发明名称

一种振荡器装置、光偏转器及使用光偏转器的成像设备

摘要

一种振荡器装置、光偏转器及使用光偏转器的成像设备。振荡器装置包括：振荡系统，其具有振荡器和弹性支撑构件；检测构件，用于检测振荡器的振荡幅度；驱动构件，用于驱动振荡器；以及控制单元，其用于生成用于驱动所述振荡器的驱动信号，并且将所述驱动信号提供给所述驱动构件。其中，所述控制单元包括：复扫掠驱动信号的驱动频率；以及所述控制单元是所述控制单元通过其达到最大值的至两个频率来确定所述振荡频率，并且其中所述控制单元基于所述控制单元来生成驱动信号。
1. 一种振荡器装置，包括：
 振荡系统，其具有振荡器和弹性支撑构件；
 检测构件，其被配置为检测所述振荡器的振荡幅度；
 驱动构件，其被配置为驱动所述振荡器；

2. 控制单元，其被配置为生成用于驱动所述振荡器的驱动信号，以及将所述驱动信号提供给所述驱动构件；

 其中，所述控制单元往复扫描所述驱动信号的驱动频率，从而所述振荡系统的谐振频率被包括在所述频率范围内，其中，所述控制单元基于至少两个频率来确定谐振频率，其中，在上述至少两个频率，可由往复扫描所获得的振荡幅度值达到最大值，并且其中，所述控制单元基于所确定的谐振频率生成所述驱动信号。

3. 如权利要求1所述的振荡器装置，其中，在由f_{max1}表示当在往复扫描中按正向行程对频率进行扫描时所述振荡幅度值达到最大值的频率，以及在由f_{max2}表示当在往复扫描中按逆向行程对频率进行扫描时所述振荡幅度值达到最大值的频率的情况下，所述控制单元将所述频率f_{max1}和f_{max2}的平均频率$(f_{max1}+f_{max2})/2$确定作为所述振荡系统的谐振频率。

4. 如权利要求1所述的振荡器装置，其中，在按正向行程来扫掠驱动频率之后，所述控制单元以比正向行程的扫描速度更慢的速度按逆向行程来扫掠驱动频率。

5. 如权利要求1所述的振荡器装置，其中，在个正向行程的扫描速度更慢的速度按逆向行程来扫掠驱动频率，

6. 如权利要求1所述的振荡器装置，其中，所述控制单元基于所述振荡系统改变其状态，与所述振荡系统驱动频率变化相比，所述控制单元将所述振荡系统驱动频率改变值确定作为所述振荡系统的关联性。

7. 如权利要求8所述的振荡器装置，其中，在按正向行程和扫描，当在穿过所述振荡系统时达到最大值的频率之后所述振荡系统驱动频率开始减少时，所述控制单元将所述振荡系统驱动频率减少，并且其中，在按正向行程和扫描中的驱动频率的预定变化更小的预定变化连续改变驱动频率的同时，所述控制单元从停止正向行程扫描的位置按逆向行程扫描驱动信号。

8. 如权利要求8所述的振荡器装置，其中，所述控制单元的预定驱动频率的驱动频率的变化使得变化比预定值更小。

9. 如权利要求8所述的振荡器装置，其中，所述控制单元在预定驱动频率变化比预定值更小的驱动频率变化。

10. 如权利要求9-10所述的振荡器装置，其中，所述控制单元在预定驱动频率变化比预定值更小的驱动频率变化。
构件、第一振荡器、第二振荡器、第一弹性支撑构件以及第二弹性支撑构件，所述第一弹性支撑构件被配置为相对于所述第二振荡器而支撑所述第一振荡器，以用于关于扭转轴振荡运动，所述第二弹性支撑构件被配置为相对于支撑构件来支撑所述第二振荡器，以用于关于所述扭转轴振荡运动。

11. 一种光偏转器，包括：
 如权利要求 1-10 中的任意一项所述的振荡器装置；
 光偏转元件，其被提供在所述振荡器处。

12. 一种成像设备，包括：
 如权利要求 11 所述的光偏转器；
 光学系统；
 光源；以及
 光敏构件；

其中，由所述光偏转器以扫描方式使得来自所述光源的光束偏转，并且通过所述光学系统在所述光敏构件上的目标位置处收集所偏转的扫描光束。
振荡器装置、光偏转器及使用光偏转器的成像设备

技术领域

[0001] 本发明通常涉及具有振荡器（例如微振荡结构）的振荡器装置的技术领域。更具体地说，本发明关注一种振荡器装置，其具有用于检测谐振类型振荡器的谐振频率的功能。使用所述振荡器装置的光偏转装置可应用于例如投影仪或可视化显示单元（例如扫描显示单元）、打印机（例如激光束打印机（LBP））或成像设备（例如数字复印机）。

背景技术

[0002] 传统上已经提议了具有移动镜的各种光偏转装置（参见与美国专利No.7,271,943对应的日本未决专利申请2005-2088578，以及日本未决专利申请2005-292627）。例如，与使用旋转多角镜（例如多角镜）的光扫描光学系统相比较，由以下特征来表征谐振类型的光偏转装置。也就是说，可以使得光偏转装置的尺寸非常小，并且功耗低。具体地说，包括多晶Si并且由半导体工艺所生产的光偏转装置具有以下优点：理论上，没有金属疲劳并且耐用性很好。除了其中对旋转多角镜（例如多角镜）进行旋转的传统光偏转装置之外，存在近来正在开发和实践的另一光偏转装置。也就是说，它是被称为MEMS（微机电系统）的谐振类型光偏转器，其中，振荡器通过使用微机械技术而绕着旋转轴振荡。

[0003] 然而，为了以高效率来驱动谐振类型振荡器（例如MEMS），由于所述振荡器的谐振特性的Q值很高，例如，在1000左右，因此必须以频率充分接近于振荡器的谐振频率的驱动信号来驱动振荡器。然而，如果使用Si作为材料，则这种谐振频率将具有约-0.14Hz/℃的负温度系数。因此，所需的是，例如，应该每次打开系统时精确地测量当前谐振频率，并且基于测量结果来驱动振荡器。

发明内容

[0004] 本发明提供一种振荡器装置，通过所述振荡器装置，可以精确地并且以相对高的速度来测量谐振频率。

[0005] 根据本发明一方面，提供一种振荡器装置，包括：振荡系统，其具有振荡器和弹性支撑构件；检测构件，其被配置为：检测所述振荡器的振幅；驱动构件，其被配置为：驱动所述振荡器；以及控制单元，其被配置为：生成用于驱动所述振荡器的驱动信号，并且将所述驱动信号提供给所述驱动构件；其中，所述控制单元往复扫掠（sweep）所述驱动信号的驱动频率，从而所述振荡系统的谐振频率包在所扫掠的频率范围内，其中，所述控制单元基于可由往复扫掠所获得的振荡幅值通过其达到最大值的至少两个频率来确定谐振频率，以及所述控制单元基于所确定的谐振频率来生成所述驱动信号。

[0006] 在本发明的该方面的优选形式中，在由fmax1表示当在往复扫掠中按正向行程对频率进行扫掠时所述振荡幅值通过其达到最大值的频率的情况下，以及在由fmax2来表示当在往复扫掠中按逆向行程对频率进行扫掠时所述振荡幅值通过其达到最大值的频率的情况下，所述控制单元将所述频率fmax1和fmax2的平均频率（fmax1+fmax2）/2确定作
为所述振荡系统的谐振频率。

【0007】在按正向行程来扫描所述驱动频率之后，所述控制单元可以用比正向行程的扫描速度更慢的速度按逆向行程来扫描所述驱动频率。

【0008】于在所述驱动频率的正向行程扫描中穿过所述振荡幅度值通过其达到最大值的频率之后，随着所述振荡幅度开始减少，所述控制单元可以停止扫描所述驱动频率，其中，所述控制单元可以以比正向行程扫描速度更慢的速度从停止正向行程扫描的位置按逆向行程扫描所述驱动频率，并且将振荡幅度值通过其再次达到最大值的频率确定为所述振荡系统的谐振频率。

【0009】对于扫描所述驱动频率，所述控制单元可以按预定变化连续改变所述驱动频率，并且在应用每一变化之后，保持相同驱动频率达到预定时间。

【0010】所述控制单元可以通过按预定变化连续改变所述驱动频率来扫描所述驱动频率，并且，当在穿过所述振荡幅度值通过其达到最大值的频率之后所述振荡幅度开始减少时，所述控制单元可以停止所述驱动频率扫描，其中，在按比正向行程中的驱动频率的预定变化更小的预定变化连续改变所述驱动频率的同时，所述控制单元可以从停止正向行程扫描的位置按逆向行程扫描所述驱动信号。

【0011】在逆向行程扫描中，当在穿过所述振荡幅度值通过其达到最大值的频率之后所述振荡幅度开始减少时，所述控制单元可以停止所述驱动频率扫描，其中，在按比逆向行程扫描中的驱动频率的预定变化更小的预定变化连续改变所述驱动频率的同时，所述控制单元可以从停止逆向行程扫描的位置按正向行程再次扫描所述驱动信号。

【0012】所述控制单元可以重复驱动频率的往复扫描，直到驱动频率的变化变得比预定值更小。

【0013】可以使得当所述振荡器的振荡幅度小于预定阈值时的所述驱动频率的变化比当所述振荡器的振荡幅度大于所述预定阈值时的所述驱动频率的变化更大。

【0014】所述振荡系统可以包括：第一振荡器、第二振荡器、第一弹性支撑构件以及第二弹性支撑构件，所述第一弹性支撑构件被配置为相对于所述第一振荡器来支撑所述第一振荡器，以用于关于扭转轴振荡运动，所述第二弹性支撑构件被配置为相对于支撑构件来支撑所述第二振荡器，以用于关于所述扭曲轴振荡运动。

【0015】根据本发明的另一方面，提供一种偏光转器，包括：如上所述的振荡器装置，以及光偏转元件，其被提供在所述振荡器处。

【0016】根据本发明的另一方面，提供一种成像设备，包括：如上所述的光偏转器；光学系统；光源；以及光敏构件；其中，由所述光偏转器以扫描方式使得来自所述光源的光束偏转，并且通过所述光学系统在所述光敏构件上的目标位置处收集所偏转的扫描光束。

【0017】根据本发明，至少在振荡器的谐振频率的邻近，驱动信号的频率被往复扫描至少一次，通过该操作，可以精确地检测所述振荡器的谐振频率。因此，即使由于温度系数而导致每次启动系统时特定振荡器的谐振频率发生改变，也可以精确地并且以相对高的速度检测特定振荡器的谐振频率。因此，基于其可以充分地驱动所述振荡器。

【0018】当结合附图和前述本发明优选实施例的以下描述时，本发明的这些和其它目的、特征和优点将变得更加清楚。
附图说明
[0019] 图 1A 和图 1B 是解释根据本发明的振荡器装置的示意图，其中，图 1A 示出单振荡器
的结构示例，图 1B 示出双振荡器的结构示例。
[0020] 图 2A 和图 2B 是解释振荡器的振荡幅度和 BD 输出波形的曲线图。
[0021] 图 3 是解释其中本发明应用于激光束扫描仪（LBP）的扫描仪单元的情况的结构示
例，该情况与稍后描述的第一工作示例以及第二工作示例对应。
[0022] 图 4 是解释实现本发明中的第一谐振频率的测量的控制单元的曲线图。
[0023] 图 5 是解释实现本发明中的第二谐振频率的测量的控制单元的曲线图。
[0024] 图 6 是解释实现本发明中的第三谐振频率的测量的控制单元的曲线图。
[0025] 图 7 是解释其中本发明应用于激光束扫描仪（LBP）的扫描仪单元的情况的结构示
例，该情况与稍后描述的第三工作示例以及第四工作示例对应。
[0026] 图 8 是解释根据本发明第三工作示例的振荡器装置的示意图。
[0027] 图 9 是解释根据本发明第三工作示例的振荡器装置的示意图。
[0028] 图 10 是解释根据本发明第四工作示例的振荡器装置的示意图。
[0029] 图 11 是解释根据本发明第四工作示例的振荡器装置的示意图。

具体实施方式
[0030] 现将首先描述本发明优选实施例。
[0031] [振荡器装置的结构]
[0032] 图 1A 和图 1B 是本实施例的振荡器装置的框架。首先，将解释图 1A 所示的振荡器
装置。图 1A 的振荡器装置的振荡系统 10 包括：振荡器 1 和弹性支撑构件 2，并且其被配置为
提供谐振驱动。弹性支撑构件 2 将振荡器 1 与支撑构件 3 耦合，以支撑振荡器 1 绕振荡
轴 15 扭转振荡。振荡轴 15 由弹性支撑构件 2 的扭转轴来定义。振荡系统 10 具有由振荡
器 1 的惯性力矩以及弹性支撑构件 2 的弹簧常数所确定的谐振频率。
[0033] 例如，如果在振荡器的表面上形成光学偏转装置（例如反射构件），则可以将振荡
器装置用作光学偏转器。关于反射构件，可以通过选射处理来形成金属膜（例如铝）。
[0034] 从光源 4 所发射的光束 8 被振荡器的反射表面所反射。光电检测器（光束检测器
BD) 5 将用于在光电检测器 5 上通过的反射光 9 的定时信号提供给控制单元 6。基于该定时
信号，控制单元 6 生成用于驱动所述振荡器的驱动信号。更进一步地，控制单元 6 将该驱动
信号提供给驱动构件 7。于是，驱动构件 7 将与该驱动信号对应的扭矩施加到振荡器 1。
[0035] 例如，图 1A 的振荡器装置能够操作以提供关于时间的正弦波振荡幅度，如图 2A 所
示。更进一步地，例如，用于在光电检测器 5 上通过的反射光 9 的定时信号可以具有例如图
2A 所示的 BD 输出波形。基于关于于在点 B 处的定时信号以及在点 C 处的定时信号获得
的时间差 t1 的信息，控制单元 5 检测振荡幅度的大小。于是，控制单元 6 基于 \(\Delta t_1 (\Delta t_1
= t_1 - t) \) 生成驱动信号，\(\Delta t_1 \) 是时间差 t1 与目标时间差 t1’ 之间的差。
[0036] 由控制单元 6 所生成的驱动信号是周期函数（例如正弦波），并且它可以通过正
弦波来描述关于时间的驱动电压的这种信号。或者，可以使用被称为 PWM 的信号，可通过将
所述信号转换为脉冲信号而获得所述 PWM 信号。
[0037] 应注意，虽然在该实施例中，光电检测器 5 用于检测振荡器 1 的振荡，但弹性支撑
构件 2 可以被提供有压电电阻，并且该压电电阻的输出信号可以应用于控制单元 6 作为定时信号。

[0038] 响应于驱动信号，驱动构件 7 基于电磁方法、静电力方法或压电方法而将驱动力提供给振荡系统 10。在电磁驱动的情况下，例如，可以在振荡器 1 上提供永磁体，并且可以在振荡器 1 的附近布置用于将磁场施加到该永磁体的电极。或者，可以颠倒地布置永磁体和电线圈。在静电驱动的情况下，可以在振荡器 1 上形成电极，并且可以在振荡器 1 的附近形成电极，该电极用于产生在该电极其它电极之间起作用的静电力。在压电驱动的情况下，可以在振荡系统 10 或振荡系统 10 的支撑构件 3 上提供压电元件，并且可以由此施加驱动力。

[0039] 控制单元 6 在振荡系统的谐振频率上往复扫扫驱动信号的驱动频率，并且基于至少两个如下频率来确定谐振频率，其中，通过所述频率，可由往复扫扫在的振荡幅度值达到最大值。于是，控制单元 6 基于因此而确定的谐振频率来生成驱动信号，并且将该驱动信号施加到驱动构件 7。

[0040] [用于实现第一谐振频率测量的控制单元]

[0041] 首先，将参照图 4 解释该实施例中的实现第一谐振频率测量的控制单元。

[0042] 图 4 是在横轴上取作驱动频率而在纵轴上取作振幅幅度值的曲线图。对于谐振频率的测量，以恒定比率将驱动信号的频率从低频侧改变到高频侧，以确保将谐振频率包括在所扫量范围内，并且基于此而驱动振荡系统 10。由 fmax1 表示在当按正向行程扫振频率时振幅幅度值达到最大值之点的频率（点 B）。其后，以恒定比率将驱动信号的频率从高频侧改变到低频侧，并且基于此而驱动振荡系统 10。由 fmax2 表示在当按逆向行程扫振频率时振幅幅度值达到最大值之点的频率（点 C）。于是，计算通过往往复扫振而获得的 fmax1 和 fmax2 的平均频率 (fmax1+fmax2)/2，由此可以确定振荡系统 10 的谐振频率。在此情况下，正向行程的扫描速度与逆向行程的扫描速度是相同的。

[0043] 虽然在该示例中，在从低频侧到高频侧的方向上进行往复扫振的正向行程，而在从高频侧到低频侧的方向上进行往复扫振的逆向行程，但它们可以是颠倒的。也就是说，可以从高频侧到低频侧进行正向行程，而可以从低频侧到高频侧进行逆向行程。

[0044] 例如，为了确保谐振频率被包括在所扫振范围内，可以根据振荡系统的材料或尺寸来预先预测振荡系统的谐振频率，并且可以在该频率附近进行往复扫振。或者，可以预先检测振荡系统的谐振频率与温度之间的关系，并且在基于此而预测振荡系统的谐振频率的同时，可以在因此所预测的频率附近进行往复扫振。

[0045] 更进一步地，如果振荡系统具有就像图 1B 所示的振荡器装置的多个谐振频率，则可以在每一谐振频率的附近进行往复扫振，或者，可选地，可以在包括这些谐振频率的扫描范围内进行往复扫振。

[0046] fmax1 和 fmax2 彼此偏离的原因在于：由于振荡系统 10 的 Q 值高，因此在开始以特定驱动频率进行驱动之后，花费大量时间，幅度才达到稳定状态或稳定状态。如果频率的改变进行得异常缓慢，则 fmax1 和 fmax2 将几乎相同。然而，在此情况下，测量花费特别长的时间。如果频率改变比率相同，即使从低频侧到高频侧进行频率扫描或者从高频侧到低频侧进行频率扫描，距振荡频率的偏离量也是相同的。因此，fmax1 和 fmax2 的平均频率提供振荡系统 10 的谐振频率。
说 明 书

用于实现第二谐振频率测量的控制单元

参照图5，将解释该实现例中实现第二谐振频率测量的控制单元。

图5也是在坐标上取作驱动频率而在纵轴上取作振荡幅度值的曲线图。

于在正向行程方向上扫掠驱动频率之后，控制单元以比正向行程的扫掠速度更慢的速度在逆向行程方向上扫掠驱动频率。在此，在扫掠驱动频率中，控制装置可以按预定变化来连续改变驱动频率。此外，在施加每一变化之后，控制装置可以保持相同的驱动频率预定时间。

参照图5，首先，控制单元在正向行程方向上扫掠驱动频率。于是，在当穿过在振荡幅度值达到最大值之处的频率（点B）之后振荡值开始减少的位置（点C），控制装置停止驱动频率扫描。因此，在从停止正向行程扫掠之处的位置的逆向行程方向上，控制装置以比正向行程扫描速度更快的速度来扫掠驱动频率。将得到振荡幅度再次达到最大值之处的频率（点D）作为振荡系统的谐振频率。当在穿过点D（局部最大值）之后达到振荡幅度减少的点E时，可以检测到点D提供谐振频率的实例。

在此，比在正向行程方向上的扫描速度更慢的速度可以是这样的速度，通过该速度，在点D（局部最大值）处的驱动频率与振荡系统10的实际谐振频率近似彼此一致。

更具体地说，如果在逆向行程方向上的扫描速度太快，则驱动频率在振荡系统10达到稳定状态之前改变。因此，在点D（局部最大值）处的驱动频率与振荡系统10的实际谐振频率彼此偏离。为了以比正向行程扫描速度更慢的速度来扫掠频率，作为示例，可以花费更长的时间，以保证频率（每一步长）来测量振荡幅度。

与用于实现前面所描述的第一谐振频率测量的控制单元相比，该方法使得能够在更短的时间内测量谐振频率。

用于实现第三谐振频率测量的控制单元

参照图6和图8，将解释该实现例中实现第三谐振频率测量的控制单元。图6也是在坐标上取作驱动频率而在纵轴上取作振荡幅度值的曲线图。此外，图8的横轴描述时间，纵轴描述驱动频率。

如图6所示，首先，控制单元在正向行程方向上扫掠驱动频率。于是，在当穿过在振荡幅度值达到最大值之处的频率（点B）之后振荡幅度值开始减少的位置（点C），控制装置停止驱动频率扫描。在此，在正向行程扫描中，在图8所示的每一单个步长，驱动频率按△fab依次增加。更进一步，第一步长，驱动频率被保持时间△t。

此后，从停止扫描的位置（点C），发起逆向行程扫描。此时的扫描的步长宽度是图8所示的△fbc，使得△fbc比正向方向上的步长宽度△fab更窄。于是，在当穿过在振荡幅度值达到最大值之处的频率（点D）之后振荡值开始减少的位置（点E），控制装置停止驱动频率扫描。

更进一步，从停止扫描的位置（点E），发起正向行程扫描。此时的扫描的步长宽度是图8所示的△fbd，使得△fbd比前面的步长宽度△fac更窄。于是，在当穿过在振荡幅度值达到最大值之处的频率（点F）之后振荡值开始减少的位置（点G），控制单元停止驱动频率扫描。

此后，从停止扫描的位置（点G），发起逆向行程扫描。此时的扫描的步长宽度是图8所示的△fbe，使得△fbe比前面的步长宽度△fad更窄。
说明书

[0061] 例如上述的往复扫描被重复至少一次，并且当每一步长的变化量变得比预定值更小时的驱动频率可以被取作谐振频率。更进一步地，可以使得用于在每一步和保持驱动频率的时间可变，例如，图9所示的 \(\Delta t_1 \)、\(\Delta t_2 \) 和 \(\Delta t_3 \)。

[0062] 【振荡器装置的其它形式】

[0063] 可以将前面所描述的用于实现谐振频率测量的控制单元应用于图1B所示的振荡器装置。

[0064] 图1B显示了该实施例的另一实施例的振荡器装置。该振荡器装置的振荡系统10包括：第一振荡器11、第二振荡器12以及支撑构件3。第一振荡器11受第一弹性支撑构件13支撑，以相对于第二振荡器12关于振荡轴15扭转振荡。第二振荡器12受第二弹性支撑构件14支撑，以相对于支撑构件3关于振荡轴15扭转振荡。由弹性支撑构件13和14的扭转载荷限制振荡轴15。更进一步地，也是在此情况下，例如可以在第一振荡器的表面上形成光偏转元件（例如反射构件），并且于是可以将振荡器装置用作光偏转器。例如，关于反射构件，可以通过滤波处理来形成金属膜（例如铝）。

[0065] 在图1B的振荡器装置的情况下，振荡系统10具有绕着振荡轴15的具有不同频率的第一固有振荡模式和第二固有振荡模式。

[0066] 时间 \(t \) 与图1B的振荡器装置的位移角 \(\theta \) 之间的关系可以由下式 (1) 来描述。

\[
\theta(t) = A_1 \sin(\omega t) + s A_2 \sin(n \omega t + \phi) \quad \cdots (1)
\]

[0067] 其中，\(A_1 \) 和 \(\omega \) 分别是第一振荡运动（\(A_1 \sin \omega t \)）的幅度和角频率，\(A_2 \) 和 \(n \omega \) 分别是第二振荡运动（\(A_2 \sin(n \omega t + \phi) \)）的幅度和角频率。更进一步地，\(\phi \) 是第一振荡运动与第二振荡运动之间的相对相位差，\(n \) 是不小于 2 的整数。

[0068] 当由 **f1** 表示第一固有振荡模式的谐振频率并且由 **f2** 表示第二固有振荡模式的谐振频率时，如此制成振荡系统10，从而使得按 \(1 : n \)（\(n \) 是不小于 2 的整数）的关系来近似地放置谐振频率 **f1** 和谐振频率 **f2**。在此，**f1** 与 **f2** 的近似 \(1 : n \) 关系特定地指的是 \(0.98n \leq f2/f1 \leq 1.02n \) 的关系。如果例如 \(n = 2 \)，则式 (1) 的驱动波形具有锯齿波形状（见日本未决专利申请 2005-208578）。如果 \(n = 3 \)，则式 (1) 的驱动波形具有锯齿波波形（见美国专利 4,859,846）。

[0069] 例如，根据上述公式 (1) 来驱动振荡器装置的驱动信号可以由以下式 (2) 来表示。

\[
D(t) = B_1 \sin \omega t + B_2 \sin(n \omega t + \Psi) \quad \cdots (2)
\]

[0070] 其中，\(B_1 \) 和 \(B_2 \) 是驱动信号的幅度分量，并且在此，例如，其是驱动电压。更进一步地，\(\Psi \) 是第一驱动信号（\(B_1 \sin \omega t \)）与第二驱动信号（\(B_2 \sin(n \omega t + \Psi) \)）的相对相位差。

[0071] 更进一步地，由上述公式 (2) 所描述的驱动信号可以被转换为被称为 PWM（脉宽调制）信号的信号，所述 PWM 信号包括大量脉冲序列，并且该信号被用作驱动信号。如果使用了所述 PWM 信号，则可以通过关于时间改变脉冲的数目，间隔或宽度来对振荡器装置进行驱动控制。

[0072] 更进一步地，当图1B的振荡器装置受驱动控制时，可以使用两个光电检测器5。这两个光电检测器可以被部署在图2B所示的位置BD1和BD2处，从而在一个周期期间可获得四个BD输出。例如，控制单元6可以基于图2B的时间 t1、t2 和 t3 来控制振荡器装置。
关于图1B的振荡器装置的谐振频率的测量，可以按与图1A所示的振荡器装置相似的方式来对其进行测量。

接下来，将描述本发明的一些工作示例。

【工作示例1】

图3是示出工作示例1的结构示例的图，其中，本发明应用于激光束打印机（LBP）的扫描仪单元。在该示例中，使用图1A所示的振荡器装置。

将参照图2、图3和图4解释该示例。在图3的结构中，来自激光二极管（LD）110的光被形成在振荡器102上的镜所反射，并且在振荡器102通过在振荡范围的端部的附近时的定时处通过f0透镜103、会聚透镜104和狭缝105。于是，光在光束检测器（BD）106上入射。响应于BD106上所入射的输入光的BD信号被提供给振荡幅度检测装置107，由振荡幅度检测装置107来产生幅度信息。振荡器扫描来自光源的光束，光学系统在光敏构件上的目标位置处收集扫描光。也就是说，在振荡器102绕着振荡范围的中心振荡的定时处，来自LD101的光在穿过透镜之后在光敏构件111上的目标位置处入射，由此在光敏构件上形成潜像，所述f0透镜将等角扫描转换为恒定速度扫描。

由振荡幅度检测装置107所检测到的幅度信息被输入到判断控制单元108。在与通过振荡幅度检测装置107获得的前述幅度测量信息进行比较时，判断控制单元108基于比较结果来执行以下控制。也就是说，其基于NCO（数控振荡器）109来控制驱动频率的设置，并且此外，控制驱动构件110的开/关操作。驱动构件110于是在判断控制单元108的控制下产生已经在NCO109中被设置的驱动频率的驱动信号。该驱动信号对邻近于振荡器102而提供的驱动线圈115进行驱动，并且将磁力施加到装配在振荡器102上的磁体116，通过该操作，具有镜的振荡器102被振荡。振荡器102通过扭矩弹簧连接到固定部（未示出），以用于振荡运动。

在此，BD106和振荡幅度检测装置107构成检测装置，用于检测振荡器102的振荡幅度。更进一步地，驱动构件110、驱动线圈115和磁体116构成驱动机构，其用于响应于驱动信号而驱动振荡器102。此外，判断控制单元108和NCO109构成控制单元，以用于控制驱动信号的频率和驱动机构的驱动操作。

参照图2，将更详细地解释振荡幅度。图2A示出BD输出信号与光束的扫描位置之间的关系，所述光束由于振荡器102的振荡而导致在从光轴中心侧到BD106侧被扫描之后再次回到光轴中心侧。在测量开始时段期间，光束在光束中心左侧的光束中心左侧，在测量开始时段期间，光束在点A移动离开光轴中心，而在点B穿越BD106的位置，以及在通过BD106外侧之后，在测量开始时段期间，光束在点C经过BD106的位置。光束在点D回到光轴中心。在点B和点C的位置处，激光束在BD106上入射，从BD106产生例如在BD输出波形处所示的输出。因此，与在测量开始时段与测量关闭时段之间的间隔对应的位置t1表示振荡器102的振荡幅度。在该工作示例中，基于该常t1的改变，判断控制单元108区分与由NCO109所设置的驱动信号的频率相对的振荡器102的振荡幅度的改变或滞后，并且，基于判断的结果，其控制驱动构件110的驱动信号的驱动操作和频率。更进一步地，判断控制单元108具有用于在振荡器102的谐振频率的邻近至少执行驱动信号的频率的响应扫描至少一次的功能，并且基于振荡幅度取得最大值处的驱动信号的频率值来确定振荡器102的谐振频率的信息。

将解释该工作示例的操作。
首先，上述控制单元控制驱动机构的操作，以根据在图4的左手边的“低”频率（第一驱动频率）来驱动震荡器102。由于在运动开始处的波形具有通过集成正弦波和步进波所产生的形状，因此其具有由于正弦波频率与进波的波立叶变换的组合所导致的特定程度。因此，震荡器102的谐振。在部分A示出该情况。

由于没有确切地产生震荡器102的谐振频率，因此应该经过预定时间段直到幅度稳定到稳定状态才测量幅度，通过该操作，可以避免谐振频率的错误检测。如果Q值是大约800并且震荡器102的谐振频率是2KHz，则频率将在大约0.5秒内被稳定到足够稳定的状态。在图4中，由于横轴描述频率，因此频率被改变，直到其被稳定到稳定状态。在该时段，应该优选地中断频率扫描。

其后，在预定时间逝去之后，判断控制单元108通过NC0109来控制驱动构件110，以通过数字方式或者连续方式将驱动频率从低逐渐增加到高。于是，判断控制单元108能够跟随图4中的B的轨迹检测震荡器102的振荡幅度的变换，基于对振荡幅度检测装置107的检测结果的处理来进行该操作。将振荡幅度值此时通过其达到最大值的频率作为f_max1。进一步地，当驱动频率达到“高”频率（第二驱动频率）并且其在“低”的方向上逐渐降低时，判断控制单元108能够跟随C的轨迹检测震荡器102的振荡幅度的变换，基于振荡幅度检测装置107的检测结果来来进行该操作。将振荡幅度值此时通过其达到最大值的频率作为f_max2。这样的操作被重复一次或多次。

f_max1和f_max2彼此偏移的原因在于：由于震荡系统102的Q值高，因此在开始以特定驱动频率进行驱动之后，花费很长时间，幅度才达到稳定状态或固定状态。如果频率的改变进行得异常缓慢，则f_max1和f_max2将几乎相同。然而，在此情况下，测量花费特别长的时间。如果频率改变比率相同，则即使从低频侧到高频侧进行频率扫描或者从高频侧到低频侧进行频率扫描，距谐振频率fo的偏离量也是相同的。因此，f_max1和f_max2的平均频率提供震荡系统102的谐振频率。如果上述操作将被重复两次或更多次，以获得平均频率，则可以计算这些平均值，以确定谐振频率。以此方式，判断控制单元108操作频率f_max1和频率f_max2的平均频率，并且通过NC0109来控制驱动构件110，从而以此平均频率来驱动震荡器102。通过该操作，振荡器102可以被有效地谐振驱动。

可以使得从“低”到“高”的频率的扫描速度与从“高”到“低”的频率的扫描速度彼此不同。然而，在此情况下，通常，f_max1和f_max2距谐振频率fo的偏离将具有不同的值。因此，在此情况下，判断控制单元108应该根据扫描速度的差通过使用合适的计算式（其预先被确定）来计算f_max1和f_max2，以获取谐振频率fo。更进一步地，如果由判断控制单元108获得谐振频率fo，则判断控制单元108可以控制驱动机构，从而以有意离开谐振频率fo的驱动频率来驱动震荡器102。

在上述结构中，可以将压电电阻用作振荡幅度检测装置。例如，如果将通过使用压电电阻来检测震荡器的位移（即振荡量级），则可以将压电电阻提供在扭螺上，并且可以基于从该压电电阻所输出的信号来检测震荡器的位移（振荡幅度），所述扭螺支撑震荡器102，以用于振荡运动。例如，可以通过将触点放在p型晶体管中来做成压电电阻。压电电阻根据扭螺的扭角来产生信号。因此，为了测量震荡器的位移，可以在多个扭螺处提供压电电阻，从而可以基于来自所述多个扭螺的扭角的信息来检测震荡器的位移。该操作使得能够进行精确测量。
[0090] 更进一步地，关于驱动机构，除了其中磁体116被装配在振荡器102上并且电线圈115被装配在与单对的固定侧的前述电磁系统之外，也可以使用任意其它电磁系统，使用静电力的静电系统，使用静电的电磁系统。在所述其它电磁系统中，驱动线圈可以被装配在振荡器102上，并且磁体可以被装配在与其相对的固定侧。在静电方法中，电极可以被装配在振荡器102上以及与其相对的固定侧，并且驱动信号可以被施加到这些电极，以驱动振荡器102。在压电方法中，压电元件可以被装配在通过扭矩支撑振荡器102以用于振荡运动的固定部，并且驱动信号可以被施加到压电元件上，以产生振荡。通过所述振荡来驱动振荡器102。在此，驱动信号可以是具有合适的驱动频率的正弦信号或周期信号（比如脉冲信号）。

[0091] [工作示例2]

[0092] 将解释本发明的工作示例2。第二工作示例的振荡器装置的基本结构与图3所示的结构相同。第一工作示例使用其中驱动频率从低改变到高并且之后其从高改变到低的相对简单结构，以通过使用BD信号来测量振荡幅度。然而，在实践上，有可能的是，如果在大气中驱动振荡器102，则由于空气阻力而导致摆动增加，从而在高驱动频率中会导致最大值的值fmax1和fmax2中导致误差。为了减少这种误差，应该将每一驱动频率乘以1秒，以测量振荡幅度，并且对所测量的幅度取平均。

[0093] 有鉴于此，在第二工作示例中，如下进行通过判断控制单元108和NC109的控制。驱动以图5的“低”部分中的A处所示的频率开始，并且该操作与第一工作示例相同。

[0094] 在正向行程中，当将驱动频率带入接近于“高”侧时，就像第一工作示例，可识别的是，峰值在当振荡幅度在B处开始减少时的点C处。因此，在那里停止频率扫描。如已经参照第一工作示例中所描述的那样，峰值B向“高”侧偏离振荡器102的谐振频率f0。有鉴于此，其后在逆向行程中，在改变驱动频率的同时，驱动频率沿着实线所示的轨迹返回到“低”侧。对于所述返回，与按正向行程进行的频率扫描相比，关于每一频率测量振荡幅度，花费更长的时间。更具体地说，如果在每一驱动频率以数字方式对其进行扫描，则振荡器102可以被驱动达到大约0.4秒，并且，在幅度被稳定到稳定状态之后，振荡器102的幅度信息可以被积累达到大约0.2秒，以减少由于空气阻力所导致的抖动的影响。于是，重复对所累积的幅度信息进行平均。采用该过程，在点E可以由判断控制单元108识别。最大值在D处。以此方式，检测到振荡器102的谐振频率在一个频率增量之前的值D处。

[0095] 根据该工作示例的方法，与其中从低到高以及从高到低来往反复扫描驱动频率的第一工作示例相比，驱动频率可以在更短的时间内达到谐振频率周围。更进一步地，在通过第一工作示例的方法检测适当的谐振频率之后，在使用第二工作示例中的时间时，可以搜索谐振频率周围的频率范围，以检测幅度最大值，并且更精确地测量谐振频率f0。其余点与第一工作示例相似。

[0096] [工作示例3]

[0097] 将解释本发明的工作示例3。图7是显示本发明的振荡器装置应用于LBP的扫描仪单元时的第三工作示例的结构示例的框图。在该示例中，使用图1A所示的振荡器装置。

[0098] 在图7中，在驱动构件110中设置具有特定驱动频率的特定初始值f1，并且振荡器102往复振荡。在此，由振荡器102来反射从激光二极管(LD)101发射的激光束。在该反射光透过近扫描范围的端部的定时处，反射光经过fθ透镜103、会聚透镜104和狭缝105，
并且在光束检测器 (BD) 106 上入射。根据所述入射的定时，偏转角测量装置 118 获得振荡器 102 的偏转角信息。在此，由于对于振荡器 102 来说，直到偏转角改变被稳定到稳定状态，需要特定时间，因此给出在驱动构件 110 中设置驱动频率之后并且直到通过偏转角测量装置 118 来测量偏转角的等待时间 Δr。此后，偏转角信息 α 被存储到偏转角存储器 119。 [0099] 其后，预定频率变化量 Δf 被加到初始值 f1，并且根据 f2 (f2 = f1 + Δf) 来驱动振荡器 102。也是在此情况下，给出直到偏转角改变被稳定到稳定状态的等待时间 Δr。此后，由偏转角测量装置 118 来测量偏转角，并且获得偏转角信息 β。于是，在偏转角比较条件下 120 处对因此所获得的偏转角信息 β 与先前获得的偏转角信息 α 进行比较，区分振荡器 102 的偏转角的增加 / 减少。利用该偏转角比较构件 120 使得结果被应用于频率变化确定装置 121。 [0100] 其后，频率变化确定装置 121 根据在偏转角比较构件 120 处所得的比较结果（也就是振荡器 102 的偏转角的增加或减少）来确定频率变化 Δf。更具体地说，如果振荡器 102 的偏转角已经通过将驱动频率从 f1 改变到 f2 而增加，则频率变化应该被设置为正值。如果另一方面振荡器 102 的偏转角已减少，则由于这表示驱动频率被设置为比谐振频率更大的频率，因此频率变化应该被设置为负值。由频率变化确定装置 121 所确定的频率变化值被提供给谐振频率确定装置 122。 [0101] 谐振频率确定装置 122 对频率变化 Δf 与特定预定值 X 进行比较，并且，如果频率变化 Δf 大于值 X，则可以把通过将 Δf 加到当前驱动频率 f2 而获得的值 f3 (f3 = f2 + Δf) 设置作为驱动频率。另一方面，如果频率变化 Δf 小于值 X，则确定此列的驱动频率 f2 作为振荡器 102 的谐振频率 f0。也就是说，随着驱动频率靠近谐振频率，频率变化 Δf 的绝对值变得更小，并且其收敛到零。于是，得到当所述 Δf 变得比值 X 更小时的驱动频率作为谐振频率。 [0102] 如果 Δf 变得比预定值 X 更大，则由频率改变构件 123 将驱动频率更新为 f3，并且由驱动构件 110 基于驱动频率 f3 来对振荡器 102 进行往复振荡。于是，重复进行以上所述的一系列操作。 [0103] 将参照图 6 和图 8 更详细地描述该情况。 [0104] 图 6 是在横轴上取作驱动频率而在纵轴上取作振荡幅度值的曲线图。此外，图 8 的横轴描述时间，纵轴描述驱动频率。 [0105] 如图 6 所示，首先，在驱动频率增加的方向（正向行程方向）上扫描振荡器 102。于是，在当穿过在振荡幅度达到最大值之处的频率（点 B）之后振荡幅度开始减少的位置（点 C）处，停止驱动频率扫描。在此，在正向行程扫描中，在图 8 所示的每一单个步长处，驱动频率按 Δfab 依次增加。更进一步地，在每一步长，驱动频率被保持达到时间 Δt。在此情况下，由频率变化确定装置 121 所确定的频率变化是 Δfab。 [0106] 其后，从停止扫描的位置（点 C），发起在驱动频率减少的方向（逆向行程方向）上的扫描。此时的扫描的步长宽度是图 8 所示的 Δfbc，其比分向方向上的步长宽度 Δfab 更窄。在此情况下，由频率变化确定装置 121 所确定的频率变化是 Δfbc。 [0107] 于是，在当穿过在振荡幅度达到最大值之处的频率（点 D）之后振荡幅度开始减少的位置（点 E），停止驱动频率扫描。其后，从停止扫描的位置（点 E），开始正向行程扫描。此时的扫描的步长宽度是图 8 所示的 Δfcd，其比分长宽度 Δfbc 更窄。在此情况下，由频
率变化确定装置121所确定的频率变化是Δfcd。于是，在当穿过在振荡幅值达到最大值之
处的频率（点F）之后振荡幅值开始减少的位置（点G），停止驱动频率扫描。

[0108] 其后，从停止扫描的位置（点G），发起逆向行程扫描。此时的扫描的步长宽度是图
8所示的Δfde，其比前面的步长宽度Δfcd更窄。由频率变化确定装置121所确定的频率
变化是Δfde。

[0109] 这样的往复扫描被重复，并且当每一个步长的变化变得比预定值更小时的驱动
频率被取作谐振频率。更具体地说，通过使得频率变化Δf可改变，并且以Δfab、Δfbc、
Δfcd、Δfde……的顺序来改变Δf，驱动频率可以收敛到振荡器102所具有的谐振频
率。

[0110] 虽然在该示例中，用于在每一步长保持驱动频率的停留时间是Δt，但可以使得时
间Δt可变。

[0111] 通常，如果驱动频率的变化大，则花费大量时间，振荡器102的偏移角才被稳定到
稳定状态。因此，关于Δf，如果频率变化Δf = Δfn，则可以有Δt = Δt1，并且如果频
率变化Δf = Δfn，则可以有Δt = Δt2，从而可以根据频率变化Δf来改变等待时间
Δt（Δfm < Δfn并且Δt1 < Δt2）。

[0112] 如图9所示，如果分别由Δt1，Δt2，Δt3和Δt4来表示分别在频率变化Δfab、
Δfbc，Δfcd和Δfde处的停留时间，则当Δfab > Δfbc > Δfcd > Δfde时的停留时
间可以具有Δt1 > Δt2 > Δt3 > Δt4的关系。

[0113] 这样防止了当驱动频率被改变时所应用的停留时间变得过多，并且可以移除或者
缩短不必要的测量时间。

[0114] [工作示例4]

[0115] 将解释本发明的工作示例4。图7是示出当本发明的振荡器装置应用于LBP的扫
描仪单元时的结构示例的框图。该工作示例也使用图1A所示的振荡器装置。第四工作示
例的振荡器装置具有与第三工作示例基本相似的结构。下文中，将解释与第三工作示例有
区别的特征。

[0116] 在第三工作示例中，设置初始频率变化Δfab，并通过该频率变化（Δfab）来改变频
率，直到振荡器的振荡幅值减少，而穿过谐振频率f0。换句话说，以恒定比率改变驱动频
率，直到振荡器的振荡幅值在穿过谐振频率f0时减少。

[0117] 然而，如果驱动频率的初始值f1被设置在与振荡器的谐振频率极大的不同的值，则
谐振频率的测量将花费很长的时间，除非频率变化（Δfab）被改变。有鉴于此，在该工作示
例中，如果在极大偏离谐振频率f0的驱动频率处驱动振荡器，则驱动频率的频率变化的值
被加大。如果在邻近谐振频率f0的驱动频率处驱动振荡器，则驱动频率的频率变化值被降
低。采用该过程，可以快速测量振荡器的谐振频率。

[0118] 参照图10和图11，将更详细地解释该情况。图10的横轴描述时间，纵轴描述驱动
频率，图11的横轴描述驱动频率，而纵轴描述振荡幅值。

[0119] 在图7中，在驱动构件110中设置特定驱动频率的初始值f1，且振荡器102往复
振荡。其后，由通过将Δfab加到初始值f1可获得的驱动频率f2（f2 = f1 + Δfab）来驱动
振荡器102。当以驱动频率f2来驱动振荡器时的振荡器的偏移角信息θ被记忆到偏移角
存储器119。另一方面，在该工作示例中，如图11所示，已经预先设置了特定振荡幅值（阈
值幅度）Y。该阈值幅度Y被设置在阈值构件（未示出）中，并且，在偏转角比较构件120处将其与偏转角存储器119中所记忆的振荡器的偏转角信息θ相比较。

【0120】如果偏转角信息θ小于阈值幅度Y（|θ|<|Y|），则以判断值j=0的形式表示当前振荡幅度不超过阈值幅度Y的信息存储在偏转角存储器119中。反之，如果偏转角信息θ大于或等于阈值幅度Y（|θ|≥|Y|），则作为判断值j=1，将表示当前振荡幅度超过阈值幅度Y的信息存储在偏转角存储器119中。如果判断值是j=1，则由于驱动频率比与阈值幅度Y对应的驱动频率fa更接近于谐振频率fr，因此频率变化Δfab被保持为不变。

【0121】如果判断值j=0，则进行以下驱动操作。

【0122】相对于每一单位时间振荡幅度的变化（幅度变化）来设置阈值，并且在此由Z（幅度变化阈值）来表示阈值。更进一步地，当驱动频率被改变时的实际振荡幅度的变化量由Δθ来表示。于是，如果|Z|＜|Δθ|，则由于振荡幅度的变化比幅度变化阈值Z更大，因此频率变化Δfab被保持为不变。

【0123】反之，当将幅度变化阈值Z与Δθ彼此相比较时并且如果|Z|≥|Δθ|，则频率变化Δfab被设置为Δfab’（Δfab＞Δfab’）。也就是说，在此情况下，振荡幅度的变化不大于幅度变化阈值Z，并且振荡幅度的变化是短的。因此，频率变化增加。其后，当振荡器的振荡幅度变得比阈值幅度Y更大（|θ|≥|Y|）时，驱动频率的频率变化从Δfab’改变为Δfab”（Δfab’＞Δfab”）。

【0124】其余部分与第三工作示例相似。

【0125】总之，在该工作示例中，使得当振荡器的振荡幅度比预定阈值更小时的驱动频率的变化处于比当振荡器的振荡幅度比预定阈值更大时的驱动频率的变化更大的值处。采取以此方式进行的驱动，与第三工作示例相比，可以更快地检测谐振频率。

【0126】虽然已经参照在此所公开的结构描述了本发明，但并非将其限制为所阐述的细节，并且本申请意欲覆盖可以处于所附权利要求的范围或改进的目的内的这样的修改或改变。
图7

偏转角测量装置
118

偏转角存储装置
119

偏转角比较装置
120

驱动装置
110

频率改变装置
123

频率改变量确定装置
121

频率改变量确定装置
122