[57] 摘要

本发明高强度超细纤维仿真复合革是由海岛型超细纤维基布浸渍聚氨酯，经抽油处理及后整理制成，所用基布是由海岛型复合纤维织造布和无纺布两种坯布，通过聚酯或粘结复合法复合在一起，构成两层或两层以上的复合基布，浸渍聚氨酯，并使其固化，然后放入可除海岛纤维中“海”成分的溶剂中，抽出“海”成分，制得高强度超细纤维仿真复合革半成品，最后根据不同需要进行扩展定型、揉皮、染色、磨毛或贴膜等后整理工艺获得绒面或粒面等不同表面结构的仿真复合革产品。本发明所述的高强度超细纤维仿真复合革具有强度高、弹性好、经纬向抗张强度差异小、透气透湿、滑爽挺括等特点，特别适用于高档服装、鞋、沙发、箱包、交通工具座椅、体育用品、军工用品等多种领域的需求。
1. 一种高强度超细纤维仿真复合革，它主要由海岛型超细纤维基布浸渍弹性聚合物制成，其特征在于所用的基布是由海岛型复合纤维织造布和无纺布两种坯布通过针刺或粘结复合在一起，构成两层或多层以上的复合结构；经处理，制成含弹性聚合物20～60%、纤维单丝纤度为0.01～0.0005旦尼尔，且纤维间有空隙的超细纤维复合仿真革。

2. 如权利要求1所述的高强度超细纤维仿真复合革，其特征在于所用的复合基布可采用以下结构形式：(a) 由一层无纺布(1)与一层织造布(2)通过针刺或粘结复合在一起；(b) 由一层无纺布(1)与在其正反两面分别复合一层织造布(2)通过针刺或粘结复合在一起；(c) 由中间一层织造布(2)与在其正反两面的两层无纺布(1)通过针刺或粘结复合在一起；(d) 由两层或两层以上织造布(2)与无纺布(1)交替复合，通过针刺或粘结复合在一起。

3. 如权利要求1所述的高强度超细纤维仿真复合革的制造方法，其特征在于它包括制造海岛型纤维、制造织造布和无纺布、两种坯布复合成基布、浸渍聚氨酯、抽出“海”成分、后整理各工序：首先采用两种或两种以上不相溶的高分子聚合物为原料，通过共混熔融纺丝技术制成海岛型复合纤维；再分别采用织造法和非织造法，将海岛型复合纤维加工成织造布和无纺布坯布；两种坯布通过针刺或粘结复合在一起，形成两层或多层以上结构的复合基布；将制成的基布浸渍弹性聚合物聚氨酯，并使其固化；然后将含聚氨酯的基布放入可在海中纤维中“海”成分的溶剂中，抽出分离“海”成分，使“岛”形成超细纤维，“岛”的单丝纤度达到0.01～0.0005旦尼尔，即制得高强度超细纤维仿真复合革半成品；最后根据不同需要进行扩幅定型、揉皮、染色、磨毛等后整理工艺获得绒面或贴膜后获得粒面等不同表面结构的仿真复合革产品。

4. 如权利要求3所述的高强度超细纤维仿真复合革的制造方法，其特征在于制作海岛型纤维的高分子聚合物原料采用聚酰胺或聚酯为“岛”的成分，聚乙烯或聚乙烯醇为“海”成分；弹性聚合物采用聚氨酯树脂；溶剂采用热甲苯或碱性热水；织造法包括：机织、针织、经编、纬编；后整理技术包括：扩幅
定型、揉皮、磨毛、染色、贴膜、片皮。

5. 如权利要求 3 所述的高强度超细纤维仿真复合革的制造方法，其特征在于织造布和无纺布两种坯布通过针刺密度为 1000 — 3000 针/cm² 的针刺方法复合在一起。

6. 如权利要求 3 所述的高强度超细纤维仿真复合革的制造方法，其特征在于织造布和无纺布两种坯布优选多孔聚氨酯粘结复合在一起。

7. 如权利要求 3 所述的高强度超细纤维仿真复合革的制造方法，其特征在于聚氨酯的浸渍量为基布重量的 20 ~ 76 %。

8. 如权利要求 3 所述的高强度超细纤维仿真复合革的制造方法，其特征在于所说的织造布也可以用其它传统纤维采用机织、针织、经编、纬编工艺织成的布替代。

9. 如权利要求 3 所述的高强度超细纤维仿真复合革的制造方法，其特征在于粒面的膜层为聚氨酯。
高强耐超细纤维仿真复合革及其制造方法

technology field:

This invention relates to the fabrication of a composite leather, specifically, to a method for fabricating a high strength super fine fiber仿真复合革及其制造方法.

background technology:

As the substitute for natural leather—fabricated leather has the advantages of uniform appearance, easy maintenance, easy cutting, etc., but due to its poor permeability and moisture content, its development has been affected. In recent years, due to the invention of海岛型超细纤维, and海岛型超细纤维的纤维的纤维细度在

0.01旦尼尔以下,所以用海岛型超细纤维无纺布制成的合成革就像天然皮革,其柔软性、表面美观、透气性、耐湿性、强度、使用寿命几乎可以与天然真皮媲美,特别是花色鲜艳、质地均匀、防虫蛀、易剪裁等优于天然真皮,所以这种新产品一经问世,便受到广大消费者的青睐。但由于海岛型超细纤维无纺布制作的工艺特点,决定了在无纺布经向和纬向的两个方向上,抗张强度差异较大,而且在这两个方向上经受外力后变形量也不一样。还有现有技术多是追求超细纤维的细度和制成品的表面处理效果,使其具有良好的外观与触感,忽视高强度、高回弹性不足的问题,制约了高档合成革综合性能的发挥,应用受到限制。

invention content:

The objective of this invention is to provide a type of composite leather that can maintain the advantages of海岛型超细纤维无纺布合成革产品, which is high strength, high elongation, and high flexibility, and can solve the problems of high strength, high elongation, and high flexibility in the process of fabrication. This invention fulfills the market demands for high quality leather products.

The objective of this invention is to achieve the above by the following technical schemes:

This invention is fabricated by a method of海岛型超细纤维基布浸渍弹性聚合物经抽出处后整体制成,其特征在于所用的基布是由海岛型复合纤维织造布和无纺布两种坯布,通过针刺或粘结复合法制成,构
成两层或两层以上的复合结构；经处理，制成含弹性聚合物 20 ～60 %（重量%）、纤维单丝纤度为 0.01～0.0005 盎司尔，且纤维间有空隙的超细纤维复合仿真革。

上述复合基布可采用多种复合结构形式，本发明人认为以下几种结构形式为较为理想的结构形式：(a) 由一层无纺布 (1) 与一层织造布 (2) 通过针刺或粘结复合在一起；(b) 由一层无纺布 (1) 与在其正、反两面分别复合一层织造布 (2) 通过针刺或粘结复合在一起；(c) 由中间一层织造布 (2) 与在其正反两面的两层无纺布 (1) 通过针刺或粘结复合在一起；(d) 由两层或两层以上织造布 (2) 与无纺布 (1) 交替叠合，通过针刺或粘结复合在一起。

本发明所述的高强力超细纤维仿真复合革的制造方法包括制造海岛型纤维、制造造布布和无纺布，两种坯布复合成基布、浸渍聚氨酯、抽出 “海” 成分及后整理等工序。

首先采用两种或两种以上不相溶的高分子聚合物为原料，通过共混熔融纺丝技术制成海岛型复合纤维；再分别采用织造法和非织造法，将海岛型复合纤维加工成造布布和无纺布坯布；将两种坯布通过针刺或粘结法复合在一起，形成两层或两层以上结构的复合基布；将制成的基布浸渍弹性聚合物聚氨酯，并使其固化；然后将含聚氨酯的基布放入可去除海岛纤维中 “海” 成分的溶剂中，抽出分离 “海” 成分，使 “岛” 成分形成超细纤维，即制得高强力超细纤维仿真复合革成品；最后根据不同需要进行扩幅定位、揉皮、染色、磨毛或贴膜等后整理工艺获得绒面或粒面等不同表面结构的仿真复合革产品。

上述技术方案中，所说的制作海岛型纤维的高分子聚合物原料，优选聚酰胺或聚酯作为 “岛” 的成分，聚乙烯或聚乙烯醇作为 “海” 成分；弹性聚合物优选聚氨酯树脂；溶剂优选热甲苯或碱性热水；织造法主要包括机织、针织、经编、纬编工艺等；后整理技术主要包括扩幅定型、揉皮、染色、磨毛、贴膜、片皮等。

上述技术方案中，所说的织造布也可以用其它传统纤维采用机织、针
织、经编、纬编等工艺织成的布替代。

本发明所述高强度超细纤维仿真复合革的具体制造过程和条件如下：

（1）、将制作海岛型纤维的高分子聚合物原料“岛”成分聚酰胺或聚酯与“海”成分聚乙烯或聚乙烯醇以 80～50 %：20～50 %重量比混料，采用双组份共混熔融纺丝技术制得 (3～7) D × (30～65) mm 的海岛型复合纤维。

（2）、利用纺织织造技术，将（1）项海岛型复合纤维制成织造布，厚度为 0.2～2.0mm。或用现有其它符合要求的传统纤维制成织造布。

（3）、利用无纺布制造技术将（1）项海岛型复合短纤维经开松、梳理、铺网、针刺得到平均克重为 120g/m²～800g/m²、厚度 0.3～3.0mm 的无纺布。要求表面平整、厚度均匀、针刺密度 ≥1000 针/cm²。或者在织造布基础上，直接针刺成符合要求的无纺布。

（4）、将（2）项和（3）项得到的织造布和无纺布根据不同厚度和规格及层数进行针刺复合或粘结复合制得基布。针刺复合时，针刺密度 ≥1000 针/cm²；粘结复合时可采用非织造粘结方式，优选多孔聚氨酯进行粘合。如采用在织造布上直接针刺无纺布，可省步骤（4）。

（5）、将（4）项的复合基布用 10～25%浓度的聚氨酯浸渍液进行真空浸渍处理，聚氨酯的浸渍量为基布重量的 20 ～76 %，再用浓度为 20～60 % 温度为 20～60℃的 DMF 水溶液使聚氨酯凝固，然后用 30～50℃水洗法清除 DMF，得到含聚氨酯的基布。

（6）、将（5）项的含聚氨酯的基布用 80～90℃的热甲苯或 30～80℃的碱性热水进行逆流抽出，分离“海”成分聚乙烯或聚乙烯醇，再用水洗干净后，制成超细纤维复合仿真革半成品，其单丝纤度为 0.01～0.0005 旦尼尔，且纤维间有空隙。

（7）、最后将（6）项的超细纤维复合革半成品进行扩幅定型、化学柔软和/或机械柔软、染色和磨毛整饰处理，亦可根据需要进行片削处理，制成高强度超细纤维绒面仿真复合革。

（8）、若需粒面高强度超细纤维仿真复合革，则在（7）项部分处理基础上进行贴膜处理，膜层为聚氨酯，从而制成不同颜色和纹路的高强度超
细纤维粒面伪装复合革。

本发明所述的高密度超细纤维伪装复合革具有强度高、弹性好、经纬向差异小、透气透湿、滑爽挺括等特点，特别适用于高档服装、鞋、沙发、箱包、交通工具座椅、体育用品、军工用品等多种领域的需求。

本发明所述的高密度超细纤维伪装复合革与已有技术相比具有以下优点和有益效果：

（1）由于采用了抗拉强度高的织造布做基布骨架，提高了产品的抗张强度和抗撕裂强度，抗张强度和抗撕裂强度分别达到20MPa、120N以上。

（2）由于作为该产品骨架的织造布经、纬向差异小，弥补了无纺布的经向与纬向强力差异，使抗拉强度和伸张率差异大大降低。抗拉强度差异≤2MPa，伸张率差异≤5%。

（3）由于产品复合层的各层结构不同，受外力影响变形量小，定型性能好，能保持产品的物性及几何尺寸稳定。

（4）由于产品进行弹性处理和两种结构的差异性，综合抗冲击回弹好，真皮感强。

（5）由于采用相同原料，工艺简单，处理效果好，保持了超细纤维的优良特征。

（6）制造方法可靠，技术相对成熟，产品质量稳定，综合性能好，用途广泛。

附图说明

图1是一层无纺布（1）与一层织造布（2）基布结构的剖面图；
图2是一层无纺布（1）与二层织造布（2）基布结构的剖面图；
图3是二层无纺布（1）与一层织造布（2）基布结构的剖面图；
图4是多层无纺布（1）与多层织造布（2）基布结构的剖面图；
图中（1）为无纺布（2）为织造布。

具体实施方式：

实施例1：

将尼龙16和聚乙烯按70：30重量份数混合熔融，经抽丝机抽丝，制
成(3~7)D × (30~65) mm 的海岛型复合纤维；利用纺织技术，将上述海岛型复合纤维制成厚度为 0.3mm 的织造布；利用无纺布织造技术将上述海岛型复合短纤维制成平均克重为 160g/m² 、厚度 0.5mm 的无纺布；再将制得的一层无纺布和一层织造布按附图 1 的方式叠合，在针刺密度 1200 针/cm² 条件下针刺复合制成基布。用 18%浓度聚氨酯浸渍液进行真空浸渍处理，以均匀的速度通过浸渍液，使聚氨酯浸渍在纤维间隙中，聚氨酯的浸渍量为基布重量的 25% ，再用浓度为 40% 、温度为 50℃ 的 DMF 水溶液使聚氨酯凝固，然后用 40℃ 热水洗除二甲基甲酰胺（DMF） , 制成含聚氨酯的基布；再用 90℃ 的热甲苯逆流抽出聚乙烯“海”成分，用水漂洗干净，制成一层无纺布 (1) 与一层织造布 (2) 、含弹性聚合物 26% (重量%) 、纤维单丝纤度为 0.01~0.0005 旦尼尔，且纤维间有空隙的超细纤维复合仿真革半产品；再进行扩幅定型、化学柔软和机械柔软、染色和磨毛整饰处理，即制成绒面着色的束状超细纤维聚氨酯复合仿真革。

本产品经纬向抗拉强度差异 1.8MPa，伸张率差异 4.5%。

实施例 2：

将尼龙－6 和聚乙烯按 65: 35 重量份数混合熔融，经抽丝机抽丝，制成(3~7)D × (30~65) mm 的海岛型复合纤维；利用织造技术，将上述海岛型复合纤维制成厚度为 0.5mm 的织造布；利用无纺布织造技术将上述海岛型复合短纤维制成平均克重为 300g/m² 、厚度 1.0mm 的无纺布；将上述制得的二层无纺布和一层织造布按附图 3 的方式叠合，在针刺密度 1500 针/cm² 条件下针刺复合制成基布；用 20% 浓度聚氨酯浸渍液进行真空浸渍处理，以均匀的速度通过浸渍液，使聚氨酯浸渍在纤维间隙中，聚氨酯的浸渍量为基布重量的 35% ，再用浓度为 45% 、温度为 40℃ 的 DMF 水溶液使聚氨酯凝固，然后用温度为 50℃ 热水洗除二甲基甲酰胺（DMF） , 制成含聚氨酯的基布；再用 80℃ 的热甲苯进行逆流抽出聚乙烯海组分，用水漂洗干净，即制成中间一层织造布 (2) 与在其正反两面的两层无纺布 (1) 、含弹性聚合物 35% (重量%) 、纤维单丝纤度为 0.01~0.0005 旦尼尔，且纤维间有空隙的超细纤维复合仿真革半产品；再进行扩幅定型、化学柔软和机械柔软、
染色和磨毛整饰处理，即制成绒面着色的束状超细纤维聚氨酯复合仿真革。

本产品经纬向抗拉强度差异 1.5MPa，伸张率差异 4%。

实施例 3：

将聚酯和聚乙烯醇按 80：20 重量分数混合熔融，经抽丝机抽丝，制成 (3～7)D × (30～65) mm 的海岛型复合纤维；利用织造技术，将上述海岛型复合纤维制成厚度为 0.5mm 的织造布；利用无纺布织造技术将上述海岛型复合短纤维制成平均克重为 300g/m²、厚度 1.0mm 的无纺布；将上述制得的双层无纺布和二层织造布按附图 2 的方式叠加并用多孔聚氨酯粘结制成复合基布；用 25%浓度聚氨酯浸渍液进行真空浸渍处理，以均匀地速度通过浸渍液，使聚氨酯浸渍在纤维间隙中，聚氨酯浸渍量为基布重量的 20%，再用浓度为 60%、温度为 50℃的 DMF 水溶液使聚氨酯凝固，然后用温度为 40℃热水洗除二甲基甲酰胺 (DMF)，制成含聚氨酯的基布；再用 80℃的碱性热水逆流抽出聚乙烯醇海组分，用水漂洗干净即制成三层无纺布 (1) 与在其正、反两面两层织造布 (2)、含弹性聚合物 20% (重量%)、纤维单丝纤度为 0.01～0.0005 旦尼尔，且纤维间有空隙的超细纤维复合仿真革半产品；再进行扩幅定型、化学软化和机械柔软、染色和磨毛整饰处理；再经贴膜即制造成粒面着色的束状超细纤维聚氨酯复合仿真革。

本产品经纬向抗拉强度差异 1.2MPa，伸张率差异 2.5%。

实施例 4：

将尼龙-6 和聚乙烯按 50：50 重量分数混合熔融，经抽丝机抽丝，制成 (3～7)D × (30～65) mm 的海岛型复合纤维；利用织造技术，将上述海岛型复合纤维制成厚度为 1.5mm 的织造布；利用无纺布织造技术将海岛型复合短纤维制成平均克重为 150g/m²、厚度 3mm 的无纺布；将上述制得的双层无纺布和二层织造布按附图 4 的方式叠加，在针织密度 1800 针/cm² 条件下针织复合制成基布；用 12%浓度聚氨酯浸渍液进行真空浸渍处理，以均匀地速度通过浸渍液，使聚氨酯浸渍在纤维间隙中，聚氨酯的浸渍量为基布重量的 76%，再用浓度为 20%、温度为 50℃的 DMF 水溶液使聚氨酯凝固，然后用温度为 50℃热水洗除二甲基甲酰胺 (DMF)，制成含聚氨酯的基布；再
用90℃的热甲苯逆流抽出聚乙烯“海”成分，用水漂洗干净即制成两层织
造布（2）与两层无纺布（1）交替叠合，含弹性聚合物60%（重量%），纤
维单丝纤度为0.01～0.0005旦尼尔，且纤维间有空隙的超细纤维复合仿真
革半产品；再进行扩幅定型、化学柔软和机械柔软、染色、片皮和磨毛整
饰处理，即制造成绒面着色的束状超细纤维聚氨酯复合仿真革。

本产品经纬向抗拉强度差异1MPa，伸张率差异2%。