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METHOD AND APPARATUS FOR ‘
CHARACTERIZING DOCUMENTS BASED ON
CLUSTERS OF RELATED WORDS

Inventors: Georges Harik and Noam M. Shazeer

BACKGROUND

Field of the Invention
[0001] The present invention relates to techniques for performing queries on
textual documents. More specifically, the present invention relates to a method and an
apparatus for characterizing a textual document based on clusters of conceptually related
words.
Related Art
- [0002] Processing text in a way that captures its underlying meaning--its
semantics--is an often performed but poorly understood task. This function is most often
performed in the context of search engines, which aftempt to match documents in some
repository to queries by users. It is sometimes also used by other library-like sources of
information, for example to find documents with similar content. In general,
understanding the semantics of text is an extremely useful subcomponent of such
systems. Unfortunately, most systems written in the past have only a rudimentary
understanding, focusing only on the words used in the text, not the meaning behind them.
~ [0003] As an example, let us consider the actions of a user interested in finding a
cooking class in palo-alto, california. This user might type into a popular search engine
the set of words "cooking classes palo alto". The search engine then typically looks for
those words on web pages, and combines that information with other information about
such pages to return candidate results to the user. Currently, if the document has the

words "cooking class palo alto" several of the leading search engines will not find it,
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because they do not know that the words "class" and "classes"” are related, because one is

- a subpart--a stem--of the other.

[0004] Prototype systems with stemming components have been attempted but
without any real success. This is because the problem of determining whether a stem can
be used in a particular context is difficult. That might be determined more by other
nearby words 1n the text rather than by the word to be stemmed itself. For example, if
one were looking for the James Bond movie, "for your eyes only", a result that returned a
page with the words "for your eye only" might not look as good.

[0005] In general, existing search systems and other such semantic processing
systems have failed to capture much of the meaning behind text.

[0006] Hence, what 1s needed 1s a method and an apparatus that processes text in
a manner that effectively captures the underlying semantic meaning within the text.

SUMMARY

[0007] One embodiment of the present invention provides a system characterizes
a document with respect to clusters of conceptually related words. Upon recei#ing.a
document containing a set of words, the system selects "candidate clusters" of
conceptually related words that are related to the set of words. These candidate clusters
are selected using a model that explains how sets of words are generated from clusters of
conceptually related words. Next, the system constructs a set of components (such as a
vector) to characterize the document, wherein the set of components includes components
for candidate clusters. Each component in the set of components indicates a degree to
which a corresponding candidate cluster is related to the set of words.

[0008] In a variation on this embodiment, the model is a probabilistic model,

which contains nodes representing random variables for words and for clusters of

conceptually related words.

[0009] In a further variation, each component in the set of components indicates a

degree to which a corresponding candidate cluster is active in generating the set of words.
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[0010] In a further variation, nodes in the probabilistic model are coupled together
by weighted links. I.f a cluster node in the probabilistic model fires, a weighted link from
the cluster node to another node can cause the other node to fire.

[0011] In a further variation, if a node has multiple parent nodes that are active,
the probability that the node does not fire is the product of the probabilities that links
from the active parent nodes do not fire. ‘

[0012] In a further variation, the probabilistic model includes a universal node
that is always active and that has weighted links to all cluster nodes. '

[0013] In a vanation on this embodiment, the system selects the candidate clusters
by constructing an evidence tree. This involves starting with terminal nodes associated
with the set of words, and following links in the reverse direction to parent cluster nodes.

The system uses this evidence tree to estimate a likelihood that each parent cluster node
was active in generating the set of words. The system subsequently selects a parent
cluster node to be a candidate cluster node based on 1ts estimated hkelihood.

[0014] In a variation on this embodiment, estimating the hikelihood that a given
parent node is active in generating the set of words may involve considering: the
unconditional probability that the given parent node is active; conditional probabilities
that the given parent node is active assuming parent nodes of the given parent node are
active; and conditional probabilities that the given parent node is active assuming child
nodes of the given parent node are active.

[0015] In a further variation, considering the conditional probabilities involves
considering weights on links between nodes.

[0016] In a further varniation, estimating the likelihood that a given parent node is
active in generating the set of words involves marking terminal nodes during the
estimation process to ensure that terminal nodes are not factored into the estimation more

than once.

[0017] In a further vanation, constructing the evidence tree involves pruning

unlikely nodes from the evidence tree.
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[0018) In a variation on this embodiment, during construction of the set of
components, the degree to which a candidate cluster is active in generating the set of
words is determined by calculating a probability that a candidate cluster is active in
generating the set of words.

[0019] In a vanation on this embodiment, during construction of the set of
components, the degree to which a candidate cluster is active in generating the set of
words is determined by multiplying a probability that a candidate cluster is active in
generating the set of words by an activation for the candidate cluster, wherein the
activation indicates how many links from the candidate cluster to other nodes are likely to
fire. -

{0020] In a vanation on this embodiment, constructing the set of components
involves normalizing the set of components.

[0021] In a variation on this embodiment, constructing the set of components
involves approximating a probability that a given candidate cluster is active over states of
the probabilistic model that could have generated the set of words.

[0022] In a further vanation, approximating the probability involves selecting
states for the probabilistic model that are likely to have generated the set of words in the
document, and then considering only selected states wﬁile calculating the probability that
the given candidate cluster is active.

[0023] In a further variation, selecting a state that is likely to have generated the
set of words involves randomly selecting a starting state for the probabilistic model, and
then performing hill-climbing operations beginning at the starting state to reach a state
that 1s likely to have generated the set of words.

[0024] In a further variation, performing the hill-climbing operations involves
peniodically changing states of individual candidate clusters without regards to an

objective function for the hill-climbing operations to explore states of the probabilistic

model that are otherwise unreachable through hill-climbing operations.

[0025] In a vanation on this embodiment, the document can include a web page

or a set of terms from a query.
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BRIEF DESCRIPTION OF THE FIGURES

[0026] FIG. 1 illustrates a probabilistic model in accordance with an embodiment
6f the present invention. .

10027} FIG. 2 illustrates a state of the probabilistic model in accordance with an
embodiment of the present invention.

[0028] FIG. 3 illustrates a model representing states in the United States in
accordance with an embodiment of the present invention.

[0029] FIG. 4 illustrates global nodes and a number of local networks in
accordance with an embodiment of the present invention.

[0030] FIG. 5 illustrates an interaction between local network nodes and global
mode] nodes.

[0031] FIG. 6 illustrates a reworked modél in accordance with an embodiment of
the present invention.

[0032] FIG. 7A illustrates a simple network with two boolean nodes in
accordance with an embodiment of the present invention.

[0033] FIG. 7B illustrates how inference works in a simple network with two
boplean nodes in accordance with an embodiment of the present invention.

[0034] FIG. 8 illustrates a noisy-or network where loopy fails 1in accordance with
an embodiment of the present invention.

[0035] FIG. 9 illustrates a loopy computation inside a simple session In
accordance with an embodiment of the present invention.

- [0036] FIG. 10 illustrates a simplified local network in accordance with an

embodiment of the present invention.

[0037] FIG. 11 illustrates two clusters competing to tngger a terminal in
accordance with an embodiment of the present invention.

[0038] FIG. 12 1llustrates how a local probabilistic network can deal dynamically

with compounds in the lexicon at run-time in accordance with an embodiment of the

present invention.
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[0039] FIG. 13 illustrates how a single cluster C issues a virtual message to global

“nodes via “terminal sparseness” in accordance with an embodiment of the present

invention. |

[0040] FIG. 14 illustrates how a sparse link message gets used in figuring out the
optimal setting of a new global node in accordance with an embodiment of the present
invention.

[0041] FIG. 15.1 illustrates a belief network in accordance with an embodiment of
the present invention.

[0042] FIG. 15.2A illustrates an exemplary network in accordance with an
embodiment of the present invention. '

[0043] FIG. 15.2B illustrates an alternative exemplary network in accordance
with an embodiment of the present invention.

[0044] FIG. 16 1llustrates system output in accordance with an embodiment of the
present invention.

[0045] FIG. 17 1llustrates more system output in accordance with an embodiment
of the present invention.

[0046] FIG. 18' illustrates even more system output in accordance with an
embodiment of the present invention.

[0047] FIG. 19 illustrates yet even more system output in accordance with an
embodiment of the present invention.

[0048] FIG. 20 illustrates results of a search in accordance with an embodiment of
the present invention.

[0049] FIG. 21 illustrates data structures involved in characterizing a document in
accordance with an embodiment of the present invention.

[0050] FIG. 22 presents a flow chart of the characterization process in accordance
with an embodiment of the present invention.

[0051] FIG. 23 presents of a flow chart of the process for selecting candidate

clusters in accordance with an embodiment of the present invention.



CA 02500914 2009-12-23

- [0052] FIG. 24 presents a flow chart of the process of approximating probabilities
for candidate clusters in accordance with an embodiment of the present invention. |
[0053] FIG. 25 illustrates how states for the probabilistic model are selected 1n

accordance with an embodiment of the present invention.

DETAILED DESCRIPTION
[0054] The following description is presented to enable any person skilled in the
art to make and use the invention, and is provided in the context of a particular
application and its requirements. Various modifications to the disclosed embodiments

10  will be readily apparent to those skilled in the art, and the general principles defined
herein may be applied to other embodiments and applications without departing from the
spint and scope of the present invention. Thus, the present invention is not intended to be
limited to the embodiments shown, but is to be accorded the widest scope consistent with
the pninciples and features disclosed herein. ‘

15 [0055] The data structures and code described in this detailed description are
typically stored on a computer readable storage medium, which may be any device or
medium that can store code and/or data for use by a computer system. This includes, but
1s not limited to, magnetic and optical storage devices such as disk drives, .m\agnetic tape,
CDs (compact discs) and DVDs (digital versatile discs or digital video discs), and

20 computer instruction signals embodied in a transmission medium (with or without a
carrier wave upon which the signals are modulated). For example, the transmission

medium may include a communications network, such as the Internet.

The System
25 [0056] One embodiment of the present invention provides a system that learns

concepts by learning an explanatory model of text. In the system's view, small pieces of
text are generated in a fairly simple, but incredibly powerful way, through the execution
of probabilistic network. The system leans the parameters of this network by examining

many examples of small pieces of text.

30 [0057] One embodiment of the system considers the important information in a
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’piece of text to be the words (and compounds) used in the text. For example in the query

"cooking classes palo alto" the words are "cooking” and "classes", and the compounds
consist of the simple compound "palo alto". Distinguishing compounds from words is
done on the basis of compositionality. For example, "cooking classes” is not a compound
because it 1s about both cooking and classes. However "palo alto" is not about "palo" and
"alto" separately. This i1s sometimes a hard distinction to make, but good guesses can
make such a system better than no guesses at all.

[0058]) What this means is that the system simplifies the analysis of text by not
considering the order of the words in the text. For example, one embodiment of the
present invention does not distinguish the above from "palo-alto classes cooking" (we
use dashes in this specification to connect the components of compounds). We will refer
to both words and compounds as "terminals”. (We will see later this is because in our
model of the world, they do not generate words, as opposed to concepts, which do
generate words.) This simplification means that the system treats segments of text as a

set of terminals.

Probabilistic Model for Text Generation as a Set of Terminals

[0059] Let's look at what a system that generated text as a set of words might look
like. FIG. 1 shows one such model. Here, the circles are called model nodes. These
nodes represent random variables, each of which models the existence or non-existence
of concepts or terminals. The only terminals we are considering in this model are
"elephant”, "grey” and "skies". There are two concepts, called C; and C, (because they
are used to generate related words, concepts are sometimes referred to as clusters).

[0060] This model might be used for example to explain why the words grey and
skies often occur together, why the words grey and elephant often occur together, but yet
why the words "elephant" and "skies" rarely occur together. It is because when people are
generating text with these words, they have ideas in mind. The system's concepts are

supposed to model the 1deas in a person's mind before they generate text.

- [0061] Note that there is a darker node at the top of the figure without a name.
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This is the universal node, U, which is always active. When modeling text, it is always
active, and all concepts come from it. The arrows exiting any concept are called links.
These links imply that when a user thinks of one concept, they are likely to think of
another concept or write another terminal afterwards. For example, the concept C, links
to the words 'elephant' and 'grey’. That means that after a user thinks of C,, they often
write out the words 'elephant' and/or 'grey’. In particular, the numbers on the links are
important. They represent the probabilities of certain events. The link between C; and
'elephant' means that after thinking of C,, a user thinks of the word elephant with
probability 0.5. These numbers are often referred to as the 'weights’ on the links.

[0062] This model can be used or "executed" to generate text. When we are
doing this, we begin at the Universal node (often called U), and consider it to exist in the
mind of the generator. We will often say that the node 1s "active” or has "fired" to imply
this. For concepts, firing means that the idea of that concept is active, and is able to fire
terminals. For terminals, the idea of firing 1s that the terminals exist in the text to be
generated.

[0063] Let us run through an example of how one such piece of text could be
generated. In the example in FIG. 1, we would start out by assuming that the Universe is
active. Then C,; would fire with 0.1 probability. At this point, some random process
would decide whether or not C, would fire or not. For this random process you could
throw dice or use any random information. Usually, if this were taking place on a
computational machine, a random number generator would be used. Many methods are .
adequate so long as we have some way of producing a decision, that turns out 9 out of 10
times.to be no (0.9) and 1 out of 10 times to be yes (0.1). When it tumns out to be yes, the
concept C; 1s activated. When it turns out no, C, is not activated. A similar process is
appliéd to C,.

[0064] We will assume that for our example now, the random number generator
has produced YES for the link Universe— C; and NO for the link Universe-» C,. At this
point, C; is active. When a concept is active, we can then pick random numbers for the

other concepts or terminals which have links originating from that active concept. In this
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example, now the words "elephant"” and "grey" have a possibility of becoming active with

probabilities of 0.5 and 0.4. Now let us assume that we get more random numbers (to
make a simple analogy I will now refer to this as throwing dice) and decide that both
elephant and grey are active. This means that we have our piece of text, it is the words
"elephant" and "grey". Note that because in one embodiment of the present invention the
word order 1s not modeled, we cannot distinguish "grey elephant" from “elephant grey"
(unless they form a compound). In this way, we have generated a small piece of text.

[0065] FIG. 2 shows this paﬁicular execution of the model detailed in FIG. 1. In
this fi gure, we see the concept C; becoming active, we illustrate this graphicallyby
darkening the node, and the words elephant and grey becoming active. This idea of
graphically viewing the execution model of a piece of text is important from the
standpomt of examining the whole system to see if it is operating correctly, and we will
use it later on.

[0066] This seems like a lot of work to generate a grey elephant. Note however
that the words we came up with have some meaning to us as people. This is because
elephants are grey. In some small way, even this model in FIG. 1 captures a little bit
about the state of the world. If only on the surface, this model captures the correlation
between the words grey and elephant, grey and skies, but not elephant and skies.

[0067] Our system leans the intermediate concepts, the links and the link
weights--in order to explain the co-occurrence of words and compounds in small pieces
of text. In addition, its generative model is slightly more complicated than that above, in
order to better be able to generate and explain text of various sizes (for example, queries

are often 2-3 words, while documents are 1000 words or so).

Adjusting for Text of Various Sizes
[0068] For various reasons, the type of simple model above is s‘lightly inadequate

for dealing with text. A simple explanation for this is that each of the concepts produces
a certain number of words, but finds it much more difficult for example to produce many

words 1f the weights on the links are small. It would be desirable for example if a concept
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could produce either a few or many words from the terminals it points ét.

[0069] FIG. 3 shows an example concept representing the states of the United
States of America. In following our earlier model, the concept can fire terminals
representing each of the 50 states, each with probability 1/50. Now, for this model to
generate the word California alone is not that improbable. That probability is roughly
(1/50) * (49/50)*, which is approximately 0.7%. For this concept to fire all the states
would be (1/50)*° which is incredibly small. However, should we develop such a concept
that covers the 1dea of the states of the United Stétes, we would want 1t to explain pieces
of text where all the states occur.

[0070] In order to address this problem, before it fires other terminals, each
concept picks an activation level. Conceptually, this activation level chooses "how
many" terminals are to be picked from this concept. Note that this activation level is not
a quality of our model. In fact, it is only chosen when the model is being executed. What
activation does is it modifies the probability that this concept fires each of its terminals \
(but not 1its sub-concepts, i.e. concept to concept linking is unaffected by activation).

[0071] The exact numerical adjustment can be as follows. If a link has a weight
W and the cluster chooses activation A in its execution, and the link points between a
concept and a terminal, then the concept fires the terminal with probability (1 - e *%).
Here "¢" the common mathematical number approximately 2.71. At first glance, this
formulation seems odd, but it has the following nice properties: When W is very small (<
0.01) and A 15 a small number (say 2) the probability is approximately equal to AW--so |
these numbers are easy to approximate in general. The reason they have an odd
exponential form, is that probabilities have to have an upper limit of 1. So, having a link
weight of 0.02 (1/50) and an activation of 100 should not give you a probability 2.0. The
exponential form also has a number of other nice theoretical properties from a
mathematical standpoint. '

[0072] At this point, we have detailed almost all the individual pieces comprising
of our model. One detail is the interaction between two or more clusters trying to fire the

same terminal or cluster. In this case, each interaction is independent of the other. In
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.pa.rticular, the probability that the result does NOT fire 1s the product of the probability
that each cause does NOT fire it. For example, if three clusters C;, C;, C; link to a fourth
cluster C4 with weights 0.1, 0.2, 0.3 and C,, C; and C; are active: C4 does not fire with
probability (1-0.1)*(1-0.2)*(1-0.3) or (0.9)*(0.8)*(0.7) or 0.504. Therefore, the chance is
DOES fire1s 1 - (1-0.1)*(1-0.2)*(1-0.3) or 1-0.504 =0.496.

[0073] Another thing we have not mentioned is the prior probability with which

activations are picked. The learning of the mode! turns out not to be too sensitive to this.

There, the activation 1s constrained to be 3 1 and a probability equal to 1/ Alog*A is the
prior on the activation (wherein log*A=AlogAloglogAlogloglogA ...). This tumns out to
be important only for the purpose of generating téxt. For that purpose, any distribution
which generates roughly the correct number of words out of a base model should be '

adequate,

Bayesian Networks
[0074] At this point and before we proceed it is worthwhile to talk about a certain

duality between the model we have been talking about and a certain class of probabilistic
models called Bayesian Networks.

[0075] Bayesian networks are well-understood probabilistic modeling techniques

in which conditional independences are asserted between various random variables in a

20  joint distribution. Asin the model above, Bayesian networks have nodes and directed

25

30

links. These networks compactly represent a joint distribution over a number of random
variables while structurally representing conditional independence assumptions about
these variables.

[0076] In a Bayesian network, the set of nodes pointing to a node is called its
"parents”. The set of nodes reachable from a node via following links is célled its
"descendants" or "children"; and the structure implies that a node is independent of its

non-descendants given its parents. The entire distribution is therefore encoded in the

conditional probability tables of a child given its parents (nodes with no parents have

their own distributions). The probability of a particular instantiation of the entire network

1s simply then the product of the probabilities of each child given its parents.
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[0077] Bayesian networks are related to our model in the following way, if each
node in the executi on of our model is considered to be a random variable then the joint
distribution over the set of nodes that are turned on is exactly that which arises from
considering our model as a Bayesian network with noisy-or combination fuﬁctions.

5 Noisy-or conditional probabilities turn a boolean child on independently from each
parent. That is, the probability of a child being off is the product of the probability that
each parent does not fire it. Note this is exactly the combination function used in our
model to decide if multiple active concepts that link to a terminal fire it. Note that
Bayesian networks are themselves a subclass of more general probabilistic models.

10
Learning

[0078] At this point, we have gone over how an existing model could be used to
generate text. We have not detailed a couple aspects of this work: (1) how our model is
learned; (2) how our model is used to estimate the concepts present in text; and (3) how

15  our model 1s used in practical situations. In this section, we will attempt to detail how our
model 1s leamed, and the varioﬁs technmques that can be used for this purpose.

[0079] In learning a generative model of text, in one embodiment of the present
mvention some source of text must be chosen. Some considerations in such a choice are
as follows: (1) 1t should have related words in close proximity; (2) it should present

20  evidence that is independent, given the model we are trying to learn (more on this later);
and (3) it should be relevant to different kinds 'of text. For this reason, the
implementation of the model which follows uses exemplary "query sessions" from a
search engine as its small pieces of text. We have also implemented and run our model
on web pages and other sources of text, but for the purposes of making this exposition

25 more concrete, we focus on the analysis of query sessions.

{0080] To be more precise, we define a query session (also referred to as a user
session or a session) as the set of words used by a single user on a search engine for a
single day. Often users will search for related material, issuing several queries in a row
about a particular topic. Sometimes, these queries are interspersed with random other

30 topics. An example query session (not an actual one) might look as follows:
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the graduate '
dustin hoffman
rain main
autism
cool junk
fast cars
tom cruise nicole kidman

[0081] Each query here is on a separate line. Note that most of the words are
related in some way. The first 1s a movie by Dustin Hoffiman, as is the third. The second
is Dustin Hoffman himself. The fourth deals with an issue brought up in the movie. The
fifth query "cool junk” is not related to the main topic of the session, neither is the sixth
"fast cars". The last is a httle related because Tom Cruise acted 1n Rain Man with Dustin
Hoffman. In general, there 1s a lot of information in such a small piece of text, using
which we can draw conclusions, but there is also a lot of uncorrelated junk. The main
task our system has 1s to cull out the proper correlations from the junk, while looking at a
large number (billions) of such pieces of text. |

[0082] Leaming a probabilistic model that can explain all the words that occur

together in queries is difficult. Note that in the explanation of the session above, we used

‘information we had about the world in general to explain the query session. This is the

nature of the information that our model learns in order to come up with a world model in
which a session above is more than infinitesimally likely. The following is such an
approach. |

[0083] Imagine that we don't know what the model is, but we know that a large
number of concepts exists. Probabilistic networks can themselves be used to represent

this uncertainty. A node can be introduced representing each link between a concept and
another concept or a terminal. These kinds of nodes are called global nodes, and they
represent our uncertainty about the model itself.

[0084] These global nodes are different than the model nodes above, in fact they
represent uncertamnty about the model nodes and links. Now, for each piece of text (user

session) we replicate the entire model, creating a local network. Each model node replica
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is called a local node, and these local nodes represent our uncertainty about whether or
not a concept exists for a particular execution, the one that lead to this piece of text. In
order to learn our model, we have to take into account all of our uncertainty about our
model, and do some sort of reasoning to come up with a best model, or a set of models
using which we can do further processing,.

[0085] FIG. 4 shows what this big network might look like. Above the dashed
line are global nodes, they represent uncertainty about our model. The node U— C,
represents the uncertainty about the weight of the link between U and C,; in the model
(Recall that U 1s our name for the universal node that is always active). Similarly, so do
the nodes U-T;, Ci— C;, Ci— T;, and so on. Note that our model does not allow
everything to link to everything else. This is because in order to have a consistent
explanation of ideas all coming from the Universe U, cycles in the link structure are not
allowed--for example a concept C; that can cause C, that can cause C, and so on, makes
C, and C; always likely éven 1t U does not link to them. For this reason, a concept is only
allowed to link to higher numbered concepts than itself and the universal concept can link
{0 everyone.

[0086] Now, below the dashed line are the local networks. In each network, the
terminals for a particular user session are assumed to be active. Note that our model 1s
replicated for each such session. This is because what we observe for each session is only
the words that the user used, and not in fact that concepts that were active in the user's
mind when those words came about! The local nodes here represent our uncertainty
about these concepts. Because the user may have been thinking of anything when they
wrote each word they wrote, all concepts have to be considered in each local network.

[0087] Now, how do the local networks relate to the global nodes? Simply put,
each link between U and C; in a local netwofk is mediated by the global node (U— C,).

The probability that U fires C, in each local network depends on the global node (U—
Cy). In a full probabilistic network drawing of the local networks of FIG. 4, each the

global node (U— C;) would point to every C, in every local network. FIG. S shows this

Interaction with one such network because there was not enough space to do so in FIG. 4.
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Also, FIG. 5 only shows the interactions for a model with two concepts. The links here
between the global node (U— C;) and C, represents the fact that C; needs to know both

the status of U and the global node (U—> C,) before it fires in a local session.

[0088] FIG. 6 shows a slightly reworked version of this model, where vanables
exist to explicitly show whether or not each concept tnggers another concept or terminal.
Note that the joint distributions implied by both are the same, once they are projected to
the original vanables we are interested in (i.e. C; and C;). The triangles in this figure
represent extra "trigger” varables, and it is often helpful to think about the model with
them because they simplify the number of conditional probabilities that are required.

[0089] For example, in FIG. 6, the "tn ggér" variable between U and C; only needs

to know the distributions of U and the (U~ C;) to decide the probability that C; gets fired
from U. Similarly the other trigger into C; only needs to know the values of the C, and
(C1— C,) distributions. These two joints are simpler than the joint over all 4 variables
that the C; node would need in the FIG. 5 model. This is primarily because the
complexity of a conditional probability specification rises exponentially with the number
of elements 1t has to account for.
[0090] This pdint 1s worth making a little clearer. Imagine for example that a

person enters a complex betting scheme where the outcome of the bet depends on 10
horse racing events, with each outcome providing a different payback. In order to
communicate this bet, 2'° or 1024 numbers are required, because that is the number of
distinct outcomes if all the races are considered simultaneously. Imagine now instead that
the same person enters into 10 independent bets on each of the horses, winning or losing
some depending on each horse. This bet now requires only 10 numbers to communicate.

Similarly, when a conditional probability distribution has to account for N variables 2" is
the order of complexity required, and therefore the amount of computational complexity
required to deal with such a state. This is why trigger variables are useful as a factoring
of this problem. From this point onwards, we will show our local networks
interchangeably 1n either triggered or non-triggered form.

[0091] One last thing is still necessary to specify in the big network so that it is
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probabilistically well defined. First, the global nodes require a prior distribution. That S,
in order to combine evidence about how likely 1t would be that a concept links to a
particular other concept or word, we need to know what our belief in that would be a
priori. The leaming of our model turns out not to be too sensitive to this distribution, so
many things are possible here, including using a flat distribution of 1/1000 on the link
being nonzero and 1/1000 on the link being nonzero.

[0092] This is a bit of an aside and a diversion, but or the sake of completeness let
us mention here that this does not constrain the variables fully because no density is
imposed on nonzero values, and it is only the product of activation that weight that matter
for finng probability. However, heuristics that we use to pick the activation of a cdncept
in a sesston imply that the total weight of firing from the concept to all terminals should
roughly equal the average number of terminals this concept fires divided by the average
number of words it can fire in each session. Also, another way to set these probabilities
depends on the specific way in which inference on the global nodes happens. As it is, we '
look only for a simplified model where each global node 1s represented by a two spiked
distribution, one at 0 and one at another best value. In this case, you can estimate the
prior on a new link to be dependent roughly on the Kolmogorov complexity of the
network given this new link, that is on how simple the model is with the new link,
assuming 1n fact that the whole model in fact derives itself from an explanation of the
world m which models are more likely if they are simpler. Here, a link from a cluster to a
terminal could be more likely depending on the number of other things that the cluster
links to, or the number of things that link to the terminal, or both. ‘

- [0093] Once the entire big network is set up, there is no more conceptual work to
be done. Running inference on this network is fairly straightforward from a theoretical
point of view, and given enough computational power, 1t is straightforward to arrive at all
of the distributions of the global nodes, which fully speci'ﬁes the model. Inference here
means for accounting for all the training evidence (the user sessions) given, and fully
being able to use the implications of that evidence on our model. The distribution over

likely models in turn allows us to guess exactly at which concepts are active when certain
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-pieces of text are active, and with which probability. In fact, the distribution over the
model allows us to answer all questions about the generation of such text.
[0094] Only one problem remains, that of scale. Thg basic problem is as follows:
let's say there are around 5 million concepts in the world (and that's small, consider that
5  there are 6 billion people, and when talking about each of them, you might say different
things so there are at least 5 billion concepts, but let's assume 5 million to start things
out). Let's assume there are 1 million terminals (it turns out with compounds such as
new-york, that's easy to get to, and that's only with English). Now, let's say we want to
train this network on $ billion user sessions. In addition, let us ignore the computational
10  burden of dealing with continuous random variables (which 1is considerable). Note that
the model nodes have to be replicated once for each session. This means that the full big

network will have:

15 5 billion sessions x
(1 million terminal local nodes + 5 million concept local nodes) x
= 30 billion million local terminal nodes
... and that's the easy part. Now let's count the links. The global model has 5 million
20  nodes, each of which can link to 1 million terminals, each of which can be replicated in

the local networks 5 billion times, each of which then has a link from the appropriate
global nodes (that doubles the number) so that's:

1 million terminals x
25 5 million clusters X
5 billion sessions X

2
= 50 million million billion links!
30 ... and the worst part is that correct inference techniques run in exponential time over the
size of the network, so basically, doing this the straightforward way is imposs\ibly

expensive. The next section of this disclosure discusses the different things that can and

have to be done in order to make this system possible.
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Scalability Techniques And Loopy Belief Propagation
‘ [0095] The first problem we have in solving our large networks is that full

inference is exponential in the size of the network. Here we take some shortcuts. There
is an inference technique called "loopy belief propagation” (commonly called loopy) that
propagates evidence around a probabilistic network in a rapid if incorrect manner. It has
the advantage of being fast, but the disadvantage of being incorrect. It often however
proves to be a good approximate solver for various belief networks.

[0096] Loopy belief propagation relies on two types of messages that are
transmitted in a network in order to figure out the marginal distributions of all nodes in a
particular network. Down messages are those that move with the flow of links, and they
summarize for whatever node is on the other side of the link, the belief in the source
given all other evidence other than what comes from the destination. Up messages move
against the flow of the links and tell the destination node (which is also the parent in the
probabilistic network sense) what the probability 1s of this side of the link, given various '
values of the destination node. ‘

[0097] FIG. 7A displays a simple two boolean node network with noisy-or
components. Here node A has prior 0.1 of being true, and B has 0.3 of being true given
that A is true. Now we can determine the probability of B being true by running loopy on
this network. A propagates a down message to B telling it that given all other evidence, '
A believes it itself is true with probability 0.1. B receives this message, and factors in the .
conditional probability (noisy-or) at itself, and concludes that it is true with probability
0.03, and we are done.

- [0098] FIG. 7B displays a two boolean node network that shows how inference

works using up messages. Here, there is evidence on B that B is true. So, we are trying

to determine the probability of A given that B is true. B sends an up message to A, this

tells A that B can only be true iIf A is true: that is, given that A is false, the probability of
the evidence from below that B knows about is 0. Therefore A must be true. A receives
this message and multiplies it by its prior on itself, which has a 0.1 chance of being true,

and concludes that it must be true and so therefore given the evidence, A is true.
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[0099] Loopy belief propagation 1s not technically an exact solution to the
inference problem for the following reason. When evidence arrives at a particular point
from two different sources, they lose information about whether those sources are
correlated. Imagine the following example. Three people A, B, C are involved in a
conversation. A tells B that he believes the stock market will go up in the next month. B
tells C the same information. At this point C tells A that someone else believes the stock
market will rise. The problem with loopy is that with this simple belief propagation
system, A cannot now tell that C's belief is in fact based on A's original assertion, and
therefore evidence from A circulates back to itself. In a slightly more complex way,
loopy belief propagation circulates evidence around loops 1n the network to create a
usually accurate but sometimes inaccurate solution.

[00100] When loopy runs on a network with no loops it is exact, and settles within
a number of steps equal to the diameter of the network. When it runs however on a
network with loops, evidence loops around the network. Usually it settles on a particular
solution, but there is no guarantee that that solution is correct, or even that loopy ever
settles at all. FIG. 8 in fact shows a noisy-or network where loopy fails. Here D is
assumed true, and 1it's On]y source is really A, so inference should show that A is true.
Loopy however settles on a value of approximately 0.6 for A. Usually, however, loopy
works pretty well, and we will examine how it can be improved later on in the disclosure.

[00101] An additional point to mention here is that the effect of running loopy on
this big network is largely equivalent to the notion of running an EM (expectation
maximization) operation on the data considering the clusters to be hidden variables. In
EM, an initial guess at the model variables is takén; then the probabilities of the hidden
varniables are inferred; then the guess for the model varniables is updated. This is
essentially the same computation as loopy. One difference between the two is that loopy
does not reflect evidence from one session back at itself, 1.e. a proper accounting of loopy
would discount the down message from the global nodes for the previous up message that
the session sent in the last iteration. There is not much difference between the loopy

approach and running the EM approach on different pieces of data each iteration. In the



10

15

20

25

CA 02500914 2009-12-23

21

remainder of this disclosure we will use the loopy nomenclature rather than the EM

nomenclature in discussing this process.

Loopy Belief Propagation in the Big Network
[00102] Loopy messages are used across the global/local boundaries in the big

network. Here the global nodes propagate down their beliefs in themselves to a particular
local network--and since the network is just one of billions usually this is just the same
belief propagated everywhere. Also however, the trigger nodes propagate up the
probability of the network given everything else that is known about the trigger node.

[00103) FIG. 9 shows the loopy computation happening inside a particularly
simple session and with a model including only one concept (C;) and one terminal (T).
Note that in this session, we have seen the terminal T, that is why the local node is
darkened. Now, let's take a look at what some of the messages surrounding this model
are.

[00104] First, let's look at the down message that comes fromthe (U— C))
global node to the Tr gger node between U and C,. This message has to report the current
belief in the state of the (U->» C,) node, given the data it has digested in the current
iteration of loopy from the other sessions. Communicating and computing with a
complete and accurate distnibution over a continuous variable would be prohibitive. For
this reason, the down message from (U— C,) to the trigger node in this session between
U and C, is simplified. Instead of communicating a full distribution, it approximates the
distribution with a two peaked discrete distribution, with one peak at 0 and another peak '
at a chosen "best value" W.

[00105] In figuring out this down message, our system first compiles evidence
coming in from other sessions about this global node. Our system then picks a best
nonzero value W for this node. It then translates the up messages into messages about the
node's existence, allowing it to determine how much of the probabi]ity to send 1n the
down message at the best value W and how much at the value 0. This simplification of

the down message from global nodes is advantageous in dealing with the discrete-
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continuous nature of the global nodes in a computationally feasible manner.

[00106] The simplified down message from (U—>C;) 1s along the little arrow next
to the link emanating from (U— C,). It is labeled (0.1, 1.0). This means that the best

value is 0.1, and with probability 1.0, this link exists. For reasons that we would like all
networks to be partially explainable, we never let the links from U to anything have
probability less than 1.0. Another example down message 1s the one emanating from
(C1— T)) to the trigger node in between C; and T, in the local network. This message is
labeled (0.2, 0.8) which means it has a 0.8 chance of being nonzero, and when it 1s
nonzero, it equals 0.2.

[00107] Now, let's try to do some inference on this network, given that we know
the down messages from the global model. There are three trigger nodes, one from C, to
T\, one from U to C; and one from U to T;, whose probabilities we don't know. We also
don't know the probabality of the cluster C; being active within this session. All of these
can be figured out by running loopy on this session. Before we run through a sample of

these computations however, we will cover an additional simplification. The message

down from (C;~ T;) down to the trigger node is labeled (0.2, 0.8). However, before we
use this message, we pretend it was actually a single message of (0.16, 1.0) by
multiplying out the two spiked distribution and again simplifying it into a single spiked
distnbution. Now we are ready to look solely at the little session network. This
simplification is also done within our framework.

[00108] One small assumption we can make is that the activation on C, is set to
1. Typically, in running probabilistic networks, this value can be derived itself through
inference. However, while trying to do inference in these local networks, our model

assumes that the activation of a cluster 1s equal to the number of terminals it could

possibly fire in this network. This is the adjustment we talked above earlier that deals
with the fact that only the product of the activation and weight mattered. This adjustment
is made with the following justification, that the activation only matters to within an order

of magnitude, and therefore, no computational time ought to be spent in determining it

optimally.
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[00109] Now, we can look at a simplified noisy-or model of this network, while
1 gnoting the global nodes. This is because all of the information the global nodes feed
into the system can be summarized by the weights on the noisy-ors between clusters and
other clusters or terminals. This is a standard technique in probabilistic networks of
simplifying away nodes with no other parents by summing them into the network at hand.
The simplified local network then looks like the one in FIG. 10. The links in this
network are labeled 0.095, 0.095 and 0.1478. This is because the probability that U
triggers T, is now equal to 1 - ¢ which is 0.095. Recall earlier how we said that the
link should trigger the resultant with probability approximately AW. Here A is 1 and W
1s 0.1, and this is approximately 0.095. The same applies on the link between C1 and the
trigger to T}, which is 0.1478 which is 1 - ¢”'® which is approximately 0.16.

[00110) Now, we know that T, is true. Let us determine how likely 1t is that C;
caused it. The down message the trigger node from U sends to T} is (0.095, 0.905), .
where 0.095 represents the belief that the node is true and 0.905 represents the belief that
the node is false. Note that the nature of this down message is totally different than that
of the down message from a global node. This is because the trigger node is a boolean
variable, whereas the global node is a strange mix of a continuous and discrete variable
with some probability mass at 0 and some density at the other points, and further this is
approximated by a two point distnbution, then further simplified into a single point
distribution.

[00111] Because the trigger is a boolean node, it need only send down its one .
number, the probability of it being true, the other number is just 1 minus the first number,
and in our implementation, we do this optimization. T, takes this number and sends up to
the trigger node on the C, side, the probability of T, given that the trigger triggered,
versus the probability of T, given that the trigger did not trigger. This up message is (1.0,
0.095). Now normally, up messages for boolean variableé have two such values, but
really only one 1s needed, the ratio between the two (given that infinity is a representable
number). Now, the tngger node from C, to T, gets an up meésage of (1.0, 0.095) but it

also has a down message coming from C, above. This message is (0.095, 0.905) from C;.
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.Now, the trigger node has all the information it needs. It transforms the message from
above into (0.095 * 0.1478, 1 - 0.095 * 0.1478) or (0.014, 0.986). This transformation
means that 1t now has its own belief given what is above it. _Now\ it multiplies that
component-wise by its belief of what 1s below it to get (0.014 * 1.0, 0.986 * 0.095) or
(0.014, 0.09367), then it normalizes this to sum to 1 to get (0.13, 0.87), which is its final
belief. Similar computations can now be carried out to figure out all the other "hidden
variables"” in this network.

[00112] In general loopy gives a node a belief on its parents, and its children's
belief on itself. It uses its conditional probability distribution to transform the belief on
its parents to a belief on itself. It now has two belief numbers for itself, which it
multiplies component-wise, then it normalizes to 1 to obtain its own belief. A couple of
optimizations we often do 1n computing these messages are the following: we do many
probability computations in log space in order to avoid underflows. This includes both
the down messages and the up message ratios. In addition, in order to implement loopy
so that it works in linear time in the number of parents on a node, it helps to be able to
subtract out the effects of one parent from the belief of the node. This is done viaa
special routine that takes N numbers and computes all N products of N-1 of those
numbers in order to do this pmpagatioﬁ quickly.

[00113] Now let's take a look at the up messages sent up to the global nodes
which are of a different nature. Recall that the global nodes are actually discrete-
continuous random variables which can take any value from 0 to infinity. Let's work out
a simple example which shows how you can compute the probability of a network given

the weight on a link.
[00114] FIG. 11 shows two clusters C; and C; competing to trigger a terminal.

The down messages from (C,—T) and (C,—T) to the appropriate trigger nodes indicate a
firing probabili‘ty of q1 and q2, respectively. Note that as mentioned above, we
approximate the impact of the down message from a global node by multiplying its
probability of existence times its best value, therefore, we approximate our solution by

pretending that in the local network, C, can launch T with probability 1 - %%, and
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similarly for C; launching T. Now the messages coming into C, from the other parts of
the model show that it is pl likely to be true. Similarly, messages coming into C; from
other parts of the model show that it is p2 likely to be true. C; and C; are decided to have
activations al and a2, and the node T is a terminal that has been observed.

[00115] Now, let's look at the up message sent along the link from (C,—T) to the
trigger node 1n the local model between C; and T. This message is labeled M in the
figure. This message can transmit the probability of the network as a function of g1. The
actual probability of the network need not be sent. In fact, only the relative probability
ratios need to be sent, 1.e. any constant factor multiplied by the probability can be sent, so
long as the factor is the same for all values of q1. Finally, we are prepared to investigate
the message sent up.

[00116) There are four possibilities to account for in the network, each with their
own probabilities for what happens outside this small network. The first is that both C;
and C; are true. This happens with probability p1p2. In this case, the probability of T

being true (the only remaining evidence in the network) is equal to:
1 - e-alq l e-a?.ql

and therefore the whole network probability is,
plp2 (1 - e*'¥e™29%),

If c, 1s true and C,; is false, the probability of this happening is p1(1-p2). The probability
of T being true is: '

1- e-alql

and therefore the whole network probability is,
pl (1-p2) (1 - &*'%H).
Similarly, if C; 1s true and C, is false the probability of the network is

p2 (1-p1) (1 - %)
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And last, it is impossible that T is true if neither C; nor C; are true. Therefore, the

function message sent up to the global node (C,—7) 1s:

p1p2 (1 e-alql a2q2) +
P1(1-p2)(1-€” ")+
p2 (1-p1) (1 - €*%).
[00117] Although this function seems complicated it is actually pretty simple.
Consider that the only vaniable in this function for the purpose of the message M is ql.

Therefore, this function sums up into the following form:

a + be*l9

. where a is the sum of all constant terms above and b is the coefficient of ¢'%! in the
above sum. Note that g2, pl1, p2 are all considered constant for the purpose of sending up
a message to the node (C;—T). In fact, since the constant factor this function is

multiplied by does not matter, this equation can be rewritten as:

1 +ke?'d

... leaving only two numbers to send up to the global model, k and al. We refer to these
up messages to the global nodes as link messages.

[00118] Now, the functional form of these up messages does not change much
when the destination of the links is a cluster. For example, if T were a cluster, then the
activations of C; and C, would not matter, whereas T might receive an up message from
other terminals dictating whether it was likely to be true or not. This would simply add

another set of conditions to the computation, because each world view would have to

account for T either being false or T being true as well, and the sum above, instead of
having four different parts, would have 8 parts, one for each possible value of C;, C, and
T. Now by sending up messages to the trigger nodes (which we have not simulated here),
our code efficiently avoids the exponential blowup that a full consideration of T and all of
its cluster parents would incur, which would be prohibitively expensive if T had more

than a few parents.
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[00119] One thing to note is that although we are running loopy_ across the entire
network including the global nodes, we don't have to run the local and global iterations of
loopy 1n lockstep. In fact, we often run tens or more iterations of loopy on each local
network 1n order to converge it, before we return to running the one step of loopy on the

global nodes.

Link Weight Optimization
[00120] Now, we are ready to consider how loopy treats global nodes; i.e. in

each iteration of loopy, how our model reconsiders both the existence and the best value
for each link 1n the model. Recall that the up messages to any global node are of the

form;

1+ kel

[00121) Now, mn order to select the most likely weight value for this variable, our
model simply has to combine all these up messages and pick the best value for the global
node. Let us change our notation a little for convenience. Say a node receives N up
messages of the form (1 + kiexp(a;jx)). Here we are using i as a subscript that goes from 1
to N. The k; are the constant factors, the a; are the coefficients on x, and x lS the variablé
that is to be solved for X here represents a possible choice for the variable, while the
function messages represent the probabilities of various sessions using different values
for x. '

~ [00122) In order to select the hi ghest nonzero x, we simply have to find the x
which maximizes the product of all of these up messages (which are also called link
messages because they go to the global node that determines a link weight). Thisis a
one-dimensional optimization problem. One way to solve this would be to sample x in a
range. A more efficient way would note the following: the product of a bunch of
numbers is optimized when the log of the product is optimized. The log of the product of

these numbers 1s the sum of their logs. This leaves us optimizing,
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i log(l +k.e™” )

im]

[00123] Now we can take the derivative of this with respect to X, and search for
points in a particular range (say 0 to 1) where the derivative vanishes, for a local
optimum. This search can be done by bisection or via any number of other techniques.
Thas ﬁmctibn can sometimes be non-monotonic (i.e. not alWays rising or falling), so
soxﬁetimes this has more than one local optimum, but this is typically not always the case.

[00124] A small note here, why does this optimization not produce an optimal x
of infinity or 0? The nature of the function 1 + ke™ depends a lot on k. Ifk is positive,
this function decreases for larger values of x. This means that this particular session is
harmed by having this particular link be larger. Typically, this happens when a cluster
points at another cluster that is not likely in probability to be indicated by the session. If

k 1s negative, in particular around —1 then this indicates a strong reason to have this link.

‘For example, assume kis  -0.99. Then x being 0 implies a relative probability of 0.01.

X being very high implies a relative probability of 1, therefore, x is 100 times as likely to
be very high as it is to be 0. Sometimes however, it tumns out that a value of 0 is the only
local optimum. When that happens, our model puts all of the probability mass of the link
at 0. |

[00125] When the best value is chosen, the up messages then can be converted
into up messages for a boolean existence variable, trading off the best value of X versus
the value of 0. The product of probabilities above is Simply evaluated at X and at 0, and
the prior on the link's existence (1/1000 as above or as determined by Kolmogorov

complexity) 1s mixed in. This mixing in gives us the existence probability for the link.

Pre-compounding and the Lexicon
[00126] Our model deals with a finite set of words or compounds that it

understands, which is referred to as a lexicon. A preprocessing phase is required to

determine this lexicon. This preprocessing phase determines the important words and



10

15

20

25

30

CA 02500914 2009-12-23

29

compounds for our model to be able to process. Roughly speaking, all W_ords that are
seen over a particular fraction of the time in user sessions are included. Compound
inclusion<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>