful
// S_FALSE - The method call was partially successful, the
/7 error is returned in pStatus.

// failed HRESULT - The method call failed

HRESULT ControlRecipeComplete (
//PARAMETERS
[in] int4 BatchID, // Batch ID of the completed control recipe
fout] GDAERR *pStatus); // Status returned for request
/ /REMARKS
// Only CDA control recipe complete signals may be done via
// this method. No GDA may support this method.
//RETURN VALUES

// S_OK - The method call was successful
// S_FALSE - The method call was partially successful, the
// error is returned in pStatus.

// failed HRESULT - The method call failed

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

35

40

45

54
HRESULT RecipeEventRecover (
//PARAMETERS
fin] int2 EE, // EE code
[in] HSCTime LoadTime, // Load time for the EE
[in] int8 SeqID, // Sequence IDs for recovery
[out] GDAERR *pStatus); // Status returned for request
/ /REMARKS

// Clients call this method to initiate a recipe event
// recovery from the server.

//RETURN VALUES

// 8 _OK -~ The method call was successful

// failed HRESULT - The method call failed

HRESULT ControlRecipeComplete (

//PARAMETERS

[in] int4 BatchID, // Batch ID

[out] GDAERR *pStatus); // Status returned for request
//REMARKS

// Clients call this method to signal the CDA server that
// all recipe events for the CR execution are journaled.
//RETURN VALUES

// 8_OK - The methed call was successful

// failed HRESULT - The method call failed

[00107] Two additional GDA API functions could be used

in the GDA manager: hsc_gda_recipe_event_recovery() and

hsc_gda_control_recipe_complete(). These methods may call
the RecipeEventRecover() and ControlRecipeComplete() GDA
methods, respectively. Details about these two functions

are provided below.

// HSC_GDA_RECIPE_EVENT RECOVERY - calls for a recipe event
// recovery

L e e e L
void hsc_gda_recipe_event_recovery (

int EE, // EE code

HSCTime LoadTime, // Load time for the EE

int8 SeqID) // Sequence ID for recovery

/= e e e e ..

// HSC_GDA_CONTROL_RECIPE_COMPLETE - signals that all recipe
// events for the CR are journaled

/== e e e e

void hsc_gda_control_recipe complete (
int4 BatchID) // Batch ID

[00108] The event SDC 216 may alsoc support various
functions to enable guaranteed event delivery in the
process control system. To keep track of any lost recipe

events, the event SDC 216 may need to maintain an in-memory

WO 2008/005447 PCT/US2007/015377

10

15

20

25

55

list containing the available “recipe event-capable”
execution environments, the - last sequence identifier
received from each of these execution environments, and
their load times. This list may provide fast lookup of the
sequence identifier that the event SDC 216 is expecting
from an execution environment. An example of the internal

list in the event SDC 216 is shown in Table 4.

EE code EE load time Last received sequence ID
1 14/12/2004, 979574
11:53:39.463 ’
14 24/01/2005, o]
' 19:35:23:535
16 03/11/2004, 35332623
06:12:48:032

Table 4
Note that the second record in the list above has a last

received sequence identifier of zero. This means that the
event SDé 216 has not journaled any recipe events from this
execution environment before, or the execution environment
has reloaded and the event SDC 216 1is expecting the CDA
server 204 to recover all recipe events from the execution
environment. The list may be initialized when the server
starts.

[00109] To keep track of all‘journaled recipe events
from each “recipe event-capable” execution environment, a
table may be used in an SQL or other database. The table
may contain all execution environments that previously have
had their recipe events Jjournaled, the last sequence
identifier Jjournaled from each of these execution
environments, and their execution environment load times.
The layout of the table may be the same as the list above.
After a time period elapses (such as every minute), the
event SDC 216 may copy all entries in its in-memory list to

this table. This may reduce or minimize the load placed on

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

56

the event SDC 216 to update the table. In terms of
redundancy, this table may be synchronized to a backup
server in the same manner as the event journal 218.
[00110] A getSequencelDs() function of the event SDC 216
may be called by the notification client 206 when the CDA
server 204 tries to initiate a recipe event recovery. It
may return the sequence identifiers of the last-journaled
recipe events received from a requested list of execution
environments. When this function is called, the event SDC
216 may try to resolve this request using its internal list
first. If an execution environmment entry is found with the
same requested execution environment load time, the event
SDC 216 may return the last received sequence identifier
from the list. If the execution environment load time is
different, this may mean the controller has been reloaded,
and the function may return a zero sequence identifier for
the call to indicate that the event SDC 216 wants to
recover all recipe events from the execution environment.
For the latter case, the execution environment entry in the
event SDC’s internal list may be updated with the new load
time for the execution environment and a =zero seqguence
identifier. If the execution environment entry cannot be
found in the list or the list has not been initlalized, the
event SDC 216 may make a guery to the event journal 218 to
obtain the largest sequence identifier journaled for the
execution environment with the same requested execution
environment load time. This value is then used in the
appropriate entry in the event SDC’s internal list. The
gquery to the event journal 218 may be made using an
ems_sp GetGetSequencelD stored procedure. If the sequence
identifier is found, the function may update the event
SDC’s internal 1list and return with that sequence

identifier. Otherwise, a sequence identifier of zero may

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

35

40

45

57
be returned. Below are more details about the
getSequencelIDs () function and the stored procedure.

// DESCRIPTION:
// Get the latest sequence ID for each of the EEs in the list
// PARAMETERS:
// {in] short connectlD,
// [in] int NumOfEE,
// [in] 4int* EEs,
// [in]} __int64* EELoadTimes,
// RETURN VALUES:
// Standard com S_CK or E_FAIL.
// [out] _ int64** EESequencelDs
[helpstring ("Event SDC method getSequenceIDs”)] HRESULT
getSequencelIDs (
[in] short connectlD,.
[in] int NumOfEE,
[in] int* EEs,
[in] __ int64* EELoadTimes,
[out] _ int64** EESequencelDs);

ems_sp_GetGetSequencelID.sql

// NRME: ems_sp_GetGetSequencelD

// DESCRIPTION:

// Retreives the latest sequence ID for the EE given its

// load time

// PARAMETERS:

// QEE (in) The EE to get the latest sequence ID for
// @LoadTime (in) The load time of the EE

// @SegquencelID (out) The retrieved latest sequence ID

[00111] When the event SDC 216 processes recipe events,
it may check for any gap in the sequence identifiers. If
it detects a recipe event with a sequence identifier higher
than the next expected sequence identifier, this may mean
one or more events have been lost, and the event SDC 216
may command a recipe event recovery immediately. If the
event SDC 216 receives the expected recipe event for the
execution environment, the event SDC 216 may update its
internal list with the sequence identifier of the event.
If the event SDC 216 detects a recipe event with a sequence
identifier lower than the last received sequence identifier
in the list, it may do nothing to the list. 1In all three
cases, the event SDC 216 may journal the recipe events into
the event jourmnal 218.

[00112] When the event SDC 216 receives a recipe event

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

58

recovery begin bracket, it may update its internal list
with the sequence identifier stored in the event’s value
field if and only if the sequence identifier in the list is
less than the received sequence identifier. This is
because the sequence identifier in the list identifies the
last recipe event journaled, and there may be no need to
revert the sequence identifier to anything lower than that.
The event SDC 216 may never receive a recovery begin
bracket that has a different execution environment load
time than contained in its internal list. This is because,
whether the event SDC 216 commands or the CDA serxrver 204
activates a recipe event recovery, the event SDC 216 may
always update its internal list with the new execution
environment load time first. When the recovery begin
bracket reaches the event SDC 216, it may always contain
the expected execution environment load time.

[00113] To support guaranteed event delivery, the
following attributes may be added to event schema supported
by the event journal 218: a batch identifier, a sequence
identifier, and an execution environment load time. All of
these attributes may be journaled into the event journal
218. Also, an additional parameter index attribute (such
as a UINT32 value) may be added to the event schema, and
the CDA notification field may be mapped to this attribute.
This attribute in the event schema may also be journaled
into the event journal 218.

[00114] As noted above, the CDA server 204 could use a
notification structure that includes a sub-condition field,
which could represent a string (such as LPSTR). This new
notification field may be mapped into the existing sub-
condition attribute in the event schema.

[00115] The following represents specific scenarios that

might occur in the process control system 100. A control

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

59

recipe may start and generate recipe events that are
journaled in the event journal 218. The controller, which
is still running the control recipe, is then powered off
(assuming no battery backup and an empty database. A
complete reload of the controller is performed, and the
control recipe is started again. All new recipe events
from the execution environment need to be retrieved.
Without the load time of the execution environment, the
event SDC 216 may not know that the controller has been
reloaded, and it may request an event - recovery using the
sequence identifier continued from the last recipe event
received from the execution environment prior to the
reload. This may cause some new recipe events generated
from the new run of the control recipe to be missed during
the recovery. To avoid this, the 'control execution
environment could continue wusing the next sequence
identifier even after a load, the batch identifier could be
used instead of the load time, or the next sequence
identifier could be persisted even after a reload of the
controller. Also, the CDA server 204 may only have the
list of execution environments and not their load times,
and the event SDC 216 could return the sequence identifier
associated with the latest load time for an execution
environment. The CDA server 204 could also provide this
load time to the event SDC 216 since the load time in - the
event SDC 216 may not be the execution environment’s
current load time and the event SDC 216 may need to know
the current load time to identify the sequence identifier
at which to start recovery. The CDA server 204 could
obtain the load time from the execution environment.

[00116] In another example scenario, there could be
situations where a control recipe has completed its

execution and the control recipe complete event is sent but

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

60

is lost before it reaches the event SDC 216. As a result,
the CDA server 204 may be stuck waiting for a signal from
the event SDC 216 before the control recipe can be deleted.
There could be a mechanism to recover from this state, such
as having the CDA server 204 re-announce this event after
some timeout.

[00117] In addition, the CDA server 204 may not hold on
to any events (except in the case of console stations
through a notification cache). As a result, there may be
no way of even the CDA server 204 knowing that an event has
been lost on its way to the notification client 206. The
CDA server 204 could be enhanced so that every time it
sends a recipe complete event to the notification client
206, it waits to get the hsc gda control recipe_ complete ()
call from the event SDC 216 within a specified time period
(after which the CDA server 204 re-announces this event).
Also, if a control execution environment does not receive
the recipe complete indication from the event SDC 216
(through the CDA server 204), it may reissue the recipe
complete event.

[00118] Although FIGURES 5 and 6 illustrate one specific
example of a portion of a process control system supporting
guaranteed batch event delivery, various changes may be
made to FIGURES 5 and 6. For example, the process control
system 500 could include any number of each of the
components 502-518. Also, other suitable technigques could
be used to implement or support guaranteed event delivery.

[00119] FIGURE 7 illustrates an example user interface
700 supporting guaranteed batch event delivery in a process
control system. The embodiment of the user interface 700
shown 4in PIGURE 7 is for illustration only. Other
embodiments of the user interface 700 may be used without

departing from the scope of this disclosure.

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

6l

[00120] In this example, the user interface 700 1is
associated with a control execution environment. The user
interface 700 includes various tabs for accessing different
information about and setting different operational aspects
of the control execution environment. When the “main” tab
is selected, the user interface 700 presents various
information and selections to the user. One of the
selections includes a drop-down menu 702, which can be used
by the user to select the size of the event buffer 203 in
the control execution environment. In this example, the
drop-down menu 702 includes four different options for the
buffer size: none, small, medium, and large. With the
“none” option, a buffer size of zero is used, and
guaranteed batch event delivery is disabled. 1In particular
embodiments, the small, medium, and large buffers 203 can
accommodate 120, 240, and 740 events, respectively. The
user selects a proper buffer size based on, for example,
the application in which the control execution environment
is being used.

[00121] Although FIGURE 7 illustrates one example of a
user interface 700 supporting guaranteed batch event
delivery in a process control system, various changes may
be made to FIGURE 7. For example, any other suitable user
interface or cher suitable technique could be used to set
the size of the event buffer 203 in a control execution
environment.

[00122] FIGURE 8 illustrates an example method 800 for
guaranteed batch event delivery 1in a process control
system. The embodiment of the method 800 shown in FIGURE 8
is for illustration only. Other embodiments of the method
800 could be used without departing from the scope of this
disclosure.

[00123] A controller generates and buffers multiple

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

62

events at step 802. This may include, for example, a
control execution environment generating various events
associated with its operation, such as events associated
with the execution of one or more recipe control modules
504 and sequential control modules 506.

[00124] The controller associates a unique identifier
with each event at step 804. This may include, for
example, the controller assigning sequential numerical
values to a sequence of events generated by the controller.
The sequence number for each event could be unique within
the current execution of the control execution environment.
The sequence number, a code identifying the control
execution environment, and the control execution
environment’s load time may collectively represent an
identifier that uniquely identifies an event in the entire
process control system.

[00125] The controller communicates the events to a
supervisory server at step 806, and the supervisory server
receives at least some of the events and determines if any
events are missing at step 808. This could include, for
example, the control execution environment providing the
events to the notification client 206 for storage in the
notification queue 208, This could also include the
notification manager 210 retrieving the events from the
notification queue 208. This could further include the
notification manager 210 storing the events in the event
list 214. In addition, this could include the event SDC
216 determining if any events are missing using the unique
identifiers of the received events.

[00126] If no events are missing at step 810, the events
are journaled at step 812. This could include, for
example, the event SDC 216 storing the events in the

journal 218. At this point, the process returns to step

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

63

802 where the controller generates more events. Otherwise,
one or more events are missing, and the supervisory server
communicates a request for the missing events to the
controller at step 814. This may include, for example, the
supervisory server sending a request for an event recovery.
The request could be sent to the CDA server 204 through the
notification client 206 or the GDA manager 220.

[{00127] The controller receives the recovery request and
attempts to locate the missing events at step 816. This
may include, for example, the CDA server 204 causing the
control execution environment to examine the events in its
buffer 203, looking for events to be retransmitted. If all
missing events are found at step 818, the controller
transmits a begin bracket and the reguested events,
including the missing events, at step 820. Otherwise, one
or more missing events cannot be found, such as when one or
more events have been overwritten in the event buffer 203.
In that case, the controller transmits a begin bracket and
any requested events that could be found (if any) and sets
an alarm at step 822. If none of the missing events could
be found in the buffer 203, the transmission of the begin
bracket and the requested events could be omitted in step
820. The alarm set in step 822 could, for example, inform
a user of the missing events, allowing the user to take any
suitable action. The recovered events are Jjournaled at
step 812, and the process returns to step 802 where the
controller generates more evénts.

[00128] Although FIGURE 8 illustrates one example of a
method 800 for guaranteed batch event delivery in a process
control system, various changes may be made to FIGURE 8.
For example, while shown as a series of steps, various
steps in FIGURE 8 could overlap, occur in parallel, or

occur in a different order. As a particular example, the

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

64

controller could continuously denerate, buffer, and
communicate events to the supervisory server, and the
controller could intermittently retransmit lost or missing
events to the supervisory server as needed.

[00129] In some embodiments, wvarious functions are
implemented or supported by a computer program that is
formed from computer readable program code and that is
embodied in a computer readable medium. The phrase.
“computer readable program code” includes any type of
computer code, including source code, object code, and
executable code. The phrase “computer readable medium”
includes any type of medium capable of being accessed by a
computer, such as read only memory (ROM), random access
memory (RAM), a hard disk drive, a compact disc (CD), a
digital video disc (DVD), or any other type of memory.

[00130] It may be advantageous to set forth definitions
of certain words and phrases used throughout this patent
document. The term “couple” and its derivatives refer to
any direct or indirect communication between two or more
elements, whether or not those elements are in physical
contact with one another. The terms “application” and
“program” refer to one or more computer programs, software
components, sets of instructions, procedures, functions,
objects, classes, instances, related data, or a portion
thereof adapted for implementation in a suitable computer
code (including source code, object code, or executable
code). The terms “transmit,” “receive,” and “communicate,”
as well as derivatives thereof, encompass both direct and
indirect communication. The terms “include” and
“comprise,” as well as derivatives thereof, mean inclusion
without limitation. The term “or” is inclusive, meaning
and/or. The phrases “associated with” and “associated

therewith,” as well as derivatives thereof, may mean to

WO 2008/005447 PCT/US2007/015377

10

15

20

65

include, be included within, interconnect with, contain, be
contained within, connect to or with, couple to or with, be
communicable with, cooperate with, interleave, Jjuxtapose,
be proximate to, be bound to or with, have, have a property
of, or the like. The term “controller” means any device,
system, or part thereof that controls at Jleast one
operation. A controller may be implemented in hardware,
firmware, software, or some combination of at least two of
the same. The functionality associated with any particular
controller may be centralized or distributed, whether
locally or remotely.

[00131] While +this disclosure has described certain
embodiments and generélly associated methods, alterations
and permutations of these embodiments and methods will be
apparent to those skilled in the art. Accordingly, the
above description of example embodiments does not define or
constrain this disclosure. Other changes, substitutions,
and alterations are also possible without departing from
the spirit and scope of this disclosure, as defined by the

following claims.

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

66

WHAT IS CLAIMED IS:

1. A method comprising:

generating multiple events associated with operation

of a controller in a process control system;
storing the events in a buffer;

communicating the events to a supervisory device

associated with the controller;

receiving a request to. recover one or more of the

events;

recovering at least one of the events from the buffer;

and

communicating the at least one recovered event to the

supervisory device.

2. The method of Claim 1, wherein:
each event is associated with a unique identifier; and

the request identifies the unique identifier

associated with one of the events.

3. The method of Claim 2, wherein:

the unique 1identifier identified in the request
comprises a numerical identifier; and

recovering the at least one event from the buffer
comprises recovering any event associated with a numerical
identifier that is greater than the numerical identifier

identifdied in the regquest.

4. The method of Claim 1, further comprising:

generating an alarm in response to recovering less

than all desired events from the buffer.

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

67

5. The method of Claim 1, wherein the events are
associated with execution of at least one of:

a recipe control module that defines production
requirements for a batch of a product; and

a sequential control module that provides access to a
control module that controls a process element in the

process control system.

6. The method of Claim S5, further comprising:
preventing deletion of the recipe control module until
all events generated by the recipe contreol module have been

journaled by the supervisory device.

7. The method of Claim 1, further comprising:
creating the buffer, the buffer having a user-

specified size.

8. An apparatus comprising:
at least one memory configured to store a unigque
identifier associated with a first event received from a
controller in a process control system; and
at least one processor configure to:
receive a second event from the controller;
determine whether any events between the first
event and the second event have not been received from the
controller using the unique identifier; and
initiate an event recovery if at least cne event
between the first event and the second event has not been

received from the controller.

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

68

9. The apparatus of Claim 8, wherein:

the unique identifier associated with the first event
comprises a first numerical identifier;

the first event comprises a most recently received
event from the controller; and

the at least one processor is configure to determine
whether any events between the first event and the second
event have not been received from the controller by
determining if a second numerical identifier associated
with the second event is one greater than the £first

numerical identifier.

10. The apparatus of Claim 8, wherein the at least
one processor is further configure to receive at least one
recovered event from the controller during the event

recovery.

11. The apparatus of Claim 10, wherein:

the unique identifier associated with the first event
comprises a first numerical identifier;

the at least one processor is configure to initiate
the event recovery by identifying the first numerical
identifier: and

each recovered event is associlated with a numerical
identifier that is greater than the first numerical

identifier.

12. The apparatus of Claim 8, wherein the apparatus
comprises a supervisory device associated with the
controller in the process control system, the supervisory

device configured to journal the events in a database.

WO 2008/005447 PCT/US2007/015377

10

15

20

25

30

69

13. The apparatus of Claim 8, wherein:

at least some of the events are associated with
execution in the controller of a recipe control module that
defines productibn requirements for a batch of a product;
and

the at least one processor is configured to provide
the controller with a signal indicating that all events
generated by the recipe control module have been received
from the controcller, the controller configured to prevent
deletion of the recipe control module until the signal has

been received.

14. A computer program embodied on a computer
readable medium, the computer program comprising:

computer readable program code for generating multiple
events associated with operation of a controller in a

process control system;

computer readable program code for storing the events

in a buffer;

computer readable program code for communicating the
events to a supervisory device associated with the

controller;

computer readable program code for receiving a request
to recover one or more events;
computer readable program code for recovering at least

one of the events from the buffer; and

computer readable program code for communicating the

at least one recovered event to the supervisory device.

WO 2008/005447 PCT/US2007/015377

10

15

20

25

70
15. The computer program of Claim 14, wherein:
each event is associated with a unique identifier; and

the request identifies the unique identifier

associated with one of the events.

16. The computer program of Claim 15, wherein:

the unique identifier identified in the request

comprises a numerical identifier; and

the computer readable program code for recovering the
at least one event from the buffer comprises~ computer
readable program code for recovering any event associated
with a numerical identifier that 1is greater than the

numerical identifier identified in the request.

17. The computer program of Claim 14, further
comprising:

computer readable program code for generating an alarm
in response to recovering less than all desired events from

the buffer.

18. - The computer program of Claim 14, further
comprising:
computer readable program code for creating the

buffer, the buffer having a user-specified size.

WO 2008/005447 PCT/US2007/015377

10

15

20

25

71

19. The computer program of Claim 14, wherein:

at least some of the events are associated with
execution in the controller of a recipe control module that
defines production requirements for a batch of a product;
and

further comprising computer readable program code for
preventing deletion of the recipe control module until all
events generated by the recipe control module have been

journaled by the supervisory device.

20. A system comprising:

a controller configured to control one or more process
elements in a process control system, the controller also
configured to generate and buffer multiple events
associated with operation of the controller, each event

associated with a unique identifier; and

a supervisory device configured to receive at 1least
some of the events from the controller and to determine if
any of the events have not been received from the
controller based on the unique identifiers, the supervisory
device also configured to initiate an event recovery by the
controller if at least one of the events has not been

received from the controller;

wherein the controller is further configured to
recover at least one event and to communicate the at least
one recovered event to the supervisory device during the

event recovery.

WO 2008/005447 PCT/US2007/015377

10

15

20

72

21. The system of Claim 20, wherein:

the unique. identifiers comprise numerical identifiers;
and

the supervisory device is configure to determine
whether any of the events have not been received from the
controller by determining if a gap exists in the numerical
identifiers associated with the events received from the

controller.

22. The system of Claim 21, wherein:

the supervisory device is configured to initiate the
event recovery by identifying the numerical identifier

associated with one of the events; and

the controller 1is configured to recover any event
having a numerical identifier greater than the numerical

identifier identified by the supervisory device.

23. The system of Claim 20, wherein the controller is
further configured to generate an alarm in response to

recovering less than all desired events.

WO 2008/005447

17111

PCT/US2007/015377

100
112a 112b /
¢ ¢ 108b
5
REMOTE
SERVER SERVER 108a OPERATOR
N STATION(S)
\ OPERATOR
116a STATION(S)
113|115
114a _,,\‘ I
3 [110
v 106b-
SERVER
L OPERATOR
A | |
CONTROLLER
104a— TRIELY CONTROLLER [~ 104b
——F—— ~116b 116¢c B
PROCESS PROCESS
102281 £ EMENT(S) ELEMENT(S) [~ 102b

FIG. 1

WO 2008/005447

2/11

200

PCT/US2007/015377

212 ALARM EVENT 214
LIST LIST
218
NOTIFICATION EVENT
210~7 ' MANAGER 216~ “spc
NOTIFICATION «—208
QUEUE
NOTIFICATION GDA
206~ " GLIENT MANAGER [~ 220
I l
v 1 R ?
204 — CDA SERVER
- CEE CEE
202a -~ A ~ 202n
[TTTITIT} [CITITTTH
/ 4
203 203

FIG. 2

PCT/US2007/015377

WO 2008/005447

311

ve 'Oid

} | | i t 1 1 H t
| | _ | | _ I | |
| | | | I | | | |
|] | * | | _ _
| @ [P— | _ _ | | |
| | | _ | | | | _
| | | | _ | I | _
| _ * _ T _ _ | |
_ | | _ [| je— _
| | | _ [| e ———] |
| | _ | | | | @ » |
| _ | | | | _ _ | °
| | | | | [| | !
S
| L @ _ _ | | | |
_ @ | | | | _ | _ |
| |] | | | | | |
_ _ @ I _ | _ | | |
| _ | _ _ _ — |
| | _ _ _ | — _
_ l _ , _ _ _ _ _
“HON Pw_,__,m__ﬂm oas 18 | | ¥oW | (3n3no| [INaMo | |¥anEs | | ooo
vao Toa | |IN3A3 | [INJAZ | | JILON | [HILON | |HILON | | vaD

PCT/US2007/015377

WO 2008/005447

4/11

a¢ 'Oid

|] 1 | 1] i | i
_ | _ _ | | | _ _
_ _ _ _ | _ _ _ _
_ — | | | _ | | _
@ | _ | | | |
_ _ | _ | _ _ _ _
| | I | | | I | |
| | ¢ _ I I _ | |
_ | _ | | | e |
_ _ _ _ | _ e e— | _
| | _ | _ _ | @_. |
| _ i | _ _ _ | | 0
_ _ _ | | _ _ _ ’
SR B - Ol
| - @ _ | | ! | |
_ @ I, | _ | _ | ! |
| _ | _ _ _ | | _
| _ I [_ _ _ | _
{ | | _ _ _ A ——— _
_ ~ _ _ _ _ | ——
_ | _ _ _ | _ _ _
YOW %_Mﬂm oas | | Lsn | | wow | |3nand| |iNArO| [w3A3S || oo
vao DA | [1N3AZ | [IN3AZ | | HILON | |HUON | | HION || Va0

PCT/US2007/015377

WO 2008/005447

5/11

J¢€ "Old

	_ _ _ _ _						
®__	_						
_ _ _			_ I				
I f¢ i i~ m 1	_						
	®T “ “ “	_ _					
_				_ fe——] _			
_ ! _ _ _ _ @.Tl._ _							
—	_ _ _ e_ _						
_ @rll'._ _ _ _ _ _ _							
_ _) _ _		_ _					
_ _ _	_ _ _ _ _						
_	e_ _ _	_ _					
	*] _ _]						
_			I I ®_ .	_			
_ _ _	_ _ _ _						
_ _ _	_ _ — _						
_ _ _	_ _	L					
_ _	_			_ _@			
_ _ _	” _) _					
_ _ _	_ _	@. ©					
	_	_ _	j—————				
]						ol	
G						_@	
		_		_ _ [
				L% _ _ _			
	_ 1 f m f ﬂ						
		0) “ I		”			
	_					_	
"HOW Hﬁﬂm 0as 151 | | MOW | [3n3nD | |IN3O | [u3ANIS | | oo
vao Toa- | |IN3A3 | | IN3AZ | | HILON | | HILON | | JILON || vao

PCT/US2007/015377

WO 2008/005447

6/11

da¢g 9Oi4d
| _ [_ _ | | _ _
| I | | _ _ _ | |
“ | | | “ | m_@ | |
@ l, | _ _ _ _ | | |
_ ®_ | _ I _ _ _ |
|)] | | | | | |
_ | P | [| | _ _
| I | _ | | S _
_ _ | | _ | | @TIL
_ | _ _ _ _ | | _
"HOW ».ﬁﬂm 0as 151 | | woW | |3n3no| |INANO | |u3AuIS | | 5o0
vao N3N\ | iNaaz | [anana | | diwoN | 40N | | HIloN | | vao

PCT/US2007/015377

WO 2008/005447

711

330

|

1
L 4 +
d3Ad3S vao

L A ¥

¥ Old

_wﬂzmﬁ HOLve

S3IOVSSIN

0dsS LN3IAT

[

i 1SIT.LIN3IAS

a

IN3D NOILYDIHILON

ONIAIHOHV LN3IAT

¥

H0SS300ud

¢V~ |NaAg HoLve

h 4

H3OVYNVIA NOILVOI4ILON

LSIT LN3A3 AN

308

SWHVYTV

PCT/US2007/015377

WO 2008/005447

8/11

S30IA3A

¢ Old

S3SVHd 1IN3NdIND

JAILOY AR ONILIVM
e N 1 I
Yl \\ TN
1
£M0019 £M9074 £M0019
~T_3SVHd ASVHd 3SVHd
ZM007d ZM0079 Z Mo01d
'l 3SVHd 3SYHd ASVHd
| M001g L MO019 I M001g
L'l 3SVHd 3ASYHd 3ISVYHd
3¥NA3O0Yd 2HNAID0Yd ENNGERIO
JNVYNOVL ANVYNOVL ANVYNOVL
3d19TH TOHINOD | [3dIDIY 10HLNOD | | 3dID3Y TOMLNOD

\

[

14554
d3INMO

\

91§

IN3and

WonN

¢0S

AdI03Y T0ULINOD 3dIOFH TOHLNOD 3diD3 T0HLNOD

\

70S

00¢

PCT/US2007/015377

WO 2008/005447

9/11

JUSAS Uyojeq e J0U |

9 "'Old

JUBSHDHMONIOS|D

-~

A

30019 vmm@m._. »> ._mmmcm_z 300i9 » ._mmmcm_zucm>m_coﬂmmw_o
() uoneoynoNHoday Juane yojeq e |
WOY/NOS
yoo|g Buiwlely e waAgYolegs|D e
() sonoNxoojgHodsy () sonoNHoday () amoaxg | Y°01g uonoung

PCT/US2007/015377

WO 2008/005447

10/11

[Buuoyuoy | 103foid |

0L, L 'Old
Li

[den Jleoues || o | saweN Jsjaueled mouS O

[a] Kepung | Jewto Aepyas

4] AAA JeWI0 JBIA

.\oom awny sbumes wbyfeq O

_ 0] au0Z swi|

E_ﬂw_%zl_ oJu} wi| A

_%_wm | | JN0aLUI] UL

a ews| Aowsyy sead yoeg | || 310 91BIS 330
sbuies usA3 yojeg- sBumag vejsey dniamod-

uLeqy pepaaox3 Jwr] Alowsy sjqeus A
pajgeu3 Buiuely 7

440

6e|4 wiepy-u)

OJu| Uuejy -

3|p| 0} uny Wol} 337 pueLwod Aew ss800y weibold i
uny 0} 8|p| WoL 337 PuewLI0D Aew ssa0oy Weibold F

4]

Josinadng| ajp| 330 Joj %007 Jasn

]

lojesadQ| uny 330 4o} %007 Jasn

31dl RIS 339D

4] 301 PUBLILIOD T3
91EJS/PUBLLILIO?) -

4] SWwQS| pouad ucinosx eseq
_ _ awep Wwaj|
_ GSv)_00£330)] awep be|

SUONeIIUNWILIOY Jaad | fowsly | sunuerQ Nd9 | BuipeoTndd | sonsiels _co_umsmzcoo_mma_ uep

doojpid
wos” ajdwexa
pid sjdwexs
Jojow sjdwexa
apeased ojdwexa
paubisseu
1030V Ydes
035100 010 00
LGyl _YINIOI
9G¥l MNIOI
_1s3LoL_won O
} 1S310L WOS
183101 WIS
£00 10 WOS
200_10_JS
_ 100 10_WOS
| 1S3101 WO
1LS310L_WNO
153101 WO
200 010 WO
100 OLO WD
g6vl 000330 LI
100010000 BB
200_v9l_30v U
100 ¥91 30V O &

=0

[+]

O>D
GO+ REEER

olglies

A feyd o4 E B
uoneoupuap| |uonewyuon jonuo) | skejdsig Jeniss | AioisiH Janeg | oju) sedA] Yooig |suoneaiunwiwon) Aeydsig JUBWUBISsy - 13001
x][&] [efoid] sieteweled - 66yl 0069330 %0ig0060330WALSAS| [T T I T T T T 1]

B[

Juswubissy - 198[0.4 - Japping j04u0D)

WO 2008/005447 PCT/US2007/015377

11/11

800

(START)

<

802 A CONTROLLER GENERATES
AND BUFFERS EVENTS

!

804 — CONTROLLER ASSOCIATES UNIQUE
IDENTIFIER WITH EACH EVENT

!

806 — CONTROLLER COMMUNICATES
EVENTS TO SUPERVISORY SERVER

{

SUPERVISORY SERVER RECEIVES EVENTS
808 — AND DETERMINES IF ANY EVENTS MISSING

BASED ON UNIQUE IDENTIFIERS 812
N
810 ANY EVENTS\ NO .| JOURNAL
MISSING? / EVENTS
A
YES

SUPERVISORY SERVER COMMUNICATES
814 — REQUEST FOR MISSING EVENTS
TO CONTROLLER

!

CONTROLLER RECEIVES REQUEST FOR
816 —1 MISSING EVENTS AND ATTEMPTS TO
LOCATE MISSING EVENTS

4 .
YES ALL MISSING NO
820 EVENTS FOUND?

N S !
TRANSMIT BEGIN 818 TRANSMIT BEGIN
BRACKET AND BRACKET AND
REQUESTED 822 —1 ANY REQUEST

EVENTS EVENT(S) AND
SET ALARM
: +

FIG. 8

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

