Present invention relates to an interface arrangement (20) for coupling between an AC system (S1) and a DC system (S2). The arrangement includes a converter (22) for conversion between AC and DC and having a DC side and an AC side, a transformer (24) having a primary side with primary windings for coupling to the AC system and a secondary side with secondary windings coupled to the converter, where the secondary windings are coupled to ground via a neutral point of the secondary side, and a filter (26) with filter elements set for removing a frequency component of at three times the fundamental frequency of an AC voltage appearing on the AC side of the converter. The filter is connected between the neutral point of the secondary side of the transformer and ground.
FIELD OF THE INVENTION

5 The present invention generally relates to power transmission systems. More particularly the present invention relates to an interface arrangement for coupling between an AC system and a DC system.

BACKGROUND

Interface arrangements are known to be connected between an Alternating Current (AC) system, often denoted AC grid and a Direct Current (DC) system, like a High Voltage Direct Current (HVDC) system. Such an arrangement typically includes a converter, such as a voltage source converter, for conversion between AC and DC and having a DC side connected to the DC system and an AC side for coupling to the AC system. The arrangement also often includes a transformer having a primary side connected to the AC system and a secondary side for coupling to the converter. The arrangement may then also include a number of parallel electrical intermediate connections, typically two or three, between the secondary side of the transformer and the AC side of the converter.

In order to improve the efficiency of the converter, it is also known to add a zero sequence third harmonic to the pulse-width modulation and the converter will also generate the 3rd harmonic on the AC side. However, this harmonic has to be separated from the AC system. If a transformer is used between the AC system and the
converter, this harmonic can easily be removed if the transformer lacks connection to ground.

If transformers are not used other ways of removal are required. Some such other types of removal are for instance described in WO 2009/149755 and WO 2004/017505.

However, it is in some cases of interest to use a transformer with a neutral point grounding in order to provide ground for the DC system. This is for instance described in US 2009/0225570 and US 2008/0084643.

There is then the question of how this can be combined with removal of zero sequence third harmonics.

There is therefore room for improvement in relation to transformer neutral point grounding and removal of zero sequence third harmonics.

SUMMARY OF THE INVENTION

The present invention addresses this situation. The invention is thus directed towards combining transformer neutral point grounding with zero sequence third harmonic removal.

This is according to one aspect of the invention achieved through an interface arrangement for coupling between an AC system and a DC system and comprising a converter for conversion between AC and DC, the converter having a DC side for connection to the DC
system and an AC side for being coupled to the AC system,
a transformer having a primary side with a first set of primary windings for being coupled to the AC system and
a secondary side with a second set of secondary windings coupled to the converter, the second set of secondary windings being coupled to ground via a neutral point of the secondary side, and
a filter with filter elements being set for removing a frequency component at three times the fundamental frequency of an AC voltage appearing on the AC side of the converter,
wherein the filter is connected between the neutral point of the secondary side of the transformer and ground.

The expression "coupled" used is intended to cover the possibility of an indirect electrical connection between two elements. There may thus be one or more elements placed between two elements defined as being coupled to each other. The expression "connected" is on the other hand intended to mean a direct electrical connection of two entities to each other without any entity between them.

The invention has a number of advantages. If there is a single phase fault in one intermediate connection, then the invention limits an increase of the healthy phase voltages of the other intermediate connections. The coupling of the transformer neutral point to ground via the filter also provides a DC grounding point for the DC system, which is uninfluenced by the filter. This has the advantage of allowing a decrease in size on the
over-voltage level on devices used in the DC system. The invention also enables removal of zero sequence third harmonics despite the neutral point of the transformer secondary side being grounded and without the need for 3rd harmonic filters in phase connections between the transformer and AC side of the converter. The invention therefore also provides a substantial cost saving.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will in the following be described with reference being made to the accompanying drawings, where

fig. 1 schematically shows a DC system being coupled to an AC system via an interface arrangement according to the invention,
fig. 2A schematically shows the structure of a filter provided in the interface arrangement,
Fig. 2B schematically shows the structure of a breaker assisting unit provided in the interface arrangement,
fig. 3 schematically shows a first type of converter that can be used in the interface arrangement,
fig. 4 schematically shows a second type of converter that can be used in the interface arrangement,
fig. 5 schematically shows a third type of converter that can be used in the interface arrangement, and
fig. 6 shows a number of method steps in a method of disconnecting the DC system from the AC system being performed by a control unit for the interface arrangement.
DETAILED DESCRIPTION OF THE INVENTION

In the following, embodiments of the invention will be described.

The present invention is directed towards providing an arrangement for interfacing a Direct Current (DC) system with an Alternating Current (AC) system, which systems may both be power transmission systems. The DC system can for instance be a High Voltage Direct Current (HVDC) power transmission system and the AC system may be a Flexible Alternating Current Transmission System (FACTS). However these types of systems are merely examples of such systems and should not be considered as a requirement. The invention can also be applied in for instance power distribution systems.

Fig. 1 schematically shows an interface arrangement 20 according to a first embodiment of the invention for connection between an AC system SI and a DC system S2. The AC system SI is in this embodiment a three-phase AC system and includes three conductors 10, 12 and 14 to which the DC system S2 is connected. The DC system S2 in turn includes two poles 16 and 18 that are coupled to the AC system conductors 10, 12 and 14 via the arrangement 20. In this embodiment there are two poles 16 and 18 and therefore the DC system is a bipole system. It should however be realized that the invention can also be used with a monopole system. It should here furthermore be realized that both the DC and AC system could include a lot more elements than the poles and conductors shown. However, these are not
central for the understanding of the present invention and have therefore been omitted.

In order to enable the DC system S2 to be coupled to the AC system SI, the arrangement 20 includes a converter 22 for conversion between AC and DC. The converter 22 may function as a rectifier and/or inverter. The converter 20 is typically a voltage source converter and can be of a number of various types, of which some will be described later on.

The converter 22 therefore has a DC side for connection to the DC system S2 and more particularly to at least one pole of the DC system and an AC side for being coupled to the AC system.

The arrangement 20 also includes a transformer 24 having a primary side with a first set of primary windings for being coupled to the AC system SI and a secondary side with a second set of secondary windings coupled to the AC side of the converter. In this first embodiment the secondary windings are more particularly connected to a number of parallel intermediate electrical connections 30, 32 and 34 interconnecting the transformer 24 with the converter 22. These intermediate connections are sometimes denoted an AC filter busbar. The intermediate connections are provided as parallel conductors that are at least two in number and in this case three. The intermediate connections are thus connected to the converter and lead from this converter towards the AC system. A number of units are connected to these parallel intermediate connections. There is here a surge
arrester unit 38, a filter unit 36 and a breaker assisting unit 28, which units are all connected between the parallel intermediate connections 30, 32 and 34 and ground. The filter unit 36 here includes a series connection of inductor and capacitor selected to provide filtering of high frequency components of the voltage appearing on the intermediate connections, for instance frequencies ten times or more higher than the frequency of the AC system, while the surge arrester unit 38 includes three parallel surge arresters, each connected between a corresponding intermediate connection and ground. It should be realized that the surge arrester unit and filter unit are not central to the invention and may therefore be omitted.

In the present example the conductors 10, 12 and 14 of the AC system SI and the intermediate connections are three and provided for transmissions of three phase AC voltages. For this reason the primary side of the transformer 24 includes three primary windings, which in this first embodiment are connected in a delta configuration. It should however be realized that it is also possible with a wye configuration. The primary side here lacks neutral point grounding. The primary side furthermore has three parallel connections to the AC system, one for each phase. In each of these connections there is a corresponding circuit breaker BR1, BR2 and BR3. The arrangement 20 thus includes a set of circuit breakers, which set according to the first embodiment includes three circuit breakers BR1, BR2 and BR3. As can be seen in fig. 1, the circuit breakers BR1, BR2 and BR3 of the set are coupled
between the AC side of the converter and the AC system SI.

The secondary side of the transformer 24 here has a wye configuration, with the central or neutral point of this connection being coupled to ground via a filter 26. This filter 26 is here provided for filtering away frequency components at three times the fundamental frequency of an AC voltage appearing on the AC side of the converter and here also on the intermediate connections. This fundamental frequency is in this case the same as the frequency used in the AC system SI. It should however be realized that it may differ and that a frequency conversion unit may be included in the interface arrangement.

Finally there is a first control unit 40 controlling the breaker assisting unit 28 and the circuit breakers BR1, BR2 and BR3. The control is indicated with dashed arrows in fig. 1.

Fig. 2A shows one configuration of the filter 26 and fig. 2B one configuration of the breaker assisting unit 28. The filter 26 here includes a first inductor LI in parallel with a first capacitor CI. The values of these elements are selected for providing filtering at three times the fundamental frequency of the voltage at the AC side of the converter, which voltage here appears on the intermediate connections 30, 32 and 34 i.e. at the fundamental frequency provided at the AC side of the converter. The frequency of this voltage is here also the frequency of the AC system.
The breaker assisting unit 28 in turn includes three parallel branches, where each branch is connected between ground and the AC side of the converter. Each branch includes a series connection of a switch SW1, SW2 and SW3 and an impedance element I\textsubscript{1}, I\textsubscript{2} and I\textsubscript{3}. When the switches SW1, SW2 and SW3 are closed, the impedance elements I\textsubscript{1}, I\textsubscript{2} and I\textsubscript{3} each provide an impedance between the corresponding intermediate connection and ground. In this first embodiment the impedance elements are reactors and thus the impedance is reactive. However, it should be realized that they may be resistive instead and also in some variations of the invention capacitive.

As mentioned earlier, the converter 22 is with advantage a voltage source converter and may as such be of a number of different types. It may for instance be a two-level, a three-level or a multi-level converter, where a two-level converter 22A is schematically shown in fig. 3, a three-level converter 22B is schematically shown in fig. 4 and a multi-level converter 22C is schematically shown in fig. 5. Each such converter normally includes a number of phase legs, where there is one phase leg for each phase provided via the intermediate connections. A converter thus includes at least two and in this case three phase legs. However, in fig. 3 - 5, only one such phase leg is shown.

As can be seen in fig. 3 depicting the two-level converter 22A, a phase leg PL of this converter includes a number of series connected switching elements, provided in the form of a transistor with anti-parallel diode. The switching elements are
connected in series between the two poles 16 and 18. In parallel with the phase leg PL there is a capacitor bank CB (here shown including two capacitors). The midpoint of this capacitor bank CB is grounded while the mid point of the phase leg PL is connected to a first end of a phase reactor LCI having a phase inductance, the second end of which phase reactor LCI is connected to a corresponding intermediate connection of the arrangement. The switching elements between the phase leg mid point and a pole here together make up a converter valve. There are thus two converter valves CV1 and CV2 in fig. 3. The phase reactor LCI here forms a pole to AC side inductance of the converter for both poles.

As mentioned earlier there can be further parallel phase legs connected between the poles, one for each intermediate connection. Therefore the converter includes a set of pole to AC side inductances, which set of pole to AC side inductances are provided through the phase inductances of the phase reactors in the phase legs.

In operation the switching elements are controlled, typically by a second control unit 41, for instance using pulse width modulation (PWM), for obtaining an AC voltage at the second end of the phase reactor LCI having the frequency of the voltage at the intermediate connections. This frequency is normally the same frequency as the frequency of the AC system. This is normally done through the phase leg midpoint alternately being placed at the potential or voltage of the positive and negative poles. These two voltages
thereby form the two levels of the converter. The control is indicated through dashed arrows in fig. 3.

The three-level converter 22B in fig. 4 resembles the two-level converter and in this example includes a phase leg with a first branch including four switching elements connected in series. The difference between the three- and the two-level converter is that there is a further branch of switching elements, here including two switching elements, connected in parallel with the two switching elements of the first branch provided adjacent and on opposite sides of the phase leg midpoint. The midpoint of this further branch is furthermore grounded. The switching elements are here controlled by the second control unit (not shown), typically also using PWM, so that the phase leg midpoint obtains three levels, a positive pole potential, a zero potential and a negative pole potential, which makes up the three levels of the three-level converter.

The example of a multilevel converter 22C shown in fig. 5 does have a slightly different configuration. There is no capacitor bank. Instead each phase leg is made up of a series connection of cells, where each cell is made up of two series connected switching elements having a capacitor connected in parallel with both these elements. In this example the midpoint between two switching elements of a cell is connected to one end of the capacitor of a following cell. In this way the cells are connected in series between the two poles. In the phase leg, on opposite sides of the phase leg midpoint, there are furthermore provided first and
second reactors LCA and LCB. In this type of converter the phase reactor is provided through these two reactors LA and LB provided in separate phase leg halves on opposite sides of the phase leg midpoint.

Each of these reactors here forms a pole to AC side inductance for a corresponding pole. The converter in fig. 5 is a symmetrical monopole converter.

Each cell here provides a zero or a small voltage contribution. The switching elements of the cells are furthermore controlled by the second control unit (not shown) so that the voltage at the phase leg midpoint resembles a reference AC voltage. This means that the cells are switched for providing a zero or the small voltage contribution, where the sum of the small voltage contributions of the cells together form an AC voltage resembling the reference AC voltage.

The operation of these types of converters is as such not new and known in the art. They can furthermore be varied in a multitude of ways. It is for instance possible to provide midpoint grounding, i.e. grounding for a midpoint between the two poles, also in the multi-level converter in order to make it into a bipole converter. It is likewise possible to omit such midpoint grounding of the two- and three-level converters.

In order to raise the efficiency of the converter it is also possible to add a zero sequence third harmonic to the AC voltage at converter AC side, i.e. to the AC voltage appearing on the intermediate connections. This third harmonic can be injected by the second control
unit using PWM, which is often called Third Harmonic Injection Pulse Width Modulation (3PWM). This increases the modulation index with about 15% through reducing the peak level of the voltage, which can be used for increasing the efficiency. However, this type of harmonic cannot be allowed to reach the AC system SI, where such harmonic is not used. This means that the zero sequence harmonic has to be removed.

Now a first aspect of the present invention will be described with reference being made to fig. 1 and 2A.

As can be seen in fig. 1, the neutral point of the secondary side of the transformer 24 is coupled to ground via the filter 26 having its filter elements, here inductor LI and capacitor CI, set to remove frequency components at three times the fundamental frequency. This means that the filter is set to remove such zero sequence third harmonics in the voltage appearing on the AC side of the converter and the intermediate connections 30, 32 and 34 so that these types of harmonics do not reach the AC system SI. In this embodiment the filter is in fact a resonance circuit providing resonance at this frequency of three times the fundamental frequency of the AC voltage appearing on the AC side of the converter and the intermediate connections. The filter can also be a low pass filter or a band pass filter set to this frequency.

Through the transformer neutral point being coupled to ground via the filter 26 a number of advantages are obtained. If there is a single phase fault in one
intermediate connection, the increase of the phase voltage of the other phases, the healthy phases, will be small compared with a non-grounded neutral point, where the voltages are otherwise raised by a factor of $\sqrt{3}$. The slight increase, which is thus much smaller than $\sqrt{3}$, is here caused by the presence of the filter. The coupling of the transformer neutral point to ground via the filter 26 also provides a grounding point for the DC system, which grounding point is uninfluenced by the filter 26. This has the advantage of allowing a decrease in size of the over-voltage level on the converter valves as well as on other devices used in the DC system. Otherwise, over-dimensioning would be required in order to withstand pole to ground faults in the DC system.

The provision of the filter 26 furthermore enables removal of zero sequence third harmonics despite the neutral point of the transformer secondary side being grounded. This is furthermore done without the need for filters in the intermediate connections. In an ordinary neutral point grounding situation, there would be needed one third harmonic filter for each phase in the intermediate connections. The invention therefore provides a substantial cost saving.

As seen above, the coupling to ground of the neutral point of the transformer secondary side is of advantage in relation to all kinds of faults, including pole to ground faults. This is combined with the filter removing third harmonics having no or limited influence
on the grounding of the transformer neutral point for fault removal purposes.

A second aspect of the invention concerns the combined use of the circuit breakers, breaker assisting unit and control unit. This aspect is also of advantage in relation to faults like pole to ground faults, single phase faults, multiple phase to ground faults and phase to phase short circuit faults. The faults in relation to which the invention may be used therefore include short-circuit faults, like short circuit faults between phase or phases and ground, between pole and ground and between phases. This second aspect also assists in providing overvoltage protection.

This second aspect will now be described in relation to fig. 1, 2B and 6, where the latter shows a flowchart of a number of method steps being performed in the control unit.

It can first be mentioned that the size of the branch impedances II, 12 and 13 are optionally much smaller than the corresponding impedances of the phase reactors of the converter. This means that a branch impedance may be much smaller than the pole to AC side inductance being connected to the same intermediate connection. Typically the inductance of a branch reactor may have a value that is below 30% of the inductance between a pole and the intermediate connection for the same phase via the converter, i.e. between a pole and the AC side of the converter. A branch impedance may alternatively have a value that is below 20% of the corresponding pole to AC side inductance.
In normal operation of the systems and interface arrangement, the circuit breakers BR1, BR2 and BR3 are closed while the switches SW1, SW2 and SW3 are open. If a fault occurs in the DC system S2 or in the interface arrangement, this fault could be detected in the DC system S2, in the converter 22, at the intermediate connections or at the transformer and reported to the first control unit 40. Faults occurring may be pole to ground faults, single phase to ground faults, multiple phase to ground faults and phase to phase short-circuit faults. In this way the first control unit 40 obtains a fault indication, step 42.

When such a fault occurs it is necessary to disconnect the DC system S2 from the AC system S1. However, this disconnection is often not possible to perform directly because it may be necessary to await a zero-crossing of the fault current. The first control unit 40, when receiving such an indication first controls the switches SW1, SW2 and SW3 of the breaker assisting unit 28 to close and thereby the impedance elements II, 12 and 13 are connected between the phases of the intermediate connections 30, 32 and 34 and ground, step 44. This switching is done fast and as soon as the indication of a fault is obtained. This fast closing of the switches SW1, SW2 and SW3 is thus based on the indication of a fault and limits the fault current between the DC and AC systems. If the branch impedances are much smaller than the impedances of the phase reactors, the short-circuit currents through the diodes of the valves are bypassed via the branch impedances and thereby the switching elements of the valves are
protected with regard to fault current and overvoltage prior to disconnection via the circuit breakers. Because of this a large part of the fault current will be led to ground via the impedance elements II, 12 and 13 in order to limit the influence on the AC system SI. These short-circuit currents through the diodes are furthermore limited even if the branch impedances are not much smaller. Since all switches SW1, SW2 and SW3 are closed the fault currents in the various phases are furthermore made symmetrical. The same current will also run in all three phases. In the first embodiment the closing of the switches is also made immediately, which speeds up the symmetrization. However, as an alternative it is possible that the switches are closed sequentially. The symmetrization of the fault current has another advantage. It guarantees or ensures that the fault current flowing through the breakers (BR1, BR2 and BR3) will have zero-crossings, which is not always the case depending on which converter topology is used and which type of fault that occurs. If for instance a symmetrical monopole converter as shown in fig. 5 is combined with a delta connected primary side transformer as shown in fig. 1 without a breaker assisting unit and there is a pole to ground fault, then the fault current through the breakers will lack zero-crossings for many cycles, which makes it hard and sometimes even impossible to open the circuit breakers. The same type of problem occurs also when the converter is an unsymmetrical monopole converter.

When the fault current has a zero-crossing, it is then possible to open the breakers BR1, BR2 and BR3. The first control unit 40 therefore controls the circuit
breakers BR1, BR2 and BR3 to be opened, step 46. This circuit breaker opening could be performed after a known time has elapsed since the closing of the switches SW1, SW2 and SW3 or after having measured the current and/or voltage on the intermediate connections and in this way having found that sufficient limitation has been performed, for instance through detecting that the current has a zero-crossing. After the opening of the circuit breakers, the first control unit 40 may thereafter open the switches SW1, SW2 and SW3, step 48.

The switches of the breaker assisting unit 28 are thus quickly closed when a fault takes place and the advantages of this is that the converter components are protected until the circuit breakers have disconnected the DC system from the AC system. Another advantage is that the fault currents are made symmetrical. This guarantees that a fault current caused by for instance a pole to ground fault will have a zero-crossing, which, in the absence of the breaker assisting unit, will not happen with the converter in fig. 5 and the transformer configuration of fig. 1. In the first embodiment the closing of the switches is also made immediately, which speeds up the symmetrization.

However, as an alternative it is possible that the switches are closed sequentially.

It should here be realized that the first and second aspects of the invention need not be combined. It is possible to provide an interface arrangement only implementing the first aspect.
The phase inductance of a converter between a pole and an intermediate connection may be provided through one or two phase reactors as shown in fig. 3 - 5. It should however also be realized that in a multilevel converter the phase inductance could be placed at another location between the pole and AC side of the converter or be distributed through several small inductors, for instance one in each cell or through inductors connected between the cells.

The first and second control units may each be provided as a computer or a processor with computer program memory including computer program code instructions causing the computer or processor to perform the above-mentioned method steps when being run. The computer program instructions can also be provided on a data carrier, such as a CD Rom disk or a memory stick and loaded onto a computer. The program code can also be provided in a server and loaded onto a computer remotely.

From the foregoing description of different variations of the present invention, it should be realized that it is only to be limited by the following claims.
CLAIMS

1. Interface arrangement (20) for coupling between an AC system (S1) and a DC system (S2) and comprising a converter (22) for conversion between AC and DC, said converter having a DC side for connection to said DC system and an AC side for being coupled to said AC system, a transformer (24) having a primary side with a first set of primary windings for being coupled to said AC system and a secondary side with a second set of secondary windings coupled to said converter, said second set of secondary windings being coupled to ground via a neutral point of said secondary side, and a filter (26) with filter elements (LI, CI) being set for removing a frequency component at three times the fundamental frequency of an AC voltage appearing on the AC side of the converter, wherein said filter is connected between the neutral point of the secondary side of the transformer and ground.

2. Arrangement according to claim 1, wherein the converter is configured to inject said frequency component at three times the fundamental frequency in the conversion.

3. Arrangement according to any previous claim, wherein the windings in the second set of windings are connected in a wye configuration.
4. Arrangement according to any previous claim, wherein the windings in the first set of windings are connected in a delta configuration.

5. Arrangement according to any of claims 1-3, wherein the windings in the first set of windings are connected in a wye configuration.

6. Arrangement according to any previous claim, wherein said first set of primary windings lack coupling to ground.

7. Arrangement according to any previous claim, wherein the filter is formed through a resonance circuit set to resonate at three times the fundamental frequency of the AC voltage on the AC side of the converter.

8. Arrangement according to any previous claim, further comprising a circuit breaker (BR1, BR2, BR3) in each connection between the primary side of the transformer and a corresponding conductor (10, 12, 14) of the AC system.

9. Arrangement according to claim 8, further comprising a breaker assisting unit (28) comprising a set of branches, where each branch includes a switch (SW1, SW2, SW3) in series with an impedance element (II, 12, 13) connected between the AC side of the converter and ground.

10. Arrangement according to claim 9, wherein the converter has a set of pole to AC side inductances and
the impedances of the impedance elements of the
branches have values that are less than 30% of these
pole to AC side inductances.

5 11. Arrangement according to claim 10, wherein the
impedance elements of the branches have values that are
less than 20% of the pole to AC side inductances.

12. Arrangement according to any of claims 9 - 11,
wherein the circuit breakers are closed and the
switches are open in normal operation and further
comprising a control unit (40) configured to close the
switches of the branches upon the occurrence of a fault
for ensuring zero-crossings in currents flowing through
the circuit breakers and to open the circuit breakers
at such zero-crossings.

13. Arrangement according to claim 12, wherein the
control unit is configured to close the switches
immediately upon the occurrence of the fault.

14. Arrangement according to claim 12 or 13,
wherein the control unit is configured to open the
switches after the circuit breakers have been opened.
FIG. 5

FIG. 6

1. Obtain fault indication
2. Close SW1, SW2, SW3
3. Open BR1, BR2, BR3
4. Open SW1, SW2, SW3
A. CLASSIFICATION OF SUBJECT MATTER

INV. H02J3/36

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H02J

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0. Warrelmann: “N - Lei ter THX”, 12 November 2004 (2004-11-12) XP002640099 Retri eved from the Internet: URL: http://www.warrelmann.de/ABB%20DEK0N%2</td>
<td>1-14</td>
</tr>
<tr>
<td></td>
<td>0THX.htm [retrieved on 2011-05-25] the whole document</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>JP 2000 217258 A (CHUBU ELECTRIC POWER; TOSHIBA CORP) 4 August 2000 (2000-08-04) the whole document</td>
<td>1-14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Special categories of cited documents:

 "A" document defining the general state of the art which is not considered to be of particular relevance

 "E" earlier document but published on or after the international filing date

 "L" document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

 "O" document referring to an oral disclosure, use, exhibition or other means

 "P" document published prior to the international filing date but later than the priority date claimed

- "I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

 "*" document member of the same patent family

Date of the actual completion of the international search: 27 June 2011

Date of mailing of the international search report: 06/07/2011

Name and mailing address of the ISA:

European Patent Office, P.B. 5818 Patentlaan 2

NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer: Krasser, Bernhard
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>wo 2005/067118 AI (SI EMENS AG [DE]; PEREIRA MARCOS [DE]; SADEK KADRY [DE]) 21 July 2005 (2005-07-21) abstract; figures 3,4,6-13</td>
<td>1-14</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3671336 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0212172 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IN 166269 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2842587 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 62040058 A</td>
</tr>
<tr>
<td>WO 2005067118 A</td>
<td>21-07-2005</td>
<td>DE 102004002261 A</td>
</tr>
<tr>
<td>JP 2000014006 A</td>
<td>14-01-2000</td>
<td>NONE</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (April 2005)