控制印刷机及其配件与辅助设备的系统

通过自动地将印刷或工作专用条件转换成一组适当的与印刷机器及辅助设备相关联的机器通用的条件，以便操纵与获得一组最终要求的印刷专用条件，而生产一种外部印刷通用条件的印刷成品的一种系统。该系统包括用于控制印刷机器及辅助设备的软件控制手段及容许一位印刷工人将印刷专用数据输入到该系统中的一台输入设备。
权利要求书

1. 一种用于通过控制至少一台印刷机器及其辅助设备以生成印刷专用条件及形成印刷成品的系统。该系统用于生产呈现所述印刷专用条件的所述印刷成品，所述系统包括以下组合：

 (a) 至少一台印刷机器以及按照机器专用条件操作并与之连接的其辅助设备；

 (b) 用于命令所述至少一台印刷机器及所述辅助设备的装置；以及

 (c) 用于控制所述至少一台印刷机器及所述辅助设备的软件手段；

 (d) 所述软件手段包括（1）变化的印刷专用条件的一个第一预置的历史数据库，及（2）机器专用条件的一个第二预置的历史数据库。

 (e) 用于将一组所要求的印刷专用条件引入所述软件手段并协调它们与所述第一预置历史数据库的一组印刷专用条件的装置，所述软件手段将所述印刷专用条件组与所述第二预置历史数据库的一组机器专用条件进行匹配，并从所述历史数据库中确定实现所述要求的印刷专用条件所必需的一组给定的机器专用条件；以及

 (f) 用于转发介于所述命令装置与所述软件手段之间的所述给定的机器专用条件组，并将其传送给所述命令装置及传送给所
述至少一台印刷机及所述辅助设备以生产呈现所述要求的印刷专用条件的一种印刷成品的装置。

2. 根据权利要求1的一种系统，其特征在于：用于将一组所要求的印刷专用条件引入软件手段中的装置为一个CRT（阴极射线管）。

3. 根据权利要求2的一种系统，其特征在于：CRT为一个触摸激励CRT。

4. 根据权利要求2的一种系统，其特征在于：CRT为一个以键为基础启动的CRT。

5. 根据权利要求1的一种系统，其特征在于：包括多台印刷机器及其辅助设备。

6. 根据权利要求1的一种系统，其特征在于：至少一台印刷机器及其辅助设备包含至少一个油墨供应系统。

7. 根据权利要求1的一种系统，其特征在于所述软件手段进一步包括：
 a. 一个通信网络部分，用于允许所述至少一台印刷机器及其辅助设备与所述系统进行通信；
 b. 一个控制逻辑部分，用于操纵与所述至少一台印刷机器及辅助设备相关的逻辑命令从而控制它们；以及
 c. 一个屏面显示部分，用于与所述将一组要求的印刷专用条件引入所述通信网络部分及所述控制逻辑部分合作生成交互式信息显示。

8. 根据权利要求7的一种系统，其特征在于：所述通信网络部分包括：
a. 一个链接部分，用于确定数据通过所述通信网络部分的路由；及

b. 与所述链接部分接口的每一个所述至少一台印刷机器及辅助设备的一个站部分，用于方便所述至少一台印刷机器及辅助设备与所述控制系统之间的通信。

9. 根据权利要求7的一种系统，其特征在于：所述通信网络部分是配置在多个用户可定义的环部分中的，一个用户可定义的数目的至少一台印刷机器及其辅助设备是可操作地连接到所述多个用户可定义的环部分之一上的。

10. 根据权利要求9的一种系统，其特征在于通信网络进一步包括一个中枢，用于确定数据在多个用户可定义的环部分间的路由。

11. 一种用于生产一种以一组印刷专用条件为特征的印刷成品，及用于控制多台印刷机器及辅助设备以获得所述印刷成品的系统，包括以下组合：

 (a) 多台印刷机器及其辅助设备，所述印刷机器及辅助设备具有对应的印刷专用条件操作；

 (b) 软件控制手段，用于控制所述多台印刷机器及辅助设备；

 (c) 用于将一组要求的所述印刷专用条件引入所述软件控制手段中的装置；

 (d) 所述软件控制手段包含变化的印刷专用条件的一个第一预定义历史数据库及机器专用条件的一个第二预定义历史数据库；

 (e) 所述软件控制手段还包括用于将所述要求的印刷专用
条件组与变化的印刷专用条件的所述第一历史数据库进行比较，以
从所述第一历史数据库中确定实现所述要求的印刷专用条件组所必需的一组给定的机器专用条件的装置；

(f) 用于将所述给定的机器专用条件组转发给所述多台印
刷机器及辅助设备中的一台或多台的装置；以及

(g) 用于根据所述转发的给定机器专用条件组命令所述一
台或多台印刷机器及辅助设备与生产所述印刷成品的装置。

12. 根据权利要求11的一种系统，其特征在于：所述软件
控制手段还包括：

a. 一个通信网络部分，用于将数据从多台印刷机器及辅
助设备传输给所述软件控制手段；以及

b. 一个控制逻辑部分，用于经由所述通信网络部分将逻
辑命令赋予所述多台印刷机器及辅助设备，以便按照
进入所述软件控制手段的所述要求的印刷专用条件组
操纵所述印刷机器及辅助设备。

13. 根据权利要求12的一种系统，其特征在于：所述通信
网络部分还包括：

a. 一个链接部分，用于确定数据在所述通信网络部分中
的路由；及

b. 与所述链接部分接口的多台印刷机器及辅助设备中各
台相关联的一个站部分，用于在所述多台印刷机及辅
助设备与所述控制系统之间传输数据。

14. 根据权利要求11的一种系统，其特征在于：通信网络
部分包含多个用户可定义的环部分，并且一个用户可定义的数目的
多台印刷机器及辅助设备是与所述环部分中每一台接口的。

15. 权利要求14中所述的一种系统，其特征在于：多个用户可定义的环部分经由一个用于确定数据在所述多个用户可定义的环部分间的路由的中枢互相接口。
说明 书

控制印刷机及其配件与
辅助设备的系统

本发明总体来说涉及一种用于操作、监视及控制诸如印刷机及相关联的配件与辅助设备的系统。更具体地，本发明涉及一种用一个中央控制部件操作、监视及控制诸如印刷机械及相关联的配件与辅助设备等各部件的统一系统，它消除了通常与各独立的印刷机、配件或辅助设备相关联的控制的重复，并且它通过自动将和印刷成品相关联的特定印刷工作要求与相关的印刷机械及配件和/或辅助设备的适当机器语言功能相结合而产生表征印刷成品的特征的一组所要求的印刷条件。

本申请是申请人1993年9月29日提交的08/128,896号专利申请的部分继续申请。

利用传统的胶版印刷术的最终印刷成品的生产过程通常是一件复杂的工作。一条胶印生产线通常包括众多的印刷机及配件和/或辅助设备，作为获得印刷成品的必要组成部分，所有这些都必须同时加以控制与监视。

参见图13，一条典型的胶印生产线包含下列系统中的一个或多个：纸张清洁机系统；用于清洁印刷机的压印滚筒与胶印滚筒
的系统，康尼狄格（Connecticut）州斯坦福（Stamford）的
Baldwin Technology公司生产与销售的自动胶印清洁机（“ABC”
）；与生产最终印刷品所需要的若干种油墨颜色相对应的多个印刷
机单元；干燥各种纸张的干燥机单元，其中包括但不限于红外和
或紫外线系统；各种油墨与溶剂供给与循环系统；印刷温度控制
系统；以及诸如此类。

在现有实践中，各种系统（此后通称印刷机械及配件和／或辅
助设备）通常包括分离的单个“控制”或“用户”站，每一个站必
须由操作印刷线的印刷工人独立地编程与控制。这常常会由于异常
地多的分离的控制系统而导致印刷工作环境的过分杂散与混乱。再
者，部分地由于印刷机辅助设备与配件的不同数目的生产厂家以及
缺乏通用的机器操作语言，而使得各独立的控制系统通常以其自己
独特的“机术”语言操作。此外，由于印刷工人对多种“机器语言”
控制系统的持续监视是既经常不变的又必须达到具有理想质量品级
的印刷成品，成品的质量通常取决于印刷机操作员的技能与经验以
及他对生产这种成品所必需的印刷条件和／或配件的熟悉程度。

另一种有关的考虑是印刷成品的生产与该印刷工人试图实现的
这种印刷工作所特有的多种“印刷”、“印刷机”或“工作”条件
为特征的。然后，印刷机操作员必须以某种方式将这些“印刷机”
或“工作”特有的条件翻译成提供来实行这些“印刷”条件的印刷
配件的“机器专用”的功能。

例如，在印刷广告画的成品生产过程中，要求选择能够作为
“印刷”或“工作”专用的特征的多种任务和／或属性。这些属性
中可包括，诸如：所用油墨的种类及其特征（例如油墨的粘度或油

2
墨的覆盖率）；印刷广告画的纸张的种类及其属性（例如是否用涂
复材料、涂复材料的重量、纸张是原产的还是再生的、以及类似属
性）；以及是否在广告画上要加上任何涂层，如果要加，则该涂层
是水基的还是溶媒基的，以及施加在产品上的涂层的覆盖率（重、
中或轻）。

在一位印刷机操作员断定，或者说判定了每一项具体印刷工作
相关联的“印刷”或“工作”的条件之后，他必须通过编程与该印
刷机、配件和／或辅助设备相关联的单个控制系统，将这些“工作”
专用的条件翻译成“机器专用”的功能以获得这些印刷条件。当然，
这通常会要求印刷工人“解释”这些“工作专用”或“印刷机语言”
条件，将这些条件翻译成适用于各印刷机、配件和／或辅助设备实
现该印刷条件所必须的“机器专用”的功能。简言之，印刷工人必
须部分地根据给他的以及他对一般的配件与印刷工艺的专门经验或
知识来手动设定各印刷部件、配件和／或辅助设备，以达到“工作
专用”的目的。

这样，例如一位印刷工人就必须手编程序或手动设定各单个印
刷机、配件和／或辅助设备。在必要的给定程度及适当的相互关系
上完成有关的任务以达到单独印刷特征。对于一台典型的印刷装置
或者配件或辅助设备（例如安装在一个胶印单元上的“自动胶印清
洁机”）而言，程序员将编程达到下述目的的控制，例如根据印刷
机的一定印刷频率和／或操作速度令清洗布推进一定的增量；释放
一定量的清洗液（例如喷洒次数）及确定清洗液的正确混合（例如
，其溶剂和／或水的比例）；这些都是为了完成一组特定的印刷工
作要求。这不但是乏味费力的，而且要求印刷工人方面的大量技术
与经验，他必须是已经通过在他所熟悉的特定印刷机、配件和／或辅助设备上运行过大量的各种工作任务而已经成为“翻译”专家才行。

显而易见，如果在印刷工人方面尚未达到操作一个给定的印刷系统达到一种理想的印刷成品的足够经验水平的话，必定存在着错误与材料浪费的极大潜在可能性。而当印刷工人遇到他还不熟悉的不同印刷机、配件和／或辅助设备时，这些错误与材料浪费必然会加大。

用于控制印刷机的各种技术发展是已知的。例如4, 847, 715号美国专利（Roch等人）“控制一台印刷与切纸机部件的调整方法与设备”是指向控制精确印刷机的独立功能的，不过该参考文献对于通过控制达到印刷成品所需的印刷机配件和／或辅助设备而控制印刷专用条件本身却避而不谈。类似地，4, 639, 881号美国专利（Zingher）“印刷机的数据输入单元与方法”是指向印刷机参数本身的控制而未提出控制得到最终印刷品所需的印刷条件参数的必要性。再有，0, 160, 167号欧洲专利申请（Stroupe）“一台印刷机的分布式电子控制的方法与装置”是指向控制印刷机本身的操作条件或特性而未提及通过操纵所需要配件和／或辅助设备来控制成品的必要印刷条件的必要性。

因此，存在着用于监视与控制生产印刷成品所使用的多台印刷机器、配件和／或辅助设备的一种系统的需求，它不但能够消除与各种印刷机械配件和／或辅助设备及其后勤问题相关联的控制系统中的重复，并且还能控制印刷条件以及快速高效地将与印刷成品相关联的“印刷”或“工作专用”的要求翻译成适当的“机器语言”
命令，这些命令控制各独立的印刷机配件和／或辅助设备，从而方便了印刷工人的工作并消除了控制一组要求的印刷条件中潜在的错误或产品浪费。

从而，提供了一种用于控制和监视与生产印刷成品相关联的多台印刷机械辅助设备和／或配件以控制一组要求的印刷条件的系统。

此外，提供了用于监视与控制多台印刷机械、配件和／或辅助设备的一种集中的系统，以消除与独立印刷机械、配件和／或辅助设备相关联的单独控制系统的重复，并且它提供控制一组要求的印刷条件以生产印刷成品所必需的所有印刷机械、辅助设备和／或配件的一种集中控制。

此外，还提供了用于监视与控制多台印刷机械、配件和／或辅助设备的一种系统，使得与印刷成品相关联的印刷或工作专用条件能够自动翻译成与各独立的印刷机械、配件或辅助设备相关联的适当机器语言功能，从而消除印刷工人解释工作专用条件并将其翻译成可能在生产印刷成品中遇到的印刷机配件和／或辅助设备的机器专用语言的必要性。

此外，还提供了用于监视与控制多台印刷机械配件和／或辅助设备的一种集中的系统，它能够消除当前与印刷成品相关联的各台及每一台印刷机械、辅助设备和／或配件存在的控制系统的重复，并且它能自动地将印刷机操作人员输入的一组给定的印刷或工作专用条件翻译成并使之符合控制这些印刷机械、辅助设备和／或配件的一组适当的机器专用的命令，并操纵它们以快速高效的方式实现所要求的印刷条件。
本发明的上述优点只是示例性的，并不旨在穷举或限制本发明所能实现的所有优点。从而，本发明的上述与其它优点从这里提出的发明说明书中是显而易见的或者是可以从实践本发明中理解的，两者都是考虑到对熟悉本技术的人员显而易见的任何改型而在这里实施与修改的。从而，本发明在于这里所描述的以及附图中所例示的新颖部件、构造、配置、组合以及改进。根据本发明，提供了用于控制与监视在生产印刷成品中所使用多台不同的印刷机械、配件和／或辅助设备的一种新颖的系统。简而言之，该系统包括用于控制多台印刷机械、配件和／或辅助设备的装置。

以新颖的软件手段为特色的该系统包括一个分类信息数据库，包含各种印刷机或工作专用条件的历史数据库以及一个预置的机器专用数据的历史数据库，这些数据是可以与印刷工人输入该系统并且为了生产一种给定的印刷成品而传递给各种印刷机械、配件和／或辅助设备的一组给定的印刷机或工作专用数据关联的。设置了一块触屏或其他适当的输入装置与该控制软件接口。该CRT（阴极射线管）可显示印刷机操作与生产线的“模型”以便输入所要求的印刷条件，其中包括与印刷机或机械设备相连的包括印刷生产线的配件和／或辅助设备的条件。

在操作中，一位印刷工人经该触屏CRT输入所有与一种所要求的印刷成品相对应的特定印刷条件。然后，软件将印刷工人输入的所要求的工作的特定印刷数据与包含在该软件内的各种印刷条件的预置历史数据库进行比较。印刷条件的历史数据库与预置的机器专用数据的历史数据库中提供的相应的机器专用条件组进行自匹配
。在确定了实现所要求的印刷条件所必需的适当机器专用条件时，
该系统将一组指令转送给各受了影响的印刷机器或台机器、配件
和/或辅助设备并命令它们在所要求的印刷条件上工作，从而生产
最终印刷成品。

有利地，当遇到不包含在它们各自的历史数据库中的一组印刷
条件和/或相关的机器条件时，该系统可“更新”其历史数据库，
以便为将来的工作运行保持系统的灵活性。再者，该系统可配置在
一种“开放型系统结构”格式中，使之能够接受与翻译来自各种来
源的印刷机专用的或工作专用的输入，使系统变得灵活并能容纳不
在完全相同的机器语言条件下工作的各种印刷机械、配件和/或辅
助设备。

最后，软件还可包括报告关键性印刷数据的能力，其中包含在
印刷中使用的材料的数量、所涉及的各要求的印刷机械、配件和
/或辅助设备的运行次数、工作成本及其它信息使得该控制系统特
别地及有利地灵活。

现在参照附图详细说明本发明，其中：
图1描绘屏幕上的一个文本字段；
图2描绘用于导航（navigating）屏幕上的数据的一个垂直卷
动条；
图3描绘总的屏幕布局，其中包括工作区与公共区；
图4例示用于配置印刷机配件及辅助设备的一个设备选择屏幕
；
图5例示用于在屏幕上设定各种印刷参数的一个印刷参数界面
；
图6描绘显示在屏面上的一个印刷参数；
图7例示根据本发明的一个单元参数屏面；
图8描绘用于为本发明选择值的一个屏面；
图9例示用于输入参数值的一个小键盘输入屏面；
图10描绘一个系统显示屏面，一位印刷工人可在其中监视辅
助设备的操作；
图11描绘用于显示工艺过程变量及当前值的一个屏面；
图12描绘一个操作员面板屏面；
图13为典型胶印生产线的示意图；
图14描绘用于网络内部通信的帧构成；
图15描绘用于网络外部通信的帧构成；
图16描绘网络通信系统的消息结构，其中包含报文种类及与
之关联的含义；
图17描绘通信系统的框图，描绘网络环、链路、站、中枢及
仲裁器；
图18描绘控制印刷机配件与辅助设备的系统的总体示意框图
；
图19描绘了出现在矩阵历史数据库中的参数变换的示意框图
；
图20例示本发明的通信网络中所采用的逻辑的流程图；以及
图21描绘控制系统的消息存取层次结构的流程图。
下面的详细描述的简要概述将帮助读者更好地理解构成本发明
的部件并给读者对随后的说明理解。
通常，本发明包含检测印刷机与工作专用的输入以及辅助设备
控制器状态输入的参数翻译软件。然后，该软件利用信息的历史数据库、当前的辅助设备配置、参数翻译表及任何手动替换值施加逻辑规则。系统通过参数变换矩阵为了将配件调节到能得到一组要求的印刷专用结果所需的辅助设备专用命令而输出确定程序与命令。

印刷工作专用输入是经由一块操作员站触屏输入的。这些输入中包括诸如纸张重量、纸宽、油墨种类、印板上的油墨覆盖百分比等参数。辅助设备控制器状态输入是经由一条通信链路由操作员站收集的，并包含诸如可利用程序库、当前可消耗的水平（如，布、溶剂、油墨等）以及独立印刷机配件上的安全互锁状态等指示。

控制逻辑的功能为利用印刷机专用输入与可利用的程序库输入一个多维矩阵。利用对矩阵的输入来找出一台具体的印刷机辅助设备的可利用的程序的最佳匹配。印刷机专用输入是由操作员逐个地输入或者作为一个预定的组用工作标识符或号码调出的。参数翻译矩阵（参数变换矩阵）的特征是从使用各种辅助设备的不同印刷机类型上的现场经验对照中导出的，并且是在装机时输入操作员站的永久性存储器中的。在图 19 中可找到对该参数变换矩阵的图解说明。

参数翻译矩阵的内容在当地印刷现场的经验基础更新时偶尔受到改变。这一改变是从指示最后一次完成的辅助设备操作的成功标志的操作员输入中导出的。跟踪这些标志并不时地对它们进行统计分析以检测正在出现的趋势。这些趋势在长时时间隔上进行分类并调整成各辅助设备的利用时间比。这一试探性或自学习过程的最终结果便是参数翻译矩阵中表值的自动修正。

将输入与可利用的程序库项作用在参数翻译矩阵上的结果便生
成印刷机配件与辅助设备专用格式的输出，得出一组所要求的印刷条件。这一格式中可包含两种数据。

命令——停止、起动、单元选择、模式等等；以及
程序——充填、流量、液体种类、喷洒、温度设定点、pH设定点、以及其它控制独立的配件或辅助设备所必需的程序。

来自操作员站的命令输出经由下面要全面描述的通信链路提交给印刷机配件与辅助设备站。

现在参见附图，其中相同的数字表示相同的部件，图1-21用于协助描述本发明的一个优选实施例。

为了说明方便，本发明将结合下列各部分加以描述：
A、系统硬件
B、系统软件
i）通信系统
ii）控制系统
C、屏面布局
A、系统硬件的描述

该系统设置有一个软件控制手段（这里将更全面地描述）。为了实现辅助设备/配件的软件控制，可使用具有下述硬件规格与特征的一台计算机，然而熟悉本技术的人将领会与容易地确定其它的硬件规格与特征也是适用的；

1） 1486 DX2 66 兆赫微处理器；
2） 128KB外部存储器超高速缓冲存储器；
3） 16MB RAM存储器；
4) a) 6槽ISA总线；
b) 2槽VES局部总线或SVGA、端口、以及使用内部
 局部总线集成在一块母板中的IDE与软盘控制器；
5) 五个或以上驱动器架，其中至少两个5·25寸架；
6) 两个串行端口，一个并行端口，一个操纵杆端口；
7) 局部总线上的IDE与软盘控制器；
8) 300MB或更大的IDE盘驱动器；
10) 局部总线上的带有1MB视频存储器的SVGA加速器（
 能够存储256种色彩的1024×768个像素）；
11) 14寸或更大的彩色监视器，1024×768，70兆
 赫，0·28或更小点距非隔行扫描（对于其触屏能力将
 进一步描述）
12) 101键键盘；
13) 总线鼠标器（包括接口卡）或带有自身端口的鼠标器；以
 及
14) 用于将诸如所要求的印刷专用条件等信息输入进系统的一
 个触屏监视器。
15) 能够在并行端口上放出的一个CD-ROM播放机；或者
16) 一个耐震操纵杆，还可能有一个接口卡，如刚才提到的，
 该系统包含用于控制印刷机械、辅助设备和／或配件的操
 作的软件控制手段。为了方便印刷操作员使用该软件手段
 （以下面要详细地描述的方式），该软件控制手段可包
 含下列用户友好的特征和／或通用标准。当然，熟悉本技
 术的人员应能理解也可采用其它用户友好的特征或标准：
1) Microsoft Windows 3.1 (微软窗口3.1) Support - Windows 3.1 (支持窗口3.1)。软件控制手段可包括窗口生成库、用于建立窗口资源的GUI工具以及能够生成窗口可执行命令的连接程序、DLL和驱动器；

2) 必须编写设备驱动程序来存取外部设备的情况中的Microsoft Dos 6.0 Support (微软磁盘操作系统6.0支持)；

3) C/C#语言与编译程序 -- C与C#为DOS与窗口开发中最常用的语言；

4) 窗口C#分类库 -- 分类库帮助开发人员使用窗口目标；

5) 整套开发工具，诸如编辑程序、调试程序、浏览程序、跟踪程序、及项目管理设施。国际Borland 的“Borland C# 3.1及应用框架”符合上述标准。

该系统还可包括诸如将要求的印刷专用条件输入到该系统中的手段。这些输入手段中可包括熟悉本技术的人员所知的任何适用的触屏CRT，诸如可从Elographics公司得到的声音声波触屏。带有一个装入计算机以方便屏幕操作的E281-4025 PC总线控制器的Viewsonic 5E, 14寸SVGA, 型号PW84-UVA。

其它有用的触屏CRT中包括诸如可从德克萨斯，Round Rock, Carroll Touch得到的连同集成的、基于硬件的控制器的带有集成触按Goldstar 1460加14寸SVGA CRT。

B、软件控制的说明

广义上，软件控制手段包括下述三个基本组成部分：

1、一个通信网络系统
2. 一个控制系统

3. 一个屏面布局系统

为了便于说明，分别详细讨论这三个“基本”部件中的每一个。

1. 网络系统

软件系统包括用于将数据从控制软件传送到印刷机械、辅助设备和/或配件的控制设备并在它们之间互相传送的一个通信网络系统。该网络系统或者是与系统的控制电子设备及软件一起设计的，或者是与他们兼容的。通信网络的目的为以低装机与维护成本来保证适应印刷车间环境的可靠通信，并且进一步支持辅助设备控制及操作员接口的操作。

该通信系统可支持例如多达56个代表印刷机、配件和/或辅助设备的站。该系统是配置在多个“环”（例如1-4个）中的。各环可包括1至14个站。对于较小的辅助系统（14个站或以下），一个单一的环就够了。对于较大的系统可通过一个智能中枢或仲裁器（也称作“环管理器”或集线器）连接多个环（2至4个，支持多达28、42或56个站）。

提供了一种同步的并以19200波特（位每秒）运行的内部通信协议。消息由9位的字符组成（1位用于标识最后的消息帧及8位用于信息），并包含两个功能部分——数据与额外开销。数据为站对站传送的实际信息。而额外开销功能部分则提供路由确认、动作及消息完整性功能。当执行变换来通过通信网络的一条外部信道进行存取时，协议是相同的，即它是同步的，100至19200波特，并且传输8位字符的信息。

有利地，在站加电或掉电时，将“站”加到印刷机生产线上或
从印刷机生产线上去掉时，各环可以自配置（即自动地构成或逻辑地“建立”）。在正常数据传送期间或者在空闲消息通信期间通过使用专门的“保持活着”消息可以自动保持环的逻辑完整性。环的争用是通过只许持有专门的许可“令牌”的站发送消息（因此名词“环”是“令牌环”的缩写）来解决的。一个环对该令牌的拥有是暂时的。它是在没有排队的消息或者在完成一次单一的消息发送时，通过将该令牌传给下一个活跃的站而终止的。

有利地，各环可以作为一个“独立的实体”来工作。环的这一独立特征允许多个（多达4个）环同时处理消息通信。在多环网络中，仲裁器或中心作为第十个站出现在各环上，接插件负责环对环传递的消息的正确路由确定。

通信网络的单元

根据本发明的通信网络可由三种基本类型的逻辑单元构成，其中有A）链路、B）站、及C）一个中枢（只对多环网络）。链路通过一个中枢（需要时）将站连接在一起。下面结合后面的说明参照图17更详细地描述这些单元。

一条链路由两条RS - 2 3 2信道构成。虽然通信网络只需一条信道便能正常工作，一条第二信道通过重复性极大地增进了系统的可靠性；当一个站检测到活跃的信道不再工作时便自动选择不活跃的信道。

一个站是任何一种控制设备，诸如一台印刷机、辅助设备和/或配件，它包含一个对网络链路的内部或外部接口，并且其逻辑（硬件与软件）支持网络协议、消息结构与环管理特性。

通信系统可设计成能接纳三种类型的站，这通常取决于站的制
造厂商以及这种站是否能与配置成的通信系统进行“通信”，它包括：

a. 其网络通信能力是与所实现的具体控制系统相关联的控制功能一体化的（物理上与逻辑上）的站。实例中包括与这种网络事先相关联的基于一般配备或辅助设备控制设计；

b. 没有内装式通信能力而需要通过一台外部设备以适应通信网络的站。实例中包括其输入与输出是使用一个转发器装置与通信网络接口的设备或辅助设备设计；以及

c. 虽然有内装式通信能力但具有与通信网络不匹配的特征与协议的站。例如，这些站中可包含使用一个通信转换器装置与通信网络接口的带有一个串行通信端口及使用 EIA RS-232或20毫安电流环路的调制解调器的个人计算机、工作站、膝上个人计算机。

3. 中枢——一个中枢，也称作一个“环仲裁器”，是一个用来在通信环之间确定通信网络消息的路由的专用设备。中枢可以是物理上模块化的，并可支持，例如，每一模块一个通信网络环。每一个模块提供一个通信网络链路接口并可有选择地附加一个内装式通信转换器或抽头。一个模块可用在一种“独立”模式中；在这一地位中，它作为一个协议转换器（如，RS-422至RS-232）工作，而不是作为环仲裁器的一部分。

系统的物理单元

各式各样的物理单元用于满足通信网络系统的逻辑单元，诸如链路、站与中枢。但不是一切物理或逻辑单元都可用在一个特定的
通信应用中的。

A、通信系统链路

链路的功能是以保证可靠、无噪声通信的方式连接站与中枢（如果使用的话）。虽然链路是描述成连接独立的站的，但线路连接实际上是“星形”或“环形”（即，电连续性是通过一个环组成的）。物理链路元件为符合EIA RS-422与RS-232标准的电气（不必要是机械的）特征的连接器与电缆。

1、内部链路——所有的站与中枢单元都是用符合RS-422 EIA标准的电气特征（电容、电阻等）的两组屏蔽的、双绞式导线连接的。屏蔽的双绞式导线对可以单独供应或作为一条电缆供应。如果导线不小于18 AWG（美国线规）并且导线对导线／导线对屏蔽的电容不大于每英尺15微微法拉，则根据本发明的通信网络所采用的19200波特数据传输率最大可支持500呎的链路长度。

2、外部链路——虽然不是本系统的实际部分，但外部链路是用于连接通过一个标准串行端口访问的站（PC、调制解调器等）的。通信系统单元执行协议转换，以提供这些站内部链路的连接。这种链路是用通常可得到的符合RS-422标准的电缆提供的。这些链路运行在不同的数据传输率上，但不得超过19200波特。这些链路的长度不得超过15呎。如果选用低电容型电缆，则可支持长达50呎。

3、内部链路连接——对内部链路的连接可用下述方法完成。
a. 接线盒——某些站与中枢可使用，诸如，6位置、2片接线盒。每条信道对使用两个位置，信道A用接线端1与2，信道B用接线端5与6。接线端3与4接地并用于屏蔽连接。

b. 连接器——某些使用系统类型设计的站可采用AMP制造的塑料9针塞孔（CRC系列连接器）。这些连接器也与一个第三、屏蔽的双绞线对接口，这种导线会将未调整的直流电流带到不使用独立电源的站上。

4. 外部链路连接——外部链路支持EIA RS-232或20毫安电流环路两者之一。

a. 接口——外部链路是在其一端受到中枢或独立通信转换器（抽头或协议转换器）支持的。RS-232接口是作为一个数据终端配置的。它提供发送与接收数据信号（分别为TXD与RXD）、数据终端就绪（DTR）、请求发送（RTS）与清除发送（CTS）。RS-232信号是可用推进跳线以各种方式选择的。通信转换器允许选择波特率、结束位数目及奇偶性类型，以便更易于适应外部设备。20毫安电流环路接口是标准的并且由一个10至12VDC非稳压电源驱动。对两种选择的连接是用2片接线盒作出的。

b. 站设备接口——外部链路是在使用的设备端上（PC、调制解调器等）用各种手段支持的，它们
不是都可以预测的。最常用的连接为 9 针 "D型" 或 15 针 "D型"。

B、站

站的功能为提供印刷机辅助设备和/或操作员站的控制操作的实现点。站是用为命令、状态与参数信息的通过提供通信通路的链路连接的。所有的站以下述三种方法之一提供一个与通信系统兼容的接口:

a. 提供包含通信环管理在内的全部电气、逻辑及消息能力的全内装式链路接口。在大多数控制设计中可找到这种站类型。

b. 只提供消息能力的部分内装式通信链路接口。这种站类型可与一个通信转换器（抽头或协议转换器）一起使用，后者提供包含环管理在内的电气与逻辑特性。通信转换器可以是独立的也可以是中央的一个部分。在两种情况下，硬件与功能都是一样的。如果采用独立的方式，它需要一个 8 - 10 伏交流、60 赫兹或 10 - 14 伏直流本地电源，并占用大约 2 吋高×3 吋宽×6 吋长的空间。

c. 非内装式链路接口。这种站类型利用翻译器（或翻译器扩展器）监视输入并启动输出。翻译器具有所有电气的、逻辑的和消息能力，包括环管理。翻译器需要 8 - 10 V 交流、60 Hz 或 10 - 14 V 直流的本地电源并占用大约 2 吋高×5 吋宽×7 吋长的空间，且若高度必须被展开，则大约为 4 吋高。
C、中枢

如果系统是设计成支持一个以上的环的，则需要中枢。中枢用于在多个环之间确定网络消息的路径。它是物理上模块化的并且每一个模块支持一个通信环。各模块可提供一个内装式通信转换器。它可能需要一个8-10伏交流60赫兹或10-14伏直流的电源并占用大约3寸高×6寸宽×12寸长的空间。

消息管理参数说明

有些消息管理参数可用于控制通信系统内的信息流动。这些参数是包含在两个图中——参数图与站激励图。参数如是硬编码的，每一个站使用一个EPROM或者一个硬盘驱动器。环上的每一个站允许向六个其它的站发送消息。消息参数图中各项的内容如下：

- 目的地环——4种选择
- 目的地地址——14种选择
- 消息类型号——256种选择
- 传输速率——4种选择

此外，参数图可有自标识项：
- 本环环——4种选择
- 本站地址——14种选择

带有一个硬盘驱动器的某些以PC为基础的通信站可使用一个扩展的消息参数图，它允许55个站加上自标识项。PC型站图表示的内容与正常图完全一致。激励站图是动态的并保存在可改变的存储器中。该图由组织成4个环、每环14个站的56个站激励标志构成。每当一个通信环通过其逻辑构造（即，‘建立’该环时）时，该图便自动更新。

19
消息参数确定各站“何时、何地”传输“什么”。将一则待送出的消息插入队列的键入便是“传输频率”。这一参数的选择在一定程度上取决于应用，但对于基于正常类型的产品是如下所列的：

0.2秒——‘实时’
2秒——频繁
1分——不频繁
一次性——在环建立时

一旦应发送出表示一则消息的频率时序，便检验这一参数的匹配。
如果站激励图表明由目的地环及目的地地址指定的站存在，便加载消息类型号，接着检索与加载该类型所需的数据（如果有的话）。计算并加载数据计数。最后，计算与加载和数据检验和。

通信系统内的信息流（除环管理交换）本质上是通用的，并且通常称作一个站的“状态”。状态消息的内容是由应对管理的，但通常符合下述使用指南：

带有一台硬盘驱动器的基于PC的通信站使用一种扩展的消息参数图，该图容许每站8种消息类型的55个站加上自标识项。基于PC的图表值的内容与正常消息参数图完全一致，但加上了站类型与子类型表值：

- 目的地环——4种选择
- 目的地地址——14种选择
- 消息类型号——256种选择
- 传输频率——4种选择
- 站类型类别——256种选择
- 站子类型类别——256种选择
激励站图是动态的并保存在可改变的存储器中。该图由组成成4个环、每环14个站的56个站激励标志构成。每当一个通信环经过其逻辑构造时（即“建立”该环时）便自动更新该图。连通的、非一体化站（诸如带有一个标准串行端口的PC或膝上计算机）不能直接访问激励图。对于这些站，每当支持通信转换器（抽头）接到一则“你好吗？”消息类型时，便超过该图。

下列定义可应用于消息管理参数：
‘实时’——在一位操作人员的正常动作/应答时间内可以改变的信息。其中包括按按钮及相关的指示。
‘频繁’——不需要行动/应答但依赖操作员发现它的随机机会的信息。其中包括警告性（非报警性）事件与条件。例如，溶剂箱低、清洁剂警告等。
‘不频繁’——对于实时的操作员应答不是关键性的或者表示非常慢地变动的条件的信息。例如，循环器温度、溶剂用量等。
‘一次性’——固定的不能被操作员改变的信息。例如辅助设备系统配置（#单元、冷凝筒存在等）以及内装式程序表。

状态消息本质上是‘单向’的，从源提供数据供目的地使用。接收到的所有无错误状态消息都以一个“确认”来应答。对状态消息内容的解释完全取决于应用的需要。如果一个应用判定需要一个功能性应答，则它在其定期调度的状态消息中将这一点通知发送站。

C、环管理

环管理的功能是提供所有参与的站对通信系统的有秩序使用。
在环管理任务中包含信道使用管理、激活与释放环、增加／减少站及监视信道完整性。

1、令牌——一个环的有秩序使用及公平分配环使用的优先权的保证是通过使用一个许可令牌来确保的。令牌的专用定义为消息类型 01H（见图 16）。每当一个站接收到这一消息时，它便自动地赋予了发送其排队的消息之一的权力。如果没有消息排队或者已经完成了一则排队的消息的发送时，便将该令牌传递（发送消息 01H）给下一个站。该令牌是以简单轮转的方式传递的，每一步前进到环上在站激励图中标识的下一个较高的地址。

2、建立环——为了高效率地进行通信，只有物理连接在环上并准确地工作的那些站（地址）才能使用设施。这是通过在站激励图中标识这些站来完成的。在一个环的建立过程中，每一个站建立其本身的图并在增加或减少另一个站时更新它。只在一个站加电或者检测到一条故障信道或一个故障站时才出现一次环建立。下面描述环的建立过程：

当一个站加电时，它首先通过查看信道上的活动判定该环当前是否是被激励的。如果该环是未激励的，便定时一个延时并启动建立过程。延时的计算如下：

建立延时时间 = 8 秒 + （0.5 秒 × 站地址）。

在延时计算中使用站地址会对各站产生不同的延时。这防止了在环建立开始时的发送冲突。环上带有最低的物理地址的站（最短的计算的建立延时）将取得环的控制权以启动建立。环的建立过程如下：

a、启动的站发布一则消息类型 03H 的广播（即地址 OH 或 O）——“失去令牌”。接到这一广播的所有实际的站被迫放

22
弃一切发送消息或建立环的企图，这将在它们的环建立延时时间已过时发生。由于“失去令牌”消息是一则广播，不需要来自任何站的应答。

b. 一旦完成了“失去令牌”广播，启动站向比其自己的地址高出1的地址发布一则“你在吗？”（消息类型05H）。如果在最大应答时间（0.2秒）内没有“确认”（消息类型81H），则启动站向比其本身高出2的地址发布一则“你在吗？”的地址。只要没有收到“确认”，启动站在每次尝试时继续增加“你在吗？”的地址。注：在进行查找一个激励单元中，如果遇到了最后一个环地址（OFH或15），则“下一个较高”地址卷动回到第一个环地址（1H或1）。

c. 如果从14次尝试中都没有收到“确认”，该启动站便是环上唯一的站而查找无限地继续下去。当接收到一个“确认”时，查找便成功了。启动站为应答站更新其站激励图并发布一则广播（地址0H或0）“通知增加”（消息类型07H）说明查找中找到的站，所以所有其它的站可以更新它们的站激励图。

d. 一旦完成了“通知增加”，启动站发布一则“加入环”（消息类型06H）到刚找到的站。在从刚才找到的站收到对“加入环”的“确认”时，启动站向该站发布一则“建立环”（消息类型04H），从而将将新的站查找的责任传递给它。

e. 被找到的站收到“建立环”，向启动站发布一则“确认”并继续执行步骤a-d中描述的过程。当初始的启动站收到并确认了来自紧接在它前面的站的一则“建立环”时，过程便完
成了。此时，初始的启动点向激励点图中下一个较高地址发布一则“传递令牌”（消息类型01H），启动正常的通信交换。以上的描述是为不带中枢的一个单一的环进行的。如果找到了一个中枢（即对中枢（地址0FH或15）的一则“你在吗？”得到一则“确认”）并且已经建立了连在中枢上的一一个以上的环，则该中枢发布一则“通知增加”广播，以容许更新所有环上的所有站激励图。

3. 增加一个站——一旦建立了环并正常地进行工作，便执行周期性的搜索以判定是否有任何新站加入环上。这一搜索发生在任何当前激励的站接收到每第16次令牌时，搜索的进行如下：

a. 在接收到第16次相继的“传递令牌”时，该站首先发送任何排队的消息。然后检验站激励图以判定在它本身与下一个激励站之间是否存在任何未激励的地址。如果至少有一个，便发布“你在吗？”。如果收不到“确认”，便完成了新站查询，而将“传递令牌”发布给站激励图中的下一个站。注：如果在这一站与下一个激励站之间存在一个以上未激励地址，则在收到第16次相继的“传递令牌”时，轮转搜索它们，一次一个。

b. 如果在搜索新站中收到一则“确认”，则当前站为应答的站更新其站激励图，并发布一则指明在搜索中找到的站的“通知增加”广播（地址0H或0），而使所有其它的站可更新它们的站激励图。

c. 一旦完成了“通知增加”广播，当前站向刚才找到的站发布一则“加入环”。在接收到对“加入环”的“确认”时，
搜索便告完成，而当前站将“传递令牌”发布给其站激励图中的下一个地址（刚才找到的新站）。
上述描述适用于不带中枢的一个单一的环。如果存在着一个中枢并且对新站的搜索是成功的，则该中枢将对所有其它激励的环发布一则“通知增加”广播，而使它们的站激励图得以更新。

4. 失去一个站——每当一个站向其站激励图中当前存在的一个站发布一则“传递令牌”或“建立环”而从该站接收不到“确认”时，它感知在通信链路的当前信道上没有激励，而换到另一条信道上——见下面的“信道管理”。如果四次尝试后在所有的信道上均仍无激励，它便启动其建环定时。如果定时过去后该环仍无激励，则它进行捕捉及重建该环——见上述“建立环”。

5. 信道管理——通信系统可用冗余链路来互连各站。当一个站发送时，它在冗余链路的两条信道上都进行发送。然而在它接收时，它只收听两条信道之一。各站连续地监视其所激活的信道。将一条信道宣布为未激活的，如果它至少在66.7毫秒内不接收任何字符或者如果这些字符中包含错误（例如，成帧无终止位）。该站等待46.7毫秒，如该信道仍未激活，则它切换到其它信道。

该站记录改换信道的次数。如果改换次数超过四次，便存在无通信状态而该站开始其建环定时。如果定时过去后仍无激励，则它进行捕捉并重建该环，如上所述。

A. 通信系统的消息结构的描述

为了使软件与硬件设计标准化，在通信网络中使用统一的消息结构。它提供了在UART（通用异步收发器）选择、误码检验、字符组合及含义、消息建立等设计活动中采用的一组固定的“规则”
。除少数例外以外，消息结构对于内部（以环为基础的）及外部应用是完全一样的。

一则消息的结构包括三个基本区域：字符、内容与开销。字符采用一种固定的组合，它最终定义硬件单元的选择（例如 UART）。内容由字符组成，并带有与消息应用相关的数据。开销也是由字符组成的并带有消息的路由与动作指令。有关“通信消息结构”的描述可参见图 16。

在消息传输中通信网络所采用的消息访问层次结构的例示请参阅图 21。图 21 中例示系统如何管理通信数据结构，作为对上述管理与数据传输的一种理解。通信消息结构及消息访问层次结构两者都是熟悉本技术的人所容易理解与实现的。简言之，提供了两种通信消息结构模式：

环模式：

这一结构描述了一系列指针与标志的特性，这些指针与标志根据令牌环通信系统的初始化指明哪些消息可以发送以及它们是否必须发送。

用于确定环上的下一个站及将令牌传递给该站的所有可能的消息是为该通信系统预先建立的。

这一结构在通信系统加电初始化时使用，并在将一个站从环上去掉或加到环上时环恢复中使用。

数据模式：

这一结构描述了一系列指针与标志的特性，它们根据从始发站到若干目的地站中任何一个的数据传送，指明哪些消息可以发送及是否必须发送。
消息中的数据是根据实际系统的当前配置预先建立的。
消息中的数据及哪些消息可以发送是由主程序的一部分的通信系统例行维护的。

B、帧组成
用于通信网络内部通讯的帧由独立的“位”组成，它们的定义是与传统的、同步的、不归零（NRZ）制式兼容的。这一制式由下述元素及状态组成：

空闲状态——标志，连续的指示逻辑状态1或“真”的电平。用于定义一条激励的完整信道。

空闲状态——间隔
连续的指示逻辑状态0或“假”的电平。用于定义一条断开的或不完整的信道。这一状态允许检测信道故障（即，线路“断开”）。

起始位
这是出现在一个字符起始点上的第一个动作，并用于时间同步或封锁随后的位的模式。

第一帧位
这一位紧跟在“起始位”之后，当它为1或“真”时，将该字符标识为一则消息中的第一个字符。

字符位
紧跟在“第一帧”位后面的8位，它们的1或0（“真”或“假”）电平包含该帧的“情报”。

停止位
紧跟在“奇偶位”后面的一位，用于结束或关闭该帧。
参照图14来描绘帧的构成。

用于通过一个转换器或抽头的外部通信的帧由下述单元与状态组成：

空闲状态——标志，连续的指示逻辑状态1或“真”的电平。用于定义一条激励的、完整的信道。

空闲状态——间隔

连续的指示逻辑状态0或“伪”的电平。用于定义一条断开的或不完整的信道。这一状态允许检测信道故障（即线路“断开”）。

开始位

这是出现在一个字符的起始点上的第一个动作，并用于时间同步或者封锁随后的位的模式。

字符位

紧随“开始位”的8位，其1或0（“真”或“伪”）电平包含该帧的“情报”。

奇偶位

紧随“字符位”的一位，用于检验字符传输完整性。

停止位

紧随“奇偶位”的一位（或两位），用于结束或关闭该帧。

参见图15描绘该帧的构成。

C、信息内容

一则消息所携带的数据（如果需要）是包含在不同数目的帧（字符）
中的。见图21。虽然最大的数据字段为127，但不推荐使用32以上的字段，由于大的数据字段（即长消息）趋向于将网络吞吐量向发送它们的站倾斜。

数据字段的第一帧（消息中的第四帧）总是包含该数据字段中的总帧数，不计入该计数或长度帧本身。不需要数据字段的消息类型（如环管理消息）仍带有第一数据字段帧（计数或长度）并且它是设定为0以指示没有后随的数据帧的。

D、消息开销
一则消息的路由、动作意图（类型）及完整性包含在消息开销中。见图21。消息路由是通过标识表示为环ID（标识符）与该环上的地址的源与目的地来完成的。动作意图或消息类型向目的地指示如何解释消息及采取何种动作。消息完整性是提供来保护消息在传输中不受无意的更改的。

路由功能是由两帧完成的：一帧用于源及目的地环ID，一帧用于源及目的地地址。每则消息中的第一帧为源及目的地环ID。8位字符中的低四位（即前四位）为目的地环，而高四位（即后四位）为源环。为了通知目的地接收机醒来，这一帧的地址标志（第九位）永远设定为1或“真”。每则消息中的第二帧为地址帧。8位字符的低四位（即前四位）为目的地地址，而高四位（即后四位）为源地址。一则消息中的这一帧及以后所有的帧的地址标志（第九位）永远设定为0或“伪”。虽然定义了16个4位地址，但地址0是保留给对所有站的广播的（广播不需要应答），而地址15则是保留给与中枢或环仲裁器的通信的。每则消息中的第三帧为类型帧。该帧的内容指定消息接收机所要求的动作。有三种消息类型
用于环管理的及用于数据传输的。

每则消息中的最后一位为“检验和”位。“检验和”用于检测消息内容在传输中受到的破坏。检验和的值为2的补码，消息中所有字符（不包括帧——第九位是除外的）的和除零。它是通过简单的加法运算计算出的，从第一字符（环ID）开始到最后一个字符（数据字段中的最后一个，如果没有数据字段则为数据字段的计数）结束。加法运算的结果是求2的补码以得出和数零检验和。收到该消息时，将字符内容相加，然后加上收到的检验和。如果结果为0，则消息是完整的。如果结果不为0，则消息已受到破坏而加以拒收。

设计指南

一个站是一台印刷机辅助设备的控制设备，它或者包含一个对通信系统的内装式接口或者包含一个所提供的外部接口。无论采用哪种站配置（集成的或者外部的接口），它必须在硬件与软件设计上满足通信系统协议、消息结构与环管理特征的要求。

根据本发明设计的一个支持系统中可使用三种类型的站，它们是：

A、集成的站——其通信接口为直接设计进一台印刷机辅助设备的控制中的站。这一类型的站是根据其硬件与软件组成的部分的类型的一种典型的控制设计。这一定义中还包含与其他设计协同工作的控制设计。

B、可通信的非集成的站——带有一个不与特定设计类型电兼容的但满足本发明的系统的协议及功能的一个通信接口的站。这些站中具体地包括RS-232或电流环路以及基
于使用一个标准串行端口通过一个兼容通信转换器（抽头）连接到一个互连的网络的PC、工作站或膝上计算机的控制设计的站。

C、不通信的非集成的站——没有通信接口的站。其中包括采用物理输入与输出（开关、继电器、触点、指示器、电磁线圈以及数字与模拟信号）的任何制造厂商的控制设计，它们能够通过一个兼容的转发器（带或不带配套的转发器扩展器）连接到根据本发明的一个互连网络上。

A、集成的站

设计集成的站的人员应遵守包括物理单元、逻辑单元及消息结构在内的本发明的一切特征。

B、可通信的非集成的站

设计可通信的非集成的站的人员应遵守本发明与状态消息相关的这一切特征。

通信转换器（抽头）可作为中枢的一个整体的部分或者作为一台独立的设备提供。独立式设备需要来自一个本地电源的60Hz的8至10伏交流电或者10至14伏直流电（可以是不稳压的）。型式的选择可进行如下：

a、RS-232——使用标准电缆（导线对电容为50pF（微微法）/呎或以下）并且站串行端口位于距中枢15电缆呎以内——使用中枢式抽头。

b、RS-232——使用低电容RS-232电缆（导线对电容为15pF/呎或以下）并且站串行端口位于距中枢50电缆呎以内——使用中枢式抽头。
c. RS-232——既不满足a又不满足b——使用独立式抽头。

d. 电流环路——支持长到200电缆呎——使用中枢或独立式抽头两者之一。

3. 当人们在设计根据本发明的通信系统时，他不需要考虑涉及的实际管理问题，但必须知道在环建立（在系统加电、站自动增加、故障信道检测等）时，对一个非集成的站所发送的一则消息的应答有可能延迟10至15秒。还应注意，在这一时间内所发送的消息并未被忽略或丢弃（当然，除非该抽头未曾加电）而是在入队列，直到完成环建立为止。

一位设计人员还应知道消息往返的传输时间。对于一则包含大约30个信息字符的消息并期望一个同样大小的接收应答，采用一个所有内部与外部链路都在19200波特上工作的多环系统，该传输时间在250至350毫秒的范围内。

C. 不通信的、非集成的站

对于设计不通信的非集成站的人员，不需要该系统的详细知识。在这种类型的站中，本发明的互连网系统是通过上面描述过的一个转换单元接口的。

图20示出根据本发明的通信软件中所使用的逻辑的流程图。该流程图为通信软件的逻辑流程的一个示例，其中包括令牌的功能以及消息通信的传输（见图21），照此，熟悉本技术的人员是容易实现与理解的。下面是流程图中所例示的部分的一个简单提要，用于帮助读者更好地理解根据本发明的通信系统中的字符传输。

定时器中断逻辑（COMM Timers）
每当通信时间定时器（用于定时系统中的通信）时间已过时，
便进入这一例程。

通信中能够定时的各个特性是在这里由系统检验的。这些特性
列出如下：

a. 在最大的允许“开始接收消息时间”内是否已经收到一则
消息的第一个字符？
b. 在字符之间最大的允许时间内是否已经收到一个字符？
c. 在字符之间最大的允许时间内是否已经发送一个字符？

这一例程由三条路径之一出口：
1. ESC TOK（释放令牌）路径出口到接收中断逻辑
2. TURN RCVR（将收发机从发送转变到接收）路径
 出口到收发机转换逻辑（在R处）。
3. END TNT路径出口使程序控制返回到主程序，它是
为了使这一例程能够执行而被中断的。

接收中断逻辑（CHAR RECEIVE）
每当CPU的串行端口接收到一个字符时，进入这一例程。
对每一个接收到的字符进行某些基本问题的检验，诸如成帧错
误。

如果接收到的是一则消息的第一个字符，则检验该字符的内容
，以判定以下的消息是否是给（通信环上的）这一个站的。
如果接收到的是一则消息的第三个字符，则保存消息类型码。
如果接收到的是一则消息的第四个字符，则计算还要接收的字
符数。

每一个接收到的字符用于计算消息的检验和，当接收到最后一
个字符时，用该检验和来确认接收到的是一则好的消息。
消息类型的信息是用于判定令牌是否已传递到这一站的。
这一例程是从三条路径之一出口的：
1. **TURN RCVR**（将收发器从发送转变到接收）路径
 出口到收发器转变逻辑（在 R 处）。
2. **TURN XMIT**（将收发器从接收转变到发送）路径
 出口到收发器转变逻辑（在 X 处）。
3. **END INT** 路径出口，使程序控制返回到主程序，它
 是为了使这一例程能够执行而被中断的。

Xmit 中断逻辑 (**CHAR TRANSMIT**)
每发送一个字符时进入这一例程。
保留送出的字符数目的计数以确定何时已经送出一则消息的最
后一个字符。
如果这是一则消息的第一个字符，则设置该字符的唤醒（第九）
位，否则复位唤醒位。
如果所发送的消息是一则传递令牌型消息，则保留这一信息。
送出下一个字符。
这一例程从两条路径之一出口。
1. 送出最后一个字符后，出口到 Xmit 中断逻辑的 **XMIT DONE** 部分。
2. **END INT** 路径出口，使程序控制返回到主程序，它
 是为使这一例程能够执行而被中断的。

Xmit 中断逻辑 (**XMIT DONE**)
每当已经送出一则消息的最后一个字符时，从 **CHAR TRANSMIT**
中断服务例程进入本例程。
例程中的逻辑设置各种标志并在未曾传递令牌时经由 TURN XMIT 出口。否则它经由 TURN RCVR 出口。
这一例程是从两条路径之一出口的。
1. TURN XMIT（将收发机从接收转变到发送）路径出口到收发机转变逻辑（在 X 处）。
2. TURN RCVR（将收发机从发送转变到接收）路径出口到收发机转变逻辑（在 R 处）。
收发机转变
这一例程只从定时器、接收或 Xmit 中断逻辑例程进入。
这一例程将收发机从接收转换到发送，或者从发送转换到接收。
这一例程跟踪下一个要送出的字符与消息。
这一例程从一条单一的路径出口：
1. END INT 路径出口，使程序控制返回到主程序，它是为了使这一例程能够执行而被中断的。

B、控制系统
与网络通信系统无关，软件控制装置主要包括操作员站控制逻辑来提供在印刷工人与辅助设备／配件控制之间流动的管理动作与应答的“规则”。

操作员站的主要推动力为：
1. 允许印刷工人通过调节印刷参数及通过起动动作来获取辅助设备产品的控制。
2. 公布产生状态并提示印刷工人采取适当的纠正动作；以及
3. 收集历史数据使印刷工人能够访问辅助设备的性能测量值
并提供改变产品性能的手段。

结合操作员站的控制系统的功能及控制逻辑的流程的图形表示出在图18中。逻辑上，印刷操作员将在CRT上接收有关系统的信息，并且将能够通过触屏CRT输入要求的信息。操作员控制台还包含印刷条件与预置的机器专用的条件的历史数据库，为了使所要求的印刷专用条件组与将要传输给印刷配件与辅助设备的适当机器专用数据相匹配，它们是集体提交给一个参数变换矩阵（见图19）的。消息便是这样通过网络链路传输到各独立的辅助设备控制的，这些控制本身是硬接线的或者是链接到构成要控制的系统的印刷机辅助设备与配件上的。同样，消息与数据将通过网络链路从辅助设备控制送回操作员控制台，并且它们将通过屏面输出逻辑的转换而经由CRT显示给操作员。这里将描述根据本发明可以实现的特定印刷机辅助设备与配件的控制逻辑说明。

逻辑上，现有的机器专用数据与印刷或工作专用条件的历史数据库将经受一个参数变换矩阵的变换。图19为这一过程的示意性表示。为了使一组要求的印刷专用参数或条件与一组适当的机器条件（配件或辅助设备专用参数）相匹配，这一逻辑是必要的，这些机器条件是传输给配件或辅助设备以产生所要求的印刷条件的。对于所发生的参数变换的描述已在前面的“详细说明的概述”中描述过。

在下面对控制逻辑的说明中，将进一步详细地逐个功能地说明操作员站必须处理的各控制项目。各规格项目的格式如下：

1. 第一行或头几行标识该项目或“变量”连同示出在括号内

中的其目的地的缩写。
2. 随后的行中表示两种特征：
 a. 最后的一个或几个字，用大写字母示出，为逻辑或动作标识符（如AND、IF、OR、ANDNOT、ACCESS、RETRIEVE等）
 b. 其余的字描述示出在括号内的输入源。

输出指向下列的源：
输出消息到控制器型站
操作员站显示器
内部操作员站功能
历史数据库信息
对操作员站逻辑的输入是从下列的源收集的：
来自控制器型站的输入消息
选择中的操作员站
内部操作员站功能
参数与历史数据库信息

C. 定义

下述定义用作解释控制逻辑语句的意图的指南：
“连续”——在印刷机正在印刷的所有时间中激励的一种产品类型（如，液体循环器、喷水器管理系统、干燥机、搅拌机、油墨调平器）并且是与印刷过程构成整体的。
“非连续”——偶而起动以完成一项特定的“地点”任务的一种产品类型（如，胶印清洁机、油墨滚筒列清洁机、压印滚筒清洁机）并且它们将中断印刷过程。
“就绪”——表示可以起动一种非连续产品的开始的一种逻辑
状态。就绪状态是清洗产品的开始的一种逻辑状态。就绪状态是清洗互锁的逻辑非，控制器提供的表示无故障存在的输入。

“故障”——一种物理条件或事件，它将结束一种产品的激励状态或防止起动该产品（如，溶剂太低、选中的单元没有布、印刷机不是一种清洗速度、控制器在测试模式中、通信故障、产品空气压力太低等）。

“报警（警告）”——一种提醒操作员采取一种动作的条件，但并不阻止产品的使用（如，单元布供应量低、水温太低／高、油墨喷洒器液面低等）。

“清洗互锁”——控制器提供的一种条件，表示存在一种故障并且不能起动一种非连续的产品。

“冲洗”——控制器提供的一种条件，表示当前一种非连续产品正在被激活。

在各控制器类型的逻辑描述中，将利用缩写约定来表示信息的源与目的地，如下：

‘CTLIN’——来自站的输入消息
‘CTLOUT’——去往站的输出消息
‘OPIN’——操作员站上的用户选择
‘OPOUT’——操作员站上的显示
‘OPARM’——存储在操作员站数据库中的参数
‘OPHIST’——操作员站数据库中的历史表值
D. 逻辑概述

非常一般地讲，操作员站可完成下述功能：
1. 接通或切断产品的电源——连续产品。
2. 起动或停止产品动作——非连续产品。
3. 提供模拟（p h、速度、温度等）及数字（设备、状态、故障、报警等）信号的指示。
4. 提供警告条件的逻辑——模拟阈值、特定设备状态信号组合。
5. 提供用于设备参数纠正的手段。

操作员站控制逻辑的层次结构的组织如下：

Ⅰ. 产品选择级别

1. 产品选择

2. 显示各产品的操作状态。例如，参见Baldwin技术公司生产的某些产品：
 • 非连续产品
 a. “ABC (APW, AIC) 就绪 (READY)”
 b. “ABC (APW, AIC) 就绪——报警”
 c. “ABC (APW, AIC) 未就绪——故障”
 • 连续产品
 a. “FSMS (油墨液面、IR干燥机) 运转”
 b. “FSMS (油墨液面、IR干燥机) 运转－报警”
 c. “FSMS (油墨液面、IR干燥机) 未运转”

3. 通知（带视频/音频效果）选择的严重故障。来自各产品的有限数量的故障在装机时赋予一个全局性严重故障表。
例如：！！！布头断开——单元#4，ABC！！！
！！！不正常液面——单元#7，油墨调平器！！！
！！！过热逼近——IR干燥机！！！

I. 产品级

1、在产品内选择单元。

2、显示产品与单元的操作状态：
 - 非连续产品
 a. "ABC (APW、AIC) 就绪"
 b. "ABC (APW、AIC) 就绪——单元#4 低布"
 c. "ABC (APW、AIC) 未就绪——溶剂箱#1 空"
 - 连续产品
 a. "FSMS (油墨洗液面、IR干燥机) 运转"
 b. "FSMS (油墨洗液面、IR干燥机) 运转——至80%过热"
 c. "FSMS (油墨洗液面、IR干燥机) 未运转"

如上面指出的，以图形方式展示操作员站控制逻辑流程。

消息类别

根据本发明的系统站的信息传送模式为使用消息的“状态”类型经由通信网络传送。一则消息中的数据是由字符及字符中的位组成的（见图21中与系统结合使用的消息访问层次结构的一个示例）。下面是对由产品组织的所有状态消息的内容与功能的详细说明。其中包括由康尼狄格州斯坦福的Baldwin技术公司生产的产品。然而，应当理解，本发明并不仅限于此，并且可以广泛地应用于不同
公司制造的并为熟悉本技术的人员所知的广泛范围内的印刷辅助设备。

A. Q-90，单张纸自动胶印清洗机（ABC）
B. Q-90，单张纸自动印刷机冲洗机（APW）——初级
 注：APW也称作“油墨滚筒列清洗机”或IRTC。
C. Q-90单张纸自动压印滚筒清洁机（AIC）——初级。
D. IVT 红外线干燥机
E. 储墨器溶液管理系统（FSMS）

参照下面的描述来说明各产品的数据字段字符位分配。

A. Q-90单张纸自动胶印清洗机（ABC）

控制器输出状态消息，正常‘实时’——类型02H数据字段字符
#1——位分配

<table>
<thead>
<tr>
<th>7</th>
<th>8</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>冲洗互锁</td>
<td>冲洗</td>
<td>测试模式</td>
<td>速度互锁</td>
<td>溶剂源#1低</td>
<td>溶剂源#2低</td>
<td>未用</td>
<td>未用</td>
</tr>
</tbody>
</table>
数据字段字符 #1 —— 功能定义

冲洗互锁 —— 故障状态，系统未准备好冲洗
冲洗 —— 动作状态，系统当前正在冲洗
测试模式 —— 故障状态，控制器在本地测试模式中
速度互锁 —— 故障状态，印刷机速度对冲洗太低
溶剂源 # (1 - 2) 低 —— 故障状态，溶剂供应箱液面对冲洗太低

数据字段字符 #2 —— 位分配

```
7 8 5 4 3 2 1 0
```

- 单元 #1, 无布
- 单元 #2, 无布
- 单元 #3, 无布
- 单元 #4, 无布
- 单元 #5, 无布
- 单元 #6, 无布
- 单元 #7, 无布
- 单元 #8, 无布

数据字段字符 #2 —— 功能定义

单元 # (1 - 8)，无布 —— 故障状态，滚筒上无布

数据字段字符 #3 —— 位分配

42
数据字段字符 \#3 — 功能定义
单元 \#(9, 10) 无布，故障状态，滚筒上无布

数据字段字符 \#4 — 位分配
单元 \#1, 低布警告
单元 \#2, 低布警告
单元 \#3, 低布警告
单元 \#4, 低布警告
单元 \#5, 低布警告
单元 \#6, 低布警告
单元 \#7, 低布警告
单元 \#8, 低布警告
数据字段字符 #4 —— 功能定义
单元 #（1 — 8），低布警告——报警状态，滚筒上几乎无布

数据字段字符 #5 —— 位分配

数据字段字符 #5 —— 功能定义
单元 #（9，10），低布警告——报警状态，滚筒上几乎无布控制器输出状态消息，正常“一次性”——类型 85H
数据字段字符 #1 —— 功能定义

系统配置 —— 配备有胶印清洁机的正常印刷机单元的总数
涂布机配置 —— 涂布型印刷单元装备有胶印清洁机
涂布型印刷机单元是附加的，不计算在系统配置中

数据字段字符 #2 —— 位分配
程序#1，喷洒数
程序#2，喷洒数
程序#1，充填数
程序#2，充填数

数据字段字符#3与#2相同但程序#3与程序#4除外
data字段字符#4与#2相同但程序#5与程序#6除外
data字段字符#5与#2相同但程序#7与程序#8除外
data字段字符#6与#2相同但程序#9与程序#10除外
data字段字符#7与#2相同但程序#11与程序#12除外
data字段字符#2至#7——功能定义

程序#(1-12)，喷洒数-值(0，1，2，3)+1为
液体喷洒的次数
程序#(1-12)，充填数-值(0，1，2，3)+3为
每次液体喷洒空气垫应充气的次数
控制器进入状态消息，正常‘实时’——类型82H
数据字段字符 #1 — 一位分配

开始
停止
未用
未用
未用
未用
未用
未用

数据字段字符 #1 — 功能定义

开始 — 动作状态，起动一次冲洗
停止 — 动作状态，结束进行中的一次冲洗
控制器进入状态信息 — 正常、频繁 — 类型_H

数据字段字符 #1 — 一位分配
数据字段字符 #1 —— 功能定义
单元 # (1 - 8)，选择用于冲洗—动作状态，在下一次冲洗时包括这一单元

数据字段字符 #2 —— 位分配

单元 #9, 选择用于冲洗
单元 #10 (涂布机)，选择用于冲洗
未用
未用
未用
未用
未用
数据字段字符 #2 - 功能定义

单元 #（9, 10）选择用于冲洗 - 动作状态，在下一次冲洗中包括这一单元

数据字段字符 #3 - 一位分配

![单元编号图](image)

数据字段字符 #4 - 与 #3 相同但对单元 #2 除外
数据字段字符 #5 - 与 #3 相同但对单元 #3 除外
数据字段字符 #6 - 与 #3 相同但对单元 #4 除外
数据字段字符 #7 - 与 #3 相同但对单元 #5 除外
数据字段字符 #8 - 与 #3 相同但对单元 #6 除外
数据字段字符 #9 - 与 #3 相同但对单元 #7 除外
数据字段字符 №10—与№3相同但对单元№8除外
数据字段字符 №11—与№3相同但对单元№9除外
数据字段字符 №12—与№3相同但对单元№10（涂布机）除外
数据字段字符 №3至№12—功能定义

单元 №（1—10），程序号—值（0，1，…11）+1为程序I、D号（表示喷洒与充填/喷洒，参见控制器输出‘一次性’消息，字符2至7）

单元 №（1—10），液量—值（0，1，2，3）为进入一种参照宽度的事先存储的液量表的一个索引。

单元 №（1—10），液型—值（0，1，2，3）为要使用的溶剂与水的混合物的一个标识符：
 0—60%溶剂/40%水
 1—80%溶剂/20%水
 2—100%溶剂
 3—100%水

数据字段字符 №13—一位分配
数据字段字符 #13 —— 功能定义

单元 # (1 - 8)，空气干燥启动 —— 在下一次冲洗结束时，
接通空气干燥杆

数据字段字符 #14 —— 位分配

单元 #9, 空气干燥启动
单元 #10 (涂布机), 空气干燥启动
未用
未用
未用
未用
未用
未用

51
数据字段字符 #14 — 功能定义

单元 # (9, 10)，空气干燥启动，在下一次冲洗结束时，
接通空气干燥杆

B、Q-90，单张纸自动印刷机冲洗机 (APW) — 初级控制器
输出状态消息，正常“实时”一类型 02H
数据字段字符 #1 — 位分配

数据字段字符 #1 — 功能定义

冲洗互锁 — 故障状态，系统未准备好冲洗
冲洗 — 动作状态，系统当前正在冲洗
测试模式——故障状态，控制器在本地测试模式中
速度互锁——故障状态，印刷机对于冲洗速度太低
溶剂源 № (1, 2, 3) 低——故障状态，溶剂供应箱对于冲洗液面太低

控制器输出状态消息，正常‘一次性’—类型 86H
数据字段字符 №1——位分配

数据字段字符 №1——功能定义
系统配置——配备有液筒冲洗机的正常印刷单元总数
程序表 ID №——值 (0, 1, … 7) 为 8 个程序的程序数据

数据字段字符 №2——位分配
程序#1, 第一喷洒周期喷洒次数
程序#2, 第一喷洒周期喷洒次数
程序#3, 第一喷洒周期喷洒次数
程序#4, 第一喷洒周期喷洒次数

数据字段字符 #3 — 一位分配

程序#5, 第一喷洒周期喷洒次数
程序#6, 第一喷洒周期喷洒次数
程序#7, 第一喷洒周期喷洒次数
程序#8, 第一喷洒周期喷洒次数
数据字段字符 #4 — 一位分配

程序 #9, 第一喷洒周期喷洒次数

程序 #10, 第一喷洒周期喷洒次数

程序 #11, 第一喷洒周期喷洒次数

程序 #12, 第一喷洒周期喷洒次数

数据字段字符 #5 — 一位分配

程序 #13, 第一喷洒周期喷洒次数

程序 #14, 第一喷洒周期喷洒次数

程序 #15, 第一喷洒周期喷洒次数

程序 #16, 第一喷洒周期喷洒次数
数据字段字符 #2 至 #5 - 功能定义

程序 #N，第一喷洒周期喷洒次数—值 (0, 1, 2, 3) + 1 为第一喷洒周期的喷洒次数

控制器输出状态消息，正常 ‘一次性’ —类型 H

数据字段字符 #1 —一位分配

<table>
<thead>
<tr>
<th>7</th>
<th>8</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>程序 #1，喷洒 #1，液型</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>程序 #1，喷洒 #2，液型</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>程序 #1，喷洒 #3，液型</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>程序 #1，喷洒 #4，液型</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

数据字段字符 #2 —一位分配
数据字段字符 #3 — 一位分配

数据字段字符 #4 — 一位分配
程序#1, 喷洒#13, 液型

程序#1, 喷洒#14, 液型

程序#1, 喷洒#15, 液型

程序#1, 喷洒#16, 液型

数据字段字符#32——位分配

程序#8, 喷洒#13, 液型

程序#8, 喷洒#14, 液型

程序#8, 喷洒#15, 液型

程序#8, 喷洒#16, 液型
数据字段字符 #1 至 #32 —— 功能定义

程序 #M，喷洒 #N，液型一对程序 1 至 8，每一个多达 16 个喷洒周期
值 0 = 不使用这一喷洒周期
1 = 液型 #1
2 = 液型 #2
3 = 液型 #3

控制器输出状态消息，正常‘一次性’ — 类型 H
数据字段字符 #1 —— 位分配

数据字段字符 #2 —— 位分配

程序 #9, 喷洒 #2, 液型
程序 #9, 喷洒 #3, 液型
程序 #9, 喷洒 #4, 液型
数据字段字符 #3 —— 位分配

数据字段字符 #3 —— 位分配
数据字段字符 #4 —— 一位分配

程序 #9, 喷洒 #13, 液型
程序 #9, 喷洒 #14, 液型
程序 #9, 喷洒 #15, 液型
程序 #9, 喷洒 #16, 液型

数据字段字符 #32 —— 一位分配

程序 #16, 喷洒 #13, 液型
程序 #16, 喷洒 #14, 液型
程序 #16, 喷洒 #15, 液型
程序 #16, 喷洒 #16, 液型
数据字段字符 #1 至 #32—功能定义

程序 #M，喷洒 #N，液型一对程序 9 至 16，每个多达 16 个喷洒周期
值 0 = 不使用这一喷洒周期
1 = 液型 1
2 = 液型 2
3 = 液型 3

控制器输入状态消息，正常 ‘实时’ —类型 82H
数据字段字符 #1 ——位分配

```
7 6 5 4 3 2 1 0
```

开始 停止 未用 未用 未用 未用 未用
数据字段字符 #1 —— 功能定义
开始 —— 动作模式，起动一次冲洗
停止 —— 动作模式，结束进行中的一次冲洗

控制器输入状态消息，正常‘频繁’ —— 类型 H
数据字段字符 #1 —— 位分配

数据字段字符 #1 —— 功能定义
单元 #1, 选择用于冲洗
单元 #2, 选择用于冲洗
单元 #3, 选择用于冲洗
单元 #4, 选择用于冲洗
单元 #5, 选择用于冲洗
单元 #6, 选择用于冲洗
单元 #7, 选择用于冲洗
单元 #8, 选择用于冲洗

数据字段字符 #1 —— 功能定义
单元 #（1-8），选择用于冲洗 —— 动作状态，在下一次冲洗中包括这一单元

数据字段字符 #2 —— 位分配
数据字段字符 #2 — 功能定义
单元 #（9, 10），选择用于冲洗—动作状态，在下一次冲洗中包括这一单元

数据字段字符 #3 — 位分配
单元 #1, 程序号
未用
单元 #1, 液量选择
未用
未用
64
数据字段字符 #4 —— 同 #3，但对单元 #2 除外
数据字段字符 #5 —— 同 #3，但对单元 #3 除外
数据字段字符 #6 —— 同 #3，但对单元 #4 除外
数据字段字符 #7 —— 同 #3，但对单元 #5 除外
数据字段字符 #8 —— 同 #3，但对单元 #6 除外
数据字段字符 #9 —— 同 #3，但对单元 #7 除外
数据字段字符 #10 —— 同 #3，但对单元 #8 除外
数据字段字符 #11 —— 同 #3，但对单元 #9 除外
数据字段字符 #3 至 #11 —— 功能定义

单元 # (1-9)，程序号——值 (0, 1, … 7) + 1 为程序
I、D号（表示各个的液型与多达 16 次的喷洒次数，参
见控制器输出 ‘一次性’ 消息）
单元 # (1-a)，液量调节—— 值 (0, 1, 2, 3) 为每次喷洒选择液量

C、Q-90 单张纸自动压印滚筒清洁机（AIC）初级，控制器
输出状态消息，正常‘实时’——类型 02H
数据字段字符 #1 —— 位分配
数据字段字符 #1 — — 功能定义

冲洗互锁 — — 故障状态，系统未准备好冲洗
冲洗 — — 动作状态，系统当前正在冲洗
测试模式 — — 故障状态
印刷机互锁 — — 故障状态，'AIC故障' 指示印刷机停机
溶剂源低 — — 故障状态，溶剂供应箱液面低于冲洗太高
低空气 — — 故障状态，气压用于冲洗太高

数据字段字符 #2 — — 位分配
数据字段字符 #2 — 功能定义
单元（1 - 8），无布 — 故障状态，滚筒上无布

数据字段字符 #3 — 位分配
单元 #9, 无布
未用
未用
未用
未用
未用
数据字段字符 #3 - 功能定义
单元 #9，无布 — 故障状态，滚筒上无布

数据字段字符 #4 - 位分配

单元 #1, 低布警告
单元 #2, 低布警告
单元 #3, 低布警告
单元 #4, 低布警告
单元 #5, 低布警告
单元 #6, 低布警告
单元 #7, 低布警告
单元 #8, 低布警告

数据字段字符 #4 - 功能定义
单元 #（1-8），低布警告—报警状态，滚筒上几乎无布

数据字段字符 #5 - 位分配
单元 #9，低布警告
未用
未用
未用
未用
未用
未用
数据字段字符 #5 —— 功能定义
单元 #9，低布警告 —— 报警状态，滚筒上几乎无布

数据字段字符 #6 —— 位分配

单元 #1, 布梗塞
单元 #2, 布梗塞
单元 #3, 布梗塞
单元 #4, 布梗塞
单元 #5, 布梗塞
单元 #6, 布梗塞
单元 #7, 布梗塞
单元 #8, 布梗塞
数据字段字符 \#6 — — 功能定义

单元 \#（1 - 8），布梗塞 — — 故障状态，布梗塞在印刷机滚筒上！！

数据字段字符 \#8 — — 位分配

<table>
<thead>
<tr>
<th>7</th>
<th>8</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
</table>

单元\#1, 单元位置低
单元\#2, 单元位置低
单元\#3, 单元位置低
单元\#4, 单元位置低
单元\#5, 单元位置低
单元\#6, 单元位置低
单元\#7, 单元位置低
单元\#8, 单元位置低

数据字段字符 \#8 — — 功能定义

单元 \#（1 - 8），单元位置低 — — 故障状态，布单元在低（激励）位置

数据字段字符 \#9 — — 位分配
数据字段字符 #9 —— 功能定义
单元 #9，单元位置低 —— 故障状态，布单元在低（激励）位置

数据字段字符 #10 —— 位分配
单元 #1，导向器低
单元 #2，导向器低
单元 #3，导向器低
单元 #4，导向器低
单元 #5，导向器低
单元 #6，导向器低
单元 #7，导向器低
单元 #8，导向器低
数据字段字符 #10 —— 功能定义
单元 # (1 - 8)，导向器低 —— 故障状态，印刷机单元导向器在互相影响位置上

数据字段字符 #11 —— 位分配

<table>
<thead>
<tr>
<th>7</th>
<th>8</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>单元 #9，导向器低</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>未用</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>未用</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>未用</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>未用</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>未用</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>未用</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

数据字段字符 #11 —— 功能定义
单元 #9，导向器低 —— 故障状态，印刷机单元导向器在互相影响位置上

控制器输出状态消息，正常‘一次性’一类型 85H
数据字段字符 #1 —— 位分配

系统配置

未用
未用
未用
未用

数据字段字符 #1 —— 功能定义
系统配置 —— 配备有压印滚筒清洁机的正常印刷机单元的总数

数据字段字符 #2 —— 位分配

程序 #1, 喷酒次数

程序 #1, 充填次数

程序 #1, 水喷洒次数
未用

73
数据字段字符 #3 - 同 #2，但对程序 #2 除外
数据字段字符 #4 - 同 #2，但对程序 #3 除外
数据字段字符 #5 - 同 #2，但对程序 #4 除外
数据字段字符 #6 - 同 #2，但对程序 #5 除外
数据字段字符 #7 - 同 #2，但对程序 #6 除外
数据字段字符 #8 - - 同 #2，但对程序 #7 除外
数据字段字符 #9 - - 同 #2，但对程序 #8 除外
数据字段字符 #10 - - 同 #2，但对程序 #9 除外
数据字段字符 #11 - - 同 #2，但对程序 #10 除外
数据字段字符 #12 - - 同 #2，但对程序 #11 除外
数据字段字符 #13 - - 同 #2，但对程序 #12 除外
数据字段字符 #2 至 #13 - 功能定义

程序 #(1 - 12)，喷酒次数 - - 值 (0, 1, 2, 3) + 3 为应喷酒液体的次数
程序 #(1 - 12)，充填次数 - - 值 (0, 1, 2, 3) × 2 + 13 为冲洗时空气垫应充气的次数
程序 #(1 - 12)，水喷洒次数 - - 为全部是水的最早喷洒次数（无溶剂）

控制器输入状态消息，正常 '实时' - 型号 82H
数据字段字符 #1 - - 位分配
数据字段字符 #1 — 功能定义
开始 — 动作状态，起动一次冲洗
停止 — 动作状态，结束一次正在进行的冲洗
开始 — 动作状态，用 ABC 起动一次冲洗

控制器输入状态消息，正常‘频繁’——类型 H
数据字段字符 #1 — 一位分配
数据字段字符 #1 — 功能定义

单元 # (1-8)，选择用于冲洗 - 动作状态，在下一次冲洗中包括这一单元

数据字段字符 #2 — 位分配

单元 #9，选择用于冲洗

未用

未用

未用

未用

未用

未用
数据字段字符 #2 —— 功能定义
单元 #9，选择用于冲洗 —— 动作状态，在下一次冲洗中，包括这一单元

数据字段字符 #3 —— 位分配

数据字段字符 #4 — 同 #3，但对单元 #2 除外
数据字段字符 #5 — 同 #3，但对单元 #3 除外
数据字段字符 #6 — 同 #3，但对单元 #4 除外
数据字段字符 #7 — 同 #3，但对单元 #5 除外
数据字段字符 #8 — 同 #3，但对单元 #6 除外
数据字段字符 #9 — 同 #3，但对单元 #7 除外
数据字段字符 #10 - 同 #3，但对单元 #9 除外
data 字段字符 #11 - 同 #3，但对单元 #9 除外
data 字段字符 #3 至 #11 — 功能定义

单元 #（1 - 9），程序号 — 值 (0, 1, … 11) + 1 为
程序 I、D 号（表示喷洒与充填，参见控制器输出‘一次
性’，字符 2 至 7）

单元 #（1 - 9），液量 — 值 (0, 1, 2, 3) 为进入对
一个参照印刷机宽度的预存储的液量表的索引

控制系统的控制逻辑

软件控制手段包含控制逻辑，它在系统操作员站中的功能为检
验输入、应用逻辑规则、然后更新输出。图 18 中示意性地表示控
制逻辑。为了简化说明，控制逻辑规格是按产品（如上所述）组织
的。然而，熟悉本技术的人员应能理解，本发明能广泛地应用于知
名公司所制造的广阔范围中的印刷机、辅助设备与配件上，因此，
这些产品的控制逻辑可根据本发明的原理实现。

Ⅱ、Q - 90 单张纸自动胶印清洁机（ABC）

A、用于输出消息到控制器的逻辑:

1. “开始 (CTLOUT)” — “如果”启动开始 (OPIN)
 “与非” 冲洗互锁 (CTLIN)
 “与非” 冲洗 (CTLIN)
2. “停止 (CTLOUT)” — “如果”启动停止 (OPIN)
3. “单元 #N (1 - 9)，选择用于冲洗 (CTLOUT)”

78
- "如果" 单元选择 = 印刷单元选择 (OPI N) 启动 "与" 选择的单元是在系统配置中 (CTLIN)
4. "单元 #N (1-9 与涂布机) 程序号 (CTLOUT)
 "单元 #N (1-9 与涂布机) 液量 (CTLOUT)
 "单元 #N (1-9 与涂布机) 液体类型 (CTLOUT)"
从冲洗表中 "检索" 值 (OPRAM)
使用 "访问" -
单元 #N 的油墨类型 (OPI N)
单元 #N 的覆盖范围 (OPI N)
纸 (OPI N)
"或" 从历史中 "检索" 值 (OPHIST)
使用 "访问" -
工作码 (OPI N)
5. "单元 #N (1-9 与涂布机) 干燥启动 (CTLOUT)" -
"如果" 空气干燥 (OPI N) 起动
"或" 从历史中 "检索" 启动 (OPHIST)
使用 "访问" -
工作码 (OPI N)
B、对操作员站用户的系统指示逻辑：
1. 带描述符的 "冲洗未就绪 (OPOUT)"
a. "控制器在测试模式中 (OPOUT)" -
 "如果" 冲洗互锁 (CTLIN)
 "与非" 冲洗 (CTLIN)
 "与" 测试模式 (CTLIN)
b. “印刷机不在冲洗速度上 (OPOUT)” -
 “如果” 冲洗互锁 (CTLIN)
 “与非” 冲洗 (CTLIN)
 “与” 速度互锁 (CTLIN)

c. “主溶剂箱空 (OPOUT)” -
 “如果” 冲洗互锁 (CTLIN)
 “与非” 冲洗 (CTLIN)
 “与” “如果” 选择了 “任何” 印刷单元 (OPIN)
 “与” 在系统配置中 (CTLIN)
 “与” 溶剂源 #1 纸

d. “涂布机溶剂箱空 (OPOUT)” -
 “如果” 冲洗互锁 (CTLIN)
 “与非” 冲洗 (CTLIN)
 “与” “如果” 选择了涂布机单元 (OPIN)
 “与” 涂布机启动 (CTLIN)
 “与” 溶剂源 #2 低

e. “布单元 #N 无布 (OPOUT)” -
 “如果” 冲洗互锁 (CTLIN)
 “与非” 冲洗 (CTLIN)
 “与” “如果” 选择了 “任何” 印刷单元 (OPIN)
 “与” 在系统配置中 (CTLIN)
 “与” 无布 (CTLIN)
 “与非” 低布警告 (CTLIN)

80
“或”“如果”选择了涂布机单元（OPLIN）
“与”涂布机启动（CTLIN）
“与”无布（CTLIN）
“与非”低布警告（CTLIN）

f、“布单元 N 布头脱落（OPOUT）” –
“如果”冲洗互锁（CTLIN）
“与非”冲洗（CTLIN）
“与”“如果”选择了“任何”印刷单元（OPIN）
“与”在系统配置中（CTLIN）
“与”无布（CTLIN）
“与”低布警告（CTLIN）

“或”“如果”选择了涂布机单元（OPIN）
“与”涂布机启动（CTLIN）
“与”无布（CTLIN）
“与”低布警告（CTLIN）

g、“没有选择冲洗单元（OPOUT）” –
“如果”“非”冲洗互锁（CTLIN）
“与非”冲洗（CTLIN）
“与”“如果”“没有”选择印刷单元（OPIN）
“与”在系统配置中（CTLIN）
“或”“如果”“没有”选择涂布机单元（OPIN）
“与”涂布机启动（CTLIN）

h、“未知故障（OPOUT）” –
“如果”冲洗互锁 (C TLIN)
“与非”冲洗 (C TLIN)
“与非”测试模式 (C TLIN)
“与非”速度互锁 (C TLIN)
“与”“如果”选择了“任何”印刷单元 (OPIN)
“与”在系统配置中 (C TLIN)
“与非”溶剂源 #1低 (C TLIN)
“与非”无布 (C TLIN)

“与”“如果”选择了涂布机单元 (OPIN)
“与”涂布机启动 (C TLIN)
“与非”溶剂源 #2低 (C TLIN)
“与非”无布 (C TLIN)

C. 用于向操作员站用户单元指示的逻辑：
1. “选择冲洗单元 (OPOUT)” —
 “如果”选择了印刷单元 (OPIN)
 “与”在系统配置中 (C TLIN)
2. “单元布状态 (OPOUT)” —
 a. “无布 (OPOUT)” —
 “如果”在系统配置中 (C TLIN)
 “与”无布 (C TLIN)
 “与非”低布警告 (C TLIN)

“或”“如果”涂布机启动 (C TLIN)
“与” 无布 (CTLIN)
“与非” 低布警告 (CTLIN)
b、 “布头脱落 (OPOUT)” –
“如果” 在系统配置中 (CTLIN)
“与” 无布 (CTLIN)
“与” 低布警告 (CTLIN)

c、 “低布警告 (OPOUT)”
“如果” 在系统配置中 (CTLIN)
“与非” 无布 (CTLIN)
“与” 低布警告 (CTLIN)

d、 “布源正常 (OPOUT)” –
“如果” 在系统配置中 (CTLIN)
“与非” 无布 (CTLIN)
“与非” 低布警告 (CTLIN)

“或” “如果” 低布机启动 (CTLIN)
“与非”无布（CTLIN）
“与非”低布警告（CTLIN）

3、“分配单元号 = (OPOUT)”
“充填单元号 = (OPOUT)”
“单元液量 = (OPOUT)”
“单元液型 = (OPOUT)”
“单元空气干燥为 (OPOUT)”

“如果”选择了印刷单元（OPIN）
“与”在系统配置中（CTLIN）

“或”“如果”选择了涂布机单元（OPIN）
“与”涂布机启动（CTLIN）

“与”“如果”显示冲洗参数（OPIN）
使用“访问”－
“单元 #N”的油墨类型（OPIN）
“单元首N”的覆盖率（OPIN）
纸张（OPIN）
空气干燥（OPIN）
从冲洗表中“检索”值（OPRAM）

D、用于进入数据库的历史部分的逻辑

1、“单元 #N（1 – 9及涂布机）程序号（OPHIST）”
“单元 #N（1 – 9及涂布机）液量（OPHIST）”
“单元 #N（1 – 9及涂布机）液型（OPHIST）”
“单元 #N（1－9 及加布机）空气干燥启动 (OPHIST)”，
“单元 #N（1－9 及加布机）油墨类型 (OPHIST)” ，
“单元 #N（1－9 及加布机）覆盖率 (OPHIST)” ，
“单元 #N（1－9 及加布机）纸张类型 (OPHIST)” ，
“如果”选择了印刷单元 (OPIN)
“与” 在系统配置中 (CTLIN)
“或”“如果”选择了加布单元 (OPIN)
“与”加布机启动 (CTLIN)

“与” 输入工作码标识 (OPIN)
“与” 激活保存的工作码 (OPIN)

“与” 使用—
“单元 #N” 的油墨类型 (OPIN)
“单元 #N” 的覆盖率 (OPIN)
纸张类型 (OPIN)
“访问” —
程序号 (OPRAM)
液量 (OPRAM)
液型 (OPRAM)
空气干燥启动 (OPRAM)
“附加”时间 / 日期标记 (OP_DATE)
将值“存储”在最新历史中 (OPHIST)
“如果” 总的历史表值 “大于” 5
“删除” 最老的历史 (OPHIST)
2、 “冲洗了单元 #N (1 – 9 及氮化机) (OPHIST)” –
“如果” 选择了印刷单元 (OPIN)
“与” 在系统配置中 (CTLIN)

“或” “如果” 选择了氮化机单元 (OPIN)
“与” 氮化机启动 (CTLIN)

“与” “如果” 冲洗 (CTLIN)
“则” “不” 冲洗 (CTLIN)
“附加” 时间/日期标记 (OP_DATE) 为所有统计时间间隔 “增加” 最新历史中的计数 (OPHIST)

E、用于进入数据库的参数部分中的逻辑：
无
下述逻辑在所有时间中都是激活的，不论是否选择了ABC或者用户控制：

A、用于对控制器的输出消息的逻辑：
无

B、用于对操作员站用户的系统指示的逻辑：
1、 “准备好冲洗 (OPOUT)” –
“如果” “非” 冲洗互锁 (CTLIN)
“与非” 冲洗 (CTLIN)
2、 “未准备好冲洗 (OPOUT)” –
“如果”冲洗互锁（CTLIN）
C、用于对操作员站用户的单元指示的逻辑：
无
D、用于进入数据库的历史部分的逻辑：
1、“单元 #N（1 - 9 及喷涂机）布滚筒更换（OPHIST）”
“如果” 印刷单元在系统配置中（CTLIN）

“或” 如果喷涂机单元是启动的（CTLIN）

“与非” 维护固定（OPIN）
“与” 无布（CTLIN）
“则” “非” 无布（CTLIN）
“附加” 时间 / 日期标记（OP_DATE）为所有统计时间间隔 “增加” 最新历史中的计数（OPHIST）
E、用于进入数据库的参数部分的逻辑：
1、“程序 #N（1 - 12）喷酒次数（OPRAM）”
“程序 #N（1 - 12）充填次数（OPRAM）” —
“存储” 经加一纠正后的程序 #N 喷酒次数
“存储” 经加三纠正后的程序 #N 喷酒次数（CTLIN）

Q-90，单张纸自动印刷机冲洗机（APW）当选择 APW 供用户控制时，下述逻辑被激活：
A、用于对控制器的输出消息的逻辑
1、“开始（CTLOUT）” — “如果” 激活开始（OPIN）
“与非” 冲洗互锁（CTLIN）
“与非” 冲洗 (CTLIN)

2. “停止 (CTLOUT)” - “如果” 激活停止 (OPIP)

3. “选择单元 #4 (1-9) 用于冲洗 (CTLOUT)”
 “如果” 选择的单元 =
 激活的印刷单元选择 (OPIP)
 “与” 选择的单元在系统配置中 (CTLIN)

4. “单元 #N (1-9) 程序号 (CTLOUT)”
 “单元 #N (1-9) 液量选择 (CTLOUT)” ，
 使用“访问” -
 程序表标识 (CTLIN)
 “单元 #N”的油墨类型 (OPIP)
 “单元 #N”的覆盖范围 (OPIP)
 从冲洗表中“检索”值 (OPRAM)
 “或” 使用“访问” -
 工作码 (OPIP)
 从历史中“检索”值

B. 用于对操作员站用户的系统指示的逻辑：

1. 带描述符的 “未准备好冲洗 (OPOUT)”
 a. “控制器在测试模式中 (OPOUT)” -
 “如果” 冲洗互锁 (CTLIN)
 “与非” 冲洗 (CTLIN)
 “与非” 测试模式 (CTLIN)
 b. “印刷机不在冲洗速度上 (OPOUT)” -
 “如果” 冲洗互锁 (CTLIN)

88
“与非” 冲洗 (CTLIN)
“与” 速度互锁 (CTLIN)

c、 “溶剂箱 #1 空 (OPOUT)” —
“如果” 冲洗互锁 (CTLIN)
“与非” 冲洗 (CTLIN)
“与” “如果” 选择了 “任何” 印刷单元 (OPIN)
“与” 在系统配置中 (CTLIN)
“与” 冲洗表正在使用液体 #1 于任何喷洒周期 (OPARM)
“与” 溶剂源 #1 低

d、 “溶剂箱 #2 空 (OPOUT)” —
“如果” 冲洗互锁 (CTLIN)
“与非” 冲洗 (CTLIN)
“与” “如果” 选择了 “任何” 印刷单元 (OPIN)
“与” 冲洗表正在使用液体 #2 于任何喷洒周期 (OPARM)
“与” 溶剂源 #2 低

e、 “溶剂箱 #3 空 (OPOUT)” —
“如果” 冲洗互锁 (CTLIN)
“与非” 冲洗 (CTLIN)
“与” “如果” 选择了 “任何” 印刷单元 (OPIN)
“与” 在系统配置中 (CTLIN)
“与” 冲洗表正在使用液体 #3 于任何喷洒周期 (OPARM)
“与”溶剂源 #3 低

f、未选择单元用于冲洗（OPOUT）” –
“如果”“非”冲洗互锁（CTLIN）
“与非”冲洗（CTLIN）
“与”“如果”“不”选择印刷单元（OPIN）
“与”在系统配置中（CTLIN）

h、“未知的故障（OPOUT）”–
“如果”冲洗互锁（CTLIN）
“与非”冲洗（CTLIN）
“与非”测试模式（CTLIN）
“与非”速度互锁（CTLIN）
“与”“如果”选择了“任何”印刷单元（OPIN）
“与”在系统配置中（CTLIN）
“与”“如果”冲洗表正在使用液体 #1 (OPARM)
“与非”溶剂源 #1 低（CTLIN）
“或”“如果”冲洗表正在使用液体 #2 (OPARM)
“与非”溶剂源 #2 低（CTLIN）
“或”“如果”冲洗表正在使用液体 #3 (OPARM)
“与非”溶剂源 #3 低（CTLIN）

C、用于对操作员站用户的单元指示的逻辑：
1、“选择单元用于冲洗（OPOUT）” –
“如果”选择了印刷单元（OPIN）
“与”在系统配置中（CTLIN）

2、“单元喷洒周期 #1 液型 = （OPOUT）”,
“单元喷涂周期 #1 喷洒次数 = (OPOUT)”，
“单元喷涂周期 #2 液型 = (OPOUT)”，
“单元喷涂周期 #3 液型 = (OPOUT)”，
↓
↓
“单元喷涂周期 #N 液型 = (OPOUT)”，
“单元液量 = 选择 = (OPOUT)”，
“如果”选择了印刷单元 (OPIN) “与” 在系统配置中 (CTLIN)
“与” “如果” 显示冲洗参数 (OPIN)
使用“访问”-
程序表标识 (CTLIN)

“单元 #N”的油墨类型 (OPIN)
“单元 #N”的覆盖率 (OPIN)
从冲洗表中“检索”值 (OPRAM)

D. 用于输入数据库的历史部分的逻辑：
1. “单元 #N (1-9) 程序号 (OPHIST)”，
“单元 #N (1-9) 液量选择 (OPHIST)”，
“单元 #N (1-9) 油墨类型 (OPHIST)”，
“单元 #N (1-9) 覆盖率 (OPHIST)”，
“如果”选择了印刷单元 (OPIN)
“与” 在系统配置中 (CTLIN)
“与” 输入工作码标识 (OPIN)
“与”激活保存的工作码（OPIN）
“与”使用一
“单元#N” 的油墨类型（OPIN）。
“单元#N” 的覆盖率（OPIN），
“访问”
程序表标识（CTLIN）
程序号（OPRAM）
液量选择（OPRAM）
“附加”时间/日期标记（OP_DATE）将值“存储”在最新的历史中（OPHIST）
“如果”总的历史项“大于”5
“删除”最老的历史（OPHIST）
2、“冲洗了单元#N（1-9）（OPHIST）”一
“如果”选择了印刷单元（OPIN）
“与”在系统配置中（CTLIN）
“则”“不”冲洗（CTLIN）
“附加”时间/日期标记（OP_DATE）为所有统计时间间隔“增加”最新的历史计数（OPHIST）

E、用于输入数据库的参数部分的逻辑：
无

下述逻辑在所有时间中都是激活的，不论是否选择了APW供用户控制：

A、用于对控制器的输出消息：
无
B. 用于对操作员站用户的系统指示的逻辑：

1. “准备好冲洗 (OPOUT)” –
 “如果” “非” 冲洗互锁 (CTLIN)
 “与非” 冲洗 (CTLIN)

2. “未准备好冲洗 (OPOUT)” –
 “如果” 冲洗互锁 (CTLIN)

C. 用于对操作员站用户的单元指示的逻辑：

无

D. 用于输入数据库的历史部分的逻辑：

无

E. 用于输入数据库的参数部分的逻辑：

1. “程序表标识 (OPARM)”
 “程序 #M (1 – 16)，喷洒次数，喷洒周期 #1 (OPARM)，”
 “程序 #M (1 – 8)，喷洒周期 #N 液型 (OPARM)”
 “程序 #M (9 – 16)，喷洒周期 #N 液型 (OPARM)”
 “存储” 程序表标识 (CTLIN)
 “存储” 程序 #M 喷洒次数，以增加 1 纠正后的第一喷
 洒周期 (CTLIN)
 “存储” 程序 #M 喷洒周期 #N 液型 (CTLIN) 解
 释为：
 0 = 未用
 1 = 液体 #1
 2 = 液体 #2
3=液体#3

Q-90,单张纸自动压印滚筒清洁机(AIC),在选择AIC供用户控制时，下述逻辑被激励：

A.用于对控制器输出的生效的逻辑：

1. "开始(CTLOUT)" -
 "如果"开始(OPIN)被激活
 "与非"冲洗互锁(CTLIN)
 "与非"冲洗(CTLIN)

2. "停止(CTLOUT)" - "如果"停止(OPIN)被激活

3. "与ABC同时开始(CTLOUT)" -
 "如果"ABC W/AIC冲洗(OPIN)
 "与""如果"开始(OPIN)被激活
 "与非"冲洗互锁(CTLIN)
 "与非"冲洗(CTLIN)

4. "单元#N(1-9),选择用于冲洗(CTLOUT)" -
 "如果"选择的单元=激活的印刷单元选择(OPIN)
 "与"选择的单元在系统配置中(CTLIN)

5. "单元#N(1-9)程序号(CTLOUT)"
 "单元#N(1-9)液量(CTLOUT)"
 使用"访问"——纸(OPIN)
 从冲洗表中"检索"值(OPARM)
 "或"使用"访问"——工作码(OPIN)
 从历史中"检索"值(OPHIST)
6、"单元#N (1 - 9) 干燥启动 (CTLOUT)" -
"如果" 空气干燥 (OPIN) 被激活
"或" 使用 "访问"——工作码 (OPIN) 从历史中 "
检索" 启动 (OPHIST)

B、用于对操作员站用户的系统指示的逻辑:
1、带描述符的 "未准备好冲洗 (OPOUT)"
 a、"控制器在测试模式中 (OPOUT)" -
 "如果" 冲洗互锁 (CTLIN)
 "与非" 冲洗 (CTLIN)
 "与" 测试模式 (CTLIN)
 b、"印刷机互锁激活 (OPOUT)" -
 "如果" 冲洗互锁 (CTLIN)
 "与非" 冲洗 (CTLIN)
 "与" 印刷机互锁 (CTLIN)
 c、"溶剂箱空 (OPOUT)" -
 "如果" 冲洗互锁 (CTLIN)
 "与非" 冲洗 (CTLIN)
 "与" "如果" 选择了 "任何" 印刷单元 (OPIN)
 "与" 在系统配置中 (CTLIN)
 "与" 溶剂箱低
 d、"冲洗系统空气压力太低 (OPOUT)" -
 "如果" 冲洗互锁 (CTLIN)
 "与非" 冲洗 (CTLIN)
 "与" "如果" 选择了 "任何" 印刷单元
(OPIN) “与” 在系统配置中 (CTLIN)
“与” 低空气

e、“布的布单元 #N (OPOUT)” —
“如果” 冲洗互锁 (CTLIN)
“与” “如果” “不” 冲洗 (CTLIN)
“与” “如果” 选择了 “任何” 印刷单元 (OPIN)
“与” 在系统配置中 (CTLIN)
“与” 无布 (CTLIN)
“与” 低布警告 (CTLIN)

f、“布单元 #N 布头脱开 (OPOUT)” —
“如果” 冲洗互锁 (CTLIN)
“与非” 冲洗 (CTLIN)
“与” “如果” “选择了” “任何” 印刷单元 (OPIN)
“与” 在系统配置中 (CTLIN)
“与” 无布 (CTLIN)
“与” 低布警告 (CTLIN)

g、“布单元号 #N 难送故障 (OPOUT)” —
“如果” 冲洗互锁 (CTLIN)
“与非” 冲洗 (CTLIN)
“与” “如果” 选择了 “任何” 印刷单元 (OPIN)
“与” 在系统配置中 (CTLIN)
“与” 单元位置低 (CTLIN)
h. “布单元 #N 位置低 (OPOUT)” – “如果” 冲洗互锁 (CTLIN)
 “与非” 冲洗 (CTLIN)
 “与” “如果” 选择了 “任意” 印刷单元 (OPIN)
 “与” 在系统配置中 (CTLIN)
 “与” 单元位置低 (CTLIN)

i. “布单元 #N 导向器低 (OPOUT)” – “如果” 冲洗互锁 (CTLIN)
 “与非” 冲洗 (CTLIN)
 “与” “如果” 选择了 “任意” 印刷单元 (OPIN)
 “与” 在系统配置中 (CTLIN)
 “与” 导向器低 (CTLIN)

j. “未选择单元用于冲洗 (OPOUT)” – “如果” “非” 冲洗互锁 (CTLIN)
 “与非” 冲洗 (CTLIN)
 “与” “如果” “没有” 选择印刷单元 (OPIN)
 “与” 在系统配置中 (CTLIN)

k. “未知的故障 (OPOUT)” – “如果” 冲洗互锁 (CTLIN)
 “与非” 冲洗 (CTLIN)
 “与非” 测试模式 (CTLIN)
 “与非” 速度互锁 (CTLIN)
 “与” “如果” 选择了 “任意” 印刷单元 (OPIN)
 “与” 在系统配置中 (CTLIN)
“与非” 溶剂源 #1 低 (CTLIN)
“与非” 溶剂无布 (CTLIN)
“与非” 布袋送故障 (CTLIN)
“与非” 单元位置低 (CTLIN)
“与非” 导向器低 (CTLIN)

C、用于对操作员站用户的单元指示的逻辑：

1、“单元被选择用于冲洗 (OPOUT)”
 “如果” 选择了印刷单元 (OPIN)
 “与” 在系统配置中 (CTLIN)

2、带有描述符的“单元设备状态 (OPOUT)” —
 a、“无布 (OPOUT)” —
 “如果” 在系统配置中 (CTLIN)
 “与” 无布 (CTLIN)
 “与非” 低布警告 (CTLIN)

 b、“布头脱开 (OPOUT)” —
 “如果” 在系统配置中 (CTLIN)
 “与” 无布 (CTLIN)
 “与” 低布警告 (CTLIN)

 c、“低布警告 (OPOUT)” —
 “如果” 在系统配置中 (CTLIN)
 “与非” 无布 (CTLIN)
 “与” 低布警告 (CTLIN)

 d、“布源正常 (OPOUT)” —
 “如果” 在系统配置中 (CTLIN)
“与非” 无布 (CTLIN)
“与非” 低布警告 (CTLIN)
e、 “布馈送故障 (OPOUT)” -
“如果” 在系统配置中 (CTLIN)
“与非” 布馈送故障 (CTLIN)
f、 “位置低 (OPOUT)” -
“如果” 在系统配置中 (CTLIN)
“与非” 单元部分低 (CTLIN)
g、 “导向器低 (OPOUT)” -
“如果” 在系统配置中 (CTLIN)
“与非” 导向器低 (CTLIN)

3、“单元喷洒次数 =
 （OPOUT）”，
“单元充填次数 =
 （OPOUT）”，
“单元水喷洒为
 （OPOUT）”，
“如果” 选择了印刷单元 (OPIN)
“与” 在系统配置中 (CTLIN)

“与” “如果” 显示冲洗参数 (OPIN)
使用 “访问” -
纸 (OPIN)
从冲洗表中 “检索” 值 (OPARM)

D、用于输入数据库的历史部分的逻辑:
1、“单元 #N (1-9) 程序号 (OPHIST)” ，
“单元 #N (1-9) 液量 (OPHIST)” ，
“单元 #N (1 - 9) 纸张类型 (OPHIST) ” —
“如果”选择了印刷单元 (OPIN)
“与”在系统配置中 (CTLIN)

“与”输入工作码标识 (OPIN)
“与”激活保存的工作码 (OPIN)

“与”使用一纸张类型 (OPIN)
“访问”一程序号 (OPARM)
　液量 (OPARM)
　水启动 (OPARM)
“附加”时间 / 日期标记 (OP_DATE) 在最新
历史中“存储”值 (OPHIST)
“如果”总的历史表值“大于”5
“删除”最老的历史 (OPHIST)
2、“冲洗了单元 #N (1 - 9) (OPHIST) ” —
“如果”选择了印刷单元 (OPIN)
“与”在系统配置中 (CTLIN)

“与”“如果”冲洗 (CTLIN)
“则”“不”冲洗 (CTLIN)
“附加”时间 / 日期标记 (OP_DATE) 为所有
统计时间间隔“增加”最新的历史中的计数 (OPHIST
E、用于输入数据库的参数部分中的逻辑：

100
下述逻辑在所有时间中都是被激励的，无论是否选择了AIC供用户控制：

A. 用于对控制器的输出消息的逻辑：
 无

B. 用于对操作员站用户的系统指示的逻辑：
 1. “准备好冲洗（OPOUT）”
 “如果”“非”冲洗互锁（CTLIN）
 “与非”冲洗（CTLIN）

C. 用于对操作员站用户的单元指示的逻辑：
 无

D. 用于输入数据库的历史部分中的逻辑：
 1. “单元#N (1 - 9) 布滚筒更换（OPHIST）”
 “如果” 印刷机单元在系统配置中（CTLIN）
 “与非” 维护保持（OPIN）
 “与” 无布（CTLIN）
 “则” “非” 无布（CTLIN）
 “附加” 时间/日期标记（OP_DATE）
 为所有统计时间间隔“增加”最新的历史中的计数
 （OPHIST）

E. 用于输入数据库的参数部分中的逻辑：
 1. “程序#N (1 - 12) 喷洒次数（OPARM）”
 1. “程序#N (1 - 12) 充填次数（OPARM）”
“程序 #N（1-12）#水喷洒（OPARM）” —
“存储” 加 3 校正后的程序 #N 喷洒次数 (CTLIN)
“存储” 以乘 2 及加 1 3 校正后的程序 #N 充填次数（
CTLIN)
“存储” 程序 #N 水喷洒数 (CTLIN)

解释为

0 = 无
1 = 第一次喷洒为水，其余为溶剂
2 = 第一与第二次喷洒为水，其余为溶剂

7 = 第一至第七次喷洒为水，其余为溶剂

3、屏面布局系统

软件控制手段中还有利地包含多个独立的“屏面”，它们出现
在触屏CRT上。印刷工人便是通过屏面才能输入各种印刷参数，
并且印刷工人利用屏面来操纵印刷机辅助设备与配件（并从而操纵
印刷条件），从而操作本发明。

下面将描述各屏面的格式及各屏面内的独立图形控制，并描述
形成印刷工人的观点的屏面规格。

通常形成操作员的控制台的屏面如下：
· 设备选择
· 印刷参数
· 系统显示
· 操作员面板
· 上下文敏感的帮助

在本系统中可采用若干种不同的图形用户接口（GUI）部件。这些部件中有些是用于对印刷工人显示信息的，有些是用于从用户取得信息的，在许多情况中，一次控制将执行这两种任务。为了简单起见，用名词“小器具”来称呼GUI部件。

（1）文本小器具

一个文本小器具用于显示文本信息。各文本小器具将与一块插件板相关联并显示一行或多行正文。正文的外观取决于下述各点而改变：

1. 字体
2. 字体大小
3. 色彩
4. 闪烁/正常

图1中示出正文字段的一个实例。

（2）按钮小器具

按钮用于完成一种动作。一个按钮可用一个升高三维区域来标识。按下按钮并释放它将激活这一功能。按下这一按钮，将手指脱离这一按钮，然后再释放将不激活这一功能。一个按钮上将包含一则正文消息或一个图形符号。为方便使用，一个按钮的最小尺寸可以是诸如 1/2" × 1/2"。

（3）滚动条小器具

滚动条是用于通过不能全部显示在屏面上的数据进行导航的。一个滚动条包含在一个指示被滚动的数据的整个大小的部分内移动
的一个滑块，以及用于移动该滑块的带有箭头图形的两个按钮。滑块指示被卷动的数据的可见区的相对位置与大小。图2中示出了一条垂直的卷动条。

卷动条的宽度可以是1 / 2寸。被卷动的数据的大小以从上方箭头到下方箭头延伸的一个条的形式表示在该卷动条中。滑块起到三种目的的作用。其第一种用途为卷动到数据中的一个任意的位置上。为了做到这一点，可以按下卷块按钮并将其上下拖动，当见到所要求的数据时便释放该按钮。滑块的位置表示可见数据的位置。例如，如果滑块刚位于下方箭头上方，则可见数据位于数据的尾部。同时，可以用这样一种方式来配置滑块，使它表示可见数据的尺寸与所有数据之比。一个非常小的滑块意味着正在通过大量的数据进行卷动。

下面参照图3描述总的屏面布局。

各屏面可包含，例如，两个区域：1）工作区；及2）公共区。工作区是进行极大多数用户与设备交互作用的地方。这一区域又可分为若干子区域，这取决于一个特定的屏面的特征。公共区在所有屏面上都存在，并包括下列字段：

- 屏面导航按钮
- 消息框
- 求助按钮

屏面导航：

位于屏面左下方的屏面导航按钮服务于两种目的。第一个目的为显示当前屏面的名称。第二个目的为导航到其它屏面。当按下这一按钮时，将向操作员提供一张可访问的屏面的清单。
消息区：

当有必要向用户提交一则消息时，将使用消息区。消息区将是
一个正文的宽度。

求助按钮：

通过求助按钮可访问上下文敏感的帮助设施。

还提供了用于可选择设备的选择的一个设备选择屏面（见图4）。

该屏面用于配置一个特定工作的印刷机辅助设备。屏面上所描
绘的印刷机上的设备数目可达到网络的容量，如前面所描述的，提
供56个设备的地址空间。然而，熟悉本技术的人员应能理解，必
要时可显示更多或更少的设备。其它屏面将利用激活的辅助设备的
清单来减轻配置印刷机辅助设备的工作量。例如，如果未选择任何
ABC设备，印刷参数屏面将不显示ABC所需要的参数。这一屏
面的工作区包含三个部分：

- 印刷机图
- 每一台辅助设备一个按钮
- 一列功能按钮

印刷机图

如图4顶部所示，印刷机图将显示在屏面的顶部。印刷机的各
单元将实现为一个按钮，因此可以通过按它来选择。构成印刷机图
象的图形图象为诸如：

- 涂布机单元
- 扩展的分发单元
- 印刷单元
进给机构

印刷机图最多允许10个单元加上一个进给机构及一个分发部件，但熟悉本技术的人员将能理解更大的图也是可能的（当然，使用较大尺寸的CRT更为方便）。用来表示印刷机图的图象是可以由设计人员配置的，以方便一个特定的印刷机制造商的要求。

设备按钮矩阵

屏幕的中心区中将包含印刷机上每一台辅助设备的一个按钮。这些按钮将重新确定它们自己的大小以适应分配给它们的空间。当加入越来越多的设备时，这些按钮将越来越小。当达到最小的按钮尺寸时，将会显示滚动条。这些按钮是用于辅助设备的选择与中途淘汰的。根据要求，各按钮可包含设备的一个图形或者设备的名称或者两者的组合。

“选择”与“中途淘汰”

描述为被选择的一台设备是将被本发明配置与监视的一台设备。“中途淘汰”这一名词并不意味用来指不装在印刷机上的或停止供电的一台设备。而是指在其它屏幕中本系统不加以处理的一台设备。某些屏幕将利用激活清单来减少装设印刷机辅助设备所需要的配置量。

选择／中途淘汰一个单元上的所有设备

印刷机图中的各单元可通过按下它来选择。当按下该单元时，连接在该单元上的所有辅助设备将都成为选择的。在消息框中将显示消息来帮助用户通过选择过程。

选择／中途淘汰一个单元上的特定设备
选择一个独立的设备是一个三部分的过程。首先，可选择他要求选择或中途淘汰的所有设备。第二，可以选他要求进行选择的一个或多个单元。最后，可按下“OK”来完成这一操作。任何过去选择的设备都可以中途淘汰，并且任何过去中途淘汰的设备都可以选取。消息框中会显示消息来帮助用户通过这一选择过程。

按钮： “全部”

“全部”按钮可选择印刷机中各单元上的全部设备。当操作员要快速选择印刷机上全部辅助设备时，应使用这一按钮。

按钮： “保存与加载配置”

为了使印刷机的建立工作更容易和更快，印刷机配置可存储在磁盘上。每一种配置可用操作员打入的一个名称来标识。可以显示一个键盘供打入配置的标识的目的。在一个配置文件中将存储下列信息：

1. 哪些设备是激活的
2. 各印刷参数的值
3. 各设备参数的值

按下工作按钮将向操作员提供下列选择：1）加载一种配置，2）保存一种配置，以及3）删除一种配置。

还提供了一个印刷参数画面（图5）。

这一画面用于设定印刷参数。当前设想了两种参数：1）整个印刷机范围内的，及2）单元专用的。但熟悉本技术的人员将能理解必要时可设计其它的参数。整个印刷机范围内的参数位于画面的左方部分而单元专用的则位于右方。

整个印刷机范围内的参数
整个印刷机范围内的参数是作用在整个印刷机上的参数。这一类型的参数的一个例子为纸张。所有设备，与它所在的单元无关，都将得到这一类型的一个给定的参数的同样的值。用于图形显示一个参数的小器具的结构展示在图6中。

参数名将显示在一个按钮小器具中。参数的当前值将显示在位于参数名按钮正下方的一个正文小器具中。为了改变一个参数的值，可以按下该按钮。然后将一个或多个提示印刷工人通过有效值的对话框提供给他。

单元专用参数

一个单元参数是可以逐个单元改变的参数。一个典型的单元专用参数是油墨。印刷参数屏面一次只显示一个单元专用参数。屏面的这一部分的结构描绘在图7中。

参数选择按钮用于选择要显示的参数，当按下这一按钮时，将一张有效选择的清单提供给操作员。

在参数选择按钮下方的可卷动区用于显示当前参数设定值。这一区域由两列数据构成。第一列为一个按钮而第二列则为显示当前值的一个正文小器具。各按钮有下述格式的一个标号：“单元 #n”。例如，按下标有“单元 #4”的按钮将改变单元 #4 的参数的值。可以提供一个整个印刷机范围内的值而使得一个单元参数的设定较为容易。如果一个特定的参数具有一个印刷机范围内的值及一个单元专用的值，该单元值取得优先权。如果一个参数没有单元专用值，则使用印刷机范围内的值。

如果没有足够的空间来显示所有 10 个单元专用的及一个整个印刷机范围内的参数，则可使用一条卷动条。
改变值

无论正在设定的参数是整个印刷机范围内的还是单元专用的，同样的对话框可用于设定它们的值。有两种类型：1）一个值的清单及 2）一个小键盘。

值的清单

当参数值类型是多个中的一个时，使用值的清单式对话。对话中包含有效值的一张清单（每一个值是一个可按下的按钮）、一条滚动条及一个撤销按钮。它可以呈现为如图8中所描绘的。

为了选择一个值，只须按下适当的按钮即可。可能需要使用滚动条来获得对所要求的值的访问。在许多情况下，选定了一个值之后，可以提供另一张选择对话的清单或小键盘。这是因为某些参数的复杂性质才这样做的。任何时刻都可以按撤消而不改变参数。这些值可按照字母或数字值的次序列出。

小键盘

当参数值类型是一个数字时，使用一个小键盘。对话中包含一个小键盘、一个输入按钮及一个撤销按钮。图9中示出一个样品小键盘。

在许多情况下，在选择了一个值之后（按输入按钮），可以提供另一个键盘或一张选择对话的清单。这是由于某些参数的复杂性质才这样做的。任何时刻，都可以按撤消而不改变参数。

系统显示便是操作员能够监视辅助设备的操作的屏面。这一屏面的工作区包括三个部分：

· 印刷机图
工艺过程变量监视（通常最多8个）
每台辅助设备一个按钮（通常最多25个）

印刷机图

印刷机图可用于若干目的。首先，它将为每一个激活的辅助设备显示一个彩色方框。方框的色彩表明该辅助设备的状态。下面列出示例的彩色方案：

<table>
<thead>
<tr>
<th>色彩</th>
<th>意义</th>
</tr>
</thead>
<tbody>
<tr>
<td>桔红</td>
<td>就绪</td>
</tr>
<tr>
<td>红色</td>
<td>关断（不激活）</td>
</tr>
<tr>
<td>闪烁的红色</td>
<td>故障状态</td>
</tr>
<tr>
<td>绿色</td>
<td>设备连续接通</td>
</tr>
<tr>
<td>闪烁的绿色</td>
<td>设备不连续工作</td>
</tr>
</tbody>
</table>

工艺过程变量监视

系统显示屏每次允许监视例如多达8个工艺过程变量。这8个位置是可配置的。换言之，操作员可以选择他/她所要监视的8个工艺过程变量并指定这些变量的显示位置。每一个工艺过程变量显示在以下形式的小器具上（见图11）。

为了改变显示在任何特定位置上的工艺过程变量，操作员可按与这一区域相关联的按钮。这时，便向操作员提供一张有效选择的清单。有可能在若干位置上显示同一个工艺过程变量。

设备按钮

通常是一台设备一个的设备按钮有多种功能与之相连。这些按钮可以与设备选择屏面上等价的按钮同样的方式显示。它们如下：

- 起动/停止一台设备
访问一台设备的主操作员面板

指示一台设备的状态

启动/停止一台设备

为了启动一台设备，按下你要想启动的一台或几台设备。然后按启动按钮。

操作员面板

为了访问操作员面板，先选择该设备。再按面板按钮。

设备状态

这些按钮将采用前面描述的彩色方案进行显示。这样做是为了使一位离开屏幕站立的操作员能够不用实际走近监视器便能检测一个或多个设备。还指示出了一块操作员面板（见图12）。

该图展示了每一块操作员面板将采用的格式。矩阵中的每行用于：1）显示一个带有按钮小器具的可变设备参数，2）显示一个带有文本小器具的只读设备参数，或3）提供一个按钮来激活一个设备功能（如ABC开始冲洗）。如果要屏面保持太多的信息，可使用卷动条。

对于熟悉本技术的人员当然知道与清楚可以设计出本发明的其它及另外一些方式，而不脱离所附的权利要求书的精神与范围，当然理解本发明不仅限于所示的特定实施例。
<table>
<thead>
<tr>
<th>位</th>
<th>源环</th>
<th>目的地环</th>
</tr>
</thead>
<tbody>
<tr>
<td>源地址</td>
<td>目的地地址</td>
<td></td>
</tr>
</tbody>
</table>

消息类型
- 数据字段
 - 计数 (0 至 N - 最大 127)
 - (N, 计数为 0 时 A)

环与消息管理
- 请求动作:
 - 类型 01H — 传递令牌（允许目的地发送）
 - 类型 03H — 失去令牌（目的地必须重新得到发送许可）
 - 类型 04H — 建立环（要求目的地继续建立环）
 - 类型 05H — 你在吗？（询问目的地看它是否活跃）
 - 类型 06H — 取消环（目的地已授予加入环的许可）
 - 类型 07H — 通知增加（目的地请求活跃站更新图）
 - 类型 08H — 你是什么？（询问目的地标识设备类型）

对收到的消息的应答
- 类型 80H — 不知道（目的地不知道收到的报文的类型号）
- 类型 81H — 确认（目的地成功地收到报文）

站状态实例
- 02H — 状态（来自控制型设备的正常、实时信息）
- 86H — 状态（来自控制型设备的正常、长期信息）
- 82H — 状态（来自操作员站型设备的正常、实时信息）
- 88H — 状态（来自操作员站型设备的正常、长期信息）
- 83H — 状态（设备类型标识 一次性 信息，所有站）

数据帧机数 (数据字段中字符数) 或者不需要时为 0
- 数据字段 — 0 至 N 个字符
- 和数零检验和消息中所有字符的 2 的补码和

通信系统消息结构
图 17B 通信系统方框图 B
图 17C 通信系统方框图C
定时器中断逻辑

中断

通信

接到下一个通信中断？

是

否

未接到定时器的活动？

是

否

中断XMIT？

是

否

下一个通信中断？

是

否

字符间定时器运转？

是

否

定时3字符间定时器？

是

否

令牌在本地？

是

否

设置标志

未接到活动

是

否

释放令牌

转换到接收机

中断结束

接收机中断逻辑

字符

接收

取字符

将字符存储在缓存器中

错误

是

否

调整缓存器指针索引

启动字符间定时器

设置标志字符间定时器运转

是

否

令牌在本地？

是

否

搜索目的地地址表

广播？

接收第一个字符？

是

否

是

否

设置标志接收到广播

是

否

本站的消息？

是

否

接收到第三个字符？

是

否

保存消息类型

接收到第四个字符？

是

否

计算到最后一个字符数

接收到最后字符？

是

否

调整检验和

是

否

好的检验和？

是

否

设置标志接收到好的消息

是

否

广播消息？

是

否

消息类型为令牌？

是

否

设置标志令牌在本地

是

否

设置标志新令牌

是

否

启动字符间定时器

设置标志字符间定时器运转

是

否

释放令牌

转换到接收机

中断结束