发明名称
光电转换装置和图像捕捉系统

摘要
本发明涉及光电转换装置和图像捕捉系统。在第一灵敏度水平中，模拟-数字转换器根据模拟信号的电平选择性地使用具有相互不同的斜率的第一基准信号和第二基准信号中的任一个执行模拟-数字转换，并且，在与第一灵敏度水平不同的第二灵敏度水平中，模拟-数字转换器通过使用第三基准信号执行模拟-数字转换。
1. 一种能够设定灵敏度水平的光电转换装置，包括：
包含多个像素并被配置为输出根据在多个像素中产生的信号的模拟信号的多个模拟信号输出单元；和
被设置为与多个模拟信号输出单元对应并被配置为通过比较斜坡信号与从模拟信号输出单元输出的模拟信号执行模拟－数字（AD）转换的多个模拟－数字转换器，其中，
在第一灵敏度水平中，多个模拟－数字转换器之中的每一个通过根据模拟信号的电平选择性地使用具有相互不同的斜率的第一斜坡信号和第二斜坡信号之中的任一个执行模拟－数字转换，并且，
在与第一灵敏度水平不同的第二灵敏度水平中，模拟－数字转换器之中的每一个仅使用第三斜坡信号作为用于执行模拟－数字转换的斜坡信号。
2. 根据权利要求 1 所述的光电转换装置，其中，
第二灵敏度水平比第一灵敏度水平高，并且，
第三斜坡信号的变化速率等于第一斜坡信号的变化速率和第二斜坡信号的变化速率之中的较小的一个，或者低于第一斜坡信号的变化速率和第二斜坡信号的变化速率之中的较小的一个。
3. 根据权利要求 2 所述的光电转换装置，其中，
第二灵敏度水平为第一灵敏度水平的 n 倍，并且，
第三斜坡信号的变化速率等于第一斜坡信号的变化速率和第二斜坡信号的变化速率之中的较小的一个的 1/n 倍。
4. 根据权利要求 2 所述的光电转换装置，其中，
第二灵敏度水平为第一灵敏度水平的 n 倍，并且，
当第三斜坡信号的变化速率等于第一斜坡信号的变化速率和第二斜坡信号的变化速率之中的较小的一个时，第一斜坡信号的变化速率和第二斜坡信号的变化速率之中的较小的一个为第一斜坡信号的变化速率和第二斜坡信号的变化速率之中的另一个的 1/n 倍。
5. 根据权利要求 1 所述的光电转换装置，其中，
第二灵敏度水平比第一灵敏度水平低，并且
第三斜坡信号的变化速率等于第一斜坡信号的变化速率和第二斜坡信号的变化速率之中的较大的一个，或者大于第一斜坡信号的变化速率和第二斜坡信号的变化速率之中的较大的一个。
6. 根据权利要求 5 所述的光电转换装置，其中，
第二灵敏度水平为第一灵敏度水平的 1/n 倍，并且，
第三斜坡信号的变化速率等于第一斜坡信号的变化速率和第二斜坡信号的变化速率之中的较大的一个的 n 倍。
7. 根据权利要求 5 所述的光电转换装置，其中，
第二灵敏度水平为第一灵敏度水平的 1/n 倍，并且，
当第三斜坡信号的变化速率等于第一斜坡信号的变化速率和第二斜坡信号的变化速率之中的较大的一个时，第一斜坡信号的变化速率和第二斜坡信号的变化速率之中的较大的一个为第一斜坡信号的变化速率和第二斜坡信号的变化速率之中的另一个的 n 倍。
8. 根据权利要求 1 所述的光电转换装置，其中，
在第一灵敏度水平中，
当模拟信号的电平小于阈值时，模拟—数字转换器通过使用第一斜坡信号和第二斜坡
信号之中的具有较小的变化速率的任一个将模拟信号转换成 p 位数字信号，并且，
当模拟信号的电平大于阈值时，模拟—数字转换器通过使用第一斜坡信号和第二斜坡
信号之中的具有较大的变化速率的任一个将模拟信号转换成 q 位数字信号。
9. 根据权利要求 8 所述的光电转换装置，其中，
多个模拟—数字转换器之中的每一个还包含：
被配置为计数时钟信号并且输出计数信号的计数器；
被配置为根据模拟信号与斜坡信号之间的大小关系的变化存储计数信号的存储器，并
且，
与将模拟信号转换成 p 位数字信号时相比，在将模拟信号转换成 q 位数字信号时，时钟
信号具有较低的频率。
10. 根据权利要求 1 所述的光电转换装置，其中，多个模拟—数字转换器之中的每一个
通过逐次近似方法对模拟信号进行模拟—数字转换，并且通过使用斜坡信号对相当于通过
逐次近似方法的模拟—数字转换获得的数字信号的最低有效位的较低次模拟信号进行模拟—
数字转换。
11. 根据权利要求 1 所述的光电转换装置，还包括被配置为校正第一斜坡信号和第二
斜坡信号的变化速率的误差的校正单元。
12. 一种能够设定灵敏度水平的光电转换装置，包括：
包含多个像素并被配置为输出根据在多个像素中产生的信号的模拟信号的多个模拟
信号输出单元，和
被设置为与多个模拟信号输出单元对应并被配置为通过比较斜坡信号与从模拟信号
输出单元输出的模拟信号执行模拟—数字转换的多个模拟—数字转换器，其中，
在第一灵敏度水平中，多个模拟—数字转换器之中的每一个通过根据模拟信号的电平
选择性地使用具有相互不同的斜率的第一斜坡信号和第二斜坡信号之中的任一个执行模拟—
数字转换，并且，
在与第一灵敏度水平不同的第二灵敏度水平中，多个模拟—数字转换器之中的每一个
通过根据模拟信号的电平选择性地使用具有相互不同的斜率的第三斜坡信号和第四斜坡
信号中的任一个执行模拟—数字转换，并且，
第四斜坡信号具有与第一斜坡信号的斜率和第二斜坡信号的斜率不同的斜率。
13. 根据权利要求 12 所述的光电转换装置，其中，
第二灵敏度水平比第一灵敏度水平高，
第三斜坡信号的变化速率为第一斜坡信号或第二斜坡信号的变化速率，或者处于第一
斜坡信号的变化速率和第二斜坡信号的变化速率之间，
第四斜坡信号的变化速率为第一斜坡信号的变化速率和第二斜坡信号的变化速率之
中的较小的一个。
14. 根据权利要求 13 所述的光电转换装置，其中，
第二灵敏度水平为第一灵敏度水平的 n 倍，并且，
第四斜坡信号的变化速率为第一斜坡信号的变化速率和第二斜坡信号的变化速率之
中的较小的一个的 1/n 倍。

15. 根据权利要求 12 所述的光电转换装置，其中，
第二灵敏度水平与第一灵敏度水平低，并且，
第三斜坡信号的变化速率为第一斜坡信号或第二斜坡信号的变化速率为或者处于第一斜坡信号的变化速率为第二斜坡信号的变化速率之中的较大的一个。

16. 根据权利要求 13 所述的光电转换装置，其中，
第二灵敏度水平为第一灵敏度水平的 1/n 倍，并且，
第四斜坡信号的变化速率为第一斜坡信号的变化速率为第二斜坡信号的变化速率之中的较大的一个的 n 倍。

17. 根据权利要求 12 所述的光电转换装置，其中，
在第一灵敏度水平中，当模拟信号的电平小于阈值时，模拟 - 数字转换器通过使用第一斜坡信号和第二斜坡信号之中的具有较小的变化速率的任一个将模拟信号转换成 p 位数字信号，并且，

当模拟信号的电平大于阈值时，模拟 - 数字转换器通过使用第一斜坡信号和第二斜坡信号之中的具有较大的变化速率的任一个将模拟信号转换成 q 位数字信号，

在第二灵敏度水平中，当模拟信号的电平小于阈值时，模拟 - 数字转换器通过使用第一斜坡信号和第二斜坡信号之中的具有较小的变化速率的任一个将模拟信号转换成 p 位数字信号，并且，

当模拟信号的电平大于阈值时，模拟 - 数字转换器通过使用第一斜坡信号和第二斜坡信号之中的具有较大的变化速率的任一个将模拟信号转换成 q 位数字信号。

18. 根据权利要求 17 所述的光电转换装置，其中，
多个模拟 - 数字转换器之中的每一个还包含：
被配置为计数时钟信号并且输出计数信号的计数器，和
被配置为根据模拟信号与斜坡信号之间的大小关系的变化存储计数信号的存储器，并且，

与在将模拟信号转换成 p 位数字信号时相比，在将模拟信号转换成 q 位数字信号时，时钟信号具有较低的频率。

19. 根据权利要求 1 所述的光电转换装置，其中，对于模拟 - 数字转换器执行模拟 - 数字转换的时段，第一斜坡信号和第二斜坡信号之中的具有较小的变化速率的一个的信号电平在比第一斜坡信号和第二斜坡信号之中的另一个的时段长的时段中变化。

20. 一种能够设定灵敏度水平的光电转换装置，包括：
包含多个像素并被配置为输出根据在多个像素中产生的信号的模拟信号的多个模拟信号输出单元；
被设置为与多个模拟信号输出单元对应的多个比较器，和
斜坡信号供给单元，其中，
在第一灵敏度水平中，斜坡信号供给单元根据输入比较器中的模拟信号的电平在比较器中选择性地输入具有相互不同的斜率的第一斜坡信号和第二斜坡信号之中的任一个，并
且，比较器通过比较模拟信号和选择性地输入的第一斜坡信号和第二斜坡信号中的一个执行模拟-数字转换，并且，

在第二灵敏度水平中，斜坡信号供给单元仅在比较器中输入第三斜坡信号，并且，比较器通过比较模拟信号与第三斜坡信号执行模拟-数字转换。

21. 一种能够设定灵敏度水平的光电转换装置，包括：

包含多个像素并被配置为输出根据在多个像素中产生的信号的模拟信号的多个模拟信号输出单元；

被设置为与多个模拟信号输出单元对应的多个比较器；和

斜坡信号供给单元，其中，

在第一灵敏度水平中，斜坡信号供给单元根据输入比较器中的模拟信号的电平在比较器中选择性地输入具有相互不同的斜率的第一斜坡信号和第二斜坡信号中的任一个，并且，比较器通过比较模拟信号和选择性地输入的第一斜坡信号和第二斜坡信号中的一个执行模拟-数字转换，并且，

在与第一灵敏度水平不同的第二灵敏度水平中，斜坡信号供给单元根据输入比较器中的模拟信号的电平在比较器中选择性地输入具有相互不同的斜率的第三斜坡信号和第四斜坡信号中的任一个，并且，比较器通过比较模拟信号和选择性地输入的第三斜坡信号和第四斜坡信号中的一个执行模拟-数字转换，并且，

第四斜坡信号与第一斜坡信号和第二斜坡信号不同。

22. 一种图像获取系统，包括：

根据权利要求 1～21 中的任一项的光电转换装置；

被配置为在多个像素中形成图像的光学系统；和

被配置为处理从光电转换装置输出的信号并且产生图像数据的视频信号处理单元。

23. 根据权利要求 22 所述的图像获取系统，还包括：

灵敏度选择单元，其中，

光电转换装置的灵敏度水平通过灵敏度选择单元被选择。
光电转换装置和图像捕获系统

技术领域
[0001] 实施例的一个公开的方面涉及光电转换装置和图像捕获系统。特别是，实施例涉及具有 AD 转换器的光电转换装置和图像捕获系统。

背景技术
[0002] 已提出了具有 AD 转换器的图像捕获装置。
[0003] 日本专利公开 No. 2009-177797 公开了比较信号电平随时间变化的基准信号与模拟信号以获得数字信号的基于斜坡的近似方法的 AD 转换。还公开了改变基准信号随时间的变化速率可改变 AD 转换中的增益。
[0004] 在日本专利公开 No. 2010-045789 中，公开了比较模拟信号与通过将满量程模拟信号的振幅除以 2^n 获得的阈值的图像传感器。在该现有技术中，如果模拟信号大于阈值，那么模拟信号与基于相对应的变化速率的基准信号相比较，以获得 MSB 侧的 n 位数值数据。如果模拟信号等于或小于阈值，那么模拟信号与具有相对小的变化速率的基准信号相比较，以获得 LSB 侧的 n 位数值数据。

发明内容
[0005] 在实施例的一个方面中，一种能够设定灵敏度水平的光电转换装置包括：包含多个像素并被配置为输出根据在多个像素中产生的信号的模拟信号的多个模拟信号输出单元；和被设置为与多个模拟信号输出单元相应并被配置为通过比较斜坡信号与从模拟信号输出单元输出的模拟信号执行模拟-数字 (AD) 转换的多个 AD 转换器。其中，第一灵敏度水平中，多个 AD 转换器中的每一个通过根据模拟信号的电平选择性地使用具有相互不同的斜率的第一斜坡信号和第二斜坡信号的任一个执行 AD 转换，并且，在与第一灵敏度水平不同的第二灵敏度水平中，AD 转换器中的每一个仅使用第三斜坡信号作为用于执行 AD 转换的斜坡信号。
[0006] 在实施例的另一方面中，一种能够设定灵敏度水平的光电转换装置包括：包含多个像素并被配置为输出根据在多个像素中产生的信号的模拟信号的多个模拟信号输出单元；和被设置为与多个模拟信号输出单元相应并被配置为通过比较斜坡信号与从模拟信号输出单元输出的模拟信号执行 AD 转换的多个 AD 转换器。其中，在第一灵敏度水平中，多个 AD 转换器中的每一个通过根据模拟信号的大小选择性地使用具有相互不同的斜率的第一斜坡信号和第二斜坡信号的任一个执行 AD 转换，并且，在与第一灵敏度水平不同的第二灵敏度水平中，多个 AD 转换器中的每一个通过根据模拟信号的大小选择性地使用具有相互不同的斜率的第三斜坡信号和第四斜坡信号的任一个执行 AD 转换，并且，第四斜坡信号具有与第一斜坡信号的斜率和第二斜坡信号的斜率不同的斜率。
[0007] 在实施例的另一方面中，一种能够设定灵敏度水平的光电转换装置包括：包含多个像素并被配置为输出根据在多个像素中产生的信号的模拟信号的多个模拟信号输出单元；和被设置为与多个模拟信号输出单元对应的多个比较器。
第一灵敏度水平中，斜坡信号供给单元根据输入比较器中的模拟信号的大小在比较器中选择性地输入具有相互不同的斜率的第一斜坡信号和第二斜坡信号之中的任一个，并且，比较器通过比较模拟信号和选择性地输入的第一斜坡信号和第二斜坡信号中的一个执行AD转换，并且，在第一灵敏度水平中，斜坡信号供给单元仅在比较器中输入第三斜坡信号，并且，比较器通过比较模拟信号与第三斜坡信号执行AD转换。

[0008] 在实施例的又一方面中，能够设定灵敏度水平的光电转换装置包括：包含多个像素并被配置为输出根据在多个像素中产生的信号的模拟信号的多个模拟信号输出单元；被设置为与多个模拟信号输出单元对应的多个比较器；和斜坡信号供给单元。其中，在第一灵敏度水平中，斜坡信号供给单元根据输入比较器中的模拟信号的大小在比较器中选择性地输入具有相互不同的斜率的第一斜坡信号和第二斜坡信号之中的任一个，并且，比较器通过比较模拟信号和选择性地输入的第一斜坡信号和第二斜坡信号中的一个执行AD转换，并且，在第二灵敏度水平中的第二灵敏度水平中，斜坡信号供给单元根据输入比较器中的模拟信号的大小在比较器中选择性地输入具有相互不同的斜率的第三斜坡信号和第四斜坡信号之中的任一个，并且，比较器通过比较模拟信号和选择性地输入的第三斜坡信号和第四斜坡信号中的一个执行AD转换，并且，第四斜坡信号与第一斜坡信号和第二斜坡信号不同。

[0009] 从参照附图对示例性实施例的以下描述，本发明的其它特征将变得清晰。

附图说明

[0010] 图1是示出通过AD转换器比较的模拟信号与基准信号之间的关系的示图。
[0011] 图2是示出光电转换装置的示例性构成的示图。
[0012] 图3是示出像素的示例性构成的示图。
[0013] 图4是用于解析动作的定时图。
[0014] 图5是示出模拟信号的信号振幅与数字数据间的关系的示图。
[0015] 图6是示出数字信号处理器（DSP）的示例性构成的详细示图。
[0016] 图7A～7C是示出斜坡信号的时间变化的示图。
[0017] 图8是示出基准信号随时间的变化的示图。
[0018] 图9A和图9B是示出根据本实施例的基准信号随时间的变化的示图。
[0019] 图10是示出基准信号随时间的变化的示图。
[0020] 图11是示出光电转换装置的示例性构成的示图。
[0021] 图12是示出信号处理单元的示例性构成的详细示图。
[0022] 图13A～13B是用于解释图像捕获系统的动作序列的示图。
[0023] 图14是用于解释动作的示图。
[0024] 图15是用于解释动作的示图。
[0025] 图16是示出光电转换装置的示例性构成的示图。
[0026] 图17是示出放大器电路的示例性构成的示图。
[0027] 图18A和图18B是示出成像灵敏度，放大器电路的放大因子和斜坡信号之间的关系的示图。
[0028] 图19是示出图像捕获系统的示例性构成的示图。
具体实施方式

[0029] 典型的图像捕获装置具有可根据成像条件切换的多个灵敏度水平。本发明的发明人发现，如果通过使用在以上的日本专利公开 No. 2009-177797 和 No. 2010-045789 中描述的技术切换灵敏度水平，那么存在能够被 AD 转换的信号的动态范围可变窄的可能性。

[0030] 本公开减少切换灵敏度水平时的动态范围的变窄。

[0031] 为了有利于理解实施例，描述以上的日本专利公开 No. 2009-177797 和 No. 2010-045789 的光电转换装置在切换灵敏度水平时可导致的问题。

[0032] 为了改变光电转换装置中的灵敏度水平，可以改变关于信号的放大因子。在基于斜坡的线性方法的 AD 转换中，基准信号可以在执行 AD 转换的 AD 转换时段中采取的信号电平的范围变为 AD 转换器的动态范围。如在日本专利公开 No. 2009-177797 中描述的那样，当通过改变基准信号的变化速率即关于时间的斜率改变关于信号的放大因子时，当使得放大因子变大即使得基准信号的变化速率变小时，AD 转换器的动态范围变窄。换句话说，当灵敏度水平被设定为越高时，AD 转换器的动态范围变得越窄。

[0033] 并且，在日本专利公开 No. 2010-045789 描述的构成中，如果基准信号的斜率改变以改变光电转换装置的灵敏度水平，那么，与日本专利公开 No. 2009-177797 同样，当灵敏度水平被设定为越高时，AD 转换器的动态范围变得越窄。

[0034] 鉴于以上的问题，在以下描述的实施例中，关于多个灵敏度水平之中的至少一个灵敏度水平，根据 AD 转换的模拟信号的大小从具有不同的斜率的多个基准信号选择基准信号。关于其它的灵敏度水平，与模拟信号的大小无关地通过使用一个基准信号执行 AD 转换，或者，根据模拟信号的大小选择与在上述的一个灵敏度水平中使用的多个基准信号不同的组合的多个基准信号。

[0035] 以下，描述本公开的各种实施例。

[0036] 第一实施例

[0037] 图 1 是示出通过 AD 转换器比较的模拟信号与基准信号之间的关系的示图。在横轴上表示时间，在纵轴上表示信号电平。画出作为基准信号的斜坡信号 H 和斜坡信号 L。斜坡信号 H 的最大值是 VH。具有 0～VH 的信号电平的模拟信号可通过使用斜坡信号 H 被 AD 转换。斜坡信号 L 的信号电平的最大值是低于 VH 的 VL。因此，当模拟信号的信号电平比 VL 高时，该信号不能被 AD 转换。这意味着，当使用斜坡信号 L 时，与使用斜坡信号 H 的情况相比，AD 转换器的动态范围变窄。如果模拟信号比 VL 小，那么使用斜坡信号 L，并且，如果模拟信号比 VL 大，那么使用斜坡信号 H。因此，可在对相对低亮度的信号保持高分辨率的同时扩展 AD 转换器的动态范围。

[0038] 图 2 是示出根据本实施例的光电转换装置的示例性构成的示图。光电转换装置 1 可选择性地设定多个灵敏度水平，并且具有像素阵列 10、行选择单元 15、列信号处理单元 20、基准信号产生单元 30、计数器 40、列选择单元 50、数字信号处理器 (DSP) 60 和输出单元 70。

[0039] 像素阵列 10 包含矩阵状布置的多个像素 11。在图 2 中，在两个行和两个列中布置像素 11。在本实施例中，像素阵列 10 用作模拟信号输出单元。

[0040] 列信号处理单元 20 被设置为与像素阵列 10 的列对应，并且具有比较单元 22 和存
存储器单元 24。比较单元 22 具有比较器 221 和选择电路 222。从像素阵列 10 输出的信号在比较器 221 的输入端子的相应的一个中被输入。从基准信号产生单元 30 输出的信号通过选择电路 222 在比较器 221 的输入端子中的另一个中被输入。基准信号产生单元 30 输出用作阈值的信号和信号电平随时间改变的基准信号。选择电路 222 具有用作斜坡信号供给单元的功能，选择从基准信号产生单元 30 输出的任意信号，并且向比较器 221 的输入端子中的另一个供给选择的信号。

[0041] 计数器 40 通过计数例如从未示出的定时控制单元供给的时钟信号输出计数信号。

[0042] 存储器单元 24 具有标志存储器 241、S 存储器 242 和 N 存储器 243。标志存储器 241 存储后面描述的标志信号。S 存储器 242 和 N 存储器 243 根据比较器 221 的输出即根据模拟信号与基准信号之间的大小关系的变化存储从计数器 40 供给的计数信号。

[0043] 选择单元 50 选择存储器单元 24。存储于选择的存储器单元 24 中的信号然后被传送到 DSP 60。

[0044] DSP 60 根据标志信号校正信号。DSP 60 可执行存储于 S 存储器 242 中的信号与存储于 N 存储器 243 中的信号之间的差值处理。

[0045] 输出单元 70 输出从 DSP 60 输出的信号。输出单元 70 可具有缓冲功能。

[0046] 定时产生单元 80 供给关于光电转换装置 1 的动作的信号。

[0047] 图 3 示例出根据本实施例的像素 11 的示例性构成。像素 11 具有光电二极管 PD、放大晶体管 SF、发送晶体管 TX、复位晶体管 RES 和选择晶体管 SEL。分别传送信号 φT、信号 φR 和信号 φSEL，在电连接状态或非电连接状态之间切换发送晶体管 TX、复位晶体管 RES 和选择晶体管 SEL。向光电二极管 PD 的阳极提供接地点电势。光电二极管 PD 的阴极通过发送晶体管 TX 与浮置扩散单元 FD 连接。放大晶体管 SF 的栅极与浮置扩散单元 FD 连接，并且还通过复位晶体管 RES 与电源 SVDD 连接。放大晶体管 SF 的主节点中的一个与电源 SVDD 连接。放大晶体管 SF 的主节点中的另一个通过选择晶体管 SEL 与输出节点 PXOUT 连接。当选择晶体管 SEL 处于电连接状态时，放大晶体管 SF 与电流源 IR 一起构成电源跟随器电路。

[0048] 图 4 是用于解释根据本实施例的 AD 转换动作的定时图。图 4 关于某个列示出在比较器 221 的输入端子中的另一个中输入的斜坡信号 VRAMP、从像素 11 输出的信号即比较器 221 的输入端子中的一个的信号电平 Va、以及从比较器 221 提供给选择电路 222 的信号 S。

[0049] 时段 Tad 是 AD 转换模拟信号的时段。信号在时段 Tad 中处于低电平（以下，称为“L 电平”）上。因此，选择电路 222 处于可提供从基准信号产生单元 30 供给的基准信号之中的关于时间的斜率相对小的基准信号的状态中。

[0050] 在像素 11 中，当通过复位晶体管 RES 复位放大晶体管 SF 的栅极时，像素 11 输出基本信号。基本信号包含伴随复位的噪声分量。在像素 11 的输出在基准信号中稳定化之后，斜坡信号 R 在时段 Td 中被供给到比较器 221。时段 Tad 是 AD 转换基本信号的时段。斜坡信号 R 的信号电平开始随时间以第一斜率改变，同时，计数器 40 开始计数。当斜坡信号 R 在从时段 Td 的的开始起经过时间 Tr 之后超过基本信号时，比较器 221 的输出改变，由此，从计数器 40 输出的计数信号存储于 N 存储器 243 中。
在时段 Td 结束之后，当在像素 11 的光电二极管 PD 中蓄积的电荷通过传送晶体管 TX 被传送到放大晶体管 SF 的栅极时，像素 11 输出有效信号。有效信号为在基本信号上重叠与在光电二极管 PD 中蓄积的电荷量相当的分量的信号。

时段 Tj 是进行确定的时段。在时段 Tj 中，向比较器 221 提供作为阈值的比较电压 VREF。比较器 221 在时段 Tj 中比较有效信号与比较电压 VREF。如果有效信号大于比较电压 VREF，那么比较器 221 使得选择电路 222 输出 H 电平信号并且在标志存储器 241 中存储指示有效信号大于比较电压 VREF 的标记信号。如果有效信号小于比较电压 VREF，那么比较器 221 使得选择电路 222 输出 L 电平信号并且在标志存储器 241 中存储指示有效信号小于比较电压 VREF 的标志信号。

时段 Tu 是 AD 转换有效信号的时段。在时段 Tu 中，供给到比较器 221 的基准信号的斜率根据选择电路 222 的输出而不同。如果选择电路 222 的输出处于 H 电平，即，如果有效信号大于比较电压 VREF，那么关于时间的斜率相对大的斜坡信号 H 被供给到比较器 221。在图 4 中由实线示出这种情况。如果选择电路 222 的输出处于 L 电平，即，如果有效信号小于比较电压 VREF，那么关于时间的斜率相对小的斜坡信号 L 被供给到比较器 221。在图 4 中由点线示出这种情况。作为第二基准信号的斜坡信号 H 的信号电平开始随时间以第二斜率改变，同时，计数器 40 开始计数。当斜坡信号 H 在从时段 Tu 的开始起经过时间 Ts 之后超过基本信号时，比较器 221 的输出改变，由此，从计数器 40 输出的计数信号存储于 S 存储器 242 中。以下，斜坡信号 L 也被称为第一斜坡信号，并且，斜坡信号 H 也被称为第二斜波信号。在本实施例中，当通过使用斜坡信号 H 执行有效信号的 AD 转换时，计数器 40 的动作频率被设定为在通过使用作为第一基准信号的斜坡信号 L 执行有效信号的 AD 转换的情况下，动作频率的 1/2。通过该构成，如果模拟信号比阈值大，那么模拟信号被转换成位数小于模拟信号比阈值小的情况下位数的数字信号。因此，可以减少功耗。当使用斜坡信号 L 时，获得 p 位数字信号。当使用斜坡信号 H 时，获得比 p 位小的 q 位数字信号。

图 5 是示出模拟信号的信号振幅与数字数据之间的关系的示图。在横轴上表示模拟信号的振幅。在纵轴上表示 AD 转换之后的数字信号的值。这里，假定 DI = 2047（= 10^{11}-1）是数字值的满量程。

在图 5 中，如果模拟信号处于到 VL 的范围中，那么模拟信号通过使用斜坡信号 L 被转换成 10 位（= 2^{10} = 1024 阶段）数字信号。如果模拟信号超过 VL，那么模拟信号通过使用斜坡信号 H 被转换成数字信号。这里，在本实施例中，计数器 40 的动作频率减小到使用斜坡信号 L 的情况下的动作频率的 1/2。另外，由于斜坡信号 H 关于时间的斜率为斜坡信号 L 关于时间的斜率的两倍大，因此，VL ~ VH 的范围中的数字信号关于模拟信号的斜率是模拟信号为 0 ~ VL 的范围中的 1/4。因此，通过用斜坡信号 H 转换模拟信号获得的数字信号是 D8（= 255 = (1024/4) - 1）～ D4（= 511 = (2048/4) - 1）。该值与当 VL ~ VH 的范围中的模拟信号通过使用斜坡信号 L 被 AD 转换时获得的数字信号的值的 1/4 等同。当要基于获得的数字信号形成图像时，1023-255 = 768 被加算到 Dh 的信号上，因此，在图像中，信号被视为与 Dh 对应的信号。通过对由 DI 和 Dh 显示特性的信号执行伽马处理，获得由 Do 显示的特性。

在日本专利公开 No. 2010-045789 描述的技术中，当通过使用具有相对大的斜率的基准信号 AD 转换模拟信号时，获得位数与通过使用具有相对小的斜率的基准信号 AD 转换
换模拟信号的情况下的位数相同的数字信号。因此，该情况被应用于图 5，VL ～ VH 的范围
中的模拟信号被转换成数据 D2 (1023) ～ 数据 D1 (2047) 的范围中的 10 位数据。但是，如果
在该范围内获得 10 位数据，则认为功耗大。

【0057】在本实施例中，通过低功耗，低亮度分量被转换成 10 位数据且高亮度分量被转换
成压缩信号。由于低亮度分量的亮度的变化对人眼来说是高度可见的，因此低亮度分量在
图像中是重要的。另一方面，由于高亮度分量的亮度的变化与低亮度分量相比对人眼来说
不是高度可见的，因此高亮度分量的压缩不容易导致问题。

【0058】根据本实施例，如上面描述的那样，可以减少功耗。

【0059】以上，描述了模拟信号比阈值大情况和模拟信号比阈值小的情况，并且，为了有
利于理解，没有描述模拟信号等于阈值的情况。如果模拟信号等于阈值，那么只需要任意地
执行用于模拟信号大于阈值的情况的处理或用于模拟信号小于阈值的情况的处理。

【0060】在图 4 中，描述作为基准信号的三个斜坡信号 R、L 和 H。这些信号之中，斜坡信号
R 和斜坡信号 L 被用于转换低振幅的模拟信号，并因此可具有相同的时间变化速率。如果
斜坡信号 R 和斜坡信号 L 具有相同的时间变化速率，那么可减少供给基准信号的导线的数
量。作为替代方案，各列的电路 222 可具有用于改变斜坡信号的时间变化速率的电路，
并且各选择电路可产生斜坡信号 R、L 和 H。在这种情况下，可进一步减少从基准信号产生
单元 30 与各列的电路 222 连接的导线的数量。斜坡信号 R 关于以第一斜率变化的斜
坡信号 R 和 L 以比第一斜率大的第二斜率变化。

【0061】通过使用斜坡信号 R 转换的基本信号的主分量是噪声，因此，其信号电平不高。
于是，斜坡信号 R 可获取的最大值可被设定为比斜坡信号 L 可获取的最大值低。因此，基本信
号被 AD 转换的时延 Td 的长度可缩短。

【0062】作为用于确定有效信号的信号电平的阈值的比较电压 VREF 可以是供给的固定电
压，或者通过在斜坡信号的信号电平到达阈值时停止斜坡信号的时间变化而生成。比较电
压 VREF 可等于斜坡信号 L 可获取的最大值 VL，但希望比较电压 VREF 小于斜坡信号 L 可
获取的最大值 VL。这是由于，各比较器 221 具有偏移，因此，除非比较电压 VREF 被设定为充
分地比 VL 高，否则存在偏移妨碍正确的可能。因此，考虑各比较器 221 的偏移变化，
希望将比较电压 VREF 设定为充分地低于斜坡信号 L 的最大值 VL 的信号电平。

【0063】以上，参照图 5 描述了将数字信号 Dh 转换成 Dh’ 并且执行伽玛处理。例如，在 DSP
60 中执行这些处理。特别地，当从标记存储器 241 输出的标记信号指示模拟信号被确定为
超过阈值时，数字信号 Dh 的电平偏移到 Dh’。

【0064】在图 6 中示出 DSP 60 的详细示例性构成。图 6 是图 2 的部分示图，其中，示出比
较单元 22、标记存储器 241、S 存储器 242、N 存储器 243、列选择单元 50、DSP 60 和输出电
路 70。

【0065】DSP 60 有增益比 / 斜率比误差校正单元 62、斜率比误差检测单元 64 和差值处理
单元 66。增益比 / 斜率比误差校正单元 62 根据从标记存储器 241 输出的标记信号 FG 识别
在从 S 存储器 242 输出的信号的 AD 转换中使用了哪个斜坡信号。根据识别结果，增益比 /
斜率比误差检测单元 64 检测斜坡信号 L 的时间变化速率与斜坡信号 H 的时间变化速率之间的比，即，斜率比。在本实施例中，斜坡信号 H 的时间变化速率为斜坡信号 L 的时间变化速率的两倍。但是，该比值未必被应用于实际的情形。然后，斜率比误差检测单元 64 检测两个斜坡信号之间的斜率比，即，时间变化速率的比，并且，根据检测结果，增益比 / 斜率比误差校正单元 62 执行校正。差值处理单元 66 在从增益比 / 斜率比误差校正单元 62 输出的 L’ - DATA 或 H’ - DATA 与从 N 存储器 243 输出的 N-DATA 之间执行差值处理。

难以将斜坡信号 L 与斜坡信号 H 之间的斜率比计算为设计值。时间变化速率的误差在作为斜坡信号 L 与斜坡信号 H 的使用边界的信号电平 VL 附近导致信号差。时间变化速率的误差可被测量并然后通过后面描述的 DSP 被校正。但是，由于使用斜坡信号 H 的 AD 转换压缩高亮度信号并且信号差不在图像中导致任何问题，因此这种校正不总是必须的。

在斜坡信号 L 和斜坡信号 L8 中，在信号电平 V8 附近产生的段差在图像信号中是明显的。因此，当校正斜率比误差时，不损害图像质量。在后面描述斜率比误差的测量。

下面，描述在图像捕获系统中设定的成像灵敏度水平与在各成像灵敏度水平中使用斜坡信号的组合。

图 7A 是示出根据本实施例的斜坡信号的时间变化的示图。图 7A 示出四个斜坡信号 H, M, L1 和 L2。斜坡信号 M, L1 和 L2 可采用的最大值分别为 VM = (VH/2), VL1 = (VH/4) 和 VL2 = (VH/8)，使得斜坡信号 H 可采用的最大值为 VH。斜坡信号 H, M 和 L1 在时间 T1 达到它们的最大值，而斜坡信号 L2 在时间 T2 = 2 • T1 达到最大值 VL2。

图 7B 是示出在图像捕获系统中设定的成像灵敏度水平和在各成像灵敏度水平中使用的斜坡信号的示图。沿表示作为成像灵敏度水平的四个 ISO 速度 100, 200, 400 和 800。横坐标表示斜坡信号的类型。带有 “〇” 的单元表示使用斜坡信号。特别是，在 ISO 速度 100 下，不管模拟信号的电平如何，只使用斜坡信号 H ；在 ISO 速度 200 下，使用斜坡信号 H 和 M ；在 ISO 速度 400 下，使用斜坡信号 M 和 L1 ；并且，在 ISO 速度 800 中，使用斜坡信号 M 和 L2。

由于当捕获高亮度被照体时 ISO 速度一般被降低，因此，在 ISO 速度 100 下的使用斜坡信号 H，使得高亮度信号也可被 AD 转换。另一方面，由于当被照体的亮度变低时 ISO 速度被设定为较高，因此，在 ISO 速度 200 或更高的情况下，使用两种类型的斜坡信号。当有效信号通过使用两种类型的斜坡信号被 AD 转换时，使用高时间变化速率的斜坡信号的情况下，数器 SP 的动作频率被设定为比使用低时间变化速率的斜坡信号的情况下，的动作频率低。因此，与上述的实施例中的每一个同样，可在扩展动态范围的同时减少耗散。在较高的 ISO 速度下，只仅通过使用一个斜坡信号执行 AD 转换。这意味着，在图 7B 的例子中，在 ISO 速度 800 下，不管模拟信号的电平如何，模拟信号都可仅通过使用斜坡信号 L2 被 AD 转换。

这里，ISO 速度 200 被称为第一灵敏度水平，ISO 速度 100 被称为第二灵敏度水平。在作为第一灵敏度水平的 ISO 速度 200 下，选择性地使用斜坡信号 H 和斜坡信号 M。如参照图 4 和其它附图描述的那样，根据模拟信号和阈值的比较结果确定在 AD 转换中使用斜坡信号 H 和斜坡信号 M 中的哪一个。在作为第二灵敏度水平的 ISO 速度 100 下，不管模拟信号的电平如何，都只使用斜坡信号 H。因此，由于可在这两种灵敏度水平中获得作为斜坡信号使用的斜坡信号 L。
号 H 可采取的最大值的 VH 的动态范围，因此，在切换光电转换装置的灵敏度水平时，动态范围不变窄。

[0074] 类似地，如果 ISO 速度 400 被称为第一灵敏度水平且 ISO 速度 100 被称为第二灵敏度水平，那么，在第一灵敏度水平中获得 0 ~ VM 的信号电平范围中的动态范围，并且，在第二灵敏度水平中获得 0 ~ VH 的信号电平范围中的动态范围。在本实施例中，描述了不在第一灵敏度水平中使用斜坡信号 H 的例子。这是由于，在使用高灵敏度水平的条件下不太可能输入高电平模拟信号，因此不使用斜坡信号 H 不会导致任何问题。作为替代方案，可以准备用于与模拟信号比较的多个阈值，并且，可对斜坡信号 H、M 和 L 使用不同的阈值。

[0075] 根据本实施例的光电转换装置可对任意的两个灵敏度水平执行以下 a) 处理和 b) 处理。a) 在灵敏度水平之中的一个下，仅通过使用一个斜坡信号执行 AD 转换，并且，在灵敏度水平之中的另一个下，根据模拟信号的电平通过使用两个斜坡信号中的一个执行 AD 转换。b) 在两种灵敏度水平中，均根据模拟信号的电平通过使用两个斜坡信号中的一个执行 AD 转换。

[0076] 在 a) 中，在灵敏度水平之中的一个下使用的斜坡信号可具有与在灵敏度水平之中的另一个下使用的斜坡信号的斜率相同的斜率，或者可具有与在灵敏度水平之中的另一个下使用的斜坡信号不同的斜率。在 b) 中，在两种灵敏度水平中，使用的两个斜坡信号可以是具有不同的斜率的斜坡信号的组合，或者斜坡信号中的一些可具有相同的斜率。

[0077] 描述作为在灵敏度水平之中的一个下使用的斜坡信号的第三基准信号的斜率。在第一灵敏度水平为第二灵敏度水平的 n 倍（或 n/1 倍）高的情况下，只需要第三基准信号的斜率被设定为作为在灵敏度水平之中的另一个下使用的斜坡信号的第一或第二基准信号的斜率的 1/n 倍（或 n 倍）大。特别是当 n 是由 2^e 表达的值时，信号的处理变得简单。

[0078] 与前面描述的第二实施例同样，图 7C 是示出要通过缩短斜坡信号的变化时段而不改变计数器 40 的动作频率来减少功耗的情况下斜坡信号的时间变化的示图。

[0079] 例如，在 ISO 速度 200 下，如果有效信号超过 VM，那么使用斜坡信号 HH，并且，如果有效信号小于 VM，那么使用斜坡信号 MM。并且，例如，在 ISO 速度 400 下，如果有效信号处于 VL1 ~ VM 的范围中，那么使用斜坡信号 MM，并且，如果有效信号小于 VL1，那么使用斜坡信号 LL。

[0080] 根据本实施例，通过根据成像灵敏度水平改变使用的斜坡信号的斜率或者使用的斜坡信号的变化时段的长度，可以减少切换光电转换装置的灵敏度水平时的动态范围的变窄。

[0081] 第二实施例

[0082] 图 8 是示出根据本实施例的基准信号随时间的变化的示图。

[0083] 在本实施例中，在通过在图 4 的时段 T1 中使用斜坡信号 H 执行 AD 转换的情况下，使得计数器 40 在与通过使用斜坡信号 L 执行 AD 转换的情况相同的动作频率下计数。使得斜坡信号 H 在时段 T3（= T1/2）中达到其最大值 VH，该时段 T3 为斜坡信号 L 达到最大值 VL 的时段的一半。

[0084] 根据本实施例，通过使用斜坡信号 H 执行 AD 转换的时段可缩短，并因此可节省用于缩短时段中的比较单元的驱动电流的电力。因此，可以减少功耗。在计数器被设置在各列中的构成中，可通过减小计数器的频率减少功耗。
[0085] 并且，可通过减少后面描述的图 17 的列放大器电路 210 中的消耗电流减少功耗。

[0086] 第三实施例

[0087] 图 9A 是示出根据本实施例的基准信号随时间的变化的示图。以下，主要描述与第一实施例的不同。

[0088] 在第一实施例中，描述了根据有效信号的信号电平选择性地执行使用斜坡信号 L 的 AD 转换和在使计数器 40 在比使用斜坡信号 L 的情况低的频率下动作的同时使用斜坡信号 H 的 AD 转换。本实施例与第一实施例的不同在于，在本实施例中，通过对在第一实施例中通过使用斜坡信号 L 转换的信号范围（0～V8，V8 比 VL 低）中的信号使用时间变化速率比斜坡信号 L 的时间变化速率还低的斜坡信号 L8 转换有效信号。

[0089] 在本实施例中，通过对 0～V8 = VH/8 的范围中的有效信号使用时间变化速率则为斜坡信号 L 的 1/4 的斜坡信号 L8 执行 AD 转换。此时，计数器 40 的动作频率与使用斜坡信号 L 的情况相同。

[0090] 斜坡信号 H 的最大值为 VH 且 VL 为 VL = VH/2。即，VL = VH • (1/2^j)，这里，h = 1。V8 为 V8 = VH/8 = (VH • (1/2^j)) • (1/2^j) = VL • (1/2^j)，这里，j = 2。这里，描述可通过 AD 转换器转换的模拟信号的最大值为 VH 的情况。

[0091] 因此，当假定计数器 40 输出 p 位计数信号时，如果通过使用斜坡信号 L8 转换有效信号，那么获得 p 位数字信号。并且，当通过使用斜坡信号 L 来 AD 转换有效信号时，获得 p 位数字信号。通过使用斜坡信号 L8 获得的数字信号被视为 LSB 侧的 p 位，并且，通过使用斜坡信号 L 获得的数字信号被视为 MSB 侧的 p 位。因此，将 MSB 侧的 p 位数字信号乘以 2^j 等同于以 (p+j) 位的分辨率执行 0～VL 的范围中的有效信号的 AD 转换。即，可通过高分辨率 AD 转换具有低信号电平的范围中的信号。

[0092] 当通过使用斜坡信号 H 执行 AD 转换时，执行比 p 位小的 q 位的 AD 转换。

[0093] 根据本实施例的动作在斜坡信号 NRAMP 和选择电路 222 的输出 S 上与图 4 所示的动作不同。仅在图 9B 中示出斜坡信号 VRAMP。

[0094] 在确定时段 Tj 中，基准信号产生单元 30 输出比第一比较电压 VREF 低的第二比较电压 VREF2。比较器 221 比较有效信号与作为第二阈值的第二比较电压 VREF2。如果确定有效信号比第二比较电压 VREF2 小，那么使得选择电路 222 在 AD 转换时段 Tj 中向比较器 221 供电斜坡信号 L8。在标记存储器 241 中存储指示有效信号比第二比较电压 VREF2 小的信号。

[0095] 随后，基准信号产生单元 30 输出第一比较电压 VREF。作为通过比较器 221 的有效信号与第二比较电压 VREF 之间的比较的结果，如果确定有效信号比第二比较电压 VREF2 大且比第一比较电压 VREF 小，那么使得选择电路 222 在 AD 转换时段 Tj 中向比较器 221 供电斜坡信号 L。在标记存储器 241 中存储指示有效信号比第一比较电压 VREF 小的信号。如果确定有效信号比第一比较电压 VREF 大，那么，使得选择电路 222 在 AD 转换时段 Tj 中向比较器 221 供电斜坡信号 VH。在标记存储器 241 中存储指示有效信号比第一比较电压 VREF 大的信号。

[0096] 在 AD 转换时段 Tj 中获得的 AD 转换结果存储于 S 存储器 242 中，并且通过 DSP 经受存储于 N 存储器 243 中的信号之间的差值处理，或者经受诸如偏移校正、增益校正和伽马处理的信号处理。
在本实施例中，当模拟信号小于比第一阈值 VREF 低的第二阈值时，模拟信号与斜
坡信号 L8 比较以获得 p 位数字信号。

并且，在本实施例中，希望第二比较电压 VREF2 被设定为比斜坡信号 L2 的最大值
小。

在本实施例中，作为信号电平比 VL 低的低亮度信号的模拟信号的位数可增加到
(p+j) 位。并且，当通过使用斜坡信号 VH AD 转换电平比信号电平 VL 大的有效信号时，通过
与通过使用斜坡信号 VL 执行 AD 转换的情况相比降低计数器 40 的动作频率，可在动态范围
不变的情况下减少功耗。

进一步描述斜率比误差差。

图 10 中示出斜坡信号 H 关于理想斜率具有误差的情况下的斜坡信号的波形。在图
10 中不包含图 4 的定时图所示的确定时段 Tj。

图 10 中，假定用于 AD 转换基本信号的斜坡信号 L 关于时间具有斜率 k。时段
T1 是 AD 转换基本信号所需要的时间。

在理想情况下用于 AD 转换有效信号的斜坡信号 H’具有 a · k 的时间变化速率。斜
坡信号 H 的实际时间变化速率包含相对于理想值的误差 β ，并且，这里的时间变化速率为
a · β · k。如果通过使用理想斜坡信号 H’来 AD 转换有效信号，那么 AD 转换所需要的时间
为 T2”+T3”。如果通过使用实际斜坡信号 H 来 AD 转换有效信号，那么 AD 转换所需要的时间
为 T2+T3。

由于斜坡信号 L 与斜坡信号 H’之间的斜率比为 a，因此 T1 为 T1 = a·T2”。当执行
有效信号与基本信号之间的差值处理时，获得 a · (T2”+T3”) – T1 = a · T3”。但是，当在通过
使用实际斜坡信号 H 获得的有效信号与基本信号之间执行差值处理时，获得 a (T2+T3) – T1 为
a · (T2–T2”+T3”)，并且，与使用理想斜坡信号 H’的情况相比较，产生误差。如果斜率比误差
β 是事先已知的，那么可通过将 (T2+T3) 除以 β 以获得 {a · (T2+T3) / β} – T1 = a · T3”
执行校正。

描述用于检测斜率比误差 β 的方法。首先，通过获得通过比较斜坡信号 L 和斜坡
信号 H 的相同电平的有效信号获得的数字信号之间的比，获得 a · β。然后，将 a · β 除以
作为设定的斜率比的 a，以获得斜率比误差 β。

由此获得的斜率比误差 β 存储于斜率比误差检测单元 64 中并且可被用于信号校正。
可在制造时检测斜率比误差。作为替代方案，可在图像捕获动作之间检测例如反映图
像捕获时的温度条件的影响的斜率比误差。

第四实施例

在上述的实施例中，在基于斜坡的近似方法中通过与斜坡信号相比，AD 转换有效
信号。在本实施例中，描述使用组合方法近似方法和基于斜坡的近似方法的混合 AD 转换系
统的 AD 转换器的例子。

图 11 是根据本实施例的光电转换装置的示例性构成。图 11 所示的光电转换装置
在列信号处理单元的构成以及基准信号产生单元的构成上与图 2 所示的光电转换装置不
同。其它的构成与图 2 所示的构成相同，并且在图 11 中没有被示出。

除了斜坡信号产生单元 104 以外，本实施例中的基准信号产生单元 30 具有基准电
压产生单元 103。
本实施例中的列信号处理单元 20 具有开关 / 电容器组 106、比较器 107、控制电路 108、计数器 109 和存储器 110。

图 12 详细示出列信号处理单元 20 的构成。开关 / 电容器组 106 包含逐次近似电容单元 SA 和输入电容 Cin。来自像素阵列 10 的输出通过输入电容 Cin 被供给到比较器 107 的非相反输入端子。

在逐次近似电容单元 SA 中，电容值 1C、1C、2C 和 4C 的电容元件在逐次近似电容单元 SA 中被并联连接。因此，对基准电压 VRF 的二进制加权是可能的。在本实施例中，实现 2 位逐次近似。与电容值 1C、2C 和 4C 的电容元件中的每一个串联连接的开关将相应的电容元件选择性地连接到基准电压 VRF 和接地电势 GND。与电容值 1C 的电容元件串联连接的开关向相应的电容元件选择性地供给作为斜坡信号 L 的 VRMPH 和作为斜坡信号 H 的 VRMPH。比较器 107 具有可被复位到接地电势 GND 的输入端子，并且具有与控制电路 108 连接的输出端子。

计数器 109 在控制电路 108 的控制下动作。

图 13A 是用于解释图像捕获系统的成像灵敏度水平为 ISO 速度 100 的情况下的动作序列的示图。图 13A 显出从逐次近似部分 SA 供给到比较器 107 的信号。首先，电压 VRF/2 和电压 VRF/4 与有效信号比较以 AD 转换有效信号的高次的 2 位。该动作被称为第一处理。然后，在第一处理中获得的数字信号的最低有效位对应的低次模拟信号与斜坡信号 VRMPH 比较以 AD 转换低次的 8 位。这种情况下，AD 转换范围为 0 ～ VRF。

图 13B 是用于解释图像捕获系统的成像灵敏度水平为 ISO 速度 200 的情况下的动作序列的示图。图 13B 与图 13A 的不同在于，用于比较的信号基准电压在逐次近似动作中为 VRF/4 和 VRF/8 并且使用斜坡信号 VRMPH。但是，如果执行这种处理，那么 ISO 速度 200 下的 AD 转换范围变为 ISO 速度 100 下的一半。

下面描述根据本实施例的动作。

图 14 是用于解释有效信号在 ISO 速度 200 下为比 VRF/2 小的低亮度信号 (A_IN\(\times\)VRF/2) 的情况下的动作的定时图。当信号 S0 ~ S1 处于 H 电平时，各相应的开关向相应的电容元件供给基准电压 VRF。当信号 S0 ~ S1 处于低电平时，各相应的开关供给接地电势 GND。

在时段 T1 ~ T3 中，通过 2 位逐次近似方法 AD 转换有效信号。在时段 T1 中，确定有效信号是大于还是小于电压 VRF/2，并且，在时段 T2 和 T3 中，根据确定结果，确定在有效信号比较时使用的电压。在图 14 中，作为数字代码，获得“10”。由于从时段 T1 中的确定结果示出 A_IN\(\times\)VRF/2，因此控制电路 108 控制开关，使得斜坡信号 VRMPH 被供给到电容值 1C 的电容元件。因此，在时段 T4 中，通过使用时间变化速率相对低的斜坡信号 VRMPH AD 转换 8 个位。

图 15 是用于解释成像灵敏度水平类似地为 ISO 速度 200 但有效信号为超过 VRF/2 的高亮度信号 (A_IN\(\times\)VRF/2) 的情况下的动作的定时图。

在这种情况下，在通过逐次近似方法 AD 转换 2 个位之后，通过使用时间变化速率相对高的斜坡信号 VRMPH AD 转换 7 个位。当 AD 转换 7 个位时，如在以上的各实施例中描述的那样，可例如通过改变计数器 109 的动作频率或者改变斜坡信号指示时间变化的时段，在扩展动态范围的同时减少功耗。并且，在图 13B 的情况下不能被 AD 转换的 VRF/2～
VRF 的范围中的有效信号也可被 AD 转换。

【0124】第五实施例

在上述的各实施例中，通过降低斜坡信号的时间变化速率增加对于信号的增益。但是，实际上，存在由比较器或基准信号产生单元导致的噪声，因此，如果斜坡信号的时间变化速率低，那么有效信号与噪声之间的判别可能变得不可能。

【0125】从而，在本实施例中，在模拟信号处理单元中设置放大器以减少噪声的影响。

【0126】图 16 是示出根据本实施例的光电转换装置的示例性构成的示图。图 16 与图 2 的不同在于，在像素阵列 10 的各列中设置放大器电路 210。

【0127】在图 17 中详细示出放大器电路 210 的构成。放大器电路 210 具有差动放大器 211、输入电容 CO、反馈电容 C1、反馈电容 C2、开关 SW1、SW2 和 SW3 和向差动放大器 211 供给电流的电流源 I。电流源 I 是可在 11 与 12 之间切换供给到差动放大器 211 的电流的可变电流源。这里，假定 I2 = -I1/2。开关 SW1 ~ SW4 由定时产生单元 80 控制。放大器电路 210 的放大因子基于差动放大器 211 的反馈路径上的活动反馈电阻的电容值与输入电容 C0 的电容值之间的比被确定。放大器电路 210 可通过已知的方法作为输入电路动作，因此，通过从有效信号减少基本信号的放大信号可被放大。

【0128】通常，当光电转换装置的 ISO 速度改变时，放大器电路的放大因子也被切换。在这种情况下，动态范围变窄。在本实施例中，通过将基于 ISO 速度的放大因子的范围设定得小并且改变斜坡信号的时间变化速率，扩展动态范围。

【0129】图 18A 是示出本实施例中的 ISO 速度、放大器电路的放大因子（即，放大器增益）和斜坡信号之间的关系的表格。在本实施例中，在 ISO 速度为 100、200 和 400 的情况下，放大器增益固定于 1 倍，并且，用于 AD 转换的斜坡信号的组合改变。类似地，在 ISO 速度为 800 和 1600 的情况下，放大器增益固定为两倍，并且，用于 AD 转换的斜坡信号的组合改变。由于斜坡信号的组合与参照图 7 描述的情况相同，因此省略其描述。

【0130】图 18B 是示出对光电转换装置的入射光量与对应于入射光量的信号电平之间的关系。当 ISO 速度为 100、200 和 400 时，放大器增益为 G1 = 1，因此，可接受 0 ~ L1 的入射光量。当 ISO 速度为 800 和 1600 时，放大器增益为 G2 = 2，因此，可接受 0 ~ L2（= L1/2）的入射光量。

【0131】当 ISO 速度为 100 时，通过使用斜坡信号 H 执行 AD 转换。当 ISO 速度为 200 时，通过使用斜坡信号 M 来 AD 转换 0 ~ V2 的范围中的信号，并且，通过使用斜坡信号 H 来 AD 转换 V2 ~ V1 的范围中的信号。类似地，当 ISO 速度为 400 时，通过使用斜坡信号 L 来 AD 转换 0 ~ V4 的范围中的信号，并且，通过使用斜坡信号 H 来 AD 转换 V4 ~ V1 的范围中的信号。

【0132】并且，在本实施例中，可在扩展动态范围的同时减少功耗。

【0133】可根据图像捕获系统的动作模式改变放大器电路中的消耗电流。特别地，在运动图像捕获模式中，向差动放大器供给电流 12 以减少放大器电路的驱动能力，并且，在静止图像捕获模式中，向差动放大器供给电流 11。

【0134】第六实施例

【0135】图 19 是示出根据本实施例的图像捕获系统的示例性构成的示图。图像捕获系统 800 具有例如光学单元 810、图像捕获元件 100、视频信号处理单元 830、记录 / 通信单元
840. 定时控制单元 850、系统控制单元 860 和再现 / 显示单元 870。图像捕获装置 820 具有图像捕获元件 100 和视频信号处理单元 830。在前面的实施例中描述的光电转换装置被用作图像捕获元件 100。

[0136] 作为例如诸如透镜的光学系统的光学单元 810 在二维阵列状布置多个像素的像素阵列 10 中将来自被照体的光束成像，并且在图像捕获元件 100 中形成被照体的图像。图像捕获元件 100 在基于来自定时控制单元 850 的信号的定时根据在像素阵列 10 中成像的光输出信号。从而图像捕获元件 100 输出的信号被输入到作为视频信号处理单元的视频信号处理单元 830 中，并且，视频信号处理单元 830 根据例如由程序限定的方法执行信号处理。通过视频信号处理单元 830 中的处理获得的信号为图像数据被发送到记录 / 通信单元 840。记录 / 通信单元 840 将用于形成图像的信号发送到再现 / 显示单元 870，并且使得再现 / 显示单元 870 再现和显示运动图像和静止图像。响应来自视频信号处理单元 830 的信号，记录 / 通信单元 840 与系统控制单元 860 通信，并且在示出的记录介质上记录用于形成图像的信号。

[0137] 系统控制单元 860 总体控制图像捕获系统的动作，并且控制光学单元 810、定时控制单元 850、记录 / 通信单元 840、以及再现 / 显示单元 870 的驱动。系统控制单元 860 具有未示出的存储装置，该存储装置例如为记录介质。控制图像捕获系统的动作所包含的程序等被记录于存储装置中。系统控制单元 860 向图像捕获系统供给用于根据例如用户操作切换驱动模式和灵敏度水平的信号。特定的例子包括开始读取的线的变化，进行复位的线的变化，作为电子变焦的结果的视角的变化以及作为电子图像稳定化的结果的视角的偏移。当图像捕获系统的灵敏度水平根据用户输入被切换时，图像捕获元件 100 的灵敏度水平也根据所述切换被切换。即，系统控制单元 860 具有作为选择图像捕获系统 800 的灵敏度水平的灵敏度选择单元的功能，并且，图像捕获元件 100 的灵敏度水平根据选择的灵敏度水平被切换。

[0138] 定时控制单元 850 在系统控制单元 860 的控制下控制图像捕获元件 100 的驱动定时和视频信号处理单元 830 的驱动定时。定时控制单元 850 可用作设定图像捕获元件 100 的成像灵敏度水平的灵敏度设定单元。

[0139] 其它实施例

[0140] 以上的实施例中的每一个出于实现的目的解释并且可在不背离本公开的技术思想的情况下被修改，并且，多个实施例的要素可被组合。

[0141] 例如，在以上的实施例中的每一个中描述了信号电平以关于时间的斜率的形状变化的斜坡信号，但是，斜坡信号可关于时间以台阶状变化。

[0142] 有利的效果

[0143] 根据本公开，可减小切换灵敏度水平时的动态范围的变窄。

[0144] 虽然已参照示例性实施例描述了本发明，但应理解，本发明不限于公开的示例性实施例。所附权利要求的范围应被赋予最宽的解释以包含所有这样的修改以及等同的结构和功能。
图 1
图 2
图 5

这种情况下的信号使用范围

数据

信号

D1
D2
D4
D8

Do
DI
Dh
Dh''

2047
1023
255
511

这种情况下
的信号使用范围
图 9B
实际 AD 时段：T1, T2, T3
理想 AD 时段（当 β = 1 时）：T2', T3'
a: 斜率比，β: 斜率比误差
图 11
图15
图 17

<table>
<thead>
<tr>
<th>ISO 速度</th>
<th>放大器增益</th>
<th>斜坡信号</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>×1</td>
<td>O</td>
</tr>
<tr>
<td>200</td>
<td>×1</td>
<td>O</td>
</tr>
<tr>
<td>400</td>
<td>×1</td>
<td>O</td>
</tr>
<tr>
<td>800</td>
<td>×2</td>
<td>O</td>
</tr>
<tr>
<td>1600</td>
<td>×2</td>
<td>O</td>
</tr>
</tbody>
</table>

图 18A
信号电平

V1

G2

G1

* ISO 100

V1 或更小：斜坡信号 H

V2

ISO 200

V2~V1：斜坡信号 H

V2 或更小：斜坡信号 M

V4

ISO 400

V4~V1：斜坡信号 H

V4 或更小：斜坡信号 L

ISO 100、200、400

的光量使用范围

ISO 800、1600

的光量使用范围

图 18B