WO 2004/053663 A1 ||| 080 00000 0 O O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
24 June 2004 (24.06.2004)

OO Y00 0

(10) International Publication Number

WO 2004/053663 A1l

(51) International Patent Classification’: GO6F 1/00
(21) International Application Number:
PCT/GB2003/005328

(22) International Filing Date: 8 December 2003 (08.12.2003)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

0229032.8 12 December 2002 (12.12.2002) GB

(71) Applicant (for all designated States except US): MES-
SAGELABS LIMITED [GB/GB]; 1270 Landsdowne
Court, Gloucester Business Park, Gloucester GL3 4AB
(GB).

(72) Inventor; and
(75) Inventor/Applicant (for US only): SHIPP, Alexander

(74)

(81)

(84)

[GB/GB]; Star Internet, Brighouse Court, Barmwood,
Gloucester GL4 3RT (GB).

Agents: AYERS, Martyn, Lewis, Stanley et al.; J.A.
Kemp & Co., 14 South Square, Gray’s Inn, LLondon WC1R
517 (GB).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR,
CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD,
GE, GH, GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR,
KZ,LC,LK,LR,LS,LT, LU, LV,MA, MD, MG, MK, MN,
MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU,
SC,SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA,
UG, US,UZ, VC, VN, YU, ZA, ZM, ZW.

Designated States (regional): ARIPO patent (BW, GH,
GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FL, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE,

[Continued on next page]

(54) Title: METHOD OF AND SYSTEM FOR HEURISTICALLY DETECTING VIRUSES IN EXECUTABLE CODE

Start
20

File type
analyser

&>

Y

30

Compiler
analyser

Instruction
frequency
analyser

Y —_—
Frequency

distribution
checker

End-flag
as viral

(57) Abstract: A method of scanning a computer file for virus infec-
tion attempts to identify whether the file contains program code and if
it does, it then attempts to identify the compiler used to generate the
code and performs a frequency distribution analysis of instructions
found in the code to see whether it corresponds with an expected dis-
tribution for a program created with that compiler; if it does not, then
the file is flagged as possibly having a viral infection.

WO 2004/053663 A1 I} N08YH0 T 00000 000 0 0000000

SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, Fortwo-letter codes and other abbreviations, refer to the "Guid-
GN, GQ, GW, ML, MR, NE, SN, TD, TG). ance Notes on Codes and Abbreviations” appearing at the begin-
Published: ning of each regular issue of the PCT Gagzette.

— with international search report

10

15

20

25

30

WO 2004/053663 PCT/GB2003/005328

METHOD OF AND SYSTEM FOR HEURISTICALLY DETECTING
VIRUSES IN EXECUTABLE CODE

The present invention relates to a method of, and system for, heuristically
detecting viruses in executable code by analysing the frequency distribution of machine code
created.

A common form of computer virus infection is where the virus's executable
code is attached to, or embedded in, a program or other computer file containing executable
code which appears, on the face of'it, to be benign. One well-established method of virus
propagation is where the virus, once activated on a host machine such as a user's PC, will
attach itself to one or more programs found on the host in such a way that that program, once
run, will execute the virus's code giving it the opportunity to propagate again and/or to
undertake whatever other malignant behaviours (such as destruction of files, etc.) have been
programmed into it. This method of propagation does, of course, provide an opportunity to
detect the virus, for example by associating checksums with program files and detecting when
this checksum changes. That is of course only one of the many strategies which have been
devised to detect viruses.

Another well-known method of detecting viruses, implemented in many of the
anti-virus software packages which are available, involves scanning program and other files
for certain characteristic sequences of bytés (known as signatures) which indicate the likely
presence of a virus. One of the practical problems with signature-based detection is that it
requires some skill and a significant amount of time, when a new virus is first detected, to
establish a suitable characteristic signature of it. This signature needs to be one which does
not produce too many false positives and which does not misidentify the virus, for example as
an existing one with a more benign payload. This signature information then needs to be
disseminated to sites which use the anti-virus package in question before it can be used there
to detect the newly-identified virus. In recent years, many of the notable virus outbreaks have
involved viruses which propagate over the internet and it takes time for publishers of
anti-virus software to react when a virus outbreak occurs.

Some internet service providers offer anti-virus scanning of internet traffic
passing through their internet nodes as a value-added service.

The present invention relates to a method of virus detection which is intended

to be useful for ISPs performing anti-virus scanning, e.g. of executables such as program files

10

15

20

25

30

WO 2004/053663 PCT/GB2003/005328
2-

attached to emails, though it is by no means limited to that application and may be used in any
anti-virus package.

According to the present invention there is provided a method of scanning a
computer file for virus infections comprising:

a) identifying program code within the file;

b) identifying the compiler used to create the program code;

¢) determining the frequency distribution of selected machine code instructions
or sequences of such instructions; and

d) flagging the file as possibly infected with a virus, or not, on the basis of
comparison of the determined frequency distribution with a frequency distribution of machine
code instructions or sequences thereof expected for that compiler.

The invention also provides a system for scanning a computer file for virus
infections comprising:

a) means for identifying program code within the file;

b) means for identifying the compiler used to create the program code;

¢) means for determining the frequency distribution of selected machine code
instructions or sequences of such instructions; and

d) means for flagging the file as possibly infected with a virus, or not, on the
basis of comparison of the determined frequency distribution with a frequency distribution of
machine code instructions or sequences thereof expected for that compiler.

The invention will be further described by way of non-limitative example with
reference to the accompanying drawings, in which:-

Figure 1 is a combined block diagram of, and flow chart of the operation of, a
virus scanning engine according to one embodiment of the present invention; and

Figure 2 is a flow chart of the operation of an example of the instruction
frequency analyser of Figure 1.

In the following hexadecimal values are represented with a leading 0x, like
this: 0xff78. 0x???? is used to represent a hexadecimal value where the value is unimportant.

Some terminology will first be discussed.

"MD35 (message digest 5) checksum": MDS5 is a one-way hashing algorithm - it
generates a large number (the MD5 checksum) after analysing a byte stream - such as a file.
The chances of two files generating the same large number are very small. Itis also very

difficult to create a file which will generate any particular MDS5 checksum.

10

15

20

25

30

WO 2004/053663 PCT/GB2003/005328
-3-

"False positive": A false positive occurs when an anti-virus product identifies a
particular file 'a' as being malware, whereas in fact it is not.

"Regular expression": Regular expressions are strings which can be used for
pattern matching. For instance, the perl regular expression

/"hello [0-91+/

matches any string starting with the letters 'hello', then a space, then one or
more digits.

"Memory map": A memory map is a one to one mapping of the locations a
program would occupy when loaded into memory, with some other locations. Thus, if a
program would occupy locations 0x400000 to 0x410000 when loaded, we might construct a
memory map from 0x100000 to 0x110000. Whenever the program refers to a particular
location, we would (in this case) determine the equivalent location in our memory map by
subtracting 0x300000. Thus 0x400000 maps to 0x100000, 0x400001 maps to 0x100001, and
SO on.

"Compiler": According to strict usage, a compiler generates one or more object
modules from program source code. These object modules are typically not executable
programs per se but require an additional step of linking by a linker. The action of a linker is
typically to generate an image of an executable by linking together the object module(s), and
external binary libraries which the module(s) reference; the production of the image may
involve the pre-pending of a header region according to an executable file layout of a target
operating system as well as the addition of resources such as bitmaps and the like. The term
"compiler" as used herein is intended to include a linker, if required from a technical
standpoint. What the compiler produces is not necessarily a stand-alone program, of course:
compilers also produce executables such as dynamic link libraries and device drivers.

Compilers often have compiler flags (also known as "switches") which can be
set by the user and which influence the compilation process and the code generated. For
example, compiler flags can control whether generated code is optimised for speed, code size,
or neither, whether stack frames are used for subroutine calls and so on. Different settings of
these flags may influence the frequency distribution of instructions in the code generated, and
embodiments of the invention can account for this by having expected frequency data for a
variety of combinations of compiler flag settings per compiler.

The term "computer file" as used herein is intended to be understood in a

general sense and in particular is not intended to be restricted to on-disk files.

10

15

20

25

30

WO 2004/053663 PCT/GB2003/005328
o

To gain control, a virus must insert itself into the execution path of program
code. The virus code will have originally been created by one particular compiler or
assembler, and in general will be inserting itself into a program created by a different compiler
or assembler. Often, a particular compiler will generate code that can be recognised as
coming from that compiler or family of compilers. If this is the case, it is may then be
possible to determine that the inserted viral code has not been generated by the compiler that
generated the rest of the program, by comparing the actual frequency distribution of
instructions in the program, with the expected frequency distribution of instructions generated
by the identified compiler. The program can be then flagged as either suspicious or infected
by a virus.

Figure 1 shows in block form, one form of virus detection system 10
embodying the present invention which may be incorporated into a virus scanning engine.
The overall operation of this system 10 is as follows:-

Files which are to be scanned are applied in succession to an input 20 e.g. form
an input queue; how files are placed in this queue and from what source(s) are not directly
relevant to the present invention, but they might for example be attachments of emails being
processed by a mail gateway at an ISP, or files in a directory being processed by a disk
scanning operation.

Each file to be processed is passed to a file type analyser 30 which attempts to
identify the type of the file from its contents. For instance, it may be non-program, or
program. A non- program file is are not analysed further and processing is discontinued at 40.
A file which is considered to be a program is further classified depending on its type - for
instance, DOS, Windows PE, Windows NE, Linux ELF, Macintosh, etc. If the file type
analyser 30 determines that the file type is known, the file is then processed by compiler
analyser 50, which attempts to identify the compiler used to generate the code in the file; it
fails in this, processing of the file is discontinued at 40, otherwise the file is next processed by
an instruction frequency analyser 60.

The analyser 60 effectively reverse-engineers the program and prepares a
tabulation of the frequency distribution of certain machine code opcodes and/or opcode
constructs, as will be described in greater detail below. This tabulation is passed to a
frequency distribﬁtion checker 70 where it is compared with one or more sets of characteristic
frequency distributions for the identified compiler held in a database 80. Any given
compiler/linker may be capable of generating more than one type of executable (GUIL

application, console application, device driver etc.) and the compilation/linking cycle may be

10

15

20

25

30

WO 2004/053663 PCT/GB2003/005328
-5-

affected by the setting of one or more compiler/linker flags (for example, flags to control the
creation or not of stack frames for subroutine calls, to indicate whether the generated program
is a debug version, etc.) which may yield different expected frequency distributions which
can be stored in the database and individually selected for consideration by the frequency
distribution checker 70.

If the frequency distribution checker 70 determines that the actual frequency
distribution from analyser 60 sufficiently closely matches the expected one for the identified
compiler, processing of the file is discontinued at 40; otherwise the file is considered as
suspicious and potentially containing a virus. In order to reduce the number of false positives,
suspicious files are considered by exception list checker against a list of exceptions, i.e. files
which although suspicious according to frequency distribution checker 70, may nevertheless
be considered to be benign. The exception list checker may operate by reference to an
exception list held in database 80 along with characteristics used to determine whether the file
under consideration matches an exception. If the file does not match an exception, it is
flagged as viral at output 100. The setting of this flag can be used to alert an operator, and/or
initiate further processing of the file and/or to initiate appropriate remedial action (for

example quarantining the file).

Recognising an executable

The following is a simplistic example of an algorithm for determining if a file
is likely to be an executable which could be used by the file type analyser 30. By analysing
the first few bytes of a file it is possible to tell whether it is likely to be an executable. For

instance, to recognise a Windows PE file:

Read in first 2 bytes. If these are not MZ' then stop.

Read in another 58 bytes

Read in 4 bytes into variable x (treating using intel byte-ordering)
Seek to offset x in file

Read in 4 bytes

If bytes are P E \0 \0, then file is likely to be a Windows PE file.

This algorithm can be enhanced to add recognition for as many other types of
executable file as desired. For instance, if the first 4 bytes of a file are 0x7F 0x45 0x46, then
the file is likely to be a linux executable using the ELF format.

1

‘10

15

20

25

30

WO 2004/053663 PCT/GB2003/005328

Recognising the compiler

There are various ways in which the compiler analyser 50 can recognise which
compiler created a particular program. For instance, it could examine the startup sequence of
the program, or the subroutine call and return sequences. In some cases, this is enough to
identify the exact compiler version used. In others, this will identify a possible family of

compilers.

Reverse Engineering the program
Following is a simplistic method by which this may be carried out by the

instruction frequency analyser 60. This method is illustrated in Figure 2 and is as follows:-

Create a memory map of the locations used by the program, flagging each byte
as 'not used' (step 210).
Push the program entry point onto a stack of locations to consider (220).
‘While there are still locations to consider (230)
Get next location as 'current location' (240)
LbINext:
If memory map marks this byte as 'code' (250), stop processing this location
Read in the instruction at this location, calculating its length in bytes (260)
Update the frequency count for this instruction (270)
Mark 'length' bytes in the memory map as 'code’ (280)
If instruction is a 'call', jump' or other instruction which could change the
location of the next instruction (290), push the destination onto the stack of
locations to consider (300)
If the instruction is a 'jump always' or 'return' type instruction, stop
processing this location (310)
If the instruction loads or stores data at particular locations (320), mark the
destination in the memory map as 'possible data' (330)
Increment 'current location' by 'length' bytes (340)
Carry on processing at Iblnext
Wend

10

15

20

25

30

WO 2004/053663 PCT/GB2003/005328
-7-

This algorithm can be enhanced in many ways to provide better results. For
instance, once the processing is over, the memory map will have areas marked as 'code’,
'possible data', and not used'. If there are too many areas marked as 'not used' then further
analysis may be undertaken on these areas to try and determine if they are code or data. One
such algorithm could be, check data to see if it contains characters in the range 0x20 to 0x7F,
plus also 0x0A, 0x09 0x0d, ending with either 0x00 or '$'. If so, this could be a message
displayed by the program being analysed and can be marked as data. The bytes immediately
preceding the message can also be analysed to see if they appear to be a 1, 2 or 4 byte length
of the message. Many other algorithms are possible. Certain types of program files, for
example Windows dynamic link libraries, may contain multiple entry points and the above

algorithms may be applied to each of them.

Known frequency checking
Particular compilers will do the same thing in the same way each time (when
the same set of compiler flags is used). For instance, if compiler 'A' wants to add one to the

EAX register, it may generate the following code:
add eax, 0x01

The eax register is 4 bytes long. However the compiler generates an instruction
to add a one byte value, knowing that the processor will correctly pad out 0x01 to
0x00000001.

However, this is not the only way of adding one to the EAX register, so if we
find any of the following code, in a program generated by compiler A, this would be
suspicious:

inc eax

add eax, 0x0001 # two byte value used
add eax, 0x00000001 # four byte value used

Many compilers generate particular entry and exit sequences for subroutines.

Suppose the compiler always generates the following:

10

15

20

25

30

WO 2004/053663 PCT/GB2003/005328

Routine:

#here is the entry code
push ebp
mov ebp, esp

sub esp, 0x??7??

#there 1s the exit code

mov esp, ebp

pop ebp
retn

Then if the program contains 100 'retn's, and if it only generates retns during
the subroutine exit sequence, we would also expect to see at least 100 "push ebp's, ‘mov ebp,
esp's, 'sub esp 0x???7', 'mov esp, ebp's and 'pop ebp's. Anything less than this would indicate
that possible viral code has been introduced.

The compiler may also have a particular way of calling subroutines:

call 0x???7?

add esp, 0x??°?7?

Thus if the program contains 100 'call's, we would expect to see at least
100 'add esp, 0x???°?'s
The compiler may never generate particular instructions. Thus, if the program

contains one or more of these this would indicate that possible viral code has been introduced.

Eg int 3, which on x86 series Intel processors is a debugger

breakpoint instruction

Exception rules

Various exception rules can be added to the database 80 and applied by the
exception list checker 90. As an example, int 3 instructions are common in viruses, but also
may be present in debug versions of programs. Thus one rule could be that the presence of

int 3's are ignored if it is determined that a program is a debug version.

10

15

20

WO 2004/053663 PCT/GB2003/005328

9.

Other instructions are used by system or kernel programs, but not by user
programs. Thus, if they are present, they can be ignored if it is determined that a program is a
system or kernel program.

Programs compiled with one compiler can be linked with code from libraries
created by other compilers. These libraries can be detected by pattern matching and regular
expressions, and excluded from the analysis. This step could also be performed before step 3
(reverse engineering) to mark areas as 'exclude for analysis'.

Particular executable files can be excluded by comparing an md5 checksum of

the program with a list of exclusion mdS5s.

Enhancements

As well as using this as a stand-alone virus detection algorithm, this can be
combined with other techniques as part of a larger system. For instance, programs flagged as
suspicious by this method may be allocated a certain score, or variety of scores depending
which tests pass and fail. Scores may also be assigned using other heuristic techniques, and
only if the total score passes some limit is the program flagged as viral.

The system can also be used as an indicator or which parts of the program to
analyse further. For instance, if unusual distributions have been found, the program can be
reanalysed to find where these occur, and the limits of 'strange code' determined. This flagged
code can then undergo a detailed analysis to try and determine what the code is actually doing.
If it is deleting files or mass mailing, for instance, then that is a likely indication that the

program is viral.

10

15

20

25

30

WO 2004/053663 PCT/GB2003/005328

-10-

CLAIMS

1. A method of scanning a computer file for virus infections comprising:

a) identifying program code within the file

b) identifying the compiler used to create the program code

c) determining the frequency distribution of selected machine code instructions
or sequences of such instructions; and

d) flagging the file as possibly infected with a virus, or not, on the basis of
comparison of the determined frequency distribution with a frequency distribution of machine

code instructions or sequences thereof expected for that compiler.

2. A method according to claim 1 wherein step ¢) comprises the step, working
from an entry point of the program, of
bl) tracing an execution graph by decoding successive instruction opcodes

and updating frequency counts of decoded instructions as this tracing proceeds.

3. A method according to claim 2 wherein when, during step b1), a subroutine
call or conditional branch instruction is encountered, the destination of the call or branch
instruction is pushed onto a stack, tracing proceeds into the subroutine call, and when a return
instruction is encm}ntered, the pushed location is popped from the stack and tracing continues

with the following instructions, if any.

4, A method according to claim 1, 2 or 3, wherein the program code is examined
for opcode constructs, such as subroutine-call and subroutine-return, instruction sequences
which are expected to occur a known ratio to each other and, if the ratio actually found differs
from the known one by more than a certain amount, the file is flagged as possibly viral, or

subject to further processing.

5. A method according to any one of the preceding claims and including the step,

where step d) flags the file as possibly viral, of comparing the program code with a list of

~ permissible exceptions and suppressing the flag if the program code is considered to be in the

exception list.

10

15

20

25

30

WO 2004/053663 PCT/GB2003/005328
-11-

6. A system for scanning a computer file for virus infections comprising:

a) means for identifying program code within the file

b) means for identifying the compiler used to create the program code

¢) means for determining the frequency distribution of selected machine code
instructions or sequences of such instructions; and

d) means for flagging the file as possibly infected with a virus, or not, on the
basis of comparison of the determined frequency distribution with a frequency distribution of

machine code instructions or sequences thereof expected for that compiler.

7. A system according to claim 6 the frequency determining means c) includes
tracing means, the tracing means being operable, working from an entry point of the program,
to trace an execution graph by decoding successive instruction opcodes and updating

frequency counts of decoded instructions as this tracing proceeds.

8. A system according to claim 7 wherein the tracing means is operable such that
when a subroutine call or conditional branch instruction is encountered, the destination of the
call or branch instruction is pushed onto a stack, tracing proceeds into the subroutine call, and
when a return instruction is encountered, the pushed location is popped from the stack and

tracing continues with the following instructions, if any.

9. A system according to claim 6. 7 or 8, and including means for examining the
program code for opcode constructs,. such as subroutine-call and subroutine-return,
instruction sequences which are expected to occur a known ratio to each other and, if the ratio
actually found differs from the known one by more than a certain amount, the file is flagged as

possibly viral, or subject to further processing

10. A system according to any one claims 6 to 9 and including means, operable
when the means d) flags the file as possibly viral, to compare the program code with a list of
permissible exceptions and suppressing the flag if the program code is considered to be in the

exception list.

WO 2004/053663 PCT/GB2003/005328

1/2

Start
Fig.1. ZOQ

File type
analyser

—30

10\

Is type
known ?

Y

A=

Compiler

5071 analyser

Is compiler
known ?

Instruction
frequency [~60
analyser

Frequency |—70
distribution 80
checker o

Is distribution
ok ?

A

Exception list

checker | 90

End-no 100
40—~~Jurther action s program in _ @ End-flag

Y exception list 2 N as viral

SUBSTITUTE SHEET (RULE 26)

WO 2004/053663 PCT/GB2003/005328

Q Start

Memory

map create |~.o1 I
* Fig.2.
Push entry point|—220

2/2

Stil™~230

considering

=Y

locations ?
End
240
Pop next B <)
location
270
’
- Update
Readin | _ _ | Update |
instruction [~ €9UeNcy = memory map[280
count
Push | Y 290
300 destination
330
N
Update
memory map

Y

@+ Bump
location [~340

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT
PCT/GB 03/05328

A. CLASSIFICATION OF SUBJECT MATTER
TpE R OaE1/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

WPI Data, EPO-Internal, COMPENDEX

Electronic data base consuited during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A WO 01 69356 A (SYMANTEC CORP) 1,6
20 September 2001 (2001-09-20)
page 6, 1ine 162 -page 7, line 203
page 11, Tline 349 -page 12, line 3656
page 16, Tine 487 - line 501
figure 5
A US 2002/066024 Al (KWAN TONY ET AL) 1,6
30 May 2002 (2002-05-30)
abstract
page 2, paragraph 24 -page 3, paragraph 49
page 5, paragraph 71
A US 5 675 711 A (SORKIN GREGORY BRET ET 1,6
AL) 7 October 1997 (1997-10-07)
column 1, Tine 14 —-column 2, line 36
-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

“A* document defining the general state of the art which is not
considered to be of particular relevance

earlier document but published on or afterthe international
filing date

document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citafion or other special reason (as specified)

document referring 1o an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority date claimed

g

e

o

T later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"X* document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed inveniion
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
m%r:ts, ﬁuch combination being obvious to a person skilled
in the arnt,

"&" document member of the same patent family

Date of the actual completion of the international search

29 March 2004

Date of mailing of the intemational search report

06/04/2004

Name and mailing address of the ISA

European Patent Office, P.B, 5818 Patentlaan 2
NL — 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Arbutina, L

Form PCT/ISA/210 (second sheet) (January 2004)

page 1 of 2

INTERNATIONAL SEARCH REPORT

PCT/GB 03/05328

C.{Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

US 2002/157008 A1 (RADATTI PETER V)

24 October 2002 (2002-10-24)

page 2, paragraph 21 -page 3, paragraph 32
VELDMAN F: "COMBATING VIRUSES
HEURISTICALLY"

VIRUS BULLETIN CONFERENCE, VIRUS BULLETIN
LTD., ABINGTON, GB,

September 1993 (1993-09), pages 67-75,
XP000828110

page 61, paragraph 1 -page 71, paragraph
3.3

1,6

1,6

Form PCT/ISA/210 (continuation of second sheet) (January 2004}

page 2 of 2

INTERNATIONAL SEARCH REPORT

TR

PCT/GB 03/05328

Patent document Publication Patent family Publication

cited in search report date member(s) date

WO 0169356 A 20-09-2001 CA 2403676 Al 20-09-2001
EP 1297401 A2 02-04-2003
WO 0169366 A2 20~09-2001

US 2002066024 Al 30-05-2002 NONE

US 5675711 A 07-10-1997 US 5907834 A 25-05-1999

US 2002157008 Al 24-10-2002 NONE

‘orm PCTASA/210 {patent family annex) (January 2004)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

