发明名称
具有弯曲的前边缘的轴向涡轮机叶轮

摘要
一种涡轮增压器，该涡轮增压器包括：涡轮机叶轮，该涡轮机叶轮具有不超过60%的轮毂到端段比和叶片，该叶片具有高的转向角度和弯曲的前边缘；涡轮机外壳，该涡轮机外壳形成向内盘旋的主涡卷通路，该向内盘旋的主涡卷通路显著地收敛以便以高的周向角度提供高度加速的空气流到涡轮机中；和双侧并行压缩机。该压缩机和涡轮机各基本上不产生轴向力，允许使用最小轴向推力轴承。
1. 一种涡轮增压器，构造在从发动机接收排气流，所述发动机构造成一系列标准操作条件下操作，并且将输入空气压缩为加压空气流，所述涡轮增压器包括：

涡轮增压器外壳，所述涡轮增压器外壳包括涡轮机外壳；和

转子，所述转子构造在将旋转轴线在所述涡轮增压器外壳内旋转，所述转子包括轴向

涡轮机叶轮、压缩机叶轮、和轴，所述轴沿所述旋转轴线延伸并且将所述涡轮机叶轮连接到所述压缩机叶轮；

其中，所述涡轮机叶轮构造成具有轮毂，并且具有多个轴向涡轮机叶片，所述多个轴向

涡轮机叶片构造成当所述涡轮增压器从所述发动机接收所述排气流时驱动所述转子绕所述旋转轴线旋转，每一个叶片具有轴向前边缘，轴向后边缘，轮毂端部，和与所述轮毂端部相对的末端端部；

其中，每个叶片的所述轴向前边缘的特征在于在所述轮毂端部附近的前边缘弯曲，所述前边缘弯曲包括下游弯曲分量。

2. 权利要求 1 所述的涡轮增压器，其中，所述前边缘弯曲包括周向弯曲分量。

3. 权利要求 2 所述的涡轮增压器，其中，每一个叶片的前边缘弯曲构造成在所述叶片

和相邻的叶片之间提供足够的空隙以使得构造成铸造所述叶片的铸造模能从所述叶片之间抽出而不会所述铸造模变形。

4. 权利要求 3 所述的涡轮增压器，其中，所述轴向前边缘从前边缘轮毂端部到 50% 跨度处形成直线的线。

5. 权利要求 3 所述的涡轮增压器，其中，所述轴向前边缘从前边缘轮毂端部到 50% 跨度处形成直线的线。

6. 权利要求 5 所述的涡轮增压器，其中，每一叶片的所述轴向前边缘的特征在于在所述叶片角度的分布范围，所述前

边缘叶片角度的分布范围匹配所述叶片的前边缘的所述入口角度分布范围。

7. 权利要求 5 所述的涡轮增压器，其中，所述轴向前边缘形成从前边缘轮毂端部到 50% 跨度处的直线。

8. 权利要求 2 所述的涡轮增压器，其中，所述轴向前边缘形成从前边缘轮毂端部到 50% 跨度处的直线。

9. 权利要求 2 所述的涡轮增压器，其中，所述轴向前边缘形成从前边缘轮毂端部到 50% 跨度处的直线。

10. 权利要求 9 所述的涡轮增压器，其中，跨过每一个叶片的所述轴向角度所述前边缘方向角度变化至少 20 度。

11. 权利要求 10 所述的涡轮增压器，其中，所述轴向前边缘形成从前边缘轮毂端部到
12.权利要求1所述的涡轮增压器，其中，每一个叶片的前边缘弯曲构造在所述叶片和相邻的叶片之间提供足够的空隙以使得构造在铸造所述叶片的铸造模能从所述叶片之间被拉出而不使所述铸造模变形。

13.权利要求12所述的涡轮增压器，其中，所述轴向前边缘形成从前边缘轮毂端部到50%跨度处的直的线。

14.权利要求12所述的涡轮增压器，
其中，所述涡轮机外壳形成轴向方向转向的内盘旋的涡轮机主涡卷通路，所述主涡卷通路构造成在所述标准操作条件的设计条件期间以入口角度分布范围而将所述排气流提供到所述叶片上游边缘，并且
其中，每一个叶片的所述轴向上游边缘的特征在于与跨越所述叶片的轴向前边缘的所述入口角度分布范围相匹配的前边缘叶片角度的分布范围。

15.权利要求14所述的涡轮增压器，其中，跨过每一个叶片的所述跨度，所述前边缘方向角度变化至少20度。

16.权利要求16所述的涡轮增压器，其中，所述轴向前边缘形成从前边缘轮毂端部到50%跨度处的直的线。

17.权利要求1所述的涡轮增压器，其中，所述轴向前边缘形成从前边缘轮毂端部到50%跨度处的直的线。

18.权利要求1所述的涡轮增压器，
其中，所述涡轮机外壳形成轴向方向转向的内盘旋的涡轮机主涡卷通路，所述主涡卷通路构造成在所述标准操作条件的设计条件期间以入口角度分布范围而将所述排气流提供到所述叶片上游边缘，并且
其中，每一个叶片的所述轴向上游边缘的特征在于与跨越所述叶片的轴向前边缘的所述入口角度分布范围相匹配的前边缘叶片角度的分布范围。

19.权利要求18所述的涡轮增压器，其中，跨过每一个叶片的所述跨度上，所述前边缘方向角度变化至少20度。

20.权利要求19所述的涡轮增压器，其中，所述轴向前边缘形成从前边缘轮毂端部到50%跨度处的直的线。
具有弯曲的前边缘的轴向涡轮机叶轮

技术领域
[0001] 本发明一般涉及涡轮增压器, 并且更特别地涉及轴向涡轮机, 该轴向涡轮机具有低的轮廓到末端比和弯曲的前边缘。

背景技术
[0002] 参考图1, 具有径向涡轮机的典型涡轮增压器101包括涡轮增压器外壳和转子, 该转子构造在推力轴承和两组轴颈轴承 (一组轴颈轴承用于每一个相应的转子叶轮) 或者替代地其它类似地支撑性轴承上沿转子旋转轴线103在涡轮增压器外壳内旋转。涡轮增压器刚壳包括涡轮机外壳105, 压缩机外壳107, 和轴承外壳109 (即, 包含轴承的中心外壳), 该轴承外壳将涡轮机外壳连接到压缩机外壳。该转子包括基本上位于涡轮机外壳内的涡轮机叶轮111, 基本上位于压缩机外壳内的压缩机叶轮113, 和轴115, 该轴沿转子旋转轴线延伸, 通过轴承外壳, 以将涡轮机叶轮连接到压缩机叶轮。

[0003] 涡轮机外壳105和涡轮机叶轮111形成涡轮机, 该涡轮机构造成从发动机, 例如从内燃机125的排气歧管123向地接收高压和高温的排气流121。涡轮机叶轮 (并且因此该转子) 被高压且高温的排气回流驱动绕转子旋转轴线103旋转, 该高压且高温的排气流变成较低压力且低温的排气流127 并且被轴向地释放到排气系统 (未示出) 中。

[0004] 压缩机外壳107 和压缩机叶轮113 形成压缩机级。被排气驱动的涡轮机叶轮111 驱动旋转的压缩机叶轮构成将接收的输入空气 (例如, 周围的空气131, 或来自多级压缩机中的先前的级的已经加压的空气) 轴向地压缩成加压的空气流133, 该加压的空气流从压缩机被周向地喷出。由于该压缩过程, 加压的空气流的特征在于, 超过输入空气的温度的增加的温度。

[0005] 任选地, 加压空气流可以被输出对流冷却的增压空气冷却器135, 该对流冷却的增压空气冷却器构造成从加压空气流热交换器和设备。作为结果的冷却的和加压的输出空气流137 被输送到内燃机上的进气歧管139 中, 或者替代地被输送到后续级串联通压缩机中。该系统的操作由 ECU 151 (发动机控制单元) 控制, 该 ECU 通过通信连接153 连接到该系统的其余。

[0006] 通过引用并入这里以便所有目的的日期为1989年7月25日的美国专利No. 4,850,820公开一种涡轮增压器, 该涡轮增压器类似于图1的涡轮增压器, 但它具有轴向涡轮机。轴向涡轮机固有地具有较低的惯性矩, 减小加速该涡轮机所需的能量的量。如在图2中可以看到的, 该涡轮机具有涡卷, 该涡卷在涡轮机叶片的半径处周向地接收排气, 并且 (参考图1) 轴向地限制该流动以便它转变为轴向流动。因此, 它沿基本上轴向的方向冲击涡轮机叶片的前边缘 (参考第2栏)。

[0007] 对于许多感兴趣的涡轮机尺寸, 与可比较的径向涡轮机相比, 轴向涡轮机典型地以较高的质量流量和较低的膨胀比进行操作。虽然常规轴向涡轮机通常提供较低的惯性, 尽管具有效率和性能的一些损失, 但它们遭受于不能被有效地制造成可用于许多现代内燃机的小的尺寸。这是由于由于将需要的特别紧密的公差, 由于空气动力学限制, 和 / 或由于
对产生小的铸造部件的尺寸限制。轴向涡轮机也缺乏在较高的膨胀比下良好地运行的能力，诸如，典型地由于燃烧机的排气的脉动性质而需要这种能力。此外，常规轴向涡轮机具有跨越叶片的静叶压力的显著变化，转子的推力轴载上引起显著的推力载荷，并且潜在地引起振荡。

[0008] 一些常规涡轮增压器中，涡轮机和压缩机构造成沿相反的方向施加轴向载荷以便减小必须由轴向承载的平均轴向载荷。然而，来自涡轮机和压缩机的轴向载荷不彼此均衡地变化，并且可能处于显著不同的水平，因此推力轴载必须被设计用于涡轮增压器使用期间可能出现的最大载荷条件。构造成支撑轴的轴向载荷的轴承比可比较的低载荷轴承浪费更多能量，并且因此必须支持较高轴向载荷的涡轮增压器失去更多能量到它们的轴承。

[0009] 因此，已经需要一种涡轮增压器涡轮机，该涡轮增压器涡轮机具有低的惯性矩，并且其特征在于不需要额外紧密的公差的小的尺寸，同时在较低和较高膨胀比下以合理的效率水平操作，并且仅仅具有小的静态载荷变化。

发明内容

[0010] 在各种实施例中，本发明解决一些提及的需要的一些或全部，典型地提供成本划算的涡轮增压器涡轮机，该涡轮增压器涡轮机的特征在于低的惯性矩，并且具有不需要特别紧密的公差的小的尺寸，同时在较低和较高膨胀比下以合理的效率水平操作，并且仅仅具有小的静态载荷变化。

[0011] 本发明提供一种涡轮增压器，所述涡轮增压器构造成从发动机接收排气流，所述发动机构造成在一系列标准操作条件下操作，并且将输入空气压缩为高压空气流。本发明的实施例将典型地包括：涡轮增压器外壳，所述涡轮增压器外壳包括涡轮机外壳；和转子，该转子构造在涡轮增压器外壳内沿旋转轴线旋转。该转子包括轴向涡轮机叶轮，压缩机叶轮和轴，该轴沿旋转轴线延伸并且将涡轮机叶轮连接到压缩机叶轮。

[0012] 涡轮机叶片构造具有轮毂，并且具有多个轴向涡轮机叶片，该多个轴向涡轮机叶片构造成当涡轮增压器从发动机接收排气流时驱动该转子绕旋转轴线旋转。每个叶片具有轴向前边缘（即，轴向上游边缘），轴向后边缘（即，轴向下游边缘），轮毂端部，和与轮毂端部相对的末端端部。每个叶片的轴向前边缘的特征在于轮毂端部附近的前边缘弯曲。该前边缘弯曲包括第一弯曲（轴向下游弯曲分量），该第一弯曲限定轴向前边缘的轴向剪切。该前边缘弯曲也可以包括第二弯曲（周向弯曲分量），该第二弯曲形成轴向前边缘的非径向转向。有利地，当具有在叶片的跨度上显著地变化的前边缘方向角度时，该前边缘弯曲可以允许涡轮机叶轮是铸造部件。

[0013] 压缩机叶轮构造使将输入空气压缩成高压空气流。有利地，涡轮机外壳形成向内盘旋（spiral）的涡轮机主涡卷（primary-scroll）通路，该向内盘旋的涡轮机主涡卷通路的特征在于显著足够的径向减小以加速排气使得涡轮机接收的排气的总压力的显著部分被转化为动态压力。这允许当轴构造的叶片从排气提取显著的能量而显著地改变跨越涡轮机叶片的静态压力。通过跨越涡轮机叶片的基本上未改变的静态压力，排气流在转子上施加很少到没有轴向压力。

[0014] 轴向后边缘的特征在于轮毂端部处的半径和末端端部处的半径。本发明的特征
是，涡轮机叶轮轴向后边缘的轮毂端部处的半径不超过涡轮机叶轮轴向后边缘的末端端部处的半径的60%。另外特征包括，涡轮机叶轮叶片被限制到16个或更小数量，并且各特征在于大的转向角度。

[0015] 有利地，这些特征提供从沿高度周向的方向被接收的的高速排气的显著量的能量的提取而不显著地影响该气体的静态压力。此外，涡轮机叶轮不需要非常紧密的制造公差或小的叶片尺寸，即使该叶轮以相对小的尺寸被制造。

[0016] 本发明的另外特征是，该压缩机可以是双侧并行型压缩机，该双侧并行型压缩机包括压缩机叶轮，该压缩机叶轮具有背对背取向的推进器叶片，该背对背取向的推进器叶片包括离开涡轮机轴向周向的第一组推进器叶片和向着涡轮机轴向周向的第二组推进器叶片。该压缩机外壳构造将入口空气引导到并行的每一组压缩机叶片。有利地，根据这个特征，该压缩机构造成在转子上基本上不引起轴向载荷。结合也在转子上产生很小轴向载荷或不产生轴向载荷的涡轮机，推力轴承载荷水平可以显著地低于常规涡轮增压器中的情况。较低的轴承载荷水平允许使用更高效的技术轴承，并且因此增加作为结果的涡轮增压器的总效率。

[0017] 根据结合附图的优选实施例的以下详细描述，本发明的其它特征和优点将变得显而易见。该附图通过例子的方式示出本发明的原理。如在下面被阐述以使人能够建造和使用本发明的实施例的特别优选的实施例的详细描述不意图限制列举的权利要求，而是它们意图用作要求保护的本发明的特别例子。

附图说明

[0018] 图 1 是现有技术涡轮增压的内燃机的系统视图。
[0019] 图 2 是体现本发明的涡轮增压器的剖视平面图。
[0020] 图 3 是沿图 2 的线 A-A 截取的图 2 中描绘的涡轮增压器的剖视侧视图。
[0021] 图 4 是关于图 2 中描绘的涡轮机叶轮的某些关键流线型系统的平面图。
[0022] 图 5 是图 2 中描绘的涡轮机叶片的弧形的描绘。
[0023] 图 6 是图 2 中描绘的涡轮机叶轮的透视图。
[0024] 图 7 是铸造模的平面图。
[0025] 图 8 是图 2 和 6 中描绘的涡轮机叶轮的不同的透视图。
[0026] 图 9 是图 2 中的涡轮机叶轮的平面图。

具体实施方式

[0027] 通过参考下面的详细描述，上面总结的并且由列举的权利要求限定的本发明可以被更好地理解。该详细描述应当结合附图被阅读。在下面被陈述以使人能够建造和使用本发明的特别实施的本发明的特别优选的实施例的这个详细描述不意图限制列举的权利要求，更确切地说，意图提供它们的特别例子。

[0028] 本发明的典型实施例存在于配备有汽油动力内燃机（“ICE”）和涡轮增压器的机动车辆。该涡轮增压器配备有独特组合的特征，该独特组合的特征在各种实施例中可以提供与 50% 反作用力涡轮机的几何益处一起的零反作用力涡轮机的空气动力学益处，且 / 或通过以减小轴承要求的方式组合不太高效的部件提供显著改进的系统效率，并且因此形成与
可比较的未改进的系统相比具有较高效率的系统。

[0029] 该涡轮机构造在较低和较高膨胀比下以合理的效率水平操作，在跨越涡轮机
叶轮的静压力中仅具有小的变化（并且因此低的转子推力载荷），同时它具有低的惯性
矩，并且其特征在于小的尺寸，但不需要格外紧密的公差。为此，该压缩机也特征在于
低轴向推力载荷，使涡轮增压器需要与用于可比较的常规涡轮增压器中的情况相比显著更
高效的推力轴心。

[0030] 参考图 2 和 3，在本发明的第一实施例中，诸如图 1 中描绘的典型的内燃机和 ECU
（并且任选地中间冷却器）设置有涡轮增压器 201，该涡轮增压器包括涡轮增压器外壳和转
子。该转子构造在一组轴承上沿转子旋转轴线 203 在涡轮增压器外壳内旋转。涡轮增压
器外壳包括涡轮机外壳 205，压缩机外壳 207，和中空外壳 209（即，包含径向和推力轴心的
中心外壳），该轴承外壳将涡轮机外壳连接到压缩机外壳。该转子包括：基本上位于涡轮机
外壳内的轴向涡轮机叶轮 211，基本上位于压缩机外壳内的径向压缩机叶轮 213 和轴 215，
该轴沿转子旋转轴线延伸通过轴承外壳，以将涡轮机叶轮连接到压缩机叶轮，并且使涡轮
机叶轮驱动压缩机叶轮使其绕旋转轴线旋转。

[0031] 涡轮机外壳 205 和涡轮机叶轮 211 形成涡轮机，该涡轮机机构在从发动机的排气
歧管向地接收高压且高温排气流（诸如，如图 1 中描绘的，来自排气歧管 123 的排气流
121）。涡轮机叶轮（并且因此该转子）绕转子旋转轴线 203 旋转地被作用在涡轮机叶轮的
多个叶片 231 上的高压且高温排气流驱动。该排气流在穿过该叶片时变成较低总压力排气
流，并且随后通过涡轮机出口 227 被轴向释放到排气系统（未示出）中。

[0032] 压缩机外壳 207 和压缩机叶轮 213 形成径向压缩机。（通过轴 215）被排气驱动的
涡轮机叶轮 211 驱动旋转的压缩机叶轮构成将轴向接收的输入空气（例如，周围空气，或
来自多级压缩机中的先前级的已经加压的空气）压缩为加压的空气流，该加压的空气流可以
从压缩机被向地喷射并且被转送到发动机入口（诸如，如图 1 中描绘的，被转送到发动
机入口 139 的加压空气流 133）。

[0033] 涡轮机蜗壳

涡轮机外壳 205 形成通往主涡卷通路 219 的排气进入通路 217，该排气进入通路构
成沿垂直于转子旋转轴线 203 并且从转子旋转轴线 203 径向偏移的方向从发动机接收排气
流。主卷通路形成螺旋形，该螺旋形适合于将气体流的速度显著地加速到高的速度，对于
涡轮机（及其相关的发动机）的至少一些操作条件，该高的速度可以是超音速速度。更特别
地，主卷通路使排气绕旋转轴线 203 向内和向外轴向涡轮机叶轮 211 轴向地转向，因此实
现（对发动机的一些标准操作条件）超音速流动，该超音速流动具有下游轴向分量 221
和下游轴向分量 223。

[0034] 实际上，这种构造利用角动量的转换（而不是收敛发散喷嘴）来实现高速空气流
动，对于至少一些操作条件，该高速空气流动可以包括到超音速速度的无冲击过渡。典型
地，需要由大半径变化定律的螺旋形来实现这种速度变化，并且即使作为结果的空气流
轴向地转向到轴向涡轮机叶轮中，它也具有很高速度的轴向分量。

[0035] 实现这种轴向分量而不使用转向叶片，转向叶片的使用将引起另外的损失。因此，
这个实施例的涡轮机入口为无叶片设计。与具有叶片的设计相比，这种设计有利地是成本
高效的，可靠的（其中它从它们很可能在其中腐蚀的环境去除部件），避免摩擦压力损失，
且避免形成临界喉部面积，在一些操作条件下，该临界喉部面积可能阻塞流动。

参见图2-4，主涡卷通路的内半径中的被加速的排气流的这种潜在地超音速的流动被引到涡轮机叶轮211中。更特别地，主涡卷通路是由内盘旋的通路，其特征在于主涡卷入口端口225，该主涡卷入口端口将主涡卷通路连接到排气进入通路217。主涡卷通路基本上形成收敛的通路，所以收敛的通路充分地向内盘旋并且充分地收敛以加速排气，并且对于发动机的（并且因此涡轮增压器的）至少一些标准操作条件实现超音速速度，这是由于排气轴向下游转向并且撞击在叶片231的轴向上游端部233上。

主涡卷入口端口225是平面部位，该平面部位沿涡轮机内的通路定位，排气在达到涡轮机叶轮之前穿过该通路。主涡卷入口端口的该部位相对于该通路中的开口被限定，该开口的特征在于，当在垂直于转子旋转轴线203截取的横截面中观察时的舌状形状。

更特别地，当在图3的横截面中观察时，舌状部235的结构表现为具有末端的突起。应当注意，在一些实施例中，当在不同轴向部位获取该横截面时，这个结构将在形状上不变化。在其它实施例中，形成舌状部235的结构可以被成形使得当在不同轴向部位获取的横截面中观察时舌状部的末端的部位变化。

主涡卷入口端口225位于舌状部235的末端。舌状部的末端的轴向部位在某种程度上看起来随着被考虑的横截面的轴向位置变化，主涡卷入口端口225都被限定在舌状部的末端的最上游部位，即，外在在此处打开使得它不再径向地介于排气流和叶片之间（即使该叶片从排气轴向下偏移）的最上游部位。为了本申请的目的，主涡卷入口端口225被限定为在舌状部的末端处的从排气进入通路217到主涡卷通路219的最小平面开口。换句话说，它在该流向叶片打开的部位处处于排气进入通路的下游端部。

主涡卷通路219开始于主涡卷入口端口225，并且绕旋转轴线向内盘旋360度以形成收敛的环路，该收敛的环路使进入主涡卷入口端口225的流动会合。这个收敛的环路向加速排气并且使其轴向转向。贯穿主涡卷通路219的360度，被加速的且转向的排气轴流撞击在叶片231上，在叶片之间经过并且驱动涡轮机叶轮211旋转。

总之，用于轴向涡轮机叶轮的外壳形成包围转子旋转轴线的向内盘旋的主涡卷通路，它开始于基本上在叶片的轴向上游端部的径向外切的主涡卷入口端口225，使得该通路向内盘旋并且轴向转向（turn axially）以将排气轴加速度到轴向涡轮机叶轮叶片的上游端部中。

校正的质量流量

为了根据本发明提供排气的适当水平的加速，主涡卷通路219构造成为具有尺度参数使得当在临界膨胀比（_c_）下操作时涡轮机的校正的质量流率表面密度超过临界构造参数，即，临界校正的质量流率表面密度（_D_）。更特别地，用于该涡卷的尺度参数包括主涡卷半径比（r）和主涡卷入口端口面积（a），并且被选择使得当涡轮机以临界膨胀比操作时涡轮机的校正的质量流率表面密度超过临界构造参数（_D_）。这些尺度参数相对于由质心（237）表征的主涡卷入口端口225被限定。为了该气流被轴向地加速，这个质心将基本上在每一个叶片（231）的轴向上游端部233径向外切并且典型地在每一个叶片（231）的轴向上游端部233轴向上游。

上面列举的项的一些的值取决于将驱动涡轮机的排气流气体的类型。这个排气流气体将由玻尔兹曼常数（k），并且由气体常数（R-specific）（R_g）表征。这些常数随着气体
类型而变化，但对于大多数汽油动力发动机排气，差异被预期是小的，该常数典型地大约为 k = 1.3 且 R_{sp} = 290.8 J/kg/K。

涡轮机外壳具有加速排气的能力，该排气由上面列举的两个尺度参数表征。为主涡卷半径比 r_{t}的第一尺度参数被定义为在涡轮机叶片 231 的轴向前边缘（即，在转子入口的内边缘）的轮毂处的点 239 的半径除以主涡卷入口端口 225 的平面区域的质心 237 的半径。为主涡卷入口端口面积 a_{o}的第二尺度参数被定义为主涡卷入口端口 225 的面积。

如上面提及的，涡轮机的这个实施例的几何结构相对于在临界膨胀比 E_{cr}下的操作参数被限定。这个临界膨胀比从以下公式获得

$$ E_{cr} = \left(\frac{k+1}{2}\right)^{\frac{k}{k-1}} $$

并且是气体特定的玻耳兹曼常数 k 的函数。用于 E_{cr}的典型值是 1.832。

如上面列举的，这个实施例的主涡卷通路 219 的尺寸由主涡卷半径比 r_{t}和主涡卷入口端口面积 a_{o}限制。这引起涡轮机的校正的质量流量率表面密度超过临界校正的质量流量率表面密度 D_{cr}。这个临界校正的质量流量率表面密度从以下公式获得

$$ D_{cr} = r_{t} \frac{101325}{\sqrt{288 \times R_{sp}}} \left(1 - \frac{(k-1)}{(k+1)} \frac{R_{sp}}{2k} \right) \sqrt{\frac{2k}{k+1}} $$

它随着主涡卷半径比 r_{t}变化。

对于任何给定涡轮机，用于给定出口静压力（即，一个入口总压力）的正好一个稳态入口条件将以给定的膨胀比（诸如临界膨胀比 E_{cr}）驱动涡轮机。蜗壳的几何结构的变化，例如半径比 r_{t}和 / 或主涡卷入口端口面积 a_{o}的变化可以改变稳态质量流量率，该稳态质量流量率将由给定的临界膨胀比驱动涡轮机，并且因此将影响相关的校正的质量流量率表面密度。

如果主涡卷半径比和主涡卷入口端口面积被适当地选择，则它将引起当以临界膨胀比 E_{cr}被驱动时在主涡卷入口端口 225 处的校正的质量流量率表面密度大于临界校正的质量流量率表面密度 D_{cr}。虽然在主涡卷半径 r_{t}、主涡卷入口端口面积和主涡卷入口端口处的校正的质量流量率表面密度之间的关系是复杂的，并且虽然它们将典型地被实验地探索，但可以注意到，通常，用于相同的端口面积的较高的半径比将导致较高的校正的质量流量率表面密度。

在根据本发明设计涡轮机的迭代方法中，本领域技术人员首先可以选择要从发电机接收的排气的组成，查找（从已有的气体性质的源）相关的玻耳兹曼常数 k 和气体常数 R_{sp}，并且计算临界膨胀比 E_{cr}。

然后设计涡轮机的第一构造。该涡轮机包括：如上所述的蜗壳，该蜗壳具有向内盘旋的通路，该向内盘旋的通路从切向方向转向到轴向方向；和轴向涡轮机叶片。该设计的特征在于第一主涡卷半径比 r_{t}和第一主涡卷入口端口面积 a_{o}。

原型被建造，并在气体支架上，并且使用选定的排气运行。输入总压力增加直到计算的膨胀比达到临界膨胀比 E_{cr}。这个膨胀比根据入口处的总压力和出口处的总压比被计算。稳态质量流量率 m，总涡轮机入口温度 T，和总入口压力 p_{i}被测量。
其中 \(a_i \) 是入口端口面积，这个计算的校正的质量流率表面密度 \(D_{ca} \) 与临界校正的质量流率表面密度 \(D_\infty \) 对比，该临界校正的质量流率表面密度使用前面认同的公式的被计算。如果校正的质量流率表面密度超过或等于临界校正的质量流率表面密度，则本发明的实施例的设计是完整的。如果校正的质量流率表面密度小于临界校正的质量流率表面密度，则该设计被认为不足以产生根据本发明需要的高质量周向空气流动，并且完成设计和测试步骤的另一迭代。

[0053] 在这个下一迭代中，主涡卷半径比 \(r_i \) 和 / 或主涡卷入口端口面积 \(a_i \) 被适当地调节（例如，减少）以增加校正的质量流率表面密度（当在临界膨胀比 \(E_{\infty} \) 下获取时）。这个过程被重复直到找到一种设计，在该设计中，校正的质量流率表面密度超过或等于临界校正的质量流率表面密度（当在临界膨胀比 \(E_{\infty} \) 下获取时）。

[0054] 在用于上面列举的迭代设计方法的潜在的替代决策过程中，改变尺寸参数 \(r_i \) 和 \(a_i \) 的一个或两个的决定基于在临界操作条件（即，引起临界在临界膨胀比 \(E_{\infty} \) 下发生的条件）上，通过排气测试涡轮机叶轮的轴向载荷（或引起轴向载荷的静态压力比）。如果轴向力不低于阀值（诸如以下载荷条件：叶轮轮毂附近的叶轮上游的静态压力大于涡轮机出口静态压力的 120%，即，该压力至少相差出口压力的 20%），则进行另一迭代。

[0055] 叶轮叶片

参考图 3-5，相对于下游轴向流动分量 221 和下游周向流动分量 223，每一个叶片 231 的特征在于下表面 241（即，基本上周向地对下游周向流动分量的表面）和上表面 243（即，基本上周向地背向下游周向分量的表面）。

[0056] 叶片 231 的下和上表面会合于轴向前边缘 245（即，叶片的上游边缘）和轴向后边缘 247（即，叶片的下游边缘）。该叶片以悬臂式构造从中心轮毂 271 向外径向延伸。沿叶片的径向内部轮毂端部 273 连接到轮毂，并且延伸到叶片的径向外部末端端部 275。叶片的轮毂端部从轴向前边缘的内部轮毂端部延伸到轴向后边缘的内部轮毂端部。叶片的末端端部从轴向前边缘的外部末端端部延伸到轴向后边缘的外部末端端部。

[0057] 典型的轴向涡轮机典型地设置有叶片，该叶片的叶片长度与相应轮毂的半径相比非常小。与这种典型的常规相反，本实施例设置有叶片，该叶片的轮毂到末端比小于或等于 6（即，轴向后边缘的内部轮毂端部的半径不超过轴向后边缘的外部末端端部的半径的 60%）。

[0058] 虽然具有高的轮毂到末端比的常规轴向叶片也需要大量叶片来从排气提取任何重要的能量，但本叶片能够提取进入涡轮机叶轮的高速的周向的流动的很高百分比的动态压力。它们可以通过相对有限数量的叶片这样做，因此限制涡轮机叶轮的旋转惯性矩，并且因此提供快速瞬态响应时间。在本发明的许多实施例下，存在 20 个或更少叶片，并且对于许多那些实施例，存在 16 个或更少叶片。

[0059] 在沿叶片的任何给定径向部位，下和上表面各由弧形表征，并且该叶片由中间弧形表征，为了本申请的目的，该中间弧形将被定义为在相等地在上和下表面之间的中间部位从轴向前边缘延伸到轴向后边缘的中间弧形曲线 249，其中沿线 251 获取中间部位，该线
从上弧形延伸到下弧形，垂直于沿中间弧形曲线的曲线 249。

【0060】中间弧形曲线 249 在轴向前边缘处的中间弧形曲线的方向限定前边缘方向 253，并且其特征在于前边缘方向角 β_1 （即 β_1 叶片角度），该前边缘方向角是中边缘方向和一条线之间的角偏移，该直线平行于旋转轴线并且穿过轴向前边缘（与中间弧形在相同的径向部位），并且因此也平行于超音速流动的下游轴向分量 221。当轴向前边缘转到周向流动分量 223（如图 5 中描绘的）时，β_1 叶片角度为正的，并且当轴向前边缘正好沿轴向流动分量 221 面向时 β_1 叶片角度为零。β_1 叶片角度可以在轴向前边缘的径向范围上变化。

【0061】中间弧形曲线 249 在轴向前边缘处的中间弧形曲线的方向限定前边缘方向 255，并且其特征在于后边缘方向角 β_2 （即 β_2 叶片角度），该后边缘方向角是后边缘方向和—一直线之间的角偏移，该直线平行于旋转轴线并且穿过轴向后边缘（与中间弧形在相同的径向部位）。当轴向后边缘转到周向流动分量 223（如图 5 中描绘的）时，β_2 叶片角度为正的，并且当轴向后边缘正好沿轴向流动分量 221 面向时 β_2 叶片角度为零。叶片角度 β_2 可以在轴向后边缘的径向范围上变化。

【0062】在叶片上的给定径向部位的 β_1 和 β_2 叶片角度的总和限定在那个径向部位的用于该叶片的转向角度。$\beta_1 + \beta_2$ 转向角度可以在该叶片的径向范围上变化。

【0063】虽然主涡卷高效地加速排气流并且因此提供排气流的动压压力的显著增加，但它典型地不产生具有高度轴向一致性的流动（如从带叶片的喷嘴可以看到的）。本实施例的叶片，并且特别地它们的轴向前边缘的形状被决定使得该叶片的每一个径向部分最佳地适合于在其径向部位出现的流动。这种类型的定向对于常规轴向涡轮机来说不是典型的，这是由于它们典型地具有提供高水平的流动一致性的带叶片的喷嘴，并且由于它们具有高得多的轮毂到末端比，该高得多的轮毂到末端比限制轮毂和末端流动之间的可能变化。

【0064】在本实施例下，在每一个叶片的轴向前边缘的大部分上，叶片角度相对于旋转轴线周向地带游向面对（即 β_1 叶片角度是正的）。此外，在轴向前边缘的轮毂端部和轴向前边缘的中间跨度（即，在其轮毂端部和其护罩端部之间的轴向前边缘半径)， β_1 叶片角度大于或等于 20 度（并且可能地大于或等于 30 度)。在轴向前边缘的护罩端部，β_1 叶片角度大于或等于 -20 度（并且可能地大于或等于 -5 度)。

【0065】另外，在本实施例下，在每一个叶片的径向范围的大部分上，$\beta_1 + \beta_2$ 转向角度是正的。此外，每一个叶片的轮毂端部，该转向角度大于或等于 45 度。在每一个叶片的中间跨度，该转向角度大于或等于 80 度。在每一个叶片的护罩端部，$\beta_1 + \beta_2$ 转向角度大于或等于 45 度。

【0066】弦线 261（即，连接轴向前和后边缘的线）相对于下游轴向分量 221 具有正的攻角，即，即使前边缘方向相对于旋转轴线周向地带游向面对，该弦线自身也相对于旋转轴线下游周向地带游角度。换句话说，前边缘在轴向前边缘周向下游。在其它实施例中，这可能变化。

【0067】这个实施例的叶片的下表面 241 构造成在该叶片的基础上整个弦上凹入的。此外，在径向部位的大部分，下表面是弯曲的使得它具有一系列部位 263，该一系列部位在轴向前边缘和轴向后边缘周向下游。

【0068】外部叶片曲率

如上所述，主涡卷通路 219 形成适合于转向前排气的螺旋形以便具有包括下游轴向分量
221 和下游周向分量 223 的流动。在标准操作条件之下的设计条件下，总体流动方向和入口处的轴向分量之间的角度在每一个径向部位形成入口流动角度。如果总体流动方向完全是轴向的，则这个入口流动角度将是零。在叶片入口（叶片轴向前缘边缘位于那里），入口流动角度跨越通路的径向范围显著地变化。因此，在该设计条件下，该叶片处的流动的特征在于跨越叶片的径向范围的入口角度分布范围。这个入口角度分布范围可能变化 20 度或更多。

[0069] 也如上面讨论的，前边缘方向角度 θ_1 在叶片的角度上变化。该叶片构造使得前边缘方向角度的变化匹配入口角度分布范围（在设计条件下），并且因此可能变化 20 度或更多。结果，当涡轮机在设计条件下操作时，轴向前缘的全长将沿前边缘方向 253 面向。前边缘方向平行于它们接收的入口流动（即，入口流动角度等于前边缘方向角度 θ_1）。

[0070] 参考图 7，对于大量生产，希望具有制造为锻造部件的自动涡轮机叶轮。在这个过程中，蜡被灌入铸造模 401 以形成叶轮的蜡模型。铸造模包括多个模具零件 403。该多个模具零件成形为每一对连续的叶片之间的空间。当该蜡固化时，多个模具零件的每个从蜡模型被拉开。拉的方向必须在连续的叶片延伸的径向方向之间。蜡模型然后用于制造陶瓷模具，该陶瓷模具可以用以灌入实际的部件。

[0071] 铸造具有高的入口角度分布范围的轴向涡轮机叶轮的问题是，前边缘方向的大的变化导致牵引多个模具零件从蜡模中被拉出的叶片形状。更特别地，在外部前边缘末端附近，该叶片弯曲出足够远以阻碍从叶片之间的模具零件的可拉出性（即，它们阻碍拉模具零件而不损害蜡模子的能力）。本发明使用独特的叶片形状克服这个问题，该独特的叶片形状允许模具零件的可拉出性，虽然具有可能的应力性能代价。

[0072] 现有技术轴向涡轮机典型地在叶片的径向跨度上具有直的轴向前边缘。制造可拉出的轴向涡轮机叶轮的一个可能解决方案是设计一种叶片，该叶片具有贯穿叶片的跨度的不直的弦形状和长度，并且没有扭曲（即，它完全地被堆叠使得它在任何径向段是相同的）。为了使前缘边缘方向角度正确，轴向前边缘在各种跨度方向段被削减直到它在每一个跨度方向段居于正确的方向面向。由于前边缘方向角度的高的变化，这种技术可能在一些跨度方向（径向）部位仅导致显著减小的弦长度。

[0073] 参考图 4-8，本轴向前边缘 245 形成基本上直的前边缘线 411。该前边缘线从径向内部轴毂端部 273 延伸到该跨度的大约 50%（即，径向内部轴毂端部和径向外部端端部 275 之间的半途）。这种前边缘线沿等似（虽然不是精确地）径向方向延伸。模具零件 403 必须沿拉出方向被拉出。该拉出方向在用于每一对连续的叶片的轴向前边缘线之间延伸。在叶片跨度的外 50% 中，轴向前边缘遵循由叶片的外部且向前部分上的复杂的叶片形状产生的三维前边缘弯曲。

[0074] 更特别地，外部轴向三维前边缘弯曲包括轴向下游弯曲分量 413 和非径向的周向弯曲分量 415。为了本申请的目的，轴向下游弯曲分量 413 被定义为在下游弯曲平面中可见的弯曲（即，在下游弯曲平面内弯曲），该下游弯曲平面由紧邻外部轴向三维前边缘弯曲的基本上直的前边缘线 411 的前边缘方向 253 弧量限定。类似于上述削减的轴向前边缘，轴向下游弯曲分量 413 引起叶片具有较短的弦长度。

[0075] 为了本申请的目的，周向弯曲分量 415 被定义为在周向弯曲平面上可见的弯曲（即，周向弯曲平面内弯曲），该周向弯曲平面包含基本上直的前边缘线 411，并且垂直于紧邻外部轴向三维前边缘弯曲的基本上直的前边缘线 411 的前边缘方向 253 弧量。周向弯
曲分数 415 减小外部前边缘末端延伸到可拉出性方向的路径中的量，并且因此提供改进的可拉出性。

[0076] 因为周向弯曲分数提供改进的可拉出性，较小的轴向弯曲分数对于可拉出性来说是必需的（由于附轴向弯曲而没有周向弯曲相比），因此最小化弦长度的损失及其作为结果的有效性减小。结果，当涡轮机在设计条件下操作时复杂的叶片形状使得轴向前边缘的全长沿前边缘方向 253（该前边缘方向平行于它们接收的入口流动）方向，同时允许模子零件可拉出性，并且同时减小或最小化弦长度减小。因此，每一个叶片的前边缘弯曲构造成在该叶片和相邻的叶片之间提供足够的空隙使得构造成铸造该叶片的铸造模具可以对该叶片之间被拉出而不使铸造模具变形。

[0077] 参考图 7-9，如果前边缘是直的并且具有相同的前边缘方向，则与末端将是 423 的情况相比，前端弯弯使得轴向前边缘的外部端部 421 更多地堆积在叶片的内部部分上。叶片的内部 50%中，翼面对包括适合周向弯曲 415 的半弦和轴向前边缘之间的弦形状修改（与叶片弯曲的内部部分处的翼面相比）。由于弯曲的前端和作为结果的弦，与具有相同的前边缘方向的来自直的前端短的叶片相比，该叶片被更多地堆叠（即，该外部部分更接近正好在内部部分径向外部）。这种堆叠提供一个或更多个角度，模子零件可以以该一个或更多个角度被拉出而不损害蜡模子。

[0078] 静态压力降

本发明的当前实施例的关键特征是它提供典型的轴向涡轮机叶片的惯性优点（与等效率的径向涡轮机叶片相比具有较低的旋转惯性矩），同时它大大提高轴向涡轮机取排气流的能量的能力。为了实现这个，如前面建议的，本实施例设置有蜗壳，该蜗壳使用角度动量守恒来有效地加速排气流并且将排气流中的总压力的显著部分从静态压力转化到动态压力，并且另外以显著的角度被加速的排气流提供到轴向涡轮机叶轮。

[0079] 涡轮机叶片构造成从该流动提取动态压力的能量的显著的部分，但不显著地改变该流动的静态压力。由于蜗壳将静态压力的显著部分转化到动态压力，并且叶片提取大多数动态压力而不改变空气流动的静态压力，因此涡轮机提取排气流中的一部分能量而不接收显著的轴向载荷。本发明的典型实施例的特征在于跨越涡轮机叶片叶片的静态压力变化，对于一系列标准操作条件的至少一些操作条件，该静态压力变化小于跨越涡轮机的静压出口的涡轮机压力的 ±20%，因此引起很小的轴向力被施加到涡轮机叶轮。更特别地，该涡轮机构造成将轴向叶片附近的叶轮上游的静态压力限制到不高于涡轮机出口静态压力的 120%的值，即，该压力至少相差出口压力的 20%。本发明的一些实施例的特征在于跨越转子基本上没有静态压力降，因此在涡轮机叶轮上仅仅引起可忽略的轴向力。

[0080] 叶轮轮廓

参考图 5 和 6，涡轮机叶轮轮廓 271 的径向尺寸沿叶片内部轮廓端部 273 从每一个叶片 231 的轴向前边缘 245 到每一个叶片的轴向后边缘 247 变化，并且围绕周边它是一致的。更特别地，轮廓在轴向前边缘处径向大于在轴向后边缘，并且该轮廓在轴向前边缘和轴向后边缘之间的中间轴向位置径向地大于在轴向前边缘或轴向后边缘。这种厚度增加形成平滑地连续的隆起 277，该隆起轴向地靠近向地在轴向前边缘和轴向后边缘下游的叶片表面 241 上的部位 263 的范围（即，其中中间弧形平行于该流动的轴向分量）。
临界水平，流动分离可能出现。因为叶片的独特尺寸和形状和该流动的高水平的动能，这个问题的可能性是非常大的。因为起动的使用帮助避免流动分离，该起动提供超过没有该起动的类似叶轮的提高的效率。

[0082] 轴向平衡的压缩机

参考图2，压缩机外壳207和压缩机叶轮213形成双重的并行的径向压缩机。更特别地，压缩机叶轮具有背对背取向的推进器叶片。第一组推进器叶片301以常规构造取向，其中入口轴向向外(离开涡轮机)方向以从那个方向接收空气。第二组推进器叶片303以相反的构造取向，其中入口轴向向内(向着涡轮机)方向以接收空气，该空气被切向地引入并且转向以轴向地进入第二组推进器叶片。第一和第二组推进器叶片可以被制造成单个的成一体的叶轮的形式(例如，如示出的)，或者可以包括多个部件的组件。

[0083] 压缩机外壳207构造成将入口空气引导到并行的每一组压缩机叶片，并且用来引导来自每一个压缩机的加压气体的通过。在这个实施例中，压缩机外壳包括两个分离的轴向布置的通道入口：第一，第一空气入口通道305和第二空气入口通道307，该第一空气入口通道布置在压缩机外壳的端部附近以将入口空气沿轴向方向传到第一压缩机叶片301，该第二空气入口通道与第一空气入口通道305分离。由压缩机叶轮213提供的加压空气从每一组推进器叶片301和303通过单个通道311被径向引导到压缩机蜗壳313。

[0084] 这种双路径并行径向压缩机构造虽然典型地效率低于可比较的单路径径向压缩机，但将以较高的速度操作并且在稳态操作中可能基本上不产生轴向载荷。较高的操作速度将典型地更好地匹配轴向涡轮机的操作速度。

[0085] 综合效果

本实施例的构造由于许多原因是重要的，并且它对于克服效率限制特别有效，该效率限制限制小的汽油动力发动机上的涡轮增压器的有效性，其中常规轴向涡轮机的实施限制使得它们对于实际的和高效的使用作为无效。

[0086] 本发明提供具有大的叶片的有效的涡轮机，该大的叶片可以被高效率地制造，即使具有小的尺寸。当较小的叶片对于常规锻造技术可能太小时，比较大尺寸的和少数量的轴向涡轮机叶片良好地适合于铸造成小的尺寸。此外，尽管前边缘角度a的变化，独特的外部叶片形状允许该叶片是铸造部件。高速度流动和大的叶片不需要当应用于很小的涡轮机时可能是限制性的制造公差。

[0087] 特别地，无轴向载荷涡轮机或无轴向载荷压缩机的使用比它们的常规轴向加载的对应物效率低。此外，涡轮机和压缩机典型地构造成为部分地抵消轴向载荷。虽然这些载荷远离完美地匹配，但它们提供轴向载荷的至少一些减轻。如果仅仅一个部件(即，涡轮机或压缩机)不产生轴向载荷，其余来自其它部件的剩余载荷不被部分地抵消，并且甚至更大的轴向载荷出现，需要甚至更大的推力轴承。

[0088] 在本发明中，无轴向载荷压缩机与无轴向载荷涡轮机结合，允许使用远远高效的推力轴承。人们相信，在一些实施例中，推力载荷要求可能与常规对应物的仅仅20%一样小。构造这种小的载荷的轴承可以被改变成显著地更加能量高效。结果，尽管系统部件的一些的可能较低的效率，涡轮增压器的总的系统效率可以显著地高于常规对应物中的效率。

[0089] 其它方面
说明 书

虽然许多常规涡轮增压器被设计成不产生下游漩涡，但本发明的一些实施例可以构造出具有产生负的或甚至正的漩涡的叶片。在设计根据本发明的涡轮机中，下游漩涡的产生可能被认为不如以下令人感兴趣：在产生小的轴向载荷或不产生轴向载荷时的能量的高效提取。

[0090] 本发明包括用来设计和生产插入件的设备和方法，以及涡轮机和涡轮增压器它们自身。另外，本发明的实施例可以包括上述特征的各种实施例。简而言之，上面公开的特征可以在本发明的预期范围内以很多种构造被组合。

[0091] 例如，虽然上述实施例构造为向前流动涡轮增压器（即，排气流过涡轮机叶轮以便轴向地离开涡轮增压器端部），但其它实施例可以构造出具有反向流动，其中排气流沿向着压缩机的方向穿过涡轮机叶轮。这种构造，虽然它可能不配合在被分配给内燃机涡轮增压器的标准空间中，但将轴承外壳暴露到较少的热和压力。而且，虽然所述的实施例使用具有悬臂式（即，自由端部）叶片的叶轮，该叶片被不移动的外壳护罩径向地包围，但使用被遮蔽的叶轮（即，具有成一体的护罩的叶轮，该成一体的护罩包围叶片并且随着它们旋转）的其它实施例在本发明的范围内。

[0092] 本发明的特别形式已经被示出且描述，但将显然的是，可以作出各种修改而不偏离本发明的精神和范围。因此，虽然本发明已经仅参考优选实施例被详细地描述，但本领域技术人员将理解，可以作出各种修改而不偏离本发明的范围。因此，本发明不打算由上面的讨论限制，并且参考下面的权利要求被限定。
图 3
图 6