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WAVEFRONT PARALLEL PROCESSING FOR VIDEO CODING 

[0001] This application claims the benefit of U.S. Provisional Application Serial Nos.  

61/622,974, filed April 11, 2012, and 61/640,529, filed April 30, 2012, the entire 

contents of each of which are hereby incorporated by reference.  

TECHNICAL FIELD 

[0002] This disclosure relates to video coding.  

BACKGROUND 

[0003] Digital video capabilities can be incorporated into a wide range of devices, 

including digital televisions, digital direct broadcast systems, wireless broadcast 

systems, personal digital assistants (PDAs), laptop or desktop computers, tablet 

computers, e-book readers, digital cameras, digital recording devices, digital media 

players, video gaming devices, video game consoles, cellular or satellite radio 

telephones, so-called "smart phones," video teleconferencing devices, video streaming 

devices, and the like. Digital video devices implement video coding techniques, such as 

those described in the standards defined by MPEG-2, MPEG-4, ITU-T H.263, ITU-T 

H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), the High Efficiency Video 

Coding (HEVC) standard presently under development, and extensions of such 

standards. Extensions of standards include, for example, Scalable Video Coding (SVC) 

and Multiview Video Coding (MVC) extensions of H.264/AVC. The video devices may 

transmit, receive, encode, decode, and/or store digital video information more 

efficiently by implementing such video coding techniques.  

[0004] Video coding techniques include spatial (intra-picture) prediction and/or 

temporal (inter-picture) prediction to reduce or remove redundancy inherent in video 

sequences. For block-based video coding, a video slice (e.g., a video frame or a portion 

of a video frame) may be partitioned into video blocks, which may also be referred to as 

treeblocks, coding units (CUs) and/or coding nodes. Video blocks in an intra-coded (I) 

slice of a picture are encoded using spatial prediction with respect to reference samples 

in neighboring blocks in the same picture. Video blocks in an inter-coded (P or B) slice 

of a picture may use spatial prediction with respect to reference samples in neighboring 

blocks in the same picture or temporal prediction with respect to reference samples in
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other reference pictures. Pictures may be referred to as frames, and reference pictures 

may be referred to a reference frames.  

[0005] Spatial or temporal prediction results in a predictive block for a block to be 

coded. Residual data represents pixel differences between the original block to be 

coded and the predictive block. An inter-coded block is encoded according to a motion 

vector that points to a block of reference samples forming the predictive block, and the 

residual data indicating the difference between the coded block and the predictive block.  

An intra-coded block is encoded according to an intra-coding mode and the residual 

data. For further compression, the residual data may be transformed from the pixel 

domain to a transform domain, resulting in residual transform coefficients, which then 

may be quantized. The quantized transform coefficients, initially arranged in a two

dimensional array, may be scanned in order to produce a one-dimensional vector of 

transform coefficients, and entropy coding may be applied to achieve even more 

compression.  

SUMMARY 

[0006] In general, this disclosure describes techniques for parallel processing of 

wavefronts of a picture. In particular, in accordance with certain techniques of this 

disclosure, a video coder may be configured to code video data for a picture having one 

or more wavefronts, each of the wavefronts including one or more complete slices. As 

another example, in accordance with certain techniques of this disclosure, a video coder 

may be configured to code video data for a picture having one or more slices, each of 

the slices including one or more wavefronts. In either case, each wavefront in a 

plurality of wavefronts may include sufficient information to allow for parallel 

processing of the wavefronts. Thus, a wavefront may either always begin with a slice 

header, or if the wavefront does not begin with a slice header, then the wavefront 

belongs to the same slice as a row of blocks above the wavefront.  

[0007] In one example, a method of decoding video data of an encoded video bitstream 

comprises: 

determining that a current slice of a picture of the video data begins in a row of 

coding tree units (CTUs) in the picture at a position other than a beginning of the row; 

based on the determination that the current slice begins in the position other than the 

beginning of the row, determining that the current slice ends within the row of CTUs,
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wherein the row spans a width of the picture, and wherein the beginning of the row 

corresponds to a left edge of the picture, and wherein an end of the row corresponds to a 

right edge of the picture; and 

based on the determination that the current slice ends within the row of CTUs, 

parsing the encoded video bitstream to decode slice partition syntax elements from the 

row of CTUs, wherein the slice partition syntax elements demarcate the current slice 

from a subsequent slice of the picture, and wherein the subsequent slice starts in the row 

of CTUs or in a subsequent row of CTUs that follows the row of CTUs.  

[0008] In another example, a device for decoding video data of an encoded video 

bitstream comprises: 

a memory configured to store at least a portion of the video data; and 

one or more processors configured to: 

determine that a current slice of a picture of the video data begins in a 

row of coding tree units (CTUs) in the picture at a position other than a 

beginning of the row; 

based on the determination that the current slice begins in the position 

other than the beginning of the row, determine that the current slice ends within 

the row of CTUs, wherein the row spans a width of the picture, and wherein the 

beginning of the row corresponds to a left edge of the picture, and wherein an 

end of the row corresponds to a right edge of the picture; and 

based on the determination that the current slice ends within the row of 

CTUs, parse the video bitstream to code slice partition syntax elements from the 

row of CTUs, wherein the slice partition syntax elements demarcate the current 

slice from a subsequent slice of the picture, and wherein the subsequent slice 

starts in the row of CTUs or in a subsequent row of CTUs that follows the row 

of CTUs.  

[0009] In another example, a device for decoding video data of an encoded video 

bitstream comprises: 

means for determining that a current slice of a picture of the video data begins in 

a row of coding tree units (CTUs) in the picture at a position other than a beginning of 

the row; 

means for determining, based on the determination that the current slice begins 

in the position other than the beginning of the row, that the current slice ends within the 

row of CTUs, wherein the row spans a width of the picture, and wherein the beginning
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of the row corresponds to a left edge of the picture, and wherein an end of the row 

corresponds to a right edge of the picture; and 

means for parsing, based on the determination that the current slice ends within 

the row of CTUs the encoded video bitstream to decode slice partition syntax elements 

from the row of CTUs, wherein the slice partition syntax elements demarcate the current 

slice from a subsequent slice of the picture, and wherein the subsequent slice starts in 

the row of CTUs or in a subsequent row of CTUs that follows the row of CTUs.  

[0010] In another example, a non-transitory computer-readable storage medium is 

provided having stored thereon instructions that, when executed, cause a programmable 

processor of a computing device to: 

process video data of an encoded video bitstream; 

determine that a current slice of a picture of video data begins in a row of coding 

tree units (CTUs) in the picture at a position other than a beginning of the row, wherein 

the row spans a width of the picture, wherein the beginning of the row corresponds to a 

left edge of the picture, and wherein an end of the row corresponds to a right edge of the 

picture; 

based on the determination, determine that the current slice begins in the 

position other than the beginning of the row, determine that the current slice ends within 

the row of CTUs; and 

code the slice based on the determination that the current slice ends within the 

row of CTUs , parse the encoded video bitstream to decode slice partition syntax 

elements from the row of CTUs, wherein the slice partition syntax elements demarcate 

the current slice from a subsequent slice of the picture, and wherein the subsequent slice 

starts in the row of CTUs or in a subsequent row of CTUs that follows the row of CTUs.  

[0010a] In yet another example, a method of encoding video data comprises: 

determining that a current slice of a picture of the video data begins in a row of 

coding tree units (CTUs) in the picture at a position other than a beginning of the row; 

based on the determination that the current slice begins in the position other than 

the beginning of the row, determining that the current slice ends within the row of 

CTUs, wherein the row spans a width of the picture, and wherein the beginning of the 

row corresponds to a left edge of the picture, and wherein an end of the row corresponds 

to a right edge of the picture; and 

based on the determination that the current slice ends within the row of CTUs, 

generating an encoded video bitstream at least in part by encoding slice partition syntax
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elements in the row of CTUs, wherein the slice partition syntax elements demarcate the 

current slice from a subsequent slice of the picture, and wherein the subsequent slice 

starts in the row of CTUs or in a subsequent row of CTUs that follows the row of CTUs.  

[0011] The details of one or more examples are set forth in the accompanying drawings 

and the description below. Other features, objects, and advantages will be apparent 

from the description and drawings, and from the claims.  

BRIEF DESCRIPTION OF DRAWINGS 

[0012] FIG. 1 is a block diagram illustrating an example video encoding and decoding 

system that may utilize techniques for coding wavefronts in parallel.  

[0013] FIG. 2 is a block diagram illustrating an example of a video encoder that may 

implement techniques for coding wavefronts in parallel.  

[0014] FIG. 3 is a block diagram illustrating an example of a video decoder that may 

implement techniques for coding wavefronts in parallel.  

[0015] FIG. 4 is a conceptual diagram illustrating an example picture divided into 

wavefronts.  

[0016] FIG. 5 is a flowchart illustrating an example process by which a video coder 

may implement techniques of this disclosure for coding wavefronts in parallel.
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[0017] FIG. 6 is a flowchart illustrating another example process by which a video 

coder may implement techniques of this disclosure for coding wavefronts in parallel.  

DETAILED DESCRIPTION 

[0018] In general, this disclosure describes techniques for parallel processing of 

wavefronts of a picture. A picture may be partitioned into a plurality of wavefronts, 

where each wavefront may correspond to a row of blocks of the picture. In examples, 

the blocks may correspond to coding tree units (CTUs) of the picture, also referred to as 

largest coding units (LCUs). A video coder, such as a video encoder or video decoder, 

may code the wavefronts substantially in parallel. For example, the video coder may 

code a block of a first wavefront of a picture in parallel with a block of a second 

wavefront of the picture. The video coder may initialize a context for a current 

wavefront for performing context adaptive binary arithmetic coding (CABAC) of the 

current wavefront based on data of the first two blocks of the above wavefront, as well 

as one or more elements of a slice header for a slice including the first block of the 

current wavefront.  

[0019] A picture may be divided into multiple rows of coding tree units (CTUs). Each 

row of CTUs may correspond to a respective wavefront. Wavefront parallel processing 

offers the capability to process multiple rows of CTUs in parallel in a wavefront 

fashion, where there may be a delay of two CTUs between the start of adjacent 

wavefronts. The video coder may perform CABAC initialization of a subsequent 

wavefront (or CTU row) using the context states after coding 2 CTUs of a CTU row 

above the subsequent CTU row. In other words, before beginning coding of a current 

wavefront, a video coder may code at least two blocks of a wavefront above the current 

wavefront, assuming the current wavefront is not the top row of CTUs of a picture.  

Moreover, the video coder may initialize a CABAC context for a current wavefront 

after coding at least two blocks of a wavefront above the current wavefront.  

[0020] CABAC probabilities may be synchronized with an upper-right CTU. Because a 

video coder may process wavefronts in parallel, the video coder may require 

information from the top CTU row's end to decode the beginning of the second CTU 

row. Examples of such information may include slice information, quantization 

parameters (QP), and the like. For example, if a new slice starts towards the end of the 

top CTU row (wavefront), the video coder may require certain information of the top
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CTU row prior to coding the CTU row (wavefront) immediately below. More 

specifically, the information from the top CTU row may affect the decoding process of 

the CTU row below.  

[0021] In general, the techniques of this disclosure are directed to mitigating potential 

issues caused by slices that begin in a position that is after the first CTU of a wavefront, 

and continue into a subsequent wavefront. In particular, if a slice begins at a position 

subsequent to the first CTU of a wavefront, and includes CTUs of one or more 

subsequent wavefronts, the video coder may need to code the respective slice headers of 

each slice of a current wavefront in order to obtain the information required to code the 

current wavefront. In such a scenario, based on the slice headers encoded by a video 

encoder, a video decoder may be required to examine each slice header in a picture to 

determine information necessary to decode the various wavefronts of the picture.  

Examples of such information include entry points of the wavefronts, quantization 

parameters for the wavefronts, etc. In some instances, the video coder may be required 

to map the slices according to positions in the picture, such as mapping the beginning 

and end point of each slice within the picture. On the other hand, if the video coder has 

information for a current wavefront from within 2 CTUs to the right of the current CTU 

from the above row, then the video coder may code each wavefront without delay 

caused by slice spillover. For instance, if a video decoder, or a video encoder 

configured to perform decoding, has access to information for a current wavefront from 

within 2 CTUs to the right of the current CTU from the above row, then the video 

decoder may decode each wavefront without delay caused by slice spillover 

[0022] To mitigate or prevent coding delays caused by slice spillover, a video coder 

may implement one or more techniques of this disclosure to restrict wavefront-slice 

interaction such that if a slice begins at a position of a CTU row other than the 

beginning of the CTU row (e.g., the slice begins at the middle of the CTU row), then the 

slice ends within the CTU row (e.g., at the last CTU of the row, or at a CTU preceding 

the last CTU of the row). Conversely, the video coder may implement the techniques to 

determine that a slice begins at the beginning of a CTU row (e.g., the first CTU of the 

row forms the first CTU of the slice), and that the slice includes all CTUs of the current 

row and one or more CTUs of one or more subsequent CTU rows. In this scenario, the 

video coder may permit slice spillover, i.e., the video coder may determine that the slice 

includes one or more CTUs of the one or more subsequent CTU rows. A potential 

advantage provided by the techniques of this disclosure is that a video decoder may not
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be required to rely on subsequent slice headers while decoding a picture in wavefront 

parallel processing order. Instead, the decoder may process each slice header that the 

video decoder encounters while processing the CTUs in wavefront parallel processing 

order.  

[0023] In some examples, the video coder may detect that a slice begins in the middle 

or at the end of a wavefront (e.g., at a block subsequent to the first block of the 

wavefront), and crosses the boundary to the subsequent wavefront. In this instance, the 

video coder may configure the slice to terminate within (e.g., at the last block of) the 

wavefront in which the slice begins. Using the slice-wavefront configurations described 

above, a video coder may ensure that a wavefront either starts with a slice header, or 

alternatively, if the wavefront does not start with a slice header, then the wavefront 

belongs to the same slice as a wavefront positioned immediately above.  

[0024] In some examples, a video coder may implement the techniques to require that 

that, if a slice starts at the beginning of a wavefront and continues into a subsequent 

wavefront, then the slice must end in the middle of (or otherwise within) a wavefront.  

In combination with the restrictions described above, the video coder may ensure that 

the remainder of the wavefront in which the first slice ends includes one or more 

complete slices. By configuring slices and wavefronts according to these requirements, 

a video coder may implement techniques to perform wavefront parallel processing of an 

image more efficiently, such as by mitigating delays caused by spillover of slices that 

begin after a first block of a wavefront.  

[0025] FIG. 1 is a block diagram illustrating an example video encoding and decoding 

system 10 that may utilize techniques for coding wavefronts in parallel. As shown in 

FIG. 1, system 10 includes a source device 12 that provides encoded video data to be 

decoded at a later time by a destination device 14. In particular, source device 12 

provides the video data to destination device 14 via a computer-readable medium 16.  

Source device 12 and destination device 14 may comprise any of a wide range of 

devices, including desktop computers, notebook (i.e., laptop) computers, tablet 

computers, set-top boxes, telephone handsets such as so-called "smart" phones, so

called "smart" pads, televisions, cameras, display devices, digital media players, video 

gaming consoles, video streaming device, or the like. In some cases, source device 12 

and destination device 14 may be equipped for wireless communication.  

[0026] Destination device 14 may receive the encoded video data to be decoded via 

computer-readable medium 16. Computer-readable medium 16 may comprise any type
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of medium or device capable of moving the encoded video data from source device 12 

to destination device 14. In one example, computer-readable medium 16 may comprise 

a communication medium to enable source device 12 to transmit encoded video data 

directly to destination device 14 in real-time. The encoded video data may be 

modulated according to a communication standard, such as a wireless communication 

protocol, and transmitted to destination device 14. The communication medium may 

comprise any wireless or wired communication medium, such as a radio frequency (RF) 

spectrum or one or more physical transmission lines. The communication medium may 

form part of a packet-based network, such as a local area network, a wide-area network, 

or a global network such as the Internet. The communication medium may include 

routers, switches, base stations, or any other equipment that may be useful to facilitate 

communication from source device 12 to destination device 14.  

[0027] In some examples, encoded data may be output from output interface 22 to a 

storage device. Similarly, encoded data may be accessed from the storage device by 

input interface. The storage device may include any of a variety of distributed or locally 

accessed data storage media such as a hard drive, Blu-ray discs, DVDs, CD-ROMs, 

flash memory, volatile or non-volatile memory, or any other suitable digital storage 

media for storing encoded video data. In a further example, the storage device may 

correspond to a file server or another intermediate storage device that may store the 

encoded video generated by source device 12. Destination device 14 may access stored 

video data from the storage device via streaming or download. The file server may be 

any type of server capable of storing encoded video data and transmitting that encoded 

video data to the destination device 14. Example file servers include a web server (e.g., 

for a website), an FTP server, network attached storage (NAS) devices, or a local disk 

drive. Destination device 14 may access the encoded video data through any standard 

data connection, including an Internet connection. This may include a wireless channel 

(e.g., a Wi-Fi connection), a wired connection (e.g., DSL, cable modem, etc.), or a 

combination of both that is suitable for accessing encoded video data stored on a file 

server. The transmission of encoded video data from the storage device may be a 

streaming transmission, a download transmission, or a combination thereof.  

[0028] The techniques of this disclosure are not necessarily limited to wireless 

applications or settings. The techniques may be applied to video coding in support of 

any of a variety of multimedia applications, such as over-the-air television broadcasts, 

cable television transmissions, satellite television transmissions, Internet streaming
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video transmissions, such as dynamic adaptive streaming over HTTP (DASH), digital 

video that is encoded onto a data storage medium, decoding of digital video stored on a 

data storage medium, or other applications. In some examples, system 10 may be 

configured to support one-way or two-way video transmission to support applications 

such as video streaming, video playback, video broadcasting, and/or video telephony.  

[0029] In the example of FIG. 1, source device 12 includes video source 18, video 

encoder 20, and output interface 22. Destination device 14 includes input interface 28, 

video decoder 30, and display device 32. In accordance with this disclosure, video 

encoder 20 of source device 12 may be configured to apply the techniques for coding 

wavefronts in parallel. In other examples, a source device and a destination device may 

include other components or arrangements. For example, source device 12 may receive 

video data from an external video source 18, such as an external camera. Likewise, 

destination device 14 may interface with an external display device, rather than 

including an integrated display device.  

[0030] The illustrated system 10 of FIG. 1 is merely one example. Techniques for 

coding wavefronts in parallel may be performed by any digital video encoding and/or 

decoding device. Although generally the techniques of this disclosure are performed by 

a video encoding device, the techniques may also be performed by a video 

encoder/decoder, typically referred to as a "CODEC." Moreover, the techniques of this 

disclosure may also be performed by a video preprocessor. Source device 12 and 

destination device 14 are merely examples of such coding devices in which source 

device 12 generates coded video data for transmission to destination device 14. In some 

examples, devices 12, 14 may operate in a substantially symmetrical manner such that 

each of devices 12, 14 include video encoding and decoding components. Hence, 

system 10 may support one-way or two-way video transmission between video devices 

12, 14, e.g., for video streaming, video playback, video broadcasting, or video 

telephony.  

[0031] Video source 18 of source device 12 may include a video capture device, such as 

a video camera, a video archive containing previously captured video, and/or a video 

feed interface to receive video from a video content provider. As a further alternative, 

video source 18 may generate computer graphics-based data as the source video, or a 

combination of live video, archived video, and computer-generated video. In some 

cases, if video source 18 is a video camera, source device 12 and destination device 14 

may form so-called camera phones or video phones. As mentioned above, however, the
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techniques described in this disclosure may be applicable to video coding in general, 

and may be applied to wireless and/or wired applications. In each case, the captured, 

pre-captured, or computer-generated video may be encoded by video encoder 20. The 

encoded video information may then be output by output interface 22 onto a computer

readable medium 16.  

[0032] Computer-readable medium 16 may include transient media, such as a wireless 

broadcast or wired network transmission, or storage media (that is, non-transitory 

storage media), such as a hard disk, flash drive, compact disc, digital video disc, Blu-ray 

disc, or other computer-readable media. In some examples, a network server (not 

shown) may receive encoded video data from source device 12 and provide the encoded 

video data to destination device 14, e.g., via network transmission. Similarly, a 

computing device of a medium production facility, such as a disc stamping facility, may 

receive encoded video data from source device 12 and produce a disc containing the 

encoded video data. Therefore, computer-readable medium 16 may be understood to 

include one or more computer-readable media of various forms, in various examples.  

[0033] Input interface 28 of destination device 14 receives information from computer

readable medium 16. The information of computer-readable medium 16 may include 

syntax information defined by video encoder 20, which is also used by video decoder 

30, that includes syntax elements that describe characteristics and/or processing of 

blocks and other coded units, e.g., GOPs. Display device 32 displays the decoded video 

data to a user, and may comprise any of a variety of display devices such as a cathode 

ray tube (CRT), a liquid crystal display (LCD), a plasma display, an organic light 

emitting diode (OLED) display, or another type of display device.  

[0034] Video encoder 20 and video decoder 30 may operate according to a video coding 

standard, such as the High Efficiency Video Coding (HEVC) standard presently under 

development, and may conform to the HEVC Test Model (HM). Alternatively, video 

encoder 20 and video decoder 30 may operate according to other proprietary or industry 

standards, such as the ITU-T H.264 standard, alternatively referred to as MPEG-4, Part 

10, Advanced Video Coding (AVC), or extensions of such standards. The techniques 

of this disclosure, however, are not limited to any particular coding standard. Other 

examples of video coding standards include MPEG-2 and ITU-T H.263. Although not 

shown in FIG. 1, in some aspects, video encoder 20 and video decoder 30 may each be 

integrated with an audio encoder and decoder, and may include appropriate MUX

DEMUX units, or other hardware and software, to handle encoding of both audio and
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video in a common data stream or separate data streams. If applicable, MUX-DEMUX 

units may conform to the ITU H.223 multiplexer protocol, or other protocols such as the 

user datagram protocol (UDP).  

[0035] The ITU-T H.264/MPEG-4 (AVC) standard was formulated by the ITU-T Video 

Coding Experts Group (VCEG) together with the ISO/IEC Moving Picture Experts 

Group (MPEG) as the product of a collective partnership known as the Joint Video 

Team (JVT). In some aspects, the techniques described in this disclosure may be 

applied to devices that generally conform to the H.264 standard. The H.264 standard is 

described in ITU-T Recommendation H.264, Advanced Video Coding for generic 

audiovisual services, by the ITU-T Study Group, and dated March, 2005, which may be 

referred to herein as the H.264 standard or H.264 specification, or the H.264/AVC 

standard or specification. The Joint Video Team (JVT) continues to work on extensions 

to H.264/MPEG-4 AVC.  

[0036] Video encoder 20 and video decoder 30 each may be implemented as any of a 

variety of suitable encoder circuitry, such as one or more microprocessors, digital signal 

processors (DSPs), application specific integrated circuits (ASICs), field programmable 

gate arrays (FPGAs), discrete logic, software, hardware, firmware or any combinations 

thereof. When the techniques are implemented partially in software, a device may store 

instructions for the software in a suitable, non-transitory computer-readable medium and 

execute the instructions in hardware using one or more processors to perform the 

techniques of this disclosure. Each of video encoder 20 and video decoder 30 may be 

included in one or more encoders or decoders, either of which may be integrated as part 

of a combined encoder/decoder (CODEC) in a respective device.  

[0037] The JCT-VC is working on development of the HEVC standard. The HEVC 

standardization efforts are based on an evolving model of a video coding device referred 

to as the HEVC Test Model (HM). The HM presumes several additional capabilities of 

video coding devices relative to existing devices according to, e.g., ITU-T H.264/AVC.  

For example, whereas H.264 provides nine intra-prediction encoding modes, the HM 

may provide as many as thirty-three intra-prediction encoding modes.  

[0038] In general, the working model of the HM describes that a video frame or picture 

may be divided into a sequence of treeblocks or coding tree units (CTUs) that include 

both luma and chroma samples. Syntax data within a bitstream may define a size for the 

CTU, which is a largest coding unit in terms of the number of pixels. A slice includes a 

number of consecutive treeblocks in coding order. A video frame or picture may be
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partitioned into one or more slices. Each treeblock may be split into coding units (CUs) 

according to a quadtree. In general, a quadtree data structure includes one node per CU, 

with a root node corresponding to the treeblock. If a CU is split into four sub-CUs, the 

node corresponding to the CU includes four leaf nodes, each of which corresponds to 

one of the sub-CUs.  

[0039] Each node of the quadtree data structure may provide syntax data for the 

corresponding CU. For example, a node in the quadtree may include a split flag, 

indicating whether the CU corresponding to the node is split into sub-CUs. Syntax 

elements for a CU may be defined recursively, and may depend on whether the CU is 

split into sub-CUs. If a CU is not split further, it is referred as a leaf-CU. In this 

disclosure, four sub-CUs of a leaf-CU will also be referred to as leaf-CUs even if there 

is no explicit splitting of the original leaf-CU. For example, if a CU at 16x 16 size is not 

split further, the four 8x8 sub-CUs will also be referred to as leaf-CUs although the 

16x16 CU was never split.  

[0040] A CU has a similar purpose as a macroblock of the H.264 standard, except that a 

CU does not have a size distinction. For example, a treeblock may be split into four 

child nodes (also referred to as sub-CUs), and each child node may in turn be a parent 

node and be split into another four child nodes. A final, unsplit child node, referred to 

as a leaf node of the quadtree, comprises a coding node, also referred to as a leaf-CU.  

Syntax data associated with a coded bitstream may define a maximum number of times 

a treeblock may be split, referred to as a maximum CU depth, and may also define a 

minimum size of the coding nodes. Accordingly, a bitstream may also define a smallest 

coding unit (SCU). This disclosure uses the term "block" to refer to any of a CU, PU, 

or TU, in the context of HEVC, or similar data structures in the context of other 

standards (e.g., macroblocks and sub-blocks thereof in H.264/AVC).  

[0041] A CU includes a coding node and prediction units (PUs) and transform units 

(TUs) associated with the coding node. A size of the CU corresponds to a size of the 

coding node and must be square in shape. The size of the CU may range from 8x8 

pixels up to the size of the treeblock with a maximum of 64x64 pixels or greater. Each 

CU may contain one or more PUs and one or more TUs. Syntax data associated with a 

CU may describe, for example, partitioning of the CU into one or more PUs.  

Partitioning modes may differ between whether the CU is skip or direct mode encoded, 

intra-prediction mode encoded, or inter-prediction mode encoded. PUs may be 

partitioned to be non-square in shape. Syntax data associated with a CU may also



WO 2013/154687 PCT/US2013/027760 
12 

describe, for example, partitioning of the CU into one or more TUs according to a 

quadtree. A TU can be square or non-square (e.g., rectangular) in shape.  

[0042] The HEVC standard allows for transformations according to TUs, which may be 

different for different CUs. The TUs are typically sized based on the size of PUs within 

a given CU defined for a partitioned CTU, although this may not always be the case.  

The TUs are typically the same size or smaller than the PUs. In some examples, 

residual samples corresponding to a CU may be subdivided into smaller units using a 

quadtree structure known as "residual quad tree" (RQT). The leaf nodes of the RQT 

may be referred to as transform units (TUs). Pixel difference values associated with the 

TUs may be transformed to produce transform coefficients, which may be quantized.  

[0043] A leaf-CU may include one or more prediction units (PUs). In general, a PU 

represents a spatial area corresponding to all or a portion of the corresponding CU, and 

may include data for retrieving a reference sample for the PU. Moreover, a PU includes 

data related to prediction. For example, when the PU is intra-mode encoded, data for 

the PU may be included in a residual quadtree (RQT), which may include data 

describing an intra-prediction mode for a TU corresponding to the PU. As another 

example, when the PU is inter-mode encoded, the PU may include data defining one or 

more motion vectors for the PU. The data defining the motion vector for a PU may 

describe, for example, a horizontal component of the motion vector, a vertical 

component of the motion vector, a resolution for the motion vector (e.g., one-quarter 

pixel precision or one-eighth pixel precision), a reference picture to which the motion 

vector points, and/or a reference picture list (e.g., List 0, List 1, or List C) for the motion 

vector.  

[0044] A leaf-CU having one or more PUs may also include one or more transform 

units (TUs). The transform units may be specified using an RQT (also referred to as a 

TU quadtree structure), as discussed above. For example, a split flag may indicate 

whether a leaf-CU is split into four transform units. Then, each transform unit may be 

split further into further sub-TUs. When a TU is not split further, it may be referred to 

as a leaf-TU. Generally, for intra coding, all the leaf-TUs belonging to a leaf-CU share 

the same intra prediction mode. That is, the same intra-prediction mode is generally 

applied to calculate predicted values for all TUs of a leaf-CU. For intra coding, a video 

encoder may calculate a residual value for each leaf-TU using the intra prediction mode, 

as a difference between the portion of the CU corresponding to the TU and the original 

block. A TU is not necessarily limited to the size of a PU. Thus, TUs may be larger or
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smaller than a PU. For intra coding, a PU may be collocated with a corresponding leaf

TU for the same CU. In some examples, the maximum size of a leaf-TU may 

correspond to the size of the corresponding leaf-CU.  

[0045] Moreover, TUs of leaf-CUs may also be associated with respective quadtree data 

structures, referred to as residual quadtrees (RQTs). That is, a leaf-CU may include a 

quadtree indicating how the leaf-CU is partitioned into TUs. The root node of a TU 

quadtree generally corresponds to a leaf-CU, while the root node of a CU quadtree 

generally corresponds to a treeblock (or CTU). TUs of the RQT that are not split are 

referred to as leaf-TUs. In general, this disclosure uses the terms CU and TU to refer to 

leaf-CU and leaf-TU, respectively, unless noted otherwise.  

[0046] A video sequence typically includes a series of video frames or pictures. A 

group of pictures (GOP) generally comprises a series of one or more of the video 

pictures. A GOP may include syntax data in a header of the GOP, a header of one or 

more of the pictures, or elsewhere, that describes a number of pictures included in the 

GOP. Each slice of a picture may include slice syntax data that describes an encoding 

mode for the respective slice. Video encoder 20 typically operates on video blocks 

within individual video slices in order to encode the video data. A video block may 

correspond to a coding node within a CU. The video blocks may have fixed or varying 

sizes, and may differ in size according to a specified coding standard.  

[0047] As an example, the HM supports prediction in various PU sizes. Assuming that 

the size of a particular CU is 2Nx2N, the HM supports intra-prediction in PU sizes of 

2Nx2N or NxN, and inter-prediction in symmetric PU sizes of 2Nx2N, 2NxN, Nx2N, or 

NxN. The HM also supports asymmetric partitioning for inter-prediction in PU sizes of 

2NxnU, 2NxnD, nLx2N, and nRx2N. In asymmetric partitioning, one direction of a CU 

is not partitioned, while the other direction is partitioned into 25% and 75%. The 

portion of the CU corresponding to the 25% partition is indicated by an "n" followed by 

an indication of "Up", "Down," "Left," or "Right." Thus, for example, "2NxnU" refers 

to a 2Nx2N CU that is partitioned horizontally with a 2NxO.5N PU on top and a 

2Nx 1.5N PU on bottom.  

[0048] In this disclosure, "NxN" and "N by N" may be used interchangeably to refer to 

the pixel dimensions of a video block in terms of vertical and horizontal dimensions, 

e.g., 16x16 pixels or 16 by 16 pixels. In general, a 16x16 block will have 16 pixels in a 

vertical direction (y = 16) and 16 pixels in a horizontal direction (x = 16). Likewise, an 

NxN block generally has N pixels in a vertical direction and N pixels in a horizontal
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direction, where N represents a nonnegative integer value. The pixels in a block may be 

arranged in rows and columns. Moreover, blocks need not necessarily have the same 

number of pixels in the horizontal direction as in the vertical direction. For example, 

blocks may comprise NxM pixels, where M is not necessarily equal to N.  

[0049] Following intra-predictive or inter-predictive coding using the PUs of a CU, 

video encoder 20 may calculate residual data for the TUs of the CU. The PUs may 

comprise syntax data describing a method or mode of generating predictive pixel data in 

the spatial domain (also referred to as the pixel domain) and the TUs may comprise 

coefficients in the transform domain following application of a transform, e.g., a 

discrete cosine transform (DCT), an integer transform, a wavelet transform, or a 

conceptually similar transform to residual video data. The residual data may correspond 

to pixel differences between pixels of the unencoded picture and prediction values 

corresponding to the PUs. Video encoder 20 may form the TUs including the residual 

data for the CU, and then transform the TUs to produce transform coefficients for the 

CU.  

[0050] Following any transforms to produce transform coefficients, video encoder 20 

may perform quantization of the transform coefficients. Quantization generally refers to 

a process in which transform coefficients are quantized to possibly reduce the amount of 

data used to represent the coefficients, providing further compression. The quantization 

process may reduce the bit depth associated with some or all of the coefficients. For 

example, an n-bit value may be rounded down to an m-bit value during quantization, 

where n is greater than m.  

[0051] Following quantization, the video encoder may scan the transform coefficients, 

producing a one-dimensional vector from the two-dimensional matrix including the 

quantized transform coefficients. The scan may be designed to place higher energy (and 

therefore lower frequency) coefficients at the front of the array and to place lower 

energy (and therefore higher frequency) coefficients at the back of the array. In some 

examples, video encoder 20 may utilize a predefined scan order to scan the quantized 

transform coefficients to produce a serialized vector that can be entropy encoded. In 

other examples, video encoder 20 may perform an adaptive scan. After scanning the 

quantized transform coefficients to form a one-dimensional vector, video encoder 20 

may entropy encode the one-dimensional vector, e.g., according to context-adaptive 

variable length coding (CAVLC), context-adaptive binary arithmetic coding (CABAC), 

syntax-based context-adaptive binary arithmetic coding (SBAC), Probability Interval
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Partitioning Entropy (PIPE) coding or another entropy encoding methodology. Video 

encoder 20 may also entropy encode syntax elements associated with the encoded video 

data for use by video decoder 30 in decoding the video data.  

[0052] To perform CABAC, video encoder 20 may assign a context within a context 

model to a symbol to be transmitted. The context may relate to, for example, whether 

neighboring values of the symbol are non-zero or not. To perform CAVLC, video 

encoder 20 may select a variable length code for a symbol to be transmitted.  

Codewords in VLC may be constructed such that relatively shorter codes correspond to 

more probable symbols, while longer codes correspond to less probable symbols. In 

this way, the use of VLC may achieve a bit savings over, for example, using equal

length codewords for each symbol to be transmitted. The probability determination 

may be based on a context assigned to the symbol.  

[0053] Video encoder 20 and video decoder 30 may use wavefront parallel processing 

(WPP) to encode and decode pictures, respectively. To code a picture using WPP, a 

video coder, such as video encoder 20 and video decoder 30, may divide the coding tree 

units (CTUs) of the picture into a plurality of wavefronts. Each wavefront may 

correspond to a different row of CTUs in the picture. The video coder may start coding 

a top wavefront, e.g., using a first coder core or thread. After the video coder has coded 

two or more CTUs of the top wavefront, the video coder may start coding a second-to

top wavefront in parallel with coding the top wavefront, e.g., using a second, parallel 

coder core or thread. After the video coder has coded two or more CTUs of the second

to-top wavefront, the video coder may start coding a third-to-top wavefront in parallel 

with coding the higher wavefronts, e.g., using a third, parallel coder core or thread. This 

pattern may continue down the wavefronts in the picture.  

[0054] This disclosure refers to a set of CTUs that a video coder is concurrently coding, 

using WPP, as a "CTU group." Thus, when the video coder is using WPP to code a 

picture, each of the CTUs of the CTU group may be in a different wavefront of the 

picture and each of the CTUs of the CTU group may be vertically offset from a CTU in 

a respective, above wavefront by at least two columns of CTUs of the picture.  

[0055] Furthermore, when coding the picture using WPP, the video coder may use 

information associated with one or more spatially-neighboring CUs outside a particular 

CTU to perform intra or inter prediction on a particular CU in the particular CTU, so 

long as the spatially-neighboring CUs are left, above-left, above, or above-right of the 

particular CTU. When the one or more spatially-neighboring CUs are above-right of
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the particular CTU, it is also assumed that the one or more spatially-neighboring CUs 

were previously coded. If the particular CTU is the leftmost CTU in a wavefront other 

than the topmost wavefront, the video coder may use information associated with the 

first and/or second CTUs of an adjacent wavefront (e.g., the wavefront positioned 

immediately above) to select a coding context for entropy coding syntax elements of the 

particular CTU. If the particular CTU is not the leftmost CTU in the wavefront, the 

video coder may select from information associated with a spatially-neighboring CU, 

that is positioned to the left, above-left, above, and/or above-right of the particular CTU 

to select a coding context for entropy encoding a syntax element of the particular CTU.  

In this way, the video coder may initialize entropy coding (e.g., CABAC) states of a 

wavefront based on the entropy coding states of the wavefront positioned immediately 

above after encoding two or more CTUs of the wavefront positioned immediately 

above.  

[0056] Additionally, a video coder may partition an image into slices. In general, each 

slice is individually entropy coded, such that contexts are reset at the beginning of 

coding a new slice. Video encoder 20, or a post-processing unit of source device 12 

(such as an encapsulation unit, not shown in FIG. 1), may encapsulate slices into 

respective network abstraction layer (NAL) units. For instance, a NAL unit may 

include a NAL header and a payload that represents one or more encoded slices. To 

demarcate encoded slices from one another, video encoder 20 may include slice headers 

within the NAL unit payload to indicate the beginning of a slice. Additionally, video 

encoder 20 may include one or more end-of-slice symbols within the NAL unit payload 

to indicate the end of distinct encoded slices.  

[0057] Video encoder 20 may partition a given image into slices of varying lengths. In 

other words, different slices of a particular image may include or otherwise correspond 

to varying numbers of CTUs. As a result, video encoder 20 may generate different 

NAL units to include different numbers of encoded slices.  

[0058] Correspondingly, video decoder 30 may entropy decode the image slice by slice.  

More specifically, source device 22 may use output interface 22 to transmit the NAL 

units to input interface 28 of destination device 14. Alternatively, output interface 22 

may output NAL units onto a computer-readable medium, such as a disc or computer

readable memory, e.g., magnetic memory or flash memory. Video decoder 30 may 

receive the NAL units via input interface 28, and extract each encoded slice using the 

included slice partition information (e.g., slice headers and/or the end-of-slice symbols).
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In turn, video decoder 30 may entropy decode each extracted slice, and reconstruct the 

image slice by slice.  

[0059] In the context of WPP, under some circumstances, a video coder might not be 

capable of selecting coding contexts across slice boundaries. For example, if context 

information for a particular CTU belongs to a different slice than the CTU positioned to 

the above-right of the particular CTU, the video coder may not have access to the 

information necessary to code the particular CTU. More specifically, in terms of 

positioning within wavefronts, the slice header for the particular CTU may not be coded 

when the video coder reaches the particular CTU. For instance, the slice header may be 

positioned in a wavefront that is immediately above the wavefront of the CTU, and the 

slice header may be positioned more than two blocks to the right in comparison to the 

particular CTU. In this example, the video coder may have access to the spatially

neighboring CUs from which the video coder may draw context for coding the 

particular CTU. However, the video coder may not yet have coded the slice header 

corresponding with the particular CTU, and thus may not be capable of coding the 

particular CTU until the slice header is coded. As a result, the video coder may be 

required to code additional blocks of the preceding wavefront (i.e., until the slice header 

is coded), before beginning to code the particular CTU. In this scenario, the video coder 

is unable to avail of the advantages of WPP, such as coding the particular CTU in 

parallel with a CTU positioned to the above-right.  

[0060] Rather than allowing a slice to cross a wavefront boundary when the slice starts 

in the middle of the wavefront, a video coder may implement the techniques of this 

disclosure to restrict the coding process such that when a slice begins at any point after 

the beginning (i.e., the first CTU) of a wavefront, the slice ends within that wavefront.  

For ease of discussion purposes only, any point after the beginning of a wavefront is 

generally referred to herein generically as the "middle" of the wavefront. That is, the 

"middle" of the wavefront as used herein is not necessarily the midpoint, but any CTU 

(or any block) of a wavefront other than the ordinal first block of the wavefront. Such a 

slice may also be said to begin "within" the wavefront.  

[0061] For example, video encoder 20 may determine that a slice header occurs within 

the middle of a wavefront, and that the slice includes all remaining CTUs of the 

wavefront as well as at least one CTU of the wavefront positioned immediately below.  

In response, video encoder 20 may insert an end-of-slice symbol upon finishing entropy 

encoding of a CTU up to or including the last CTU of the wavefront. That is, video
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encoder 20 may ensure that such a slice ends within the wavefront in which the slice 

begins, such that the slice does not cross wavefront boundaries when the slice begins at 

a block other than the ordinal first block of the wavefront. Additionally, video encoder 

20 may insert a slice header after the end-of-slice symbol, thereby indicating that the 

next wavefront (e.g., the wavefront positioned immediately below) corresponds to the 

beginning of a new encoded slice. Similarly, when entropy decoding an image in 

accordance with WPP, video decoder 30 may read the slice headers and/or end-of-slice 

symbols of a received NAL unit to determine that an encoded slice begins in the middle 

of a wavefront, and that the slice also ends within the same wavefront in which the slice 

begins. In some examples, video encoder 20 may determine that two or more slices 

begin in the middle of a single wavefront. In such examples, video encoder 20 may 

determine whether the last such slice spills over into a subsequent wavefront, and 

implement the restrictions described herein with respect to the last such wavefront.  

[0062] In this manner, a restriction may be imposed that any slice that begins at a CTU, 

or other block, other than the ordinal first CTU of a wavefront, the slice will end within 

the wavefront. By implementing these restrictions, a video coder, such as video encoder 

20 and/or video decoder 30, may improve efficiency in implementing WPP. More 

specifically, the video coder may implement the restrictions to ensure that, while coding 

a CTU of a current wavefront, the video coder has access to any data of previous 

wavefronts that may be necessary for coding the current CTU. That is, slice header data 

for a slice including a current CTU may be guaranteed to be available when entropy 

coding one or more syntax elements of the current CTU, such that the video coder can 

determine context for entropy coding the syntax elements correctly.  

[0063] In some examples, a slice may begin at the first CTU of a first wavefront, and 

cross the boundary into a second wavefront positioned immediately below the first 

wavefront. In such examples, the slice may include multiple CTUs of the second 

wavefront, but may terminate within the second wavefront. In other words, the second 

wavefront may include additional CTUs that belong to a different, second slice.  

[0064] In this example, while coding a CTU of the slice that is positioned in the second 

wavefront, the video coder may have access to all data from the first wavefront that is 

necessary for the coding process. That is, the video coder will have already coded the 

slice header data during coding of the previous wavefront, and therefore, a slice that 

begins at the ordinal first CTU of a wavefront may still be permitted to cross the 

wavefront boundary to a subsequent wavefront. Additionally, using the restrictions
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described herein, the video coder may ensure that the second slice terminates within the 

second wavefront. For instance, if the video coder determines that the second slice 

begins in the middle of the second wavefront and thus ends with the last CTU of the 

second wavefront, the video coder may finish coding the second wavefront 

synchronously with finishing coding the second slice. As a result, the beginning of a 

third wavefront would, by definition, coincide with the beginning of a third slice. More 

specifically, the first (leftmost) CTU of the third wavefront would represent the first 

CTU of the third slice. If the third slice crosses boundary into fourth (or greater) 

wavefront, the video coder may have consistent access to coding-critical data from 

portions of the third slice positioned in previous wavefronts, thereby improving the 

video coder's ability to perform WPP. In this manner, a video coder may implement the 

techniques of this disclosure to code a current slice such that, while implementing WPP, 

subsequent slices are coded efficiently in accordance with WPP.  

[0065] A video coder, such as video encoder 20 and/or video decoder 30, may activate 

the restriction(s) based on whether or not the video coder is currently implementing 

WPP. As one example, video decoder 30 may determine whether WPP is currently 

enabled using syntax data of the bitstream indicative of whether WPP is enabled.  

Similarly, video encoder 20 may encode syntax data representing whether WPP is 

enabled. Such syntax data may be coded in a video parameter set (VPS), a sequence 

parameter set (SPS), a picture parameter set (PPS), supplemental enhancement 

information (SEI) messages, or the like. In this example, in response to determining 

that WPP is enabled, video encoder 20 may entropy encode, and video decoder 30 may 

entropy decode, a picture using WPP, while observing the slice-wavefront restrictions 

described above. In some implementations, a video coder may enable WPP, e.g., in 

response to determining that WPP is currently disabled.  

[0066] Video encoder 20 may further send syntax data, such as block-based syntax data, 

frame-based syntax data, and GOP-based syntax data, to video decoder 30, e.g., in a 

frame header, a block header, a slice header, or a GOP header. The GOP syntax data 

may describe a number of frames in the respective GOP, and the frame syntax data may 

indicate an encoding/prediction mode used to encode the corresponding frame.  

[0067] Video encoder 20 and video decoder 30 each may be implemented as any of a 

variety of suitable encoder or decoder circuitry, as applicable, such as one or more 

microprocessors, digital signal processors (DSPs), application specific integrated 

circuits (ASICs), field programmable gate arrays (FPGAs), discrete logic circuitry,
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software, hardware, firmware or any combinations thereof. Each of video encoder 20 

and video decoder 30 may be included in one or more encoders or decoders, either of 

which may be integrated as part of a combined video encoder/decoder (CODEC). A 

device including video encoder 20 and/or video decoder 30 may comprise an integrated 

circuit, a microprocessor, and/or a wireless communication device, such as a cellular 

telephone.  

[0068] FIG. 2 is a block diagram illustrating an example of video encoder 20 that may 

implement techniques for coding wavefronts in parallel. Video encoder 20 may perform 

intra- and inter-coding of video blocks within video slices. Intra-coding relies on spatial 

prediction to reduce or remove spatial redundancy in video within a given video frame 

or picture. Inter-coding relies on temporal prediction to reduce or remove temporal 

redundancy in video within adjacent frames or pictures of a video sequence. Intra-mode 

(I mode) may refer to any of several spatial based coding modes. Inter-modes, such as 

uni-directional prediction (P mode) or bi-prediction (B mode), may refer to any of 

several temporal-based coding modes.  

[0069] As shown in FIG. 2, video encoder 20 receives a current video block within a 

video frame to be encoded. In the example of FIG. 2, video encoder 20 includes mode 

select unit 40, reference picture memory 64, summer 50, transform processing unit 52, 

quantization unit 54, and entropy encoding unit 56. Mode select unit 40, in turn, 

includes motion compensation unit 44, motion estimation unit 42, intra-prediction unit 

46, and partition unit 48. For video block reconstruction, video encoder 20 also 

includes inverse quantization unit 58, inverse transform unit 60, and summer 62. A 

deblocking filter (not shown in FIG. 2) may also be included to filter block boundaries 

to remove blockiness artifacts from reconstructed video. If desired, the deblocking filter 

would typically filter the output of summer 62. Additional filters (in loop or post loop) 

may also be used in addition to the deblocking filter. Such filters are not shown for 

brevity, but if desired, may filter the output of summer 50 (as an in-loop filter).  

[0070] During the encoding process, video encoder 20 receives a video frame or slice to 

be coded. The frame or slice may be divided into multiple video blocks. Motion 

estimation unit 42 and motion compensation unit 44 perform inter-predictive coding of 

the received video block relative to one or more blocks in one or more reference frames 

to provide temporal prediction. Intra-prediction unit 46 may alternatively perform intra

predictive coding of the received video block relative to one or more neighboring blocks 

in the same frame or slice as the block to be coded to provide spatial prediction. Video
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encoder 20 may perform multiple coding passes, e.g., to select an appropriate coding 

mode for each block of video data.  

[0071] Moreover, partition unit 48 may partition blocks of video data into sub-blocks, 

based on evaluation of previous partitioning schemes in previous coding passes. For 

example, partition unit 48 may initially partition a frame or slice into CTUs, and 

partition each of the CTUs into sub-CUs based on rate-distortion analysis (e.g., rate

distortion optimization). Mode select unit 40 may further produce a quadtree data 

structure indicative of partitioning of a CTU into sub-CUs. Leaf-node CUs of the 

quadtree may include one or more PUs and one or more TUs.  

[0072] Mode select unit 40 may select one of the coding modes, intra or inter, e.g., 

based on error results, and provides the resulting intra- or inter-coded block to summer 

50 to generate residual block data and to summer 62 to reconstruct the encoded block 

for use as a reference frame. Mode select unit 40 also provides syntax elements, such as 

motion vectors, intra-mode indicators, partition information, and other such syntax 

information, to entropy encoding unit 56.  

[0073] Motion estimation unit 42 and motion compensation unit 44 may be highly 

integrated, but are illustrated separately for conceptual purposes. Motion estimation, 

performed by motion estimation unit 42, is the process of generating motion vectors, 

which estimate motion for video blocks. A motion vector, for example, may indicate 

the displacement of a PU of a video block within a current video frame or picture 

relative to a predictive block within a reference frame (or other coded unit) relative to 

the current block being coded within the current frame (or other coded unit). A 

predictive block is a block that is found to closely match the block to be coded, in terms 

of pixel difference, which may be determined by sum of absolute difference (SAD), sum 

of square difference (SSD), or other difference metrics. In some examples, video 

encoder 20 may calculate values for sub-integer pixel positions of reference pictures 

stored in reference picture memory 64. For example, video encoder 20 may interpolate 

values of one-quarter pixel positions, one-eighth pixel positions, or other fractional 

pixel positions of the reference picture. Therefore, motion estimation unit 42 may 

perform a motion search relative to the full pixel positions and fractional pixel positions 

and output a motion vector with fractional pixel precision.  

[0074] Motion estimation unit 42 calculates a motion vector for a PU of a video block 

in an inter-coded slice by comparing the position of the PU to the position of a 

predictive block of a reference picture. The reference picture may be selected from a
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first reference picture list (List 0) or a second reference picture list (List 1), each of 

which identify one or more reference pictures stored in reference picture memory 64.  

Motion estimation unit 42 sends the calculated motion vector to entropy encoding unit 

56 and motion compensation unit 44.  

[0075] Motion compensation, performed by motion compensation unit 44, may involve 

fetching or generating the predictive block based on the motion vector determined by 

motion estimation unit 42. Again, motion estimation unit 42 and motion compensation 

unit 44 may be functionally integrated, in some examples. Upon receiving the motion 

vector for the PU of the current video block, motion compensation unit 44 may locate 

the predictive block to which the motion vector points in one of the reference picture 

lists. Summer 50 forms a residual video block by subtracting pixel values of the 

predictive block from the pixel values of the current video block being coded, forming 

pixel difference values, as discussed below. In general, motion estimation unit 42 

performs motion estimation relative to luma components, and motion compensation unit 

44 uses motion vectors calculated based on the luma components for both chroma 

components and luma components. Mode select unit 40 may also generate syntax 

elements associated with the video blocks and the video slice for use by video decoder 

30 in decoding the video blocks of the video slice.  

[0076] Intra-prediction unit 46 may intra-predict a current block, as an alternative to 

the inter-prediction performed by motion estimation unit 42 and motion compensation 

unit 44, as described above. In particular, intra-prediction unit 46 may determine an 

intra-prediction mode to use to encode a current block. In some examples, intra

prediction unit 46 may encode a current block using various intra-prediction modes, 

e.g., during separate encoding passes, and intra-prediction unit 46 (or mode select unit 

40, in some examples) may select an appropriate intra-prediction mode to use from the 

tested modes.  

[0077] For example, intra-prediction unit 46 may calculate rate-distortion values using a 

rate-distortion analysis for the various tested intra-prediction modes, and select the 

intra-prediction mode having the best rate-distortion characteristics among the tested 

modes. Rate-distortion analysis generally determines an amount of distortion (or error) 

between an encoded block and an original, unencoded block that was encoded to 

produce the encoded block, as well as a bitrate (that is, a number of bits) used to 

produce the encoded block. Intra-prediction unit 46 may calculate ratios from the
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distortions and rates for the various encoded blocks to determine which intra-prediction 

mode exhibits the best rate-distortion value for the block.  

[0078] After selecting an intra-prediction mode for a block, intra-prediction unit 46 may 

provide information indicative of the selected intra-prediction mode for the block to 

entropy encoding unit 56. Entropy encoding unit 56 may encode the information 

indicating the selected intra-prediction mode. Video encoder 20 may include in the 

transmitted bitstream configuration data, which may include a plurality of intra

prediction mode index tables and a plurality of modified intra-prediction mode index 

tables (also referred to as codeword mapping tables), definitions of encoding contexts 

for various blocks, and indications of a most probable intra-prediction mode, an intra

prediction mode index table, and a modified intra-prediction mode index table to use for 

each of the contexts.  

[0079] Video encoder 20 forms a residual video block by subtracting the prediction data 

from mode select unit 40 from the original video block being coded. Summer 50 

represents the component or components that perform this subtraction operation.  

Transform processing unit 52 applies a transform, such as a discrete cosine transform 

(DCT) or a conceptually similar transform, to the residual block, producing a video 

block comprising residual transform coefficient values. Transform processing unit 52 

may perform other transforms which are conceptually similar to DCT. Wavelet 

transforms, integer transforms, sub-band transforms or other types of transforms could 

also be used. In any case, transform processing unit 52 applies the transform to the 

residual block, producing a block of residual transform coefficients. The transform may 

convert the residual information from a pixel value domain to a transform domain, such 

as a frequency domain. Transform processing unit 52 may send the resulting transform 

coefficients to quantization unit 54. Quantization unit 54 quantizes the transform 

coefficients to further reduce bit rate. The quantization process may reduce the bit 

depth associated with some or all of the coefficients. The degree of quantization may be 

modified by adjusting a quantization parameter. In some examples, quantization unit 54 

may then perform a scan of the matrix including the quantized transform coefficients.  

Alternatively, entropy encoding unit 56 may perform the scan.  

[0080] Following quantization, entropy encoding unit 56 entropy encodes the quantized 

transform coefficients. For example, entropy encoding unit 56 may perform context 

adaptive variable length coding (CAVLC), context adaptive binary arithmetic coding 

(CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC), probability
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interval partitioning entropy (PIPE) coding or another entropy coding technique. In the 

case of context-based entropy encoding, context may be based on neighboring blocks.  

Following the entropy coding by entropy encoding unit 56, the encoded bitstream may 

be transmitted to another device (e.g., video decoder 30) or archived for later 

transmission or retrieval.  

[0081] In examples, entropy encoding unit 56 may entropy encode the quantized 

transform coefficients using wavefront parallel processing (WPP). As described with 

respect to FIG. 1, WPP may include entropy encoding the quantized transform 

coefficients in parallel. For instance, entropy encoding unit 56 may arrange the 

quantized transform coefficients into multiple rows, or wavefronts. In turn, entropy 

encoding unit 56 may encode each coefficient using syntax elements received from 

mode select unit 40, such as one or more motion vectors associated with neighboring 

coefficients. In terms of encoding using WPP, entropy encoding unit 56 may, for a 

coefficient at any position other than a beginning or end of a wavefront, use motion 

vectors associated with coefficients that are positioned to the left, above-left, above, and 

above-right of the coefficient to be encoded.  

[0082] To improve the efficiency of WPP-based entropy encoding, entropy encoding 

unit 56 may implement techniques of this disclosure to restrict traditional slice

wavefront interaction with respect to the quantized transform coefficients. As 

described, a video coder, such as video encoder 20, may divide an image, or data 

representative of the image, into multiple slices. In terms of FIG. 2, the stream of 

quantized transform coefficients may be divided into multiple slices. In turn, a slice 

may cover varying portions of one or more wavefronts demarcated by entropy encoding 

unit 56. For example, a first slice may cover the entirety of a first wavefront and an 

incomplete portion of a second wavefront. A second slice may cover the remainder of 

the second wavefront not covered by the first slice, and an incomplete portion of a third 

wavefront. In this manner, traditional slice-wavefront interaction as provided by WPP 

may not correlate the starting/ending points of a slice to those of a wavefront.  

[0083] To improve efficiency of entropy encoding in accordance with WPP, entropy 

encoding unit 56 may implement one or more techniques of this disclosure. For 

instance, entropy encoding unit 56 may determine, based on the quantized transform 

coefficients received from quantization unit 54, that a slice of a picture of video data 

begins in a wavefront, i.e., a row of coding tree units (CTUs), in the picture at a position 

other than a beginning of the wavefront. Based on the determination, entropy encoding



WO 2013/154687 PCT/US2013/027760 
25 

unit 56 may determine that the slice ends within the wavefront, and code the slice based 

on the determination. More specifically, entropy encoding unit 56 may terminate the 

slice at the last coefficient of the wavefront, such as by inserting an end-of-slice symbol 

in a NAL unit upon encoding the last coefficient of the wavefront. In this manner, 

entropy encoding unit 56 may ensure that, while coding a particular CTU, entropy 

encoding unit 56 has access to all information for coding the particular CTU in 

accordance with WPP, and that the slice header data for the particular CTU has been 

entropy encoded already.  

[0084] Additionally, entropy encoding unit 56 may insert a slice header in the NAL unit 

before encoding the first coefficient of the next wavefront. In this instance, entropy 

encoding unit 56 may encode the stream of quantized transform coefficients such that 

the beginning of the next wavefront coincides with the beginning of a separate slice. If 

the new slice encompasses the entire second wavefront and spills over to a third 

wavefront, entropy encoding unit 56 may have access to all of the data necessary to 

efficiently code the third wavefront in accordance with WPP. More specifically, 

entropy encoding unit 56 may ensure that the slice header for all CTUs of the third 

wavefront have been entropy encoded before any CTU of the third wavefront is to be 

entropy encoded.  

[0085] In a specific example, while coding the second coefficient of the third 

wavefront, entropy encoding unit 56 may access, from the syntax elements sent by 

mode select unit 40, motion vectors that identify the first coefficient of each of the 

second and third wavefronts (i.e., the left and above-left coefficients of the current 

coefficient), the second coefficient of the second wavefront (i.e., the coefficient 

positioned immediately above the current coefficient), and the third coefficient of the 

second wavefront (i.e., the coefficient positioned to the above-right of the current 

coefficient). Additionally, the slice header for the second coefficient has been entropy 

encoded already, as the slice header coincides with the first coefficient of the second 

wavefront. In this manner, entropy encoding unit 56 may implement the techniques of 

this disclosure to encode a current slice such that encoding a subsequent slice using 

WPP is more efficient.  

[0086] Inverse quantization unit 58 and inverse transform unit 60 apply inverse 

quantization and inverse transformation, respectively, to reconstruct the residual block 

in the pixel domain, e.g., for later use as a reference block. Motion compensation unit 

44 may calculate a reference block by adding the residual block to a predictive block of
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one of the frames of reference picture memory 64. Motion compensation unit 44 may 

also apply one or more interpolation filters to the reconstructed residual block to 

calculate sub-integer pixel values for use in motion estimation. Summer 62 adds the 

reconstructed residual block to the motion compensated prediction block produced by 

motion compensation unit 44 to produce a reconstructed video block for storage in 

reference picture memory 64. The reconstructed video block may be used by motion 

estimation unit 42 and motion compensation unit 44 as a reference block to inter-code a 

block in a subsequent video frame.  

[0087] As described above, video encoder 20 represents an example of a video coder 

configured to determine that a slice of a picture of video data begins in a row of coding 

tree units (CTUs) in the picture at a position other than a beginning of the row, based on 

the determination, determine that the slice ends within the row of CTUs, and code the 

slice based on the determination that the slice ends within the row of CTUs. In 

examples, video encoder 20 may be included in a device for coding video data, such as 

a desktop computer, notebook (i.e., laptop) computer, tablet computer, set-top box, 

telephone handset such as a so-called "smart" phone, so-called "smart" pad, television, 

camera, display device, digital media player, video gaming console, video streaming 

device, or the like. In examples, such a device for coding video data may include one or 

more of an integrated circuit, a microprocessor, and a communication device that 

includes video encoder 20.  

[0088] FIG. 3 is a block diagram illustrating an example of video decoder 30 that may 

implement techniques for coding wavefronts in parallel. In the example of FIG. 3, 

video decoder 30 includes an entropy decoding unit 70, motion compensation unit 72, 

intra prediction unit 74, inverse quantization unit 76, inverse transformation unit 78, 

reference picture memory 82 and summer 80. Video decoder 30 may, in some 

examples, perform a decoding pass generally reciprocal to the encoding pass described 

with respect to video encoder 20 (FIG. 2). Motion compensation unit 72 may generate 

prediction data based on motion vectors received from entropy decoding unit 70, while 

intra-prediction unit 74 may generate prediction data based on intra-prediction mode 

indicators received from entropy decoding unit 70.  

[0089] During the decoding process, video decoder 30 receives an encoded video 

bitstream that represents video blocks of an encoded video slice and associated syntax 

elements from video encoder 20. Entropy decoding unit 70 of video decoder 30 entropy 

decodes the bitstream to generate quantized coefficients, motion vectors or intra-
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prediction mode indicators, and other syntax elements. Entropy decoding unit 70 

forwards the motion vectors to and other syntax elements to motion compensation unit 

72. Video decoder 30 may receive the syntax elements at the video slice level and/or 

the video block level.  

[0090] Entropy decoding unit 70 may implement the techniques of this disclosure to 

restrict slice-wavefront interaction to more efficiently entropy decode an image using 

wavefront parallel processing (WPP). For instance, entropy decoding unit 70 may 

determine that a slice begins in the middle of a wavefront, such as by determining that a 

slice header in a received NAL unit coincides with a CTU that is not the first CTU of its 

respective wavefront. Based on the determination, entropy decoding unit 70 may 

determine that the slice ends within the same wavefront, e.g., by determining that the 

received NAL unit includes an end-of-slice symbol at the end of the last CTU of the 

current wavefront.  

[0091] By restricting slice-wavefront interaction in this manner, entropy decoding unit 

70 may entropy decode an image more efficiently using WPP. For instance, entropy 

decoding unit 70 may ensure that, while decoding a particular CTU, entropy decoding 

unit 70 has access to all information necessary to decode the particular CTU using 

WPP, and that the slice header for the particular CTU has already been entropy decoded 

by the time entropy decoding unit 70 is ready to decode the particular CTU. In this 

manner, entropy decoding unit 70 may implement the techniques of this disclosure to 

more efficiently decode an image in accordance with WPP.  

[0092] When the video slice is coded as an intra-coded (I) slice, intra prediction unit 74 

may generate prediction data for a video block of the current video slice based on a 

signaled intra prediction mode and data from previously decoded blocks of the current 

frame or picture. When the video frame is coded as an inter-coded (i.e., B, P or GPB) 

slice, motion compensation unit 72 produces predictive blocks for a video block of the 

current video slice based on the motion vectors and other syntax elements received from 

entropy decoding unit 70. The predictive blocks may be produced from one of the 

reference pictures within one of the reference picture lists. Video decoder 30 may 

construct the reference frame lists, List 0 and List 1, using default construction 

techniques based on reference pictures stored in reference picture memory 82. Motion 

compensation unit 72 determines prediction information for a video block of the current 

video slice by parsing the motion vectors and other syntax elements, and uses the 

prediction information to produce the predictive blocks for the current video block
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being decoded. For example, motion compensation unit 72 uses some of the received 

syntax elements to determine a prediction mode (e.g., intra- or inter-prediction) used to 

code the video blocks of the video slice, an inter-prediction slice type (e.g., B slice, P 

slice, or GPB slice), construction information for one or more of the reference picture 

lists for the slice, motion vectors for each inter-encoded video block of the slice, inter

prediction status for each inter-coded video block of the slice, and other information to 

decode the video blocks in the current video slice.  

[0093] Motion compensation unit 72 may also perform interpolation based on 

interpolation filters. Motion compensation unit 72 may use interpolation filters as used 

by video encoder 20 during encoding of the video blocks to calculate interpolated values 

for sub-integer pixels of reference blocks. In this case, motion compensation unit 72 

may determine the interpolation filters used by video encoder 20 from the received 

syntax elements and use the interpolation filters to produce predictive blocks.  

[0094] Inverse quantization unit 76 inverse quantizes, i.e., de-quantizes, the quantized 

transform coefficients provided in the bitstream and decoded by entropy decoding unit 

80. The inverse quantization process may include use of a quantization parameter QPy 

calculated by video decoder 30 for each video block in the video slice to determine a 

degree of quantization and, likewise, a degree of inverse quantization that should be 

applied.  

[0095] Inverse transform unit 78 applies an inverse transform, e.g., an inverse DCT, an 

inverse integer transform, or a conceptually similar inverse transform process, to the 

transform coefficients in order to produce residual blocks in the pixel domain.  

[0096] After motion compensation unit 72 generates the predictive block for the current 

video block based on the motion vectors and other syntax elements, video decoder 30 

forms a decoded video block by summing the residual blocks from inverse transform 

unit 78 with the corresponding predictive blocks generated by motion compensation 

unit 72. Summer 80 represents the component or components that perform this 

summation operation. If desired, a deblocking filter may also be applied to filter the 

decoded blocks in order to remove blockiness artifacts. Other loop filters (either in the 

coding loop or after the coding loop) may also be used to smooth pixel transitions, or 

otherwise improve the video quality. The decoded video blocks in a given frame or 

picture are then stored in reference picture memory 82, which stores reference pictures 

used for subsequent motion compensation. Reference picture memory 82 also stores
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decoded video for later presentation on a display device, such as display device 32 of 

FIG. 1.  

[0097] In this manner, video decoder 30 represents an example of a video coder 

configured to determine that a slice of a picture of video data begins in a row of coding 

tree units (CTUs) in the picture at a position other than a beginning of the row, based on 

the determination, determine that the slice ends within the row of CTUs, and code the 

slice based on the determination that the slice ends within the row of CTUs. In 

examples, video decoder 30 may be included in a device for coding video data, such as 

a desktop computer, notebook (i.e., laptop) computer, tablet computer, set-top box, 

telephone handset such as a so-called "smart" phone, so-called "smart" pad, television, 

camera, display device, digital media player, video gaming console, video streaming 

device, or the like. In examples, such a device for coding video data may include one or 

more of an integrated circuit, a microprocessor, and a communication device that 

includes video decoder 30.  

[0098] FIG. 4 is a conceptual diagram illustrating an example picture 100 divided into 

wavefronts 150-160. Each of wavefronts 150-160 includes a number of blocks. It 

should be noted that picture 100 may include additional wavefronts, and that each 

wavefront may include additional blocks than those shown. Each of the blocks may 

correspond to, for example, a CTU.  

[0099] A video coder, such as video encoder 20 or video decoder 30, may be configured 

to code wavefronts 150-160 in parallel. Video encoder 20 may begin coding a 

wavefront after two blocks of the above wavefront have been coded. FIG. 4 illustrates 

the blocks after which a wavefront may be coded using black dots connected by a 

relatively horizontal curved arrow. For example, block 134 of wavefront 156 may be 

coded after block 128 of wavefront 154 has been coded. As an example, a video coder 

may code each of the blocks marked with an "X," that is, blocks 116, 124, 132, and 136, 

in parallel. Dashed lines 102, 104, 106, and 108 represent blocks that have been parsed 

and from which information is available for retrieval at a particular coding time, in the 

example of FIG. 4. The particular coding time may correspond to the time at which the 

blocks marked with an "X," that is, blocks 116, 124, 132, and 136, are coded.  

[0100] Accordingly, the video coder may retrieve context information for a block 

marked with an "X" from the blocks pointed to by solid white arrows in FIG. 4. As 

shown in FIG. 4, each of the blocks to which a solid white arrow points is within one of 

dashed lines 102, 104, 106, and 108. For example, a video coder may retrieve context
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information for block 116 from block 114; the video coder may retrieve context 

information for block 124 from blocks 110, 112, 114, and/or 122; the video coder may 

retrieve context information for block 132 from blocks 118, 120, 122, and/or 130; and 

the video coder may retrieve context information for block 136 from blocks 126, 128, 

130, and/or 134. Collectively, dashed lines 102, 104, 106, and 108 include a CTU 

group, i.e., a collection of blocks of picture 100 that the video coder is capable of coding 

at a given time in accordance with WPP.  

[0101] In accordance with the techniques of this disclosure, each of wavefronts 150

160 may include portions or entireties of one or more slices. Alternatively, a slice may 

include portions or entireties of one or more wavefronts, such as one or more of 

wavefronts 150-160. For example, a first slice may include blocks of wavefronts 150 

and 152, a second slice may include blocks of wavefronts 152, 154 and 156, and a third 

slice may include blocks of wavefronts 158 and 160. In this manner, when a slice 

crosses a boundary between two wavefronts, the slice may include some or all blocks of 

the two wavefronts.  

[0102] Suppose, for example, that a video coder is to code block 132. In order to 

initialize a context state for wavefront 154, which includes block 132, a video coder 

may need one or more parameters of a slice header for a slice including block 132. If 

the slice were permitted to begin at a block in the middle of wavefront 152 and cross the 

boundary between wavefront 152 and wavefront 154, the video coder may have to wait 

to code the first block in the slice to retrieve the information of the slice header. For 

example, if the slice were to begin at the horizontal position of the block in wavefront 

152 below block 116, this block would not yet have been parsed, and thus, the video 

coder would need to wait until the block was parsed before the video coder could begin 

coding wavefront 154. However, the video coder may implement techniques of this 

disclosure to provide that, if a slice begins in a wavefront of picture 100 at a position 

other than the beginning of the wavefront, then the slice ends within that particular 

wavefront. In other words, any wavefront of picture 100 may either begin with a slice 

header, or end with an end-of-slice symbol (or both). By restricting slice-wavefront 

interaction in this way, the video coder may ensure that, while coding a particular block 

of picture 100, the video coder has access to all information needed to code the block in 

accordance with WPP, and that the slice header corresponding to the block has already 

been coded. Thus, the video coder may prevent occurrences of situations that require
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the video coder to wait to code a block in accordance with wavefront parallel processing 

(WPP).  

[0103] More specifically, a video coder may implement the techniques to ensure that all 

data needed for coding the block in accordance with wavefront parallel processing 

(WPP), e.g., using CABAC, is available, and that the block is ready to be coded in that 

the slice header for the block has been coded already. Although a variety of video 

coders may implement the techniques, for purposes of explanation, one or more of the 

techniques are described with reference to video encoder 20 of FIG. 2 and video decoder 

30 of FIG. 3, and their respective components. For instance, entropy decoding unit 70 

of video decoder 30 may restrict slice-wavefront interaction within picture 100 to ensure 

that all data needed for coding a block according to WPP is available and that the 

corresponding slice header for the block has already been coded. For instance, entropy 

decoding unit 70 may determine that a slice of picture 100 begins in wavefront 150, but 

at a position other than the beginning of wavefront 150 (e.g., at block 110). Based on 

the determination, entropy decoding unit 70 may determine that the slice ends within 

wavefront 150. For instance, entropy decoding unit 70 may detect, in a received NAL 

unit representing portions of picture 100, an end-of-slice symbol immediately following 

the last encoded block of wavefront 150, and detect a slice header immediately 

preceding the first encoded block of wavefront 152. In this manner, video encoder 20 

and/or video decoder 30 may ensure that the slice header for any particular block of 

wavefront 152 has been coded before the particular block is ready to be coded.  

[0104] In the context of encoding picture 100 in accordance with WPP, entropy 

encoding unit 56 of video encoder 20 may detect that the slice beginning at block 110 

also includes one or more blocks of wavefront 152. This concept is referred to herein as 

"slice spillover." In this instance, entropy encoding unit 56 may terminate the slice after 

including the last block of wavefront 150, and initiate a new slice that includes the first 

block of wavefront 152. As described, entropy encoding unit 56 may generate a NAL 

unit that includes encoded data representing picture 100, and insert an end-of-slice 

symbol after data representing the last block of wavefront 150 (as encoded). Similarly, 

entropy encoding unit 56 may insert, in the same or subsequent NAL unit, a slice header 

immediately preceding data that represents the first block of wavefront 152 as encoded.  

By implementing these restrictions, video encoder 20 may ensure that the slice header 

for a given block of wavefronts 150 and/or 152 has been coded before the given block is 

ready to be coded. In this manner, video encoder 20 may implement techniques of this
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disclosure to restrict slice-wavefront interaction to utilize WPP more efficiently, and to 

enable video decoder 30 to utilize WPP more efficiently as well.  

[0105] In this manner, a video coder may determine that a slice of picture 100 begins in 

a row of CTUs in picture 100 other than a beginning of the row. Based on the 

determination, the video coder may determine that the slice ends within the row of 

CTUs, and code the slice based on the determination that the slice ends within the row 

of CTUs.  

[0106] As discussed above, in some examples, a video coder, such as video encoder 20 

or video decoder 30, may be configured to code video data such that, when a slice of the 

video data includes a first row of coding tree units (CTUs) comprising a full row, and a 

portion of a second row of CTUs, the second row comprising fewer CTUs than the full 

row, the slice begins at the beginning of the at least one full row of largest coding units.  

For example, suppose that a slice begins at the beginning of wavefront 150. In this 

example, the slice may end in the middle of (that is, before the end of) a subsequent 

wavefront, e.g., wavefront 152.  

[0107] Suppose, for example, that the slice ends at block 120. This would be permitted 

by the restriction described above, because the slice starts at the beginning of a 

wavefront, namely wavefront 150 in this example. Thus, a subsequent slice may start at 

block 122. However, this slice would not be permitted to cross the boundary at the end 

of wavefront 152, in this example. Thus, the slice would end at the end of wavefront 

152. Of course, additional slices may be added within wavefront 152, so long as a slice 

does not cross the boundary between wavefront 152 and wavefront 154, in this example.  

[0108] FIG. 5 is a flowchart illustrating an example process 180 by which a video coder 

may implement techniques of this disclosure for coding wavefronts in parallel. FIG. 5 

illustrates example process 180 by which a video coder, such as video encoder 20, may 

encode a picture, such as a frame of video data, using one or more techniques of this 

disclosure. While process 180 may be performed by a variety of devices in accordance 

with the aspects of this disclosure, for purposes of explanation, process 180 is described 

herein with respect to the devices of FIGS. 1-2 and their respective components, as well 

as picture 100 of FIG. 4. Process 180 may begin when a device receives a picture of 

video data (182). As one example, source device 12 may receive picture 100 via one or 

more input devices.  

[0109] Additionally, source device 12 may enable wavefront parallel processing (WPP) 

(184). For instance, source device 12 may enable WPP, thereby causing video encoder
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20 to encode picture 100 in accordance with WPP. A video coder, such as video 

encoder 20 may determine wavefronts of picture 100 (186). For instance, video encoder 

20 may determine a number of blocks (e.g., CTUs) per wavefront associated with the 

WPP-based encoding of picture 100, and determine a wavefront transition upon 

reaching every integer-multiple of the number of blocks.  

[0110] Additionally, video encoder 20 may determine slice headers for picture 100 

(188). More specifically, video encoder 20 may use slice headers to indicate a slice 

transition, i.e., the beginning of a new slice of picture 100. For instance, video encoder 

20 may insert a slice header at a particular portion of picture 100 that corresponds to the 

start of a new slice. In some examples, video encoder 20 may indicate the slice 

transition based on an end-of-slice symbol, such as by inserting an end-of-slice symbol 

at a portion of picture 100 to denote the end of a slice. In some examples, video 

encoder 20 may indicate the slice transition using a sequence of an end-of-slice symbol 

followed immediately by a slice header, such as by inserting an end-of-slice symbol to 

denote the end of a slice, and inserting a slice header immediately following the end-of

slice symbol, to denote the start of a new slice.  

[0111] The video coder may determine whether the current slice begins after the first 

CTU of a wavefront (190). For instance, video encoder 20 may determine that the 

current slice begins after the first CTU of wavefront 150 (e.g., in the "middle" of the 

wavefront), if video encoder 20 detects, or inserts, a slice header at block 110. In this 

example, if video encoder 20 determines that the current slice begins after the first CTU 

of the wavefront ("YES" branch of 190), then video encoder 20 may determine that the 

current slice ends within the current wavefront (192). For instance, video encoder 20 

may determine that the current slice ends within wavefront 150 by placing an end-of

slice symbol in the generated NAL unit before demarcating a transition to wavefront 

152. By determining the described slice transitions, video encoder 20 may guarantee 

that video encoder 20 (and/or video decoder 30) has access to all information necessary 

to code a block of wavefront 152, and that the slice header for the block has already 

been coded.  

[0112] On the other hand, if the video coder determines that the current slice does not 

begin after the first CTU of a wavefront i.e., the slice header coincides with the first 

CTU of the wavefront ("NO" branch of 190), the video coder may continue to 

determine the slice headers for picture 100 (188). For instance, video encoder 30 may 

encode subsequent slice headers (and/or end-of-slice symbols), based on determining
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that the current slice begins at the beginning of a wavefront. In this manner, video 

encoder 20 may implement process 180 to restrict slice-wavefront interaction in such a 

way that the video encoder 20 and video decoder 30 have access to all of the data 

necessary (including an already-coded slice header) to efficiently code a current CTU, 

in accordance with WPP.  

[0113] FIG. 6 is a flowchart illustrating another example process 200 by which a video 

coder may decode an encoded picture, such as a frame of video data, using one or more 

techniques of this disclosure. While process 200 may be performed by a variety of 

devices in accordance with the aspects of this disclosure, for purposes of explanation, 

process 200 is described herein with respect to the devices of FIGS. 1 and 3, and their 

respective components, as well as picture 100 of FIG. 4. Process 200 may begin when 

video decoder 30 receives an encoded picture of video data (202). As one example, 

destination device 14 may receive an encoded version of picture 100 at input interface 

128.  

[0114] Additionally, video decoder 30 may enable wavefront parallel processing (WPP) 

(204). In some examples, computer-readable medium 16 may include signaling data 

indicating that WPP is to be enabled. Conversely, in other examples, video decoder 30 

may determine an implicit indication to enable WPP, based on whether video data 

included in computer-readable medium 16 conforms to a particular standard and/or a 

particular profile of a standard. For instance, destination device 14 may enable WPP to 

cause video decoder 30 to decode the received encoded version of picture 100 in 

accordance with WPP. Additionally, video decoder 30 may determine the start of a new 

wavefront of encoded picture 100 (206). For instance, video decoder 30 may determine 

that the first block (e.g., CTU) of encoded picture 100 indicates the start of new 

wavefront 150. Additionally, video decoder 30 may determine a number of CTUs per 

wavefront associated with the WPP-based encoding of picture 100, and determine the 

start of a new wavefront (or "wavefront transition") upon reaching every integer

multiple of the number of CTUs.  

[0115] Video decoder 30 may decode video data of the current slice of the current 

wavefront (e.g., wavefront 150) of encoded version of picture 100 (208). More 

specifically, video decoder 30 may decode wavefront 150 on a per-CTU basis, starting 

at the leftmost CTU, then decoding the next CTU to the right, and so on. Additionally, 

video decoder 30 may determine whether or not video decoder 30 detects a slice header 

before reaching the end (e.g., the rightmost CTU) of wavefront 150 (210). Video
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decoder 30 may determine the start of a new slice of encoded picture 100, or a "slice 

transition," based on detecting a slice header in encoded picture 100. If video decoder 

30 does not detect a slice header before the end of wavefront 150 ("NO" branch of 210), 

video decoder 30 may detect the start of new wavefront 152 (206). More specifically, in 

this scenario, video decoder 30 may determine that at least part of wavefront 152, 

including the first CTU of wavefront 152, belongs to the same slice as the CTUs of 

wavefront 152.  

[0116] Conversely, if video decoder 30 detects a slice header before the end of 

wavefront 150 ("YES" branch of 210), video decoder 30 may determine whether the 

slice header coincides with the first CTU of wavefront 150 (212). In other words, video 

decoder 30 may determine whether the current slice begins at the same CTU as current 

wavefront 150. If video decoder 30 determines that the detected slice header coincides 

with the first CTU of wavefront 150 ("YES" branch of 212), video decoder 30 may 

continue to decode video data of the current slice of wavefront 150 (208).  

[0117] On the other hand, if video decoder 30 determines that the detected slice header 

does not coincide with the first CTU of wavefront 150 ("NO" branch of 212), video 

decoder 30 may determine that the current slice ends within wavefront 150 (214). More 

specifically, video decoder 30 may determine that current slice ends within (e.g., at or 

before the last/rightmost CTU of) wavefront 150 based on the slice-wavefront 

interaction restrictions enabled by techniques of this disclosure. Additionally, based on 

determining that the current slice ends within wavefront 150, video decoder may 

continue to decode video data of the current slice of wavefront 150.  

[0118] By restricting slice-wavefront interaction in the manner illustrated in FIG. 6, 

video decoder 30 may ensure that, while decoding a CTU of the slice that is positioned 

in a wavefront, such as wavefront 152, video decoder 30 has access to all data from 

wavefront 150 that is necessary for the decoding process for wavefront 152. That is, 

video decoder 30 will have either already decoded the slice header data for a slice in 

wavefront 152 during decoding of wavefront 150, or the slice header for the slice in 

wavefront 152 will occur at the beginning of wavefront 152, and therefore, video 

decoder 30 can begin decoding wavefront 152 based on having access to all necessary 

decoding-critical data in accordance with WPP.  

[0119] It is to be recognized that depending on the example, certain acts or events of 

any of the techniques described herein can be performed in a different sequence, may be 

added, merged, or left out altogether (e.g., not all described acts or events are necessary
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for the practice of the techniques). Moreover, in certain examples, acts or events may 

be performed concurrently, e.g., through multi-threaded processing, interrupt 

processing, or multiple processors, rather than sequentially.  

[0120] In one or more examples, the functions described may be implemented in 

hardware, software, firmware, or any combination thereof. If implemented in software, 

the functions may be stored on or transmitted over as one or more instructions or code 

on a computer-readable medium and executed by a hardware-based processing unit.  

Computer-readable media may include computer-readable storage media, which 

corresponds to a tangible medium such as data storage media, or communication media 

including any medium that facilitates transfer of a computer program from one place to 

another, e.g., according to a communication protocol. In this manner, computer

readable media generally may correspond to (1) tangible computer-readable storage 

media which is non-transitory or (2) a communication medium such as a signal or 

carrier wave. Data storage media may be any available media that can be accessed by 

one or more computers or one or more processors to retrieve instructions, code and/or 

data structures for implementation of the techniques described in this disclosure. A 

computer program product may include a computer-readable medium.  

[0121] By way of example, and not limitation, such computer-readable storage media 

can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic 

disk storage, or other magnetic storage devices, flash memory, or any other medium that 

can be used to store desired program code in the form of instructions or data structures 

and that can be accessed by a computer. Also, any connection is properly termed a 

computer-readable medium. For example, if instructions are transmitted from a 

website, server, or other remote source using a coaxial cable, fiber optic cable, twisted 

pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and 

microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless 

technologies such as infrared, radio, and microwave are included in the definition of 

medium. It should be understood, however, that computer-readable storage media and 

data storage media do not include connections, carrier waves, signals, or other transitory 

media, but are instead directed to non-transitory, tangible storage media. Disk and disc, 

as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc 

(DVD), floppy disk and Blu-ray disc, where disks usually reproduce data magnetically, 

while discs reproduce data optically with lasers. Combinations of the above should also 

be included within the scope of computer-readable media.
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[0122] Instructions may be executed by one or more processors, such as one or more 

digital signal processors (DSPs), general purpose microprocessors, application specific 

integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other 

equivalent integrated or discrete logic circuitry. Accordingly, the term "processor," as 

used herein may refer to any of the foregoing structure or any other structure suitable for 

implementation of the techniques described herein. In addition, in some aspects, the 

functionality described herein may be provided within dedicated hardware and/or 

software modules configured for encoding and decoding, or incorporated in a combined 

codec. Also, the techniques could be fully implemented in one or more circuits or logic 

elements.  

[0123] The techniques of this disclosure may be implemented in a wide variety of 

devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of 

ICs (e.g., a chip set). Various components, modules, or units are described in this 

disclosure to emphasize functional aspects of devices configured to perform the 

disclosed techniques, but do not necessarily require realization by different hardware 

units. Rather, as described above, various units may be combined in a codec hardware 

unit or provided by a collection of interoperative hardware units, including one or more 

processors as described above, in conjunction with suitable software and/or firmware.  

[0124] Various examples have been described. These and other examples are within the 

scope of the following claims.  

[0125] It will be understood that the term "comprise" and any of its derivatives (eg 

comprises, comprising) as used in this specification is to be taken to be inclusive of 

features to which it refers, and is not meant to exclude the presence of any additional 

features unless otherwise stated or implied.  

[0126] The reference to any prior art in this specification is not, and should not be taken 

as, an acknowledgement of any form of suggestion that such prior art forms part of the 

common general knowledge.
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CLAIMS: 

1. A method of decoding video data of an encoded video bitstream, the method 

comprising: 

determining that a current slice of a picture of the video data begins in a row of 

coding tree units (CTUs) in the picture at a position other than a beginning of the row; 

based on the determination that the current slice begins in the position other than 

the beginning of the row, determining that the current slice ends within the row of CTUs, 

wherein the row spans a width of the picture, and wherein the beginning of the row 

corresponds to a left edge of the picture, and wherein an end of the row corresponds to a 

right edge of the picture; and 

based on the determination that the current slice ends within the row of CTUs, 

parsing the encoded video bitstream to decode slice partition syntax elements from the 

row of CTUs, wherein the slice partition syntax elements demarcate the current slice from 

a subsequent slice of the picture, and wherein the subsequent slice starts in the row of 

CTUs or in a subsequent row of CTUs that follows the row of CTUs.  

2. The method of claim 1, further comprising decoding all slices of all pictures of the 

video data such that all of the slices that begin at a position other than a beginning of a 

corresponding row of CTUs also end within the corresponding row of CTUs.  

3. The method of claim 1, further comprising decoding the current slice using 

wavefront parallel processing.  

4. The method of claim 3, wherein decoding the current slice using wavefront 

parallel processing further comprises determining that wavefront parallel processing is 

enabled.  

5. The method of claim 3, further comprising enabling wavefront parallel processing.  

6. The method of claim 5, further comprising decoding syntax data indicating that 

wavefront parallel processing is enabled.
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7. The method of claim 3, wherein decoding the current slice comprises decoding at 

least a portion of a picture that includes the current slice using wavefront parallel 

processing.  

8. The method of claim 1, further comprising: 

responsive to the determination that the current slice begins in the position other 

than the beginning of the row, determining that the current slice ends either at an end of 

the row of CTUs or before the end of the row of CTUs.  

9. The method of claim 1, further comprising decoding CTUs of the current slice in 

raster scan order without crossing to a subsequent row of CTUs in the picture before 

reaching the slice partition syntax elements that demarcate the current slice from the 

subsequent slice.  

10. The method of claim 1, wherein the row of CTUs comprises a first row of CTUs, 

the method further comprising decoding an adjacent row of CTUs to the first row of 

CTUs substantially in parallel with coding the first row of CTUs.  

11. The method of claim 10, wherein the adjacent row of CTUs comprises a second 

row of CTUs positioned below the first row of CTUs.  

12. The method of claim 10, wherein the adjacent row of CTUs comprises a second 

row of CTUs positioned above the first row of CTUs.  

13. The method of claim 1, further comprising receiving the encoded video bitstream, 

wherein decoding the current slice comprises entropy decoding the current slice based on 

the determination that the current slice ends within the row of CTUs.  

14. A device for decoding video data of an encoded video bitstream, the device 

comprising: 

a memory configured to store at least a portion of the video data; and 

one or more processors configured to: 

determine that a current slice of a picture of the video data begins in a row of
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coding tree units (CTUs) in the picture at a position other than a beginning of the row; 

based on the determination that the current slice begins in the position other than 

the beginning of the row, determine that the current slice ends within the row of CTUs, 

wherein the row spans a width of the picture, and wherein the beginning of the row 

corresponds to a left edge of the picture, and wherein an end of the row corresponds to a 

right edge of the picture; and 

based on the determination that the current slice ends within the row of 

CTUs, parse the video bitstream to code slice partition syntax elements from the row of 

CTUs, wherein the slice partition syntax elements demarcate the current slice from a 

subsequent slice of the picture, and wherein the subsequent slice starts in the row of 

CTUs or in a subsequent row of CTUs that follows the row of CTUs.  

15. The device of claim 14, further comprising at least one of: 

one or more integrated circuits; 

one or more microprocessors; 

one or more digital signal processors (DSPs); 

one or more field programmable gate arrays (FPGAs); 

a desktop computer; 

a laptop computer; 

a tablet computer; 

a phone; 

a television; 

a camera; 

a display device; 

a digital media player; 

a video game console; 

a video game device; 

a video streaming device; or 

a wireless communication device.  

16. The device of claim 14, wherein the one or more processors are further configured 

to decode all slices of all pictures of the video data such that all of the slices that begin at 

a position other than a beginning of a corresponding row of CTUs also end within the 

corresponding row of CTUs.
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17. The device of claim 14, wherein the one or more processors are further configured 

to decode the current slice using wavefront parallel processing.  

18. The device of claim 17, wherein to decode the current slice using wavefront 

parallel processing, the one or more processors are configured to determine that 

wavefront parallel processing is enabled on the device.  

19. The device of claim 17, wherein the one or more processors are further configured 

to enable wavefront parallel processing on the device.  

20. The device of claim 14, wherein the one or more processors are further configured 

to determine, responsive to the determination that the current slice begins in the position 

other than the beginning of the row, that the current slice ends either at an end of the row 

of CTUs or before the end of the row of CTUs.  

21. The device of claim 14, wherein the one or more processors are further configured 

to decode CTUs of the current slice in raster scan order without crossing to a subsequent 

row of CTUs in the picture before reaching the slice partition syntax elements that 

demarcate the current slice from the subsequent slice.  

22. The device of claim 14, wherein the row of CTUs comprises a first row of CTUs, 

and wherein the one or more processors are further configured to: 

decode an adjacent row of CTUs to the first row of CTUs substantially in parallel 

with decoding the first row of CTUs.  

23. The device of claim 22, wherein the adjacent row of CTUs comprises a second 

row of CTUs positioned below the first row of CTUs.  

24. The device of claim 22, wherein the adjacent row of CTUs comprises a second 

row of CTUs positioned above the first row of CTUs.  

25. The device of claim 14, wherein to decode the current slice, the one or more
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processors are configured to entropy decode the current slice based on the determination 

that the current slice ends within the row of CTUs.  

26. A device for decoding video data of an encoded video bitstream, the device 

comprising: 

means for determining that a current slice of a picture of the video data begins in a 

row of coding tree units (CTUs) in the picture at a position other than a beginning of the 

row; 

means for determining, based on the determination that the current slice begins in 

the position other than the beginning of the row, that the current slice ends within the row 

of CTUs, wherein the row spans a width of the picture, and wherein the beginning of the 

row corresponds to a left edge of the picture, and wherein an end of the row corresponds 

to a right edge of the picture; and 

means for parsing, based on the determination that the current slice ends within 

the row of CTUs the encoded video bitstream to decode slice partition syntax elements 

from the row of CTUs, wherein the slice partition syntax elements demarcate the current 

slice from a subsequent slice of the picture, and wherein the subsequent slice starts in the 

row of CTUs or in a subsequent row of CTUs that follows the row of CTUs.  

27. The device of claim 26, further comprising means for decoding all slices of all 

pictures of the video data such that all of the slices that begin at a position other than a 

beginning of a corresponding row of CTUs also end within the corresponding row of 

CTUs.  

28. The device of claim 26, further comprising means for decoding the current slice 

using wavefront parallel processing.  

29. The device of claim 26, further comprising wherein means for decoding the CTUs 

of the current slice in raster scan order without crossing to a subsequent row of CTUs in 

the picture before reaching the slice partition syntax elements that demarcate the current 

slice from the subsequent slice.  

30. The device of claim 27, wherein the row of CTUs comprises a first row of CTUs,
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the device further comprising means for decoding an adjacent row of CTUs to the first 

row of CTUs substantially in parallel with decoding the first row of CTUs.  

31. A non-transitory computer-readable storage medium having stored thereon 

instructions that, when executed, cause a programmable processor of a computing device 

to: 

process video data of an encoded video bitstream; 

determine that a current slice of a picture of video data begins in a row of coding 

tree units (CTUs) in the picture at a position other than a beginning of the row, wherein 

the row spans a width of the picture, wherein the beginning of the row corresponds to a 

left edge of the picture, and wherein an end of the row corresponds to a right edge of the 

picture; 

based on the determination, determine that the current slice begins in the position 

other than the beginning of the row, determine that the current slice ends within the row 

of CTUs; and 

code the slice based on the determination that the current slice ends within the row 

of CTUs, parse the encoded video bitstream to decode slice partition syntax elements 

from the row of CTUs, wherein the slice partition syntax elements demarcate the current 

slice from a subsequent slice of the picture, and wherein the subsequent slice starts in the 

row of CTUs or in a subsequent row of CTUs that follows the row of CTUs.  

32. The non-transitory computer-readable storage medium of claim 31, wherein the 

instructions, when executed, further cause the programmable processor of the computing 

device to decode all slices of all pictures of the video data such that all of the slices that 

begin at a position other than a beginning of a corresponding row of CTUs also end 

within the corresponding row of CTUs.  

33. The non-transitory computer-readable storage medium of claim 31, wherein the 

instructions, when executed, further cause the programmable processor of the computing 

device to decode the current slice using wavefront parallel processing.  

34. The non-transitory computer-readable storage medium of claim 33, wherein the 

instructions, when executed, further cause the programmable processor of the computing
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device to decode the current slice at least in part by coding CTUs of the slice in raster 

scan order without crossing to a subsequent row of CTUs in the picture before reaching 

the slice partition syntax elements that demarcate the current slice from the subsequent 

slice.  

35. The non-transitory computer-readable storage medium of claim 33, wherein the 

row of CTUs comprises a first row of CTUs, and wherein the instructions, when 

executed, further cause the programmable processor of the computing device to decode an 

adjacent row of CTUs to the first row of CTUs substantially in parallel with decoding the 

first row of CTUs.  

36. The method of claim 1, wherein the row comprises a first row, the method further 

comprising: 

based on the determination that the current slice ends within the first row of 

CTUs, initializing one or more context-adaptive binary arithmetic coding 

(CABAC)probabilities for the subsequent slice using a slice header of the second slice, 

wherein the subsequent slice begins at a beginning of a second row that is positioned 

immediately below the first row.  

37. The method of claim 1, wherein the row comprises a first row, the method further 

comprising: 

determining that the subsequent slice begins at a beginning of second row that is 

positioned immediately below the first row; and 

based on the determination that the subsequent slice begins at the beginning of the 

second row: 

determining whether data of a third row positioned immediately below the 

second row forms part of the subsequent slice or a slice that begins after the 

subsequent slice; and 

performing one of: 

based on a determination that the data of the third row forms the 

part of the subsequent slice, coding the data of the third row using one 

or more CABAC parameters from the subsequent slice; or 

based on a determination that the data of the third row forms the
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part of the slice that begins after the subsequent slice, coding the data of 

the third row using one or more CABAC parameters initialized from a 

slice header of the slice that begins after the subsequent slice.  

38. The method of claim 1, wherein the slice partition syntax elements include at least 

one of: 

(i) one or more end-of-slice symbols indicating an end of the current slice, or 

(ii) slice header syntax elements indicating a beginning of the subsequent slice.  

39. The device of claim 14, wherein the slice partition syntax elements include at least 

one of: 

(i) one or more end-of-slice symbols indicating an end of the current slice, or 

(ii) slice header syntax elements indicating a beginning of the subsequent slice.  

40. A method of encoding video data, the method comprising: 

determining that a current slice of a picture of the video data begins in a row of 

coding tree units (CTUs) in the picture at a position other than a beginning of the row; 

based on the determination that the current slice begins in the position other than 

the beginning of the row, determining that the current slice ends within the row of CTUs, 

wherein the row spans a width of the picture, and wherein the beginning of the row 

corresponds to a left edge of the picture, and wherein an end of the row corresponds to a 

right edge of the picture; and 

based on the determination that the current slice ends within the row of CTUs, 

generating an encoded video bitstream at least in part by encoding slice partition syntax 

elements in the row of CTUs, wherein the slice partition syntax elements demarcate the 

current slice from a subsequent slice of the picture, and wherein the subsequent slice 

starts in the row of CTUs or in a subsequent row of CTUs that follows the row of CTUs.
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