(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

=
) e

)\
L)
LAIPO

AT O OO Rl

(10) International Publication Number

17 February 2005 (17.02.2005) PCT WO 2005/015440 A2
(51) International Patent Classification’: GOGF 17/30 (81) Designated States (unless otherwise indicated, for every
. A kind of national protection available): AE, AG, AL, AM,
(21) International Application Numberl;CT/EPzOOM007896 AT, AU, AZ BA, BB, BG, BR, BW, BY, BZ, CA, CHL, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
(22) International Filing Date: 15 July 2004 (15.07.2004) GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
- . KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
(25) Filing Language: English MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
(26) Publication Language: English PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
(30) Priority Data: 7W.
60/489,573 22 July 2003 (22.07.2003) US
10/746,963 23 December 2003 (23.12.2003) US (84) Designated States (unless otherwise indicated, for every
(71) Applicant (for all designated States except US): SAP kind of regional protection available): ARIPO (BW, GH,
AKTIENGESELLSCHAFT [DE/DE]; Neurottstrasse GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
16, 69190 Walldorf (DE). ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
(72) Inventors; and

(75) Inventors/Applicants (for US only): FIEDLER, Thomas
[DE/DE]; Horster Graben 9, 76327 Pfinztal (DE). REM-
MEL, Juergen [DE/DE]; Adenauerstr. 69, 69242

Muehlhausen (DE).

(74) Agent: ROCKE, Carsten; Miiller-Boré & Partner, Grafin-

ger Strasse 2, 81671 Miinchen (DE).

FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,
SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished
upon receipt of that report

[Continued on next page]

202
A_Customer

57015440 A2 | IV VYT 00O O

(54) Title: EXTENDING SERVICE-ORIENTED BUSINESS FRAMEWORKS

206
A, Product

*
T

A_Address A_OrderHeader A_Basket
‘% S
220 222
210
A_Position

(57) Abstract: Methods and apparatus, including computer program products, that include generating a first application by provid-
ing a definition of an object representing a first set of attributes of a first collection of data elements and a first set of operations on
the first collection, each data element in the first collection having the attributes and a list of the operations in common with other

& data elements from the first collection. The method also includes extending the definition of the object with a second definition, the
& second definition comprising a second set of attributes of the data elements or a list of second set of operations on the data elements,
receiving from the client a request to execute an operation from the first set of operations or the second set of operations on one or

e
=

more data elements from the first collection, the request having input parameters, checking the request against the definition and the
second definition, executing, with a first set of parameters, the operation on the one or more data elements of the first collection, the
operation resulting in output parameters, and sending a second set of parameters.

WO 2005/015440 A2 I} 110 0800 0O 0 00 AR

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

10

15

20

25

30

WO 2005/015440 PCT/EP2004/007896

EXTENDING SERVICE-ORIENTED BUSINESS FRAMEWORKS

CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of the filing date of United States
Provisional Application No. 60/489,573 for ENTERPRISE SERVICES
FRAMEWORK TECHNOLOGIES, filed July 22, 2003, and United States Utility
Application No. 10/746,963 for EXTENDING THE FUNCTIONALITY OF
ENTERPRISE SERVICES, filed December 23, 2003, the disclosure of which are

incorporated by reference in their entirety.

BACKGROUND

The present invention relates to data processing by digital computer, and
more particularly to extending service-oriented business frameworks. The present
invention relates to data processing by digital computer, and more particularly to
self describing business objects.

Large scale business software applications are sometimes categorized in
terms of a “front end compbnent” that includes a graphical user interface (GUI) to
present data to users and accept data entry from users. Such front end components
are customized for specific customers. Another component of such software
applications is sometimes referred to as a “back énd component™ that stores
business data and processes the business data according to business logic. The
back end component retrieves, generates, and maintains the business data. The
back end component is usually responsible for the consistency and correctness of
the data. The back end component also can store relationships between the
various data. In a typical business software application, the front end component
includes application code to display and aggregate data of the back end and
provides help to generate requests to the back end for update operations.

The data of the back end can be represented using relational database
terminology. In relational database terminology, an entity is a record and an entity
fype is a set of entities with common attributes to which a unique name and a
unique description are assigned. Typically, a database has multiple two
dimensional tables where each table represents an entity type and each row in

each table represents an entity. An artribute is a description of a characteristic of

10

15

20

25

30

WO 2005/015440 PCT/EP2004/007896

an entity or entity type. ‘Lypically, an attribute 1s specilied 11 a 11eld or a column
in a database table. Entity types can also have relationships that enable linking
one or more entities of an entity type to other entities of another entity type. This
linking can be done using foreign keys by having one or more fields in one table
pointing to a primary key of a second table. - This enables traversing from a set of

entities in one table to related entities in another table.

SUMMARY OF THE INVENTION

In one aspect, the invention features a method that includes generating a
first application by providing a definition of an object representing a first set of
attributes of a first collection of data elements and a first set of operations on the
first collection, each data element in the first collection having the attributes and a
list of the operations in common with other data elements from the first collection.

The method also includes extending the definition of the object with a second
definition, the second definition comprising a second set of attributes of the data
elements or a list of second set of operations on the data elements, receiving from
the client a request to execute an operation from the first set of operations or the
second set of operations on one or more data elements from the first collection,
the request having input parameters, checking the request against the definition
and the second definition, executing, with a first set of parameters, the operation
on the one or more data elements of the first collection, the operation resulting in
output parameters, and sending a second set of parameters.

Embodiments may include one or more of the following. The first set of
parameters includes the input parameters and the second parameters comprise the
output parameters. The method further includes providing a definition of a
module representing a set of one or more collections of data elements, the set
comprising the first collection of data elements, wherein the definition of the
module comprises a query on one or more collections of data elements. In some
cases, the method further includes extending the definition of the module with a
second definition, the second definition comprising a second query on one or
more collections of the data elements. In some of these cases, the method further
includes receiving from the client a request to execute the first or second query on

one or more collections of the data elements, the request having input parameters,

10

15

20

25

30

WO 2005/015440 PCT/EP2004/007896

checking the request against the definition and the second derinition o1 e
module, executing, with a first set of parameters, the query on the one or more
collections of the data elements, the operation resulting in output parameters, and
sending a second set of parameters. In some of these cases, the second definition
further includes a second collection of data elements and the second definition
may further iﬁclude a relation between the first collection and the second
collection, the relation enabling a navigation from the first collection to the second
collection.

Embodiments may include one or more of the following. The method
further includes sending the request with the input parameters, generating the first
set of parameters by modifying the input parameters, and receiving the first set of
parameters. The method of can further include sending the request with the output
parameters, generating the second set of parameters by modifying the output
parameters, and receiving the second set of parameters.

Embodiments may include one or more of the foliowing. The method
further including extending the definition and the second definition of the object
with a third definition, the third definition comprising a third set of attributes of
the data elements or a third set of operations on the data elements, and checking
the request against the definition, the second definition, and the third definition.
The method further including extending the definition of the module with a third
definition, the third definition comprising a third query on one or more collections
of the data elements. The method further including generating a second
application by extending the definition of the object with a third definition, the
third definition comprising a third set of attributes of the data elements or a third
set of operations on the data elements, receiving from the client a request to
execute an operation from the first set of operations or the third set of operations
on one or more data elements from the first collection, the request having input
parameters, and checking the request against the definition and the third
definition.

In another aspect, the invention features a system that includes a first
computer configured to execute a client program, a second computer configured to
execute a server program, a network linking the first and second computers such

that the server program is configured to execute the following. Provide to the

10

15

20

25

30

WO 2005/015440 PCT/EP2004/007896

client program a IIrst application witil a aeIINITioN OI an 0DJECT ICPICSCIUNE d 11TSL
set of attributes of a first collection of data elements and a list of first set of -
operations on the first collection, each data element in the first collection having
the attributes and the operations in common with other data elements from the
first collection. Extend the definition of the object with a second definition, the
second definition including a second set of attributes of the data elements or a
second set of operations on the data elements. Receive from the client program a
request to execute an operation from the first set of operations or the second set of
operations on one or more data elements from the first collection, the request
having input parameters. Check the request against the definition and the second
definition. Execute, with a first set of parameters, the operation on the one or
more data elements of the first collection, the operation resulting in output
parameters. Send to the client program a second set of parameters.

Embodiments may include one or more of the following. The first set of
parameters include the input parameters and the second parameters include the
output parameters. The server program is further configured to provide a
definition of a module representing a set of one or more collections of data
elements, the set comprising the first collection of data elements, the definition of
the module comprising a query on one or more collections of data elements. In
some cases, the server program is further configured to extend the definition of the
module with a second definition, the second definition comprising a second query
on one or more collections of the data elements. In some of these cases, the server
program is further configured to execute the following. Receive from the client a
request to execute the first or second query on one or more collections of the data
elements, the request having input parameters. Check the request against the
definition and the second definition of the module. Execute, with a first set of
parameters, the query on the one or more collections of the data elements, the
operation resulting in output parameters. Send a second set of parameters. In
some cases, the second definition further includes a second collection of data
elements. The second definition further can include a relation between the first
collection and the second collection, the relation enabling a navigation from the

first collection to the second collection.

10

15

20

25

30

WO 2005/015440 PCT/EP2004/007896

‘I'he chient program 1s contigured to execute the following. dend ine
request with the input parameters. Generate the first set of parameters by
modifying the input parameters. Receive the first set of parameters.

The client program is configured to execute the following. Send the
request with the output parameters. Generate the second set of parameters by
modifying the output parameters. Receive the second set of parameters.

The server program is further configured to execute the following. Extend
the definition and the second definition of the object with a third definition, the
third definition comprising a third set of attributes of the data elements or a third
set of operations on the data elements. Check the request against the definition,
the second definition, and the third definition.

The server program is further configured to extend the definition of the
module with a third definition, the third definition including a third query on one
or more collections of the data elements.

The server program is further configured to execute the following.
Generate a second application by extending the definition of the object with a
third definition, the third definition comprising a third set of attributes of the data
elements or a third set of operations on the data elements. Receive from the client
a request to execute an operation from the first set of operations or the third set of
operations on one or more data elements from the first collection, the request
having input parameters. Check the request against the definition and the third
definition.

These and other embodiments may have one or more of the following
advantages. A service-oriented business framework can be extended without
modification based on business requirements. This extension can have multiple

layers. This extension includes additional metadata as well as additional coding.

BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a block diagram of an example logical representation of a
business software application.
FIG. 2 is a view of a network configuration for a business software
application.

FIG. 3 is a block diagram of the business software application of FIG. 1.

10

15

20

25

30

WO 2005/015440 PCT/EP2004/007896

FIG. 4 is a Unified Modeling Language (UML) representation o1 a
structure of a meta model repository.

FIG. 5 is a flow diagram of a business process.

FIG. 6 is a diagram showing relations between different aspects for a
business software application.

FIG. 7 is a view of a network configuration for a business software
application.

FIG. 8 is a view of an information flow from an extension of a repository
object to the repository object.

FIG. 8A is a view of two chains of extensions for two different customers.

FIG. 9 is a sequence diagram of providing a service upon request from an

application program using a service framework with an extension.

DETAILED DESCRIPTION

FIG. 1 illustrates an overview logical representation of a business software
architecture 2, which includes a client 3, a separation layer 5, a repository 7 and
backend data 9 and 9'. Client 3 provides a user interface (UT) that enables a user
to interact with the backend data 9 and/or 9'. Backend data 9 and 9' can be
associated with different backend applications and/or can be arranged and
formatted differently from each other. Separation layer 5 separates the front end
user interface provided by client 3 from the back end data 9 and 9'. This
separation enables client 3 to interact with backend data 9 and 9" in a consistent
and similar manner, regardless of the formatting or application-associated
differences between backend data 9 and 9'. In other words, separation layer 5
provides a canonical interface to backend data 9 and 9' so that client 3 is
configured to interact with separation layer 5 and only needs to be updated if
separation layer 5 changes. Changes to backend data 9 and 9' do not necessitate
an update to client 3. Further, separation layer 5 is scalable and configured to
handle changes and growth to backend data 9 and 9' and any other disparate
backend data and backend services that are further connected to separation layer
5.

As described in more detail below, separation layer 5 is based on a meta

model that defines how backend data (e.g., 9 and 9') are represented in separation

10

15

20

25

30

WO 2005/015440 PCT/EP2004/007896

layer 5. Meta data is stored in repository 7 that describes how the backend data ¥
and 9' fit into the meta model representation. Client 3 interacts with backend data
9 and 9' using a generic command set defined by separation layer 5. As described
in more detail below, separation layer 5 accesses service providers that perform
the generic commands from client 3, using the meta data in repository 7, to effect
the requested manipulation of backend data 9 and 9'. The service providers are
configurable so that different service providers can be used for different backend
data 9 and 9'. Separation layer 5 includes an interface (e.g., a service manager)
that hides the characteristics of the corresponding backend data 9 and 9' and also
the granularity and distribution of the implementation (i.e., the service providers).

FIG. 2 illustrates an example implementation of the business software
architecture 2. As shown in FIG. 2, the business software architecture 2 includes
a first computer 4 and a second computer 6. The computers 4 and 6 each can
include a processor, a random access memory (RAM), a program memory (for
example, a writable read-only memory (ROM) such as a flash ROM), a hard drive
controller, a video controller, and an input/output (I/O) controller coupled by a
processor (CPU) bus. The computers 4 and 6 can be preprogrammed, in ROM,
for example, or the computers 4, 6 can be programmed (and reprogrammed) by
loading a program from another source (for example, from a floppy disk, a CD-
ROM, or another computer) into a RAM for execution by the processor. The hard
drive controller is coupled to a hard disk suitable for storing executable computer
programs, including programs embodying the present invention, and data. The
I/O controller is coupled by an I/O bus to an I/O interface. The I/O interface
receives and transmits data in analog or digital form over communication links,
e.g., a serial link, local area network, wireless link, or parallel link. Also coupled
to the I/O bus are a display and a keyboard. Alternatively, separate connections
(separate buses) can be used for the I/O interface, display, and keyboard.

A network 20 connects computers 4 and 6. The network 20 is any form or
medium of digital data communication, e.g., a communication network.
Examples of communication network 20 include a local area network (“LAN”)
and a wide area network (“WAN"), e.g., the Internet.

Computer 4 executes instructions of a front end application program 12.

Application program 12 represents a front end component of the business software

10

15

20

25

30

WO 2005/015440 PCT/EP2004/007896

architecture Z. Service manager 16, runmng on computer 6, 1s a service layer
between the front end application program 12 and a set of back end service
providers 26. Service manager 16 provides a service interface to front end
application program 12 to enable indirect interaction with the set of back end
service providers 26 running on computer 6. This service interface allows for a
partial separation of software development for front end application program 12
and the set of back end service providers 26.

Computer 6 includes a data storage device 22 that stores a back end
database 24 containing data that can be used by the set of back end service
providers 26. Computer 6 also includes a data storage device 8 containing an
information repository 18 that defines and describes the services provided by the
set of back end service providers 26. The meta data in repository 18 is organized
according to a meta model.

In general, a meta model is a collection of "concepts" that are the
vocabulary with which a certain domain can be described. Meta models typically
are built according to a strict rule set, which in most cases is derived from entity-
relationship-attribute or object-oriented modeling. The front end application
program 12 can access (and interpret according to the strict rule set) the contents
of repository 18 via the service manager 16. These services support the
functionality of application program 12 and include retrieving and reading data in
addition to modifying stored data. The service providers 26 can access or modify
stored data in backend database 24 to provide services to front end application
program 12. To provide the services, the set of back end service providers 26,
upon request from the front end application program 12, either access or modify
stored data in backend database 24 or calculate new data.

The repository 18 defines a syntax for requesting services provided by the
set of back end service providers 26 and semantically describes the services. As
front end application program 12 executes, front end application program 12 can
use this syntax and semantic description from the repository 18 (accessed through
the service manager 16) to determine what services front end application program
12 can use to meet its requirements. This syntax and semantic description for
stored or computed backend data can be referred to as “meta data”. This stored or

computed backend data is conceptually organized using object-oriented

10

15

20

25

30

WO 2005/015440 PCT/EP2004/007896

terminology 1n terms Of business objects, where each business object 1S an
instance of a class or data entity type. In one example, a class of business objects
refers to a relational database table where each row of data in the table represents
the data for a particular business object. In this example, each field in the table
represents an attribute of the business object class. In another example, there is a
class of business objects that partially refers to a relational database table such that
some of the fields in the table represent attributes of the business object class and
other fields are computed upon request.

In the business software architecture 2, services provided to front end
application program 12 are focused on data (i.e., data-centric) so the description of
these services in repository 18 is also data-centric. Thus, the meta data in
repository 18 is structured around representations of classes of these business
objects. This meta data includes aspects, or descriptions of these representations
of business object classes, and descriptions of available operations on aspects such
as select, insert, update, delete, select by relation, and update fields that are
provided by service providers 26. Each description of these aspects includes data
attributes as well as actions that can be requested to be executed by the set of
backend service providers 26 on instances of these aspects.

Classifications of data, relations between data classes, prebuilt queries for
accessing data, and other descriptions of data provided by the set of backend
service providers 26 are represented by repository 18. This representation, or
meta data, of data (e.g., stored in backend database 24) provided by the set of
backend service providers 26 describes different abstract types or classes of data
in backend database 24 and how different data classes relate to each other.
Objects are instances of these different abstract types. Meta data is information
about data rather than content of the data. The meta data also defines a set of pre-
built queries that can be executed on the data in database 24.

The semantic description in repository 18 can enable front end application
program 12 to determine which services to request from service manager 16.
These services often take the form of requesting data to display. Front end
application program 12 reads the meta data in repository 18 and can flexibly
request data organized in different ways that are specified by the meta data. For

example, two service managers 16.with two different repositories 18 handle

10

15

20

25

30

WO 2005/015440 PCT/EP2004/007896

services that determine prices of books for companies A and B. For A and B,
book prices are represented by different aspects with different data fields. Front
end application program 12 reads A’s repository 18 to obtain descriptions of data
(including a price) concerning a particular book from A’s service providers 26.
Front end application program 12 reads B’s repository 18 to obtain descriptions of
data (including a price) concerning a particular book from B’s service providers
26. Front end application program 12 is able to request and display the
information from A’s service provider 26 and the information organized
differently from B’s service provider 26 to present the book price information to a
user. ‘

For requesting the services described by the semantic description in
repository 18, service manager 16 provides a canonical interface for services on
the business objects in the backend. This canonical interface includes a set of
standard operations on the business objects. Such standard operations on the
business objects include select, insert, update, delete, select by relation, and
update fields. These standard operations are intended to be easy to understand and
use. The usage of these standard operations is understood through the strict rule
set of the meta model of the repository 18. Furthermore, the repository 18 also
includes documented modeling of the side effects of the usage of the operations.
The side effects for an operation model which stored business objects are affected
by executing the method. For example, “delete” usually has a side effect on other
stored business objects related to the deleted object. Other standard operations
perform more specialized tasks and support functionality for transactions between
front end application program 12 and service manager 16 (e.g., a lock operation).

The canonical interface provided by the service manager 16 also includes
specialized actions that are defined for specific classes of business objects and
queries that can be defined for clusters of classes of business objects. The clusters
are modeled as service modules (described in more detail below) in the meta data.

These actions and queries are also defined in the meta data of the repository 18.

During execution, front end application program 12 issues service requests
to service manager 16, service manager 16 checks the requests for consistency
with the meta data in repository 18, and then the service manager 16 passes the

requests to. back end service providers 26 according to the meta data in the

10

10

15

20

25

30

WO 2005/015440

repository database 18. The manner of implementing the set of back end service
providers 26 and data in database 24 is independent of application 12, with back
end service providers 26 and data in database 24 conforming to the definitions and
descriptions of the meta data in the repository 18. Database 24 can be a relational
database. However, database 24 can be modified to use a different mode of data
organization other than a relational database and front end application program 12
does not need to be modified if back end service providers 26 and data in database
24 still conform to the meta data in the repository 18. One such different mode of
data organization for database 24 can be an object-oriented database.

Front end application program 12 provides user interfaces displayed on
monitor 10. Front end application program 12 provides application code to
display and aggregate the data received from the set of backend service providers
26. Front end application program 12 generates requests, via service manager 16,
to the set of backend service providers 26 for standard operations such as select,
insert, update, delete, and execute, in addition to more specialized operations.
Front end application program 12 is interaction-centric, focused on aggregating
data of the back end service providers 26 and combining interactive steps into a
flow of screens and syndicated screen elements.

Front end application program 12 contains screen-flow logic of User
Interface (UI) oriented applications and front end application program 12 binds a
Ul to the meta data in repository 18. Front end application program 12 can be
indirectly bound to a specific set of backend services by back end service
providers 26 via descriptions of the services in the metadata of the repository 18.
Front end application program 12 can also be formed from various generic
interaction-centric front-end layers that are only bound by configuration to a
highly standardized service layer by service manager 16 serving as an
intermediary to back end service providers 26.

In some implementations, a service manager proxy 14 gives the front end
application program 12 a buffered access to a service interface provided by
service manager 16. Service manager proxy 14 is a server on computer 4 that acts
as an intermediary between the front end application program 12 and the service
manager 16 so that the business software architecture 2 can ensure security,

administrative control, and caching service. The service manager 16 offers

11

PCT/EP2004/007896

10

15

20

25

30

WO 2005/015440 PCT/EP2004/007896

queuing functionality, which is used by the front end application program 12 to
bundle several service requests or commands (resulting in service methods) into a
single service method queue in order to save round trips. Service manager proxy
14 allows front end application program 12 and service manager 16 to be
separated onto different computers 4, 6. Furthermore, use of service manager
proxy 14 can allow service manager 16 and the set of backend service providers
26 to be distributed over multiple computers.

In one example, the service manager proxy 14 communicates with service
manager 16 using SOAP (Simple Object Access Protocol) messages via network
20. SOAP is a way for a program running in one kind of operating system (such
as a Windows® XP Operating system available from Microsoft Corporation of
Redmond, WA) to communicate with a program in the same or another kind of an
operating system (such as Linux) by using the World Wide Web's Hypertext
Transfer Protocol (HTTP) and Extensible Markup Language (XML) as
mechanisms for information exchange. Since Web protocols are installed and
available for use by all major operating system platforms, HTTP and XML
provide a solution to a problem of how programs running under different
operating systems in a network can communicate with each other. SOAP
specifies exactly how to encode an HTTP header and an XML file so that a
program in one computer can call and pass information to a program in another
computer. SOAP also specifies how the called program can return a response.

As shown in FIG. 3, the service manager 16 provides an interface (defined
by the meta data in repository 18) to front end application program 12 that hides
the characteristics of the corresponding back end service providers from the set of
backend service providers 26 and data in database 24. Front end application 12
uses this interface to retrieve data from backend database 24 to display in
graphical user interface (GUI) 28 for interaction with a user.

The service manager 16 provides the interface to front end application
program 12 by receiving and executing requests from front end application
program 12 to backend service providers 26. After each receipt of a request by
the service manager 16, the service manager 16 delegates the request to one or
more service providers 30, 32, 34, 40, 42, 44, and 46. Service provider 30 is an

instance of a software class repository service provider. Service providers 32, 34,

12

10

15

20

25

30

WO 2005/015440 PCT/EP2004/007896

40, 42, 44, and 46 represent instances of software classes such as query service
provider class (32), aspect service provider class (34), transaction service provider
class (40), locking service provider class (42), action service provider class (44),
and query relation service provider class (46). The software classes for service
providers 32, 34, 40, 42, 44, and 46 can be implemented as ABAP global classes
maintained by the ABAP class library using the ABAP development environment
available from SAP of Walldorf, Germany. They also can be implemented by any
other programming language on any other platform, e.g., Java on Linux or C# on
Windows.

Repository service provider 30 handles requests to get or modify meta data
from repository 18. Query service provider 32 handles queries on data in backend
database 24 from front end application program 12. Aspect service provider 34
handles accessing and modifying data, navigation through relations, and calling
actions. The aspect service provider 34 has a standard set of methods that
correspond to the standard operations on aspects that can be requested from the
service manager 16. These standard operations include select, insert, update,
delete, select by relation, and update fields. Transaction service provider 40
allows business logic to act on different states of a transaction between front end
application program 12 and service providers 26. Locking service provider 42
enables separation of concurrent accesses on data types in backend database 24.
Action service provider 44 enables execution of actions on aspects. Query
relation service provider 46 is the interface for the target aspect of a relation. In
some examples, service manager 16 can have different multiple instances of
service providers 32, 34, 40, 42, 44, and 46 for different elements in repository 18
representing services. Upon receiving a request for a service represented by an
element in repository 18, the service manager 16 can look up a name of a service
provider (e.g., 32, 34, 40, 42, 44, and 46) in the meta data for the element in
repository 18. For example, the meta data describing an aspect in repository 18
defines which aspect service provider 34 is designed to handle services for the
aspect. The service manager 16 uses this information in the meta data to direct
requests from the front end application program 12 to the appropriate aspect
service provider 34. Similarly, the meta data describing a query in repository 18

defines which query service provider 32 is designed to handle services for the

13

10

15

20

25

30

WO 2005/015440 PCT/EP2004/007896

query.

The interface provided by the service manager 16 provides requests or
commands to front end application program 12. As mentioned previously,
standard commands select, insert, update, delete, select by relation, and update
fields are standard operations on aspects in the repository 18. These standard
operations are provided by aspect service provider 34 and correspond to some of
the requests or commands available to front end application program 12. A
“Select” command provides a capability such that if the identifiers (or keys) of
instances of a data type (e.g., stored in database 24) provided by aspect service
provider 34 are known, front end application program 12 can select and read the
attributes of these instances. An “Insert” command allows front end application
program 12 to add new instances of a data type (e.g., stored in database 24)
provided by aspect service provider 34. A “Select By Relation” command
provides a capability that if a data type is known, front end application program
12 can find other data types that have relations to this data type as defined in
repository 18. An “Update” command provides a capability to modify instances
of data types (e.g., stored in backend database 24) provided by aspect service
provider 34. A “Delete” command provides the capability to delete one or more
selected instances of one or more data types (e.g., stored in backend database 24)
provided by aspect service provider 34.

An “Execute” action command provides a capability to execute a
semantically defined action on one or more instances of one or more data types
(e.g., stored in database 24) provided by aspect service provider 34. Either the
aspect service provider 34 or the action service provider 44 executes the Execute
action command. A “Query” command provides a capability to search and find
particular data of interest. The Query command is a method with a fixed set of
search parameters and a result set with a defined structure. Queries are defined
for particular service modules, or clusters of aspects in the meta data of the
repository 18. The query service provider 32 executes a Query command.

The meta data in repository 18 is classified into data types or classes. The
names of meta model classes representing the data type classifications in
repository 18 have the suffix “descriptor” to express their belonging to the meta

model and to differentiate them from runtime classes used by service manager 16.

14

10

15

20

25

30

WO 2005/015440 PCT/EP2004/007896

Descriptors of classes of the meta data of the repository 18 and their class
relations are illustrated using an Unified Modeling Language (UML) class
diagram 50 in FIG. 4.

Comparing the meta data to data described by relational database
terminology, an aspect in the repository 18 can represent a class or an entity type
fully or partially stored in backend database 24 and an aspect descriptor 56
includes attributes for the entity type in addition to other information about the
entity type. The meta data in the repository 18 also can include relations
descriptors 84 defining relations between aspects that can be implemented in
database 24 as relationships using foreign keys in relational databases. The meta
data also can include service modules descriptors 54 representing service modules
that are aggregations of aspects and have predefined queries for accessing data in
database 24.

The service modules defined in repository 18 are the building blocks for a
set of applications (e.g., front end application program 12) in business software
architecture 2 for a particular application area or industry. The service modules
encapsulate the implementation and business logic and provide access to data and
functionality in a unified canonical way. Examples for service modules in
repository 18 are “business partner”, “employee”, “sales order”, or “business
activity”. Service module descriptor 54 describes services modules in the data
model of the meta data of the repository 18 and how the service modules can be
accessed by queries from application program 12.

In repository 18, each defined query is an entry point to search instances of
a data type (represented by an aspect) provided by service providers 26 via service
manager 16. A “key” is an identifier of an instance of a data type provided by
service providers 26. An “action” is a specialized method on one or more
instances of an aspect. A “structure” is the aggregation of attributes representing
the data of an aspect. A “relation” is the relation between objects of a source and
a target aspect. A service module group is associated with a service module and is
an aggregation of aspects, relations, and queries. An aspect group is associated
with an aspect and is an aggregation of relations, aspect actions, and field
descriptors 86. The meta data in the repository 18 also includes a text description

of each aspect, query, key, action, structure, relation, service module group, and

15

10

15

20

25

30

WO 2005/015440 PCT/EP2004/007896

aspect group that is included in the available back end (e.g., backend database 24).
So, the organization of the meta data in the repository 18 can be described in
terms of those data types (e.g., aspect, query, key, action, structure, relation,
service module group, and aspect group).

The data model for attributes of aspects, queries, keys, and actions is based
on structure descriptors 74. In one example, every aspect has one structure
descriptor 74 that defines the data attributes of the aspect. Structure descriptors 74
refer to a data dictionary in repository 18. A data dictionary is a collection of
descriptions of the data objects or items in a data model for the benefit of
programmers and others who need to refer to them. The structure descriptors 74
can be defined in an XML Schema or in one or more database tables in repository
18.

In one example, structure descriptors 74 defined in repository 18 include
flat structures in database tables. A flat structure is a sequence of pairs of attribute
names and field descriptors 86 of simple value types such as real, integer,
character string, and boolean. For instance, a structure descriptor 74 defining a
two dimensional point can be a list {X, real, Y, real}, where X and Y are attribute
names having real values.

In another example of the repository 18, structure descriptors 74 can
include nesting and collections of other structure descriptors 74. Nesting of other
structure descriptors 74, or sub-structures, to enable the generation of larger
aspects is useful whenever the use of keys for sub-structures defining smaller
aspects does not make sense.

For front end application program 12 to access data (e.g., data stored in
backend database 24) from service providers 26 through the service manager 16,
instances of business object classes are identified by unique keys within a service
module, for example the number of an order or the id of a product. To
differentiate between different types of keys for different aspects in a service
module, key descriptors 64 define different types of keys. A key descriptor 64 is
associated with a structure descriptor 74 that can include more than one data
attribute. In one example, every key has a character string attribute. A service
module can be associated with different key descriptors 64 for different aspects,

e.g., an order key may have another key descriptor £4 as an order item key.

16

10

15

20

25

30

WO 2005/015440 PCT/EP2004/007896

Service module descriptor 54 includes a collection of aspect descriptors
56. An aspect descriptor 56 refers to one structure descriptor 74 and one key
descriptor 64. The structure descriptor 74 includes all key attributes of the
corresponding key descriptor 64. Key descriptors 64 are specialized aspect
descriptors 56. The key descriptor 64 attribute of a key refers to itself as a self-
reference. Examples for aspect descriptors 56 within a simple sales order service
module can include: Order, Order Detail, Shipping Address, Billing Address, and
Order Item as well as descriptors for key aspects like Order ID and Order Item
Key. Service module descriptor 54 specifies the collection of supported aspect
descriptors 56. Multiple service module descriptors 54 can be associated with the
same aspect descriptor 56.

Aspect descriptors 56 relate to each other specified by relation descfiptors
84. A relation descriptor 84 has one source aspect descriptor 56 and one target
aspect descriptor 56. In this sense, relation descriptors 84 are directed. Relation
descriptors 84 also have an optional cardinality (e.g., 1..n) and a category.
Supported categories are, for example, Parent-Child or Child-Parent.

A relation descriptor 84 defining a relation between source aspect A and
target aspect B means that it is possible to traverse from instances of aspect A to
instances of aspect B. For example, given that aspects A and B are implemented
in backend database 24 as relational database tables, this means that one or more
fields in a table corresponding to aspect A point to the primary key of a table
corresponding to aspect B. The relation descriptor 84 defining a Parent-Child
relation from source aspect A and target aspect B means that aspect B depends on
the existence of aspect A. For example, given that aspects A and B are
implemented in backend database 24 as relational database tables, this means that
a primary key of a table corresponding to aspect B is derived from a table
corresponding to aspect A. Relation descriptors 84 are introduced to describe
internal navigation from one aspect to another within the same service module,
e.g., from an order to the shipping address (cardinality 1..1) or to the order items
(cardinality 1..n) within a sales order service module. Relation descriptors 84 are
independent of service modules and can be reused by different service modules.
For an internal navigation or traversal from one data type to another in backend

database 24, the visible (usable) relation descriptors of a source aspect descriptor

17

10

15

20

25

30

WO 2005/015440 PCT/EP2004/007896

56 are detined by the service module descriptor 54, which has a 115t o1 supported
relation descriptors 84. Navigation is allowed for those supported relation
descriptors 84 that have a target aspect descriptor 56 that is also supported by the
service module descriptor 54.

Operations for accessing and acting on data types in backend database 24
are described in operation descriptors 70. The structure descriptor 74 defines
input parameters of the operation descriptor 70. This structure descriptor 70 also
includes an input key descriptor 64 that enables mass and filter operations. Mass
operations are operations specified by front end application program 12 on
multiple instances of a data type in backend database 24. Filter operations filter
the results of an operations, e.g., a query, by the keys defined by the input key
descriptor. Input parameters for operation descriptors 70 are optional.

There are three types of operation descriptors 70 i.e., query descriptors
104, aspect action descriptors 92, and action descriptors 96. The aforementioned
commands Query and Execute action are defined by operation descriptors 70.

Query descriptors 104 describe query methods that allow searching for
instances of aspects within a service module. The query descriptor 104 includes
an input parameter, an input key descriptor 64, and a result aspect descriptor 56.
The input parameter is a structure descriptor 74 that defines the search parameter
structure of the query. The input key descriptor 64 defines which keys may be
used for filtering. For example, executing a query defined by a query descriptor
104 with filtering keys results in a list of keys meeting the criteria of the first
input. This list of keys is filtered by the set of filtering keys of the input key
descriptor 64 so that a subset of the list of keys can be returned. The result aspect
descriptor 56 for the query descriptor 104 specifies the type of result of the query,
which could be any aspect descriptor 56 that is associated with the service
module.

Each service module descriptor 54 has a set of supported query descriptors
104. Service module descriptors 54 cannot use query descriptors 104 defined in
other service module descriptors 54 since the query descriptor 104 belongs to one
service module descriptor 54.

Aspects provide additional operations (beyond the standard operations

select, insert, update, delete, select by relation, and update fields) in the form of

18

10

15

20

25

30

WO 2005/015440 PCT/EP2004/007896

actions, which are described by aspect action descriptors 92. Aspect action
descriptors 92 are specialized operation descriptors 70 on aspects. The aspect
descriptor 56 can have a set of supported aspect action descriptors 92. The input
parameter for an aspect descriptor 96 defines the parameter structure of the action.
The input key descriptor 64 specifies which keys may be used for mass
operations, e.g., an email action may have as input a list of keys representing
multiple emails.

Action descriptors 96 can define actions for multiple actions like Print,
Email, Fax, Approve, Clear, Cut, Copy, Paste and Cancel. But there also may be
more aspect specific actions that can be only used for one or a few aspects.
Action descriptors 96 are introduced to enforce reuse. Each aspect action
descriptor 92 is associated with an action descriptor 96, where the name and the
meaning (textual description) are defined.

Action descriptors 96 specify a name and the meaning (textual description)
of the action. They do not specify parameters and are not used to describe
polymorphic behavior of operations. They can be used for taxonomies.

A service module group descriptor 58 can be associated with aspect
descriptors 56, relation descriptors 84, and query descriptors 104. An aspect
group descriptor 78 can be associated with relation descriptors 84, aspect action
descriptors 92, and field descriptors 86.

The diagram 50 includes a zero or more to zero or more relationship 52
between service module descriptor 54 and aspect descriptor 56, since multiple
instances of aspects can be associated with multiple instances of service modules.

Service module group descriptor 58 has a zero or more to zero or more directed
relation 60 towards aspect descriptor 56 since aspects can be grouped together in a
service module group. Service module group descriptor 58 also has a zero or
more to one composite aggregation relationship 62 with service module descriptor
54 because service module groups can be aggregated together in a service module.

Key descriptor 64, as a specialization of aspect descriptor 56, has an inheritance
relationship 66 with aspect descriptor 56. Key descriptor 64 also has a one to zero
or more relationship 68 with aspect descriptor 56, since each aspect has a key
associated with that aspect to uniquely identify instances of the aspect. Operation

descriptor 70 has a directed zero or more to zero or more relationship 72 with key

19

10

15

20

25

30

WO 2005/015440 PCT/EP2004/007896

descriptor 64, since operations can include input keys. Aspect descriptor 56 has a
zero or more to one relationship 76 with structure descriptor 74 since each aspect
descriptor 56 can have a structure descriptor 74 defining its attributes. Aspect
group descriptor 78 has a zero or more to one composite aggregation relationship
80 with aspect descriptor 56 since an aspect can be an aggregation of aspect
groups. Aspect group descriptor 78 also has a directed zero or more to zero or
more relationship 82 with relation descriptor 84 since aspect groups also include
relations. Structure descriptor 74 has a one to zero or more ownership relationship
90 with field descriptor 86 since a structure can use many data fields to define
itself. Aspect group descriptor 78 also has a zero or more to zero or more
relationship 88 with field descriptor 86.

Aspect action descriptor 92 has a zero or more to one aggregation
relationship 100 with aspect descriptor 56 since aspects can provide actions that
can be executed on the aspect. Aspect action descriptor 92 has an inheritance
relationship 102 with its superior class operation descriptor 70. Query descriptor
104 also has an inheritance relationship 106 with its superior class operation
descriptor 70. Service module descriptor 54 has a one to zero or more relationship
108 with query descriptor 104 since a service module can include zero or more
queries. Service module group descriptor 58 has a zero or more to zero or more
directed relationship 110 with query descriptor 104 since queries can also be
grouped together in a service module group.

Operation descriptor 70 has a zero or more to zero or one relationship 112
with structure descriptor 74 since each operation includes input parameters in the
form of structures. Query descriptor 104 has a zero or more to zero or one
relationship 114 with aspect descriptor 56 since queries include a resulting aspect.
Relation descriptor 84 has zero or more to one relationships 116 and 118 with
aspect descriptor 56 since relations have source and target aspects.

To illustrate these descriptors defining an organization of the meta data in
repository 18, the examples below use a fixed set of relational database tables.
Other persistence mechanisms (e.g., XML) can also be used. The relational
database tables are defined in Tables 1-6, where each row of Tables 1-6 defines a
field or column of the relational database tables. The main data type of repository

18 is the aspect. The database tables for describing an aspect are Table 1,

20

10

15

20

25

WO 2005/015440

PCT/EP2004/007896

SCOL_ASPECT, and Table 2, SCOL_ASP_ACTION. Table 1 includes

descriptions of properties of an aspect. The key field for Table 1,
SCOL_ASPECT, is the ASPECT_NAME field because an aspect’s name is
unique for an aspect. The ASPECT_CATEGORY field indicates if the aspect
represents a non-key aspect or a key aspect. The STRUCTURE field indicates a

data structure name for data attributes of the aspect. A key is associated with an
aspect b'y putting the key’s name in the KEY_ASPECT field. The

SERVICE PROVIDER field defines the aspect service provider 34 for an aspect.
The TRANSAC PROVIDER field defines the transaction service provider 40 for
an aspect. The LOCKING_PROVIDER field defines the locking service provider

42 for an aspect. The repository 18 can also have a corresponding table for the

description of an aspect.

Table 1. SCOL_ASPECT definition

Field Name Key Description

ASPECT NAME X Name of the aspect

ASPECT CATEGORY Aspect type: aspect or key aspect
STRUCTURE The corresponding data structure of the aspect
KEY ASPECT The corresponding key aspect

SERVICE_PROVIDER

The name of the corresponding aspect service
provider class

TRANSAC_PROVIDER

The name of the corresponding transaction provider
class

LOCKING PROVIDER

The name of the corresponding locking provider class

Aspects can provide actions that can be executed on the aspect.
Descriptions of the actions are stored in Table 2, SCOL_ASP_ACTION. The

actions are uniquely denoted by the aspect name and the name of the action so
ASPECT NAME and ACTION_NAME fields are key fields for
SCOL_ASP_ACTION table. The field PARAM_STRUCTURE refers to a data
structure that holds input data parameters for the action. The field
INPUT_KEY_ASPECT refers to the name of a key aspect that defines the type of

keys used to designate which instances of data types in repository 18 are acted
upon by the action. The field PROVIDER_CLASS refers to the name of the
action service provider class providing the action from the service provider

implementing the aspect nained in ASPECT_NAME field.

21

10

15

20

WO 2005/015440 PCT/EP2004/007896

Table 2. SCOL_ASP_ACTION definition

Field Name Key Description

ASPECT NAME X Name of the aspect

ACTION NAME X Name of the Action

PARAM STRUCTURE The corresponding data structure of the input
parameters

INPUT KEY ASPECT The name of the key aspect of the input aspects

PROVIDER CLASS The name of the action service provider class

Aspects can be related with each other. Descriptions of the relations
between aspects are stored in Table 3, SCOL_RELATION. A relation is uniquely
defined by its name so the key of a relation table is the relation name specified in
field RELATION NAME. For each relation, the field SOURCE_ASPECT
defines the aspect that is the source of the directed relation, the field
TARGET_ASPECT defines the aspect that is the target of the directed relation,
the field TARGET PROVIDER defines the query relation service provider for the
target aspect, the field REL, PARAM _TYPE defines the type of the relation
(Parent-Child or Child-Parent), and the field REL_PARAMETER defines the
cardinality of the relation. The repository 18 can also have a corresponding table

for the description of a relation.

Table 3. SCOL_RELATION definition

Field Name Key Description

RELATION NAME X Name of the relation

SOURCE ASPECT Name of the source aspect of the relation
TARGET ASPECT Name of the target aspect of the relation
TARGET PROVIDER Name of the query relation service provider class
REL PARAM TYPE Type of the relation

REL PARAMETER Parameter of the relation

The properties of a service module are stored in the Table 4,
SCOL_SVC_MODULE. Each Service module is uniquely described by its name
so SVC_MODULE_NAME field is the key field for a SCOL_SVC_MODULE
table. For each service module, the field TRANSAC PROVIDER specifies the
name of the transaction provider 40 for the service module. The repository 18

also has a corresponding table for the description of a service module.

22

10

15

20

25

WO 2005/015440 PCT/EP2004/007896

Table 4. SCOL_SVC_MODULE definition

Field Name Key Description
SVC MODULE NAME X Name of the service module -
TRANSAC PROVIDER The name of the corresponding transaction service

provider class

Every service module is associated with aspects that can be used within the
service module. Names of the aspects that can be used within each service
module are stored in the Table 5, SCOL_ASPECT_USE. Since each aspect-
service module usage is uniquely described by a name of a service module and the
name of an aspect, the fields SVC_MODULE_NAME and ASPECT _NAME are
the keys for SCOL_ASPECT USE table.

Table 5. SCOL,_ASPECT USE definition

Field Name Key Description
SVC MODULE NAME X Name of the service module
ASPECT NAME X Name of the aspect

Service Modules can provide queries to retrieve data. Descriptions of the
queries of a service module are stored in the table SCOL_QUERY illustrated in
Table 6 below. The structure of the database table is defined in Table 6. Since
each query is uniquely defined by a service module and a query name, the fields
SVC_MODULE_NAME and QUERY_NAME are key fields for SCOL_QUERY
table. Other fields include RESULT ASPECT that specifies the name of an
aspect defining the data type returned by the query and PARAM_STRUCTURE
that specifies a data structure containing the input parameters for the query. For
example, a query done on a particular aspect (e.g., specified in field
RESULT_ASPECT) associated with the service module can include input
parameters that are matched with attributes of instances of the particular aspect
and the matching instances are returned as a dataset of keys referring to those
instances. The field INPUT KEY_ ASPECT is used to define the key aspect
describing keys that could be used as filters for the query. The
PROVIDER_CLASS specifies the name of the query service provider 32

23

10

15

20

25

WO 2005/015440 PCT/EP2004/007896

associated with each query. The repository 18 also has a corresponding table tor

the description of a query.

Table 6. SCOL_QUERY definition

Field Name Key Description

SVC MODULE NAME X Name of the service module

QUERY NAME X Name of the query

RESULT ASPECT Name of the result aspect of the query

PARAM_STRUCTURE The corresponding data structure of the input
parameters

INPUT KEY ASPECT The name of the key aspect of the input aspects

PROVIDER CLASS The name of the corresponding query provider class

As stated previously, architecture 38 includes six service provider classes
(i.e., transaction 40, query 32, aspect 34, action 44, query relation 46, and locking
42) for handling requests from front end application program 12, other than
requesting meta data from repository 18, which is handled by repository service
provider class 30. To provide services upon request by front end application
program 12, service manager 16 directly calls instances of service provider
classes. These instances of service provider classes can be located on the same

computer (e.g., 6) as service manager 16 or on a different computer.

The locking service provider 42 can be used to implement a generic lock
manager for a single aspect or a set of aspects. Each locking service provider 42
needs to be registered with an aspect. The name of the locking service provider
42 is set in SCOL_ASPECT table in LOCKING_PROVIDER field for each
aspect. Locking service provider class has two methods that can be called by
service manager 16. These are LOCK and UNLOCK. LOCK takes as input a
collection of keys representing business objects to be locked, a name of an aspect
representing a class of the business objects, and a lock mode. There are various
locking modes depending on the locking capability of the target system. Locking
mode can specify “E”, “S”, or “SP”. “E” means an exclusive lock or that only one
client can obtain the lock. “S” means a shared lock indicating that any clients can
lock and no lock exclusive to one client is possible. “SP” means the same as “S”

but a subsequent upgrade to an exclusive lock is possible.

24

10

15

20

25

30

WO 2005/015440 PCT/EP2004/007896

LOCK method outputs a Boolean value indicating it the request 1s rejected
or not and also outputs a return code. UNLOCK takes as input a collection of
keys representing business objects to be unlocked and a name of an aspect
representing a class of the business objects to be unlocked. UNLOCK method
also outputs a Boolean value indicating if the request is rejected or not and a
return code. A call to UNLOCK is rejected if a transactional buffer is already in a
“dirty” state, i.e. if any update, insert, delete operation or an action that is not
marked as COL_AFFECTS_NOTHING has been issued since the last CLEANUP
call. All locks are removed if the CLEANUP method (described below) of the

transaction service provider class is called with reason ‘END”.

A transaction is a sequence of information exchange and related work
(such as database updating) that is treated as a unit for the purposes of satisfying a
request from front end application program 12 to service manager 16 and for
ensuring integrity of backend database 24. For a transaction to be completed and
changes to database 24 to be made permanent, a transaction has to be completed
in its entirety. All of the steps of a transaction are completed before the
transaction is successful and the database is actually modified to reflect all of the
requested changes. If something happens before the transaction is successfully
completed, any changes to the backend database 24 must be kept track of so that

the changes can be undone.

To handle transactions, the transaction service provider 40 receives
notifications on the various states of a transaction between service manager 16,
another non-transaction service provider (e.g., 32, 34, 44, 46), and front end
application program 12 (or service manager proxy 14 in some cases). These
notifications are the transaction service provider 40°s methods BEFORE_SAVE,
CLEANUP, and SAVE that are called by the service manager 16 during
transactions.

The service manager 16 calls the transaction service provider 40’s method
BEFORE_SAVE to check if the transactional buffer can be saved. This allows
checking if the internal state of the non-transaction service provider is ready for
being saved. The method BEFORE_SAVE returns false if it is not possible to

save the transactional buffer, the n the transaction end is aborted. Thus, the

25

10

15

20

25

30

WO 2005/015440 PCT/EP2004/007896

BEFORE_SAVE method has a BOOLEAN return parameter. BEFORE_SAVE
takes a Boolean as an input parameter REJECTED. The transactional service
provider 16 can prevent the following save and commit operations by setting the
REJECTED parameter to a non-initial value, i.e. to “true”. The method
BEFORE_SAVE is called within the service manager 16°s sequence of operations
triggered by the front-end application 12°s SAVE method.

The SAVE method finally triggers the application to save the transactional
buffer to the database 24. By calling SAVE, all internal states of a non-
transaction service provider are made persistent — either by direct updates or by
creating appropriate calls to the update task. If all service providers in
architecture 38 have received a SAVE request, service manager 16 commits the
transaction.

The CLEANUP method tells all non-transaction service providers to
release all their transactional buffers and enqueue-based locks. Calling
CLEANUP method communicates that all service providers in architecture 38
need to clean up their internal state. CLEANUP takes a REASON string as an
input parameter. The REASON field indicates the reason for the clean up
operation. This can be either a ‘COMMIT” due to a SAVE-operation or the
“END’ of the transaction due to the system closing the transaction automatically.
There is no guarantee that cleanup is called under failure conditions.

The action service provider 44 is called by service manager 16 to execute
an action for an aspect. The name of action service provider 44 is set in the
PROVIDER._CLASS field of SCOL_ASP_ACTION table for a row
corresponding to an action. Action service provider 44 has one method
EXECUTE. EXECUTE method takes as input parameters an aspect name
(ASPECT), a set of keys (INKEYS) specifying which instances of the aspect are
acted upon by the action, a generic input parameter (INPARAM), the name of the
action (ACTION) to be executed, a set of keys (RELATION_INKEY) for an
action acting on an relation, and a name of the relation (RELATION). EXECUTE
method returns as output parameters the changed or newly created objects
(OUTRECORDS), which have been modified by the action. The objects returned
by the OUTRECORDS parameter are transported back to the calling aspect object

on the client framework.

26

10

15

20

25

30

WO 2005/015440 PCT/EP2004/007896

The aspect service provider 34 is called by service manager 16 to provide
functionality to read and modify the content of one or more aspects. As described
previously, an aspect is described by its name (the name is globally unique within
a repository), an associated data structure, an associated key (i.e. identifier)
structure, a set of implemented actions, a set of outgoing relations, and a set of
incoming relations. Aspect service provider 34 has methods EXECUTE,
SELECT, INSERT, UPDATE, DELETE, SELECT BY RELATION, and
UPDATE_FIELDS.

The method EXECUTE is derived from the action service provider 44 and
allows executing an action. EXECUTE has as input parameters a name
(ASPECT) of the aspect, where the action is to be executed on, keys (INKEYS) of
the objects, where the action is executed on, parameters (INPARAM) for the
actions, name (ACTION) of the action. Returned parameters include modified or
created aspect rows (OUTRECORDS), a Boolean flag (REJECTED) indicating if
the request for the method was rejected or not, and return codes
(RETURN_CODES).

The method SELECT reads the aspect data associated with the input keys
for a given aspect. SELECT has as input parameters a list of keys (INKEYY)
encoded within the associated key structure to describe the aspect rows to read
and the name (ASPECT) of the aspect. SELECT has as output parameters the
result (OUTRECORDS) encoded in the aspect data structure, a Boolean flag
(REJECTED) indicating if the request for the method was rejected or not, and
return codes (RETURN_CODES).

The method INSERT inserts new data into an aspect. INSERT includes as
input parameters a table containing the records to be inserted, if aspect is designed
for row wise write operations (INRECORDS). The method may allow the
inserted record to also define key fields, depending on the aspect description (e.g.,
a parameter ExternalKeys = true or false). Input parameters also include the
name (ASPECT) of the aspect, a set of keys (RELATION_INKEY) for an action
acting on a relation, and a name of the relation (RELATION). Method INSERT
returns a set of records (OUTRECORDS) representing the inserted records
together with their keys and possible other modifications that aspect service

provider 34 wants to do on the inserted records. For example one modification

27

10

15

20

25

30

WO 2005/015440 PCT/EP2004/007896

can be filling out calculated fields for the set of records. The order of the
OUTRECORDS rows has to correspond to the order of the INRECORDS rows.
Other output parameters include a Boolean flag (REJECTED) indicating if the
request for the SELECT method was rejected or not and return codes
(RETURN_CODES).

The UPDATE method updates existing instances of an aspect either record
wise or field wise. The input parameters for UPDATE method include a table
(INRECORDS) containing the instance keys to be updated, if the aspect is
designed for row wise write operations. Input parameters also include the name
(ASPECT) of the aspect. Parameters returned by the UPDATE method include
the updated records (OUTRECORDS) together with their keys and possible other
modifications the service provider wants to do. The order of the OUTRECORDS
rows can correspond to the order of the INRECORDS rows. Other output
parameters include a Boolean flag (REJECTED) indicating if the request for the
SELECT method was rejected or not and return codes (RETURN_CODES).

The DELETE method deletes rows or instances of an aspect in the
backend (e.g., backend database 24). Input parameters for DELETE method are a
list of keys (INKEYS) encoded within the associated key structure to describe the
aspect rows to be deleted and the name (ASPECT) of the aspect. Parameters
returned by the DELETE method include a Boolean flag (REJECTED) indicating
if the request for the DELETE method was rejected or not and return codes
(RETURN_CODES).

The SELECT_BY_RELATION method returns; depending on the relation
parameter description, either attributes to follow a relation or another aspect, |
where the source aspect has a relation pointing to that other aspect. Input
parameters for SELECT BY_RELATION are name (RELATION) of the relation
to follow, records INRECORDS) of the source aspect, name of the source aspect
(ASPECT), and a structure (OPTIONS) describing various options of the queries
for paging, etc. Output parameters returned by SELECT_BY_RELATION
include the result encoded in the target aspect data structure (OUTRECORDS), an
index table showing which row of the OUTRECORDS parameters belongs to
which INRECORDS row (INDEX), a description of the result (DESCRIPTION),
a Boolean flag (REJECTED) indicating if the request for the

28

10

15

20

25

30

WO 2005/015440 PCT/EP2004/007896

SELECT BY_RELATION method was rejected or not and return codes
(RETURN_CODES).

The UPDATE_FIELDS method updates fields of instances of an aspect.
Input parameters include a list of keys (INRECORDS) encoded within the
associated key structure to describe the instances of the aspect to be updated.
Input parameters also include a table (INFIELDS) containing pairs of names of
fields and corresponding values to be updated within a set of records, if the aspect
is designed for field wise write operations. If more than one instance of an aspect
is to be updated, the additional field index INKEY points to the associated key
record. Input parameters also include the name (ASPECT) of the aspect.
Parameters returned by UPDATE_FIELDS include the created or changed
instances of the aspect (OUTRECORDS) together with their keys and possible
other modifications performed by the aspect service provider 34. The index of the
various OUTRECORDS rows have to be associated to the row indexes in the
INFIELDS table. Other parameters returned include a Boolean flag (REJECTED)
indicating if the request for the UPDATE_FIELDS method was rejected or not
and return codes (RETURN_CODES).

Query service provider 32 performs queries. A query in the repository 18
is described in table SCOL_QUERY by the query name in field QUERY_NAME,
the associated parameter structure in field PARAM_STRUCTURE, the associated
result aspect in field RESULT ASPECT, and optionally, the associated aspect
key, with its unique data structure in field INPUT_KEY_ASPECT. Query service
provider 32 has one EXECUTE method that performs a quefy on one or more
aspects. Input parameters include the name of the query (QUERY), a data
structure (INPARAM) containing the parameters for the query, and an optional
table-type parameter (INKEYS), containing the keys of the aspect rows to which
the query shall be restricted. INKEYS can but does not have to consist of the keys
of OUTRECORDS returned by EXECUTE method. INKEYS can be of any key
aspect structure. Which key structure is associated to the query is specified in the
repository 18 in table SCOL_QUERY in field INPUT_KEY_ASPECT.
Optionally, other input parameters can be specified including a structure
describing various options (OPTIONS) of the queries (e.g., for paging) and
SELECTIONS.

29

10

15

20

25

30

WO 2005/015440 PCT/EP2004/007896

Parameters returned by EXECU'LE method mciude a aescripion
(DESCRIPTION) of the query, the query result (OUTRECORDS), and a Boolean
flag (REJECTED) indicating if the request for the EXECUTE method was

rejected or not

The EXECUTE method returns the results specified by the query
parameters. If the INKEYS table parameter is not empty, the result is restricted to
the objects that fulfill the query parameters. INKEYS and INPARAM both
restrict the query, but are used in different ways. For example, a query can be
defined that returns a list of orders not yet delivered. In such an example, the
structure INPARAM can specify that only orders from customers with last names
from A-D are to be returned. The INKEYS is a table of all orders that have not
yet been delivered. OUTRECORDS contains all orders from the relevant
customers, in this case with last names A-D, that have not been delivered yet. In
one example, the OUTRECORDS result of a query is a disconnected aspect, that
is, the aspect is always read-only. No further backend operations can be
performed on this aspect. In this example, the received keys can be used as
parameters to select other aspect rows using the aspect service provider 34 and,

for example, its SELECT method.

The query relation service provider 46 implements a routine in a service
provider (e.g., aspect service provider 34) for an aspect that is the target of a
relation. Methods of query relation service provider 46 are indirectly called from
the aspect service provider 34 of the source aspect, if the relation is marked as

SOURCE_KEYS or ATTRIBUTES.

Query relation service provider 46 has a SELECT _TARGET method. The
method SELECT TARGET has input parameters as follows. Input parameters
include the name (SOURCE_ASPECT) of the source aspect. Optionally, the
method also includes an input parameter defining a proxy interface (TARGET) to
the target aspect’s SELECT method. Specifying the TARGET parameter allows
calling the SELECT method of the aspect service provider 34 for the target aspect
without directly knowing the aspect service provider 34 for the target aspect. This

30

10

15

20

25

30

WO 2005/015440 PCT/EP2004/007896

enables a query relation service provider 46 to be added to a service module

without knowledge of the aspect service provider 34 for the target aspect.

Another input parameter for the SELECT TARGET method is the relation
(RELATION). Another input parameter is a table of fields INPARAMS) to
describe the relation. To allow mass selection, INPARAMS is a table where
every row describes a single selection. An INDEX parameter is used to relate the
various rows of the INPARAMS structure to the OUTRECORDS rows. Another
optional input parameter is a structure (OPTIONS) describing various options of
the queries (e.g., for paging).

The SELECT TARGET method returns parameters that include the result
encoded with the structure of the target aspect (QUTRECORDS), a description of
the query result (DESCRIPTION), and a proxy interface to the target aspects
SELECT method. Other output parameters include an index (INDEX) to describe
the relation between the INPARAMS records and the OUTRECORDS parameter,
a Boolean flag (REJECTED) indicating if the request for the SELECT_TARGET
method was rejected or not and return codes (RETURN_CODES).

The service providers 32, 34, 40, 42, 44, and 46, as described above,
enable the following transactional model for the architecture 38. Executing
method SELECT of aspect service provider 34 reads from the backend database
24 or reads from a transactional buffer stored in the back-end. Aspect service
provider 34 merges data from both sources — the database and its transactional
buffer - in a consistent way so that the merge data reflects the updates made so far
in this transaction. Next, executing UPDATE, INSERT, MODIFY, or DELETE
methods of aspect service provider 34 builds up a transactional buffer. Before
actually changing data in the transactional buffer, the service manager 16 has to
acquire a transactional lock on the data and read the data under the protection of a
lock. There are exclusive, shared, and shared promotable lock modes available
using locking service provider 42 as described previously. Locking has to be
accompanied by selecting the locked data again under the protection of the lock.
Applications can support optimistic locking by providing time-stamped or

otherwise versioned data, and merging actual and modified data on the front-end

31

10

15

20

25

30

WO 2005/015440 PCT/EP2004/007896

in case of conflicts.

The BEFORE_SAVE method of the transaction service provider 40
enables all participating service providers to declare if they are ready for saving
the transactional buffer. The SAVE method of the transaction service provider 40
finally triggers service manager 16 to save the transactional buffer to the backend
database 24.

The CLEANUP method of the transaction service provider 40 notifies all
service providers (e.g., aspect service provider 34) to release all their transactional
buffers and enqueue-based locks. If CLEANUP is called with reason ‘END”’, all
locks have to be released. If reason is set to ‘COMMIT’, each service provider
can chose to keep its locks.

Aspect service provider 34 must not call COMMIT WORK or ROLLBACK
WORK internally on its own. The service manager 16 enforces this by
automatically aborting the transaction if aspect service provider 34 is trying to
commit a transaction.

The supported locking models and lock policies are as follows. Using
policy S, many participants can obtain a shared lock. If a shared lock is obtained
on an object, no exclusive lock or SP lock can be obtained. Shared locks can only
be used to achieve a consistent view on a larger set of data during read operations.

Using policy E, only a single participant can obtain a lock. Using policy SP
(shared promotable), many participants can obtain the lock. If a SP lock exists,
exclusive locks can only be obtained by participants already having a SP lock on
the object. Only one of the participants can upgrade the lock to an exclusive lock.
No other participant, who did obtain a lock prior to the upgrade, can upgrade to

exclusive even if the first participant did release its lock.

Example
The architecture 38 (of FIG. 3) implements a simple task of creating a new

customer, receiving the customer’s order of one or more products via GUI 28 and
submitting the order to a business process. To support this example, backend

database 24 can be implemented using a relational database designed according to
the definitions in Tables 1-6 above to define lists of customers, addresses, product

types, baskets, positions of products in a basket for each order, and orders. In

32

WO 2005/015440 PCT/EP2004/007896

lables 7-12, Key nield headings are denoted with an asterisk. Customers Lable /
defines customers and each customer is uniquely identified by a CustomerId field. -
Customers Table 7 also includes a NAME field and a foreign key field Addressld

that links addresses in an Addresses table to customers.

Table 7. Customers

CustomerId* NAME Addressld
1 John Smith 1
2 David Klein 2

Addresses Table 8 defines addresses having a town and a street. The
10 Address id itself is a valid unique key for an address and the connection between

address and customer is done through the Customers Table 7 (AddressID field).

Table 8. Addresses

Addressid* Town Street
1 Athens Main Street
2 Louisville Willow Avenue
15 Table 9 defines products having names with key Productld.

Table 9. Products

ProductId* Name
1 Saw
2 Hammer
3 Wrench
4 Screwdriver

Table 10 defines shopping baskets having customers with key BasketId.
20
Table 10. Baskets

BasketId* Customerld
1 2
1

Table 11 defines positions of orders in baskets and having products.

Positions are dependent on the existence of baskets and orders so the primary key

33

10

15

20

25

WO 2005/015440 PCT/EP2004/007896
tor positions 1s a combination of Positionid, Basketld, and Orderid.
Table 11. Positions
PositionId* Basketld* Orderid* Productld
1 1 3 2
2 1 2 3
3 1 4

Table 12 defines orders having customers and indicating whether or not

each order is submitted with primary key OrderId.

Table 12. Orders

Orderld* Customerld | Submitted
1 1 False
2 False
3 2 False

As shown in FIG. 5, process 150 defines the database operations on
backend database 22 that are needed for this simple task using these tables 7-12.
Process 150 includes front end application program 12 receiving (152) a name of
a customer. Process 150 includes the business software application querying
(154) a database with Customers table (Table 7) for the name in the NAME field.
Process 150 includes checking if the customer’s name matches (156) a row in the
Customers table (Table 7). If no match is made, process 150 includes the business
software application obtaining (158) the address of the customer, inserting (160) a
new row in the Addresses table (Table 8) with a new AddressID and address, and
inserting (162) a new row in the Customers table (Table 7) with a new Customerld
and the AddressID. If a match is made, process 150 includes the business
software obtaining (164) a name of a product to order for the customer. Process
150 includes the business software querying (166) the Products table (Table 9) for
the product name.

Process 150 includes checking if the product name matches (168) a row in
the Products table (Table 9). If a match is made, then process 150 includes the
business software inserting (170) a new order in the Orders table (Table 12) with
the customer’s Customerld and setting the Submitted field to “False”. Otherwise,

process 150 returns to obtaining (164) the name of the product to order. Process

34

10

15

20

25

30

WO 2005/015440 PCT/EP2004/007896

150 includes the business sottware inserting (172) a new basket in the Basket
table (Table 10) with the customer’s CustomerId.

Process 150 includes the business software inserting (174) a new position
in the Positions table (Table 11) with the Customerld, Basketld, and ProductId.
Process 150 includes the business software receiving (176) a request to submit the
order. Process 150 includes the business software querying (178) the Orders table
(Table 12) by the customer’s Customerld and this query returns orders matching
the customer’s CustomerId. Process 150 includes the business software selecting
(180) orders in the Orders table (Table 12) matching the orders for the customer’s
Customerld. Process 150 includes the business software setting (182) the
Submitted field in the selected rows in the Orders table (Table 12) to “True”.
Process 150 includes the business software getting (184) the address of the
customer from the Addresses Table 8 for order delivery by querying Customers
Table 7 for an Addressld and then querying Addresses Table 8 for a matching
AddressId.

Tables 13-19 show tables in one implementation of repository 18
representing meta data for the example database illustrated by Tables 7-12.
Tables 13-19 follow the definitions of Tables 1-6 described above such that
definitions in rows of Tables 1-6 correspond to columns or fields in Tables 13-19.

As with Tables 7-12, key fields in Tables 13-19 are labeled by an asterisk.

Table 13 follows the definition of a SCOL_ASPECT table (defined in
Table 1) to define aspects A_Customer, A_Address, A_Product, A_Basket,

A Position, and A_OrderHeader. Each aspect has a corresponding key aspect that
defines a unique key for each instance. For example, aspect A_Customer has a
key aspect Customer_Key. This key aspect in the meta data repository 18 can
correspond to a key for a relational database table in backend database 24. For
example, the key for Customers table (Table 7) is CustomerId field. The rows in
STRUCTURE field correspond to a data dictionary in Table 19 below. For
example, Table 19 can define Customer_Structure to have a NAME field of type
CHAR indicating a character string. The rows in SERVICE_PROVIDER field
correspond to particular aspect service providers handling services for aspects. In
Table 13, all of the aspects are assigned to S_provider aspect service provider

(e.g., 34 referring to FIG. 3). The rows in TRANSAC_PROVIDER field

35

10

15

WO 2005/015440

correspond to particular transaction service providers 40 handling transactions for

PCT/EP2004/007896

aspects. In Table 13, all of the aspects are assigned to T_provider transaction

service provider (e.g., 40 referring to FIG. 3). The rows in

LOCKING _PROVIDER field correspond to particular locking service providers

handling locking for aspects. In Table 13, all of the aspects are assigned to

L_provider locking service provider (e.g., 42 referring to FIG. 3).

Table 13. Example SCOL_ASPECT table

ASPECT _ ASPECT _ STRUCTURE | KEY SERVICE_ | TRANSAC_ | LOCKING_

NAME* CATEGORY ASPECT PROVIDER | PROVIDER | PROVIDER

A_Customer aspect Customer_ Customer _ S provider | T provider | L_provider
Structure Key

Customer Key | key aspect Customer_ Customer S provider | T provider | L_provider
Key Table Key

A_Address aspect Address_ Address_ S_provider | T provider | L_provider
Structure Key

Address Key key aspect Address_ Address_ S provider | T provider | L_provider
Key Table Key

A_Product aspect Product_ Product_ S_provider | T provider | L_provider
Structure Key

Product_Key key aspect Product_ Product _ S provider | T provider | L_provider
Key Table Key

A_Basket aspect Basket Basket S provider | T provider | L_provider
Structure Key

Basket Key key aspect Basket Basket S provider | T provider | L_provider
Key Table Key

A_Position aspect Position_ Position_ S_provider | T provider | L_provider
Structure Key

Position_Key key aspect Position_ Position_ S provider | T provider | L_provider
Key Table Key

A_OrderHeader | aspect OrderHeader | OrderHeade | S_provider | T provider | L_provider
Structure r Key

OrderHeader | key aspect OrderHeader | OrderHeade | S _provider | T provider | L_provider

Key Key Table r Key

Table 14 follows the definition of a SCOL_ASP_ASPECT table (defined

in Table 2) to define an action Submit for aspect A_OrderHeader. Field
INPUT _KEY ASPECT specifies the key aspect that is sent by application 14
with the action to specify which instances of aspect A_OrderHeader should be

acted upon by the action. Action Submit changes the Submitted field of those

instances in backend database 24 to True. No extra parameters are required for

this action Submit so PARAM_STRUCTURE field is blank in Table 14. Field

PROVIDER_CLASS specifies the aspect service provider 34 (referring to FIG. 3)

assigned to each action. In Table 14, action Submit is assigned to aspect service

36

10

15

20

WO 2005/015440

PCT/EP2004/007896
provider S_provider (e.g., 34 reterrmg to k14U, 3).
Table 14. Example SCOL_ASP_ACTION Table
ASPECT NAME* | ACTION_NAME* PARAM_STRUCTURE | INPUT_KEY_ | PROVIDER_
ASPECT CLASS
A_OrderHeader Submit OrderHeader_ | S_provider
Key

Table 15 follows the definition of a SCOL_RELATION table (defined in

Table 3) to define relations between aspects defined in Table 13. These relations

reflect relations between data tables in backend database 24 illustrated by example

tables 7-12. These relations between aspects are also illustrated in FIG. 6 for

aspect A_Customer 202, aspect A_Address 204, aspect A _Product 206, aspect
A_Basket 208, aspect A_Position 210, and aspect A_OrderHeader 112. These
relations include R_Customer_To_Address 212, R_Basket_To_Customer 214,
R_OrderHeader_To_Customer 216, R_Position_To_Product 218,

R_Position_To_OrderHeader 220, and R_Position_To_Basket 222.

Table 15. Example SCOL_RELATION Table

RELATION_ SOURCE _ TARGET_ TARGET | REL_PARAM_ | REL_
NAME* ASPECT ASPECT PROVIDER | TYPE PARAMETER
R _Customer_ A_Customer A_Address S_provider | Parent-Child

To Address

R Basket To_ | A_Basket A_Customer S_provider

Customer

R_OrderHeader | A_OrderHeader | A_Customer S_provider

To_Customer

R_Position_To_ | A_Position A_Product S_provider

Product

R _Position_To_ | A_Position A_OrderHeader | S_provider | Child-Parent
OrderHeader

R_Position_To_ | A_Position A _Basket S_provider | Child-Parent

Basket

Table 16 follows the definition of a SCOL_SVC_MODULE table (defined

in Table 4) to define example service modules for the example definitions of

backend database 24 given in tables 7-12. Table 16 defines service modules
S_Customer, S_Product, S_Basket, and S_Order. Field TRANSAC _PROVIDER

specifies a transaction service provider 40 (referring to FIG. 3) to each service

module. In Table 16, transaction service provider T_provider (e.g., 40, referring

37

WO 2005/015440 PCT/EP2004/007896
to F1G. 3) 1s assigned to the service modules.
Table 16. Example SCOL_SVC_MODULE Table

SVC_MODULE_NAME* | TRANSAC _
PROVIDER

S_Customer T provider

S Product T provider

S_Basket T provider

S Order T provider

5 Table 17 follows the definition of a SCOL_ASPECT USE table (defined

in Table 5) to associate service modules (provided by Table 16) with aspects

(provided by Table 13).

Table 17. Example SCOL,_ASPECT USE Table

SVC MODULE NAME* ASPECT NAME*
S Customer A Customer

S Customer A Address

S Product A Product

S Basket A Basket

S Basket A Position

S Order A OrderHeader

S Order A Position

10

Table 18 follows the definition of a SCOL_QUERY table (defined in
Table 6) to define queries designed to facilitate business process 150 of FIG. 5.
For example, QueryByName query associated with S_Customer service module
takes a Customer_Stucture as input for the query and a set of customer keys
15 (Customer_Key) that defines which keys may be used for filtering. Field
PROVIDER _CLASS specifies which query service provider 32 (referring to FIG.

3) is associated with each service module. In Table 18, query service provider

Q_provider (e.g., 32) is associated with each service module.

38

10

15

WO 2005/015440 PCT/EP2004/007896

Table 18. Example SCOL_QUERY Table

SVC_MODULE_ | QUERY_NAME* | RESULT_ | PARAM_ INPUT_KEY_ | PROVIDER _
NAME#* ASPECT STRUCTURE | ASPECT CLASS
S_Customer QueryByName Customer_ Customer_ Customer_ Q_provider
Key Structure Key
S_Product QueryByName Product Product_ Product _ Q_provider
Key Structure Key
S_Basket QueryByCustomer | Basket Key | Customer Key | Customer Key | Q_provider
Table
S_OrderHeader QueryByCustomer | OrderHeader | Customer_Key_ | Customer_Key | Q_provider
Key Table

Table 19 defines a data dictionary for the implementation of repository 18
defined in Tables 13-18. Each row defines a structure having a name and multiple
data entries and their types. For example, structure Customer_Structure has one
data entry titled “NAME” with a CHAR type indicating a character string. The
Customer_Key Table structure defines a CustomerlId key for each customer and
also has a CHAR type.

Table 19. Example SCOL_STRUCT Table

STRUCT NAME* DATAIl TYPE1 DATA2 TYPE2
Customer Structure | NAME CHAR

Customer Key Table | Customerld CHAR

Address Structure Town CHAR Street CHAR
Address Key Table | Addressld CHAR

Product Structure Name CHAR Productld CHAR
Product Key Table | Productld CHAR

Basket Structure

Basket Key Table Basketld CHAR

Position Structure

Position Key Table | Positionld CHAR

OrderHeader__ Submitted CHAR

Structure

OrderHeader Key Orderld CHAR

Table

The database operations described above for process 150 are defined in
this implementation of repository 18 as follows. Querying (154), included in
process 150, of the Customers database table (Table 7) is described in meta data
repository 18 by the QueryByName query associated with aspect service module
S_Customer in Table 18. This QueryByName query associated with aspect
service module S_Customer is selected because the front end application program

12 has obtained a customer name and service module S_Customer contains

39

10

15

20

25

30

WO 2005/015440 PCT/EP2004/007896

aspects with customer names. For example, front end application program 12 can
submit query QueryByName associated with service module S_Customer with
NAME = “John Smith” and no filtering Customer Key specified to service
manager 16. Service manager 16 checks repository 18 to ensure that the query is
defined. Service manager 16 then submits the query to Q_provider (e.g., 32) that
queries the Customer database table (Table 7) in database 24 and the output is sent
back to front end application program 12 is a record set containing Customerld =
{1}.

Inserting (160), included in process 150, on Addresses database table
(Table 8) and inserting (162), included in process 150, on Customers database
table (Table 7) are described by standard Insert operations (described previously)
on aspects A_Address and A_Customer, respectively, in the meta data repository
18.

Querying (166), included in process 150, on the Products database table
(Table 9) for a product name is described by QueryByName query associated with
service module S_Product defined in Table 18. For example, application 12 can
submit the query QueryByName associated with service module S_Product with
Name = “Wrench” and no filtering Product Key specified to service manager 16.
Service manager 16 checks repository 18 to ensure that the query is defined.
Service manager 16 then submits the query to Q_provider (e.g., 32) queries
database 24 and the output sent back to application 12 is a record set containing
Productld = {3}.

Inserting (170, 172, and 174), included in process 150, are defined by
insert operations on aspects A_OrderHeader, A_Basket, and A_Position,
respectively.

Querying (178), included in process 150, Orders database table (Table 12)
by customer is described by the QueryByCustomer query associated with service
module S_Order defined in Table 18. For example, front end application program
12 can submit query QueryByCustomer associated with service module S_Order
with Customer_Key (CustomerId) = {2} and no filtering OrderHeader Key.
Service manager 16 checks repository 18 to ensure that the query is defined.
Service manager 16 then submits the query to Q_provider (e.g., 32) that queries

database 24 and the output is sent back to application 12 is a record set containing

40

10

15

20

25

30

WO 2005/015440

OrderHeader Key (Orderld) = {2, 3}.

Selecting (180), included in process 150, order operation on Orders
database table (Table 12) and setting (182) submitted field to true on selected
orders are defined by the Execute Submit action (defined in Table 14) on aspect
A_OrderHeader in repository 18. For example, front end application program 12
sends the Submit action on aspect A_OrderHeader to service manager 16 with
OrderHeader Key = {2, 3}. Service manager 16 then sends the submit operation
to S_provider (e.g., 34) that changes the Submitted field in Orders database table
(Table 12) to “True” for selected rows corresponding to Orderld = {2, 3}.

Getting (184) customer address, included in process 150, from Addresses
database table (Table 8) is defined by the standard Select By Relation action on
A_Customer aspect. For example, the front end application program 12 sends a
Select By Relation action on A_Customer aspect specifying relation
R_Customer To_Address and Customer_Key = {2} to service manager 16.
Service manager 16 checks the request against repository 18 and passes the
request to service provider S_provider (e.g., 34) that looks up foreign key
AddressId matching Customerld = {2} and navigates to Addresses table 8.
S_provider (e.g., 34) returns a record set containing {Louisville, Willow Avenue}
from Addresses database table (Table 8) to application 12 via service manager 16.

As described previously, front end application program 12 sends
commands and requests for data in backend database 24 indirectly to service
providers 26 through service manager 16. There are different front end
application programs 12 to view data and execute commands using service
providers 26. Furthermore, there are different companies or customers from
different industries using different or same front end application programs 12 with
the same software for service manager 16 and service providers 26 but with
different backend databases 24. These different customers of services provided by
service manager 16 and service providers 26 can have differing requirements for
standard applications provided by service manager 16 and service providers 26.
Architecture 38 enables these different customers to extend the functionality of
the services provided by service manager 16 and service providers 26 without
modifying the standard core development software of service manager 16 and

service providers 26. This extension is done by extending the meta data in the

41

PCT/EP2004/007896

10

15

20

25

30

WO 2005/015440 PCT/EP2004/007896

repository 18.

One area for extending the repository 18 is the extension of a data
dictionary structure described by the Structure Descriptor 74 (of FIG. 3). In the
repository 18, aspects, actions and queries have references to data dictionary
structures (see Tables 1, 2, 6 above). For example, a data dictionary structure of
an aspect designed by a vendor may not be exactly the same data dictionary
structure that a customer needs for the front end application program 12. Field
extensions are used to extend a data dictionary structure for a particular customer.

As described previously, an aspect in the architecture 38 supports actions
that are defined in Table 2, SCOL_ASP_ACTION. In some examples, a customer
needs to implement additional actions for the aspect. The customer can also
extend an implementation in the service providers 26 of an action for the aspect.
To do this extension of the implementation of the action, the customer’s front end
application program 12 can keep control of the execution of the extension during
the execution of the action by service providers 26.

In another example, the customer adds custom aspects to a service module
in the repository 18 to extend the functionality of the service module. When the
customer extends the service module with aspects, the customer can also generate
additional relations between the custom aspects and standard aspects in the
repository 18.

Customers can also extend service modules in repository 18 by adding
queries with their own implementation.

When a customer enhances the data dictionary structure of an aspect, the
customer also extends the implementation of the query in the service provider.
Thus, the customer’s front end application program 12 has control of the extended
portion of the implementation during the execution of the query by service
providers 26.

Customers can also configure the architecture 38 by extending the
implementation of service providers in service providers 26.

To enhance the services provided by service manager 16 and service
providers 26 to front end application program 12, two steps are needed. One step
is extending the repository 18 by enhancing the metadata pf aspects and service

modules in repository 18. Another step is extending the coding implemented in

42

10

15

20

25

30

WO 2005/015440 PCT/EP2004/007896

the various service providers 26 (e.g., query service provider 32, aspect service
provider 34, action service provider 44).

To enhance the core repository objects (e.g., aspects, queries, actions, and
service modules) stored in the repository 18, the customer having front end
application program 12 generates extensions that are stored in customer repository
252 as shown in FIG. 7. An extension is a software entity generated in the
customer’s namespace that has a relation “extends” to one of the core repository
objects stored in the repository 18. This relation is stored in the metadata of the
extension in the repository 18. Each extension extends exactly one repository
object. In some examples, the metadata of the extension can be stored in database
tables with same names and fields (Tables 1-6 shown above) in customer
repository 252 as the core repository objects in repository 18. The core repository
object does need not be changed when a customer extends the core repository
object. After a software upgrade of the architecture 38, due to this separation of
the metadata (core repository 18 and customer’s extension repository 252), no
effort is needed to adapt the extensions to the upgrade. The customer also
provides customer extension provider 254 to support extension functionality.

During execution within architecture 38, the separation of core and
extension object is transparent to the front end application program 12. As shown
in FIG. 8, the repository service provider 30 combines the metadata of the core
object 302 from repository 18 and the extension 304 (from customer repository
252) of the core object and delivers the complete metadata information of the
extended object to the service manager 16.

To enhance the metadata of an aspect, an aspect extension is generated in
repository 18. The aspect extension is special kind of aspect that extends another
aspect and has the same key aspect as the extended aspect (i.e., the aspect being
extended). The data dictionary structure of the extension is also mapped to the
same dictionary type than the extended aspect. Within the aspect extension the
following operations can be done: create actions, create configurations, create
relations, and create groups.

To enhance the metadata of a service module, a service module extension
can be generated. The service module extension is a special kind of service

module that extends another service module. Within the service module extension

43

10

15

20

25

30

WO 2005/015440 PCT/EP2004/007896

new queries can be added with the constraimnt that the name of the queries are
restricted to customer namespace. In a service module extension the following
operations can be done: add aspects (core aspects and customer aspects) to the
service module, add queries, and generate groups.

To avoid name clashes after an upgrade of the architecture 38, the names
of all new elements within an extension are restricted to the customer namespace.

It is also possible to achieve multi-layer extensibility. That means that a
customer is allowed to extend a service module extension or an aspect extension
(concatenated extensions). Having many extensions to one aspect or service
module is also possible (parallel extensions). FIG. 8A shows an illustrative
scenario 350 where in one example, the core repository 352 of architecture 38 is
enhanced by extension 354 provided by a vendor and extension 354 is further
extended by a first customer’s extension 356. In the other example, the core
metadata 352 of architecture 38 is enhanced by extension 358 provided by a
vendor and extension 358 is further extended by a second customer’s extension
360.

To allow for enhancement of the functionality implemented by the service
providers 26 (e.g., query service provider 32, aspect service provider 34, action
service provider 44), the architecture 38 provides various extension points where
additional coding from customer extension provider 254 can be plugged-in.

In one example based on object oriented technology, extension points are
realized with the Business Add-In (BAdI) technique that is commercially
available with R/3 from SAP of Walldorf, Germany. Busipess Add-Ins are an
enhancement technique for enterprise business software. Business Add-Ins can be
inserted into a software system to accommodate requirements too specific to be
included in a standard delivery. Business Add-Ins allow for a multi-level system
landscape (e.g., vendor, partner, and customer solutions, as well as country
versions, industry solutions, and the like). Definitions and implementations of
Business Add-Ins can be created at each level within such a system infrastructure.

The vendor guarantees the upward compatibility of the Business Add-In
interfaces. Release upgrades do not affect enhancement calls from within the

standard software nor do they affect the validity of call interfaces.

44

10

15

20

25

30

WO 2005/015440 PCT/EP2004/007896

The architecture 38 provides the extension points for the aspect extensions
and for the service module extensions. Each call of the service provider (e.g.,
query service provider 32, aspect service provider 34, action service provider 44)
is surrounded with a BEFORE extension point and an AFTER extension point.
FIG. 9 shows a sequence diagram of the process 400 using the extension points.
In process 400, front end application program 12 sends (404) a request for a
service to be performed by the service manager 16. The service manager 16 sends
(406) a BEFORE extension point with parameters to extension 304. The customer
extension provider 254 executes (408) instructions and possibly modifies the
parameters. Customer extension provider 254 returns (410) the possibly modified
parameters to service manager 16. Service manager 16 sends (412) a request with
the possibly modified parameters to service provider 402. The service provider
402 satisfies the request by executing (414) instructions using the possibly
modified parameters. Service provider 402 returns (416) a set of output
parameters to service manager 16. Service manager 16 sends (418) an AFTER
extension point with a set of parameters (possibly including the output
parameters) to customer extension provider 254. The customer extension provider
254 executes (420) instructions and possibly modifies the parameters. Customer
extension provider 254 returns (422) the possibly modified parameters to service
manager 16.

For aspect extensions, extension points are used in scenarios where a
customer has enhanced a field of the data dictionary strﬁcture of an aspect. In
such scenarios, extension points provide opportunity for executing extra
instructions for the enhanced fields.

For service provider extensions, the tasks executed at extension points
include filtering INKEY'S, modifying OUTRECORDS and INRECORDS,
modifying parameter values of actions and queries, setting dynamic metadata and

configurations, sending messages, and handling errors.

Extension Points for aspect extensions

Extension points for aspect extensions are provided by the BAdI
COL_ASPECT_EXTENSION with the name of the aspect as a filter value. Each

aspect extension is related with an implementation of that BAdI. There are

45

10

15

20

WO 2005/015440 PCT/EP2004/007896

extension points for before and after the following operations: select, select by
relation, insert, update, update fields, delete, action execute, lock, unlock, and
save.

As described above, front end application program 12 sends a select
request to the service manager 16 to select a set of aspect rows for a given aspect.
As described previously, this select request results in calling the method SELECT
of the aspect service provider 34. The service manager 16 sends a
BEFORE _SELECT extension point to the customer extension provider 254 before
the selection of aspect rows. After receiving the BEFORE_SELECT extension
point, the customer extension provider 254 can filter the INKEYS parameter from
the front end application program 12. The parameters for the BEFORE_SELECT
extension point are listed in Table 20 below. These parameters include the
INKEYS that specifies the set of aspect rows and can be filtered by customer
extension provider 254. The call of the SELECT method can be suppressed by
setting the REJECTED parameter to TRUE.

Table 20
Parameters Imp./Chang. Type Description
INKEYS Changing INDEX TABLE Keys to be selected

REJECTED Changing SCOL_BOOLEAN Error in Backend

The service manager 16 sends an AFTER_SELECT Extension Point to the
customer extension provider 254 after the selection of aspect rows. In an example
where a field of a data dictionary structure has been extended, after receiving the
AFTER_SELECT extension point, the customer extension provider 254 can
retrieve additional data and merge it into the OUTRECORDS table that is passed
back to the front end application program 12. The parameters are listed in Table
21 below.

46

10

15

20

WO 2005/015440 PCT/EP2004/007896

Table 21
Parameters Imp./Chang. Type Description
INKEYS Importing INDEX TABLE Keys to be
: selected
OUTRECORDS Changing INDEX TABLE Selected
records
REJECTED Changing SCOL_BOOLEAN Error in
Backend
RETURN_CODES Changing SCOL RETURN CODE_T Return
codes

As described previously, the SELECT_BY_RELATION request from the
front end application program 12 to service manager 16 results in the service
manager 16 calling the method SELECT BY_RELATION of the aspect service
provider 34. The service manager 16 sends a
BEFORE_SELECT BY_RELATION Extension Point before calling the method
SELECT BY RELATION of the aspect service provider 34. After receiving the
BEFORE_SELECT BY_RELATION extension point, the customer extension
provider 254 can modify the INRECORDS Parameter of the
SELECT BY RELATION method. The parameters of the
BEFORE SELECT BY RELATION Extension Point are listed in Table 22
below. These parameters include RELATION that specifies the name of the
relation used in the selection and INRECORDS. The call of the
SELECT BY_RELATION method can be suppressed by setting the REJECTED
parameter to TRUE.

Table 22
Parameters Imp./Chang. Type Description
RELATION Importing STRING Name of the relation
INRECORDS Changing INDEX TABLE Aspect rows
REJECTED Changing SCOL BOOLEAN Error in Backend

’

The service manager 16 sends an AFTER_SELECT BY RELATION
Extension Point to the customer extension provider 254 after the selection of
aspect rows via a relation by calling the method SELECT BY_REQUEST of the
aspect service provider 34. In an example where a field of a data dictionary

structure has been extended or where a relation is added to an aspect using an

47

10

15

WO 2005/015440 PCT/EP2004/007896

extension, after receiving the AFTER_SELECT BY_RELATION extension
point, the customer extension provider 254 can retrieve additional data and merge

it into the OUTRECORDS table. The parameters are listed in Table 23 below.

Table 23
Parameters Imp./Chang. Type Description
RELATION Importing STRING Name of
the relation
INRECORDS Changing INDEX TABLE Aspect
TOWS
OUTRECORDS Changing INDEX TABLE Selected
records
INDEX Changing SCOL_RELATION_INDEXT Index
REJECTED Changing SCOL_BOOLEAN Error in
Backend
RETURN_CODES Changing SCOL_RETURN _CODE_T Return
codes

The BEFORE_INSERT Extension Point is sent to the customer extension
provider 254 before the insertion of aspect rows by calling the previously
described method INSERT of the aspect service provider 34. After receiving the
BEFORE_INSERT extension point, the customer extension provider 254 can
filter and modify the INRECORDS Parameter that is subsequently passed to the
INSERT method. The parameters for the BEFORE_INSERT Extension Point are
listed in Table 24 below. The call of the INSERT method can be suppressed by
setting the REJECTED parameter to TRUE.

Table 24
Parameters Imp./Chang. Type Description
INRECORDS Changing INDEX TABLE Records to be
inserted
RELATION Importing STRING Name of the
Relation
RELATION INKEY Importing ANY Related row
REJECTED Changing SCOL BOOLEAN Error in Backend

The AFTER_INSERT Extension Point is sent to the customer extension
provider 254 after the insertion of aspect rows by calling the previously described

method INSERT of the aspect service provider 34. In an example where a field of

48

WO 2005/015440 PCT/EP2004/007896

a data dictionary structure has been extended, after receiving the
AFTER_INSERT extension point, the customer extension provider 254 can save

additional data to the database. The parameters are listed in Table 25 below.

Table 25
Parameters Imp./Chang. Type Description
INRECORDS Importing ~ INDEX TABLE Records
for insert
RELATION Importing STRING Relation
name
RELATION_INKEY Importing ANY Related
TOW
OUTRECORDS - Changing INDEX TABLE Inserted
TOWS
RELATION_OUTRECORD Changing ANY Changed
oW
REJECTED Changing SCOL_BOOLEAN Error in
Backend
RETURN_CODES Changing SCOL_RETURN_CODE T Return
codes

The BEFORE_UPDATE Extension Point is sent to the customer extension
provider 254 before the update of aspect rows by calling UPDATE method
(previously described) of the aspect service provider 34. After receiving the
BEFORE_UPDATE extension point, the customer extension provider 254 can
filter and modify the INRECORDS-Parameter. The parameters are listed in Table
26 below. The call of the UPDATE method can be suppressed by setting the
REJECTED parameter to TRUE.

Table 26
Parameters Imp./Chang. Type Description
INRECORDS Changing INDEX TABLE Records to be updated
REJECTED Changing SCOL BOOLEAN Error in Backend

The AFTER _UPDATE Extension Point is sent to the customer extension
provider 254 after the update of aspect rows. In an example where a field of a
data dictionary structure has been extended, after receiving the AFTER_UPDATE
extension point, the customer extension provider 254 can save additional data.

The signature is defined in Table 27 below.

49

10

15

WO 2005/015440 PCT/EP2004/007896
Table 27

Parameters Imp./Chang. Type Description

INRECORDS Importing ~ INDEX TABLE Records to
be updated

OUTRECORDS Changing INDEX TABLE Updated
Records

REJECTED Changing SCOL_BOOLEAN Error in
Backend

RETURN_CODES Changing SCOL_RETURN CODE_T Return
codes

The BEFORE UPDATE_FIELDS Extension Point is sent to the customer
extension provider 254 before the field update of aspect rows by calling
UPDATE_FIELDS method (described previously) of the aspect service provider
34. After receiving the BEFORE_UPDATE_FIELDS extension point, the
customer extension provider 254 can filter and modify the INRECORDS
Parameter. The parameters are listed in Table 28 below. The call of the
UPDATE_FIELDS method can be suppressed by setting the REJECTED
parameter to TRUE.

Table 28
Parameters Imp./Chang. Type Description
INRECORDS Changing INDEX TABLE Records to be
updated
INFIELDS Changing SCOL_T UPDATE_FIELDS Fields to be
updated
REJECTED Changing SCOL_BOOLEAN Error in
Backend

The AFTER_UPDATE_FIELDS Extension Point is sent to the customer
extension provider 254 after the field update of aspect rows. In the example
where a field of a data dictionary structure has been extended, after receiving the
AFTER_UPDATE_FIELDS extension point, the customer extension provider 254

can save additional data. The parameters are listed in Table 29 below.

50

10

WO 2005/015440 PCT/EP2004/007896

Table 29

Parameters Imp./Chang. Type Description

INRECORDS Importing INDEX TABLE Records to
be updated

INFIELDS Importing SCOL_T UPDATE FIELDS Fields to be
updated

OUTRECORDS Changing INDEX TABLE Updated
Records

REJECTED Changing SCOL_BOOLEAN Error in
Backend

RETURN CODES Changing SCOL RETURN_CODE_T Return
codes

The BEFORE_DELETE Extension Point is sent to the customer extension
provider 254 before the deletion of aspect rows by calling DELETE method of the
aspect service provider 34. After receiving the BEFORE_DELETE extension
point, the customer extension provider 254 can filter the INKEYS-Parameter. The
parameters are listed in Table 30 below. The call of the DELETE method can be
suppressed by setting the REJECTED parameter to TRUE.

Table 30
Parameters Imp./Chang. Type Description
INKEYS Changing INDEX TABLE Keys to be deleted

REJECTED Changing SCOL BOOLEAN Error in Backend

The AFTER_DELETE Extension Point is sent to the customer extension
provider 254 after the deletion of aspect rows. In the example where a field of a
data dictionary structure has been extended, after receiving the AFTER_DELETE
extension point, the customer extension provider 254 can delete additional data.

The parameters are listed in Table 31 below.

51

10

15

WO 2005/015440 PCT/EP2004/007896

Table 31
Parameters Imp./Chang. Type Description
INKEYS Importing INDEX TABLE Keys to be
deleted
REJECTED Changing SCOL_BOOLEAN Error in
Backend
RETURN _CODES Changing SCOL_RETURN CODE T Return
codes

The BEFORE_ACTION_EXECUTE Extension Point is sent to the
customer extension provider 254 before the execution of an aspect action. After
receiving the BEFORE_ACTION_EXECUTE extension point, the customer
extension provider 254 can change the value of the INPARAM parameter or
change the INKEYS table. For example, a customer can restrict the action to
specific keys. The parameters are listed in Table 32 below. The call of the
EXECUTE method of the aspect service provider 34 can be suppressed by setting
the REJECTED parameter to TRUE.

Table 32
Parameters Imp./Chang. Type Description
INPARAM Changing ANY Parameters of the action
INKEYS Changing INDEX TABLE Objects to act again
ACTION Importing STRING Name of the action

REJECTED Changing SCOL BOOLEAN Error in Backend

The AFTER_ACTION_EXECUTE Extension Point is sent to the customer
extension provider 254 after the execution of an aspect action. After receiving the
AFTER_ACTION_EXECUTE extension point, the customer extension provider
254 can enhance the functionality of the action or add actions to an aspect. The

parameters are listed in Table 33 below.

52

10

WO 2005/015440 PCT/EP2004/007896

lLable 33
Parameters Imp./Chang. Type Description
INPARAM Importing ANY Parameters
of the action
INKEYS Importing INDEX TABLE Objects to
act again
ACTION Importing STRING Name of the
action
OUTRECORDS Changing INDEX TABLE Changed
aspect rows
REJECTED Changing SCOL_BOOLEAN Error in
Backend
RETURN_CODES Changing SCOL_RETURN _CODE T Return
codes

The BEFORE_LOCK Extension Point is sent to the customer extension
provider 254 before the LOCK method (as previously described) of the locking
service provider 42 is called by the service manager 16. After receiving the
BEFORE_LOCK extension point, the customer extension provider 254 can filter
values from INKEYS table before calling the LOCK method. The parameters are
listed in Table 34 below. The call of the LOCK method of the locking service
provider 42 can be suppressed by setting the REJECTED parameter to TRUE.

Table 34
Parameters Imp./Chang. Type Description
INKEYS Changing INDEX TABLE Objects to be locked
LOCKMODE Importing STRING Locking mode
REJECTED Changing SCOL BOOLEAN Error in Backend

The AFTER_LOCK Extension Point is sent to the customer extension
provider 254 after the LOCK method of the locking service provider 42 is called.
In the example where a field of a data dictionary structure has been extended, after
receiving the AFTER_LOCK extension point, the customer extension provider

254 can set additional locks. The parameters are listed in Table 35 below.

33

10

15

WO 2005/015440 PCT/EP2004/007896

Table 35
Parameters Imp./Chang. Type Description
INKEYS Importing INDEX TABLE Objects to
be locked
LOCKMODE Importing STRING Locking
mode
REJECTED Changing SCOL_BOOLEAN Error in
Backend
RETURN_CODES Changing SCOL_RETURN CODE T Return
codes

The BEFORE_UNLOCK Extension Point is sent to the customer
extension provider 254 before the UNLOCK method (previously described) of the
locking service provider 42 is called. After receiving the BEFORE_UNLOCK
extension point, the customer extension provider 254 can filter values from
INKEYS table before calling the UNLOCK method. The parameters are listed in
Table 36 below. The call of the UNLOCK method of the locking service provider
42 can be suppressed by setting the REJECTED parameter to TRUE.

Table 36
Parameters Imp./Chang. Type Description
INKEYS Changing INDEX TABLE Objects to be unlocked

REJECTED Changing SCOL BOOLEAN Error in Backend

The AFTER_UNLOCK Extension Point is sent to the customer extension
provider 254 after the UNLOCK method of the locking service provider 42 is
called. In the example where a field of a data dictionary structure has been
extended, after receiving the AFTER UNLOCK extension point, the customer
extension provider 254 can reset additional locks. The parameters are listed in
Table 37 below.

54

10

15

20

WO 2005/015440 PCT/EP2004/007896

Table 37
Parameters Imp./Chang. Type Description
INKEYS Importing INDEX TABLE Objects to
be unlocked
REJECTED Changing SCOL_BOOLEAN Error in
Backend
RETURN CODES Changing SCOL_RETURN CODE_T Return
codes

The BEFORE_SAVE Extension Point is sent to the customer extension
provider 254 before the SAVE method (previously described) of the transaction
service provider 40 is called. After receiving the BEFORE_SAVE extension
point, the customer extension provider 254 can do some additional checks before
calling the SAVE method. The parameters are listed in Table 38 below. The call
of the SAVE method can be suppressed by setting the REJECTED parameter to
TRUE.

Table 38

Parameters Imp./Chang. Type Description
REJECTED Changing SCOL BOOLEAN Error in backend

The AFTER_SAVE Extension Point is sent to the customer extension
provider 254 after the call of the SAVE method of the transaction service provider
40. In the example where a field of a data dictionary structure has been extended,
after receiving the AFTER _SAVE extension point, the customer extension
provider 254 can save additional data from buffer to database. The method has no

parameters.

Extension Points for service module extensions

Extension Points for service module extensions are provided by the BAdI
COL_MODULE_EXTENSION with the name of the service module as a filter
value. Each service module extension is related with an implementation of that
BAdL.

The BEFORE_QUERY_ EXECUTE Extension Point is sent to the
customer extension provider 254 before calling the QUERY method (described
previously) of the query service provider 32. After receiving the
BEFORE QUERY EXECUTE extension point, the customer extension provider

55

10

15

20

WO 2005/015440 PCT/EP2004/007896

254 can change the value of the INPARAM parameter or change the INKEYS
table. For example a customer can restrict the query to specific keys. The
parameters are listed in Table 39 below. The call of the QUERY method can be
suppressed by setting the RETECTED parameter to TRUE.

Table 39
Parameters Imp./Chang. Type Description
QUERY Importing STRING Name of the query
INPARAM Changing ANY Parameters of the query
INKEYS Changing INDEX TABLE Keys to define subset

REJECTED Changing SCOL BOOLEAN Error in Backend

The AFTER_QUERY_EXECUTE Extension Point is sent to the customer
extension provider 254 after the execution of the service module query. After
receiving the AFTER _QUERY_ EXECUTE extension point, the customer
extension provider 254 can enhance the functionality of the query. The

parameters are listed in Table 40 below.

Table 40
Parameters Imp./Chang. Type Description
QUERY Importing STRING Name of the query
INPARAM Importing ~ ANY Parameters of the

query

INKEYS Importing INDEX TABLE Keys to define subset
OUTRECORDS Changing INDEX TABLE Result aspect
REJECTED Changing SCOL BOOLEAN Error in Backend

The techniques described above can be implemented in digital electronic
circuitry, or in computer hardware, firmware, software, or in combinations of
them. The techniques also can be implemented as a computer program product,
i.e., a computer program tangibly embodied in an information carrier, e.g.,in a
machine-readable storage device or in a propagated signal, for execution by, or to
control the operation of, data processing apparatus, e.g., a programmable
processor, a computer, or multiple computers. A computer program can be
written in any form of programming language, including compiled or interpreted
languages, and it can be deployed in any form, including as a stand-alone program
or as a module, component, subroutine, or other unit suitable for use in a

computing environment. A computer program can be deployed to be executed on

56

10

15

20

25

30

WO 2005/015440 PCT/EP2004/007896

one computer or on multiple computers at one site or distributed across mulitipie
sites and interconnected by a communication network.

Method steps of the techniques can be performed by one or more
programmable processors executing a computer program to perform functions of
the invention by operating on input data and generating output. Method steps can
also be performed by, and apparatus of the invention can be implemented as,
special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or
an ASIC (application-specific integrated circuit). The method steps may also be
performed in other orders than those described above.

Processors suitable for the execution of a computer program include, by
way of example, both general and special purpose microprocessors, and any one
or more processors of any kind of digital computer. Generally, a processor will
receive instructions and data from a read-only memory or a random access
memory or both. The essential elements of a computer are a processor for
executing instructions and one or more memory devices for storing instructions
and data. Generally, a computer will also include, or be operatively coupled to
receive data from or transfer data to, or both, one or more mass storage devices for
storing data, e.g., magnetic, magneto-optical disks, or optical disks. Information
carriers suitable for embodying computer program instructions and data include
all forms of non-volatile memory, including by way of example semiconductor
memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic
disks, e.g., internal hard disks or removable disks; magneto-optical disks; and
CD-ROM and DVD-ROM disks. The processor and the memory can be
supplemented by, or incorporated in special purpose logic circuitry.

The invention can be implemented in a computing system that includes a
back-end component, e.g., as a data server, or that includes a middleware
component, e.g., an application server, or that includes a front-end component,
e.g., a client computer having a graphical user interface or a Web browser through
which a user can interact with an implementation of the invention, or any
combination of such back-end, middleware, or front-end components.

The invention has been described in terms of particular embodiments.
Other embodiments are within the scope of the following claims.

‘What is claimed is

57

10

15

20

25

30

35

WO 2005/015440 PCT/EP2004/007896

Claims

1. A method comprising:

generating a first application by providing a definition of an object representing a
first set of attributes of a first collection of data elements and a first set of operations
on the first collection, each data element in the first collection having the attributes
and a list of the operations in common with other data elements from the first collec-
tion;

extending the definition of the object with a second definition, the second defini-
tion comprising a second set of attributes of the data elements or a list of second set
of operations on the data elements;

receiving from the client a request to execute an operation from the first set of
operations or the second set of operations on one or more data elements from the
first collection, the request having input parameters;

checking the request against the definition and the second definition;

executing, with a first set of parameters, the operation on the one or more data
elements of the first collection, the operation resulting in output parameters; and

sending a second set of parameters.

2. The method of claim 1 wherein the first set of parameters comprise the input pa-

rameters and the second parameters comprise the output parameters.

3. The method according to one or more of the preceding of claims further compris-
ing providing a definition of a module representing a set of one or more collections of
data elements, the set comprising the first collection of data elements, wherein the
definition of the module comprises a query on one or more collections of data ele-

ments.

4. The method of claim 3 further comprising extending the definition of the module

58

10

15

20

25

30

WO 2005/015440 PCT/EP2004/007896

more collections of the data elements.
5. The method of claim 4 further comprising:

receiving from the client a request to execute the first or second query on one or
more collections of the data elements, the request having input parameters;

checking the request against the definition and the second definition of the mod-
ule;

executing, with a first set of parameters, the query on the one or more collections
of the data elements, the operation resuilting in output parameters; and

sending a second set of parameters.

6. The method according to any of claims 4 or 5 wherein the second definition fur-

ther comprises a second collection of data elements.

7. The method of claim 6 wherein the second definition further comprises a relation
between the first collection and the second collection, the relation enabling a naviga-
tion from the first collection to the second collection.

8. The method according to one or more of the preceding claims further comprising:
sending the request with the input parameters;
generating the first set of parameters by modifying the input parameters; and

receiving the first set of parameters.

9. The method according to one or more of the preceding claims further comprising:
sending the request with the output parameters;
generating the second set of parameters by modifying the output parameters;
and
receiving the second set of parameters.

10. The method according to one or more of the preceding claims further comprising:
extending the definition and the second definition of the object with a third defini-
tion, the third definition comprising a third set of attributes of the data elements or a
third set of operations on the data elements; and
checking the request against the definition, the second definition, and the third

59

10

15

20

25

30

WO 2005/015440 PCT/EP2004/007896

11. The method according to one or more of claims 4 to 10 further comprising ex-
tending the definition of the module with a third definition, the third definition com-

prising a third query on one or more collections of the data elements.

12. The method according to one or more of the preceding claims further comprising:

generating a second application by extending the definition of the object with a
third definition, the third definition comprising a third set of attributes of the data ele-
ments or a third set of operations on the data elements;

receiving from the client a request to execute an operation from the first set of
operations or the third set of operations on one or more data elements from the first
collection, the request having input parameters; and

checking the request against the definition and the third definition.

13. A system comprising:
a first computer configured to execute a client program;
a second computer configured to execute a server program;
a network linking the first and second computers such that the server program is
configured to execute the following:
provide to the client program a first application with a definition of an object
representing a first set of attributes of a first collection of data elements and a list of
first set of operations on the first collection, each data element in the first collection
having the attributes and the operations in common with other data elements from
the first collection;
extend the definition of the object with a second definition, the second defini-
tion comprising a second set of attributes of the data elements or a second set of
operations on the data elements;
receive from the client program a request to execute an operation from the
first set of operations or the second set of operations on one or more data elements
from the first collection, the request having input parameters;
check the request against the definition and the second definition;
execute, with a first set of parameters, the operation on the one or more data

elements of the first collection, the operation resulting in output parameters; and

60

10

15

20

25

30

WO 2005/015440 PCT/EP2004/007896

14. The system of claim 13 wherein the first set of parameters comprise the input

parameters and the second parameters comprise the output parameters.

15. The system according to any of claims 13 or 14 wherein the server program is
further configured to provide a definition of a module representing a set of one or
more collections of data elements, the set comprising the first collection of data ele-
ments, the definition of the module comprising a query on one or more collections of

data elements.

16. The system of claim 15 wherein the server program is further configured to ex-
tend the definition of the module with a second definition, the second definition com-
prising a second query on one or more collections of the data elements.

17. The system of claim 16 wherein the server program is further configured to exe-
cute the following:

receive from the client a request to execute the first or second query on one or
more collections of the data elements, the request having input parameters;

check the request against the definition and the second definition of the module;

execute, with a first set of parameters, the query on the one or more collections
of the data elements, the operation resulting in output parameters; and

send a second set of parameters.

18. The system according to any of claims 16 or 17 wherein the second definition

further comprises a second collection of data elements.

19. The system of claim 18 wherein the second definition further comprises a relation
between the first collection and the second collection, the relation enabling a naviga-
tion from the first collection to the second collection.

20. The system according to one or more of claims 13 to 19 wherein the client pro-
gram is configured to execute the following:

send the request with the input parameters;

61

10

15

20

25

30

WO 2005/015440 PCT/EP2004/007896

receive the first set of parameters.

21. The system according to one or more of claims 13 to 20 wherein the client pro-
gram is configured to execute the following:
send the request with the output parameters;
generate the second set of parameters by modifying the output parameters; and
receive the second set of parameters.

22. The system according to one or more of claims 13 to 21 wherein the server pro-
gram is further configured to execute the following:

extend the definition and the second definition of the object with a third definition,
the third definition comprising a third set of attributes of the data elements or a third
set of operations on the data elements; and

check the request against the definition, the second definition, and the third defi-

nition.

23. The system according to one or more of claims 16 to 22 wherein the server pro-
gram is further configured to extend the definition of the module with a third defini-
tion, the third definition comprising a third query on one or more collections of the

data elements.

24. The system according to one or more of claims 13 to 23 wherein the server pro-
gram is further configured to execute the following:

generate a second application by extending the definition of the object with a
third definition, the third definition comprising a third set of attributes of the data ele-
ments or a third set of operations on the data elements;

receive from the client a request to execute an operation from the first set of op-
erations or the third set of operations on one or more data elements from the first
collection, the request having input parameters; and

check the request against the definition and the third definition.

62

PCT/EP2004/007896

WO 2005/015440

1/9

puayorg

W .6 e

6 Bed

pusyoeq

[‘DI

L
Kroysodoy

H

a4 -

Y

> Ioke

uonjeredag

[l)

|

2/9

WO 2005/015440

PCT/EP2004/007896

s
/

/

—————

-

\\\i IIII

o ~
N

aseqeje(g >

pussoeg 7

-

\\
4
\

ofeue AT)
30IAIRG @ M \n

N \

- 4
e ———

~.
Datadec TSOVEERIN 2 g

Jromeu

0T

- ~-

\\ Axo1g //

/ Ifewely _ \
/ 901A10 \
/ S ﬁﬂ \

1
[1
i weidorg !
\ 1
\ uoneonddy \\

N

. Pug oI Nﬁ

.

~ -~
,I ['I--‘».l‘\\ Vi

b

4

3/9 PCT/EP2004/007896

WO 2005/015440

¢ DId

- o

Iop1AOIg
aossumo mwwu%w @ .V
Iopraolg

P
IopIaold
oS T

I3pIAOIJ

Kioysodeyy ..wn.m..

S e M e e e g

Jopraorg

JIARS RN~
KLronsoday OM

kxo1g ure1sord

.wasﬂz.ll komnmmzllt coﬁmozm%q.
90IAIOG O «—>» oomwg 17| <> Al

aseqere(

puayoeqg ._VN

20IAT0S
uorjoRsURI], O.V

Iapraoxd
901AIeg

yodsy

I9p1AOI
991AI08
K1end)

t
]
[}
1
)
)
)
[}
1
]
}
)
1
L)
1
1
1)
!
1
t
i
1
1
]
1
t
]
t
1
]
t
4
1
)
3
]
|8

L -

PCT/EP2004/007896

4/9

WO 2005/015440

v DI

Tungiaweus

1ok r3RaquorRey 1A ISTQRNPOpRIARS
«<<}20[Q0 952{3 181> «<)30[(0 838121815
"0 |40 "

LI LA o |

18500 § £ sunox
<0
8¢

g o bupgraweu-
. 10
O@ TR GETAIBE P POIARIS

0

¥8 7%

Sumgrawey-

9%
22 | 59

Quingiswey.

g L R 1) Q0 [s |

2 a}28{10 $58J3)5)n» «<)38[00 83212 31>

) T Hsea i 1 Imdsagiaiindu 16

08" 94, BANG o
L opt 7 el P Y

Bupgawey-

. ..ﬁ.z.:w._u_!c.‘ : NM H .v.—ﬂ/ﬁ/o& HiRsequolERdn
SLTOT X7, 901

O@ - Sungioweu. .—Mo M ~ pasyolen:
WIB SOV RedsY Bungawey-

.. , sE
— w@) il
J0ydpasequenaeyy 1

c

0

Sungawey-
FLE T

Duygsureu-

SO REHMOY
«<)08qD $SR|3 181w

O

PCT/EP2004/007896

5/9

WO 2005/015440

o1qe], SOSSOIpPY
WO SSOIPPR ISTUOISRO 105) *H31

¢ DIA

sjonpoig

w

SY3PIO Pa}oajes uQ)
sniy, o} PIoY panruqng 19§ 781

M

sromoisno Surgoen

91qe], SIOpIQ) UI SI9PIO 10908 '081

%

Ty oTEN

saX

SUIEU 10] D]GE] SIONPoIJ eseqeiep L1end) ‘991

A

IopIO

0} onpoxd Jo owrel WEIq Y91

{

A A A

Jowio)snd Aq o]qe) S10p10) L1an) ‘8.1

5]qE} SISMIOISNY) U

(IISSSIpPY pue SWBN Lasu] "Z91

*

A

JOPIO JIIIGRS 0} 15onbal1 91309y 9L

o[qB} SOSSOIPPY UT SSOIPPE 1SSUT 091

$3 X

+

a1qe} SUORISO OFUI P1OS] b

+

A

LOIRL

J20)SND JO $S2IPPY UIRlq(‘RG1

ISUIOISHYY
L OTWEeN

a1qe; spexsed ojul pesu] "TLY

*

9]qe} sIopIQ oYUl JxesuY "OL1

+

SWIEY IO 9]qe) SISW0ISN)) 9SeqRIEp A1onQ) "HST

4

JIOUIOISNS JO SUWRY AAT09Y 261

aee——————

Gl

PCT/EP2004/007896

6/9

WO 2005/015440

uonisod v

01

pyseq ¥
30T

/

v

yonpoid ¥
90¢

9 ‘DI

14!

IopeolIspl0 V
[AY4

o1

SSOIpPY vV
0T

owosny v

0T

s0edsy U9aMISq SHOHRISY O O N

PCT/EP2004/007896
7 /9 CT/ /

WO 2005/015440

oseqeye(]

pusyoeg I.Tm.Nn

IopIAo1g
001AI0G
uotieey ARnQ

Iapraoig
001AIag

uonoy

Iapraolg
90IAIOS
Suppoy

L D4

IOpIA0IJ
90TAIOS
Kiopsodoyy

Kroysodoy ..w.;ﬂ

0¢

IapIAOIg
201AI0G
UOTOBSURI],

IOPIACIZ

90IATSG
10adsy ._w m

1p1AOIg
B0IAIDS o~
Amnd N m

Qroyisodayy

QuI0ISNY)) N W N

IoplAO1g
WOISUSIXH o ~m7
Jouroisny) ._Nm N

£Ax01g
IoSeue o

201AI0S ._NM

ureidord
uonesrddy

41

-
W
Q|

PCT/EP2004/007896

WO 2005/015440

8/9

V8 DIA

09¢ 8S¢
(1omoysn)) | | (10pmon)
UOISUIXH HOISUIIX T

9¢¢ vse
(x3uro3sn))) (xopuaa)
WOISWIIXH WOISHAIXG[

v0¢

UoISuaIxXy

8 “DId

(493
BIEPEBIIA]
3.10))
0
70¢
alqo Lroysodoy

(ap!

PCT/EP2004/007896

WO 2005/015440

9/9

6 "DId

i T,

2 o

k..._.:..:l---—-'-- ——y

0Ty 1 44 | "
" STp TIVD uaLdy _.
\N STt T
bIy 3 ———
| R §
goy—i 0l ™
m i TIvO 3uos3dlL ;
| I I S Wor
” 70 Ioprao1g I“ pST IOpIAOI] t~ ﬁn o1 Hommnﬁz lb M. 4l Eﬁmo&
| 90TATG UOISUIXH Q0IAIDS uonesrddy

suy,

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

