实用新型名称
墨盒芯片及墨盒

摘要
本实用新型提供一种墨盒芯片及墨盒，该墨盒芯片包括基板。基板具有第一表面及背对第一表面的第二表面。基板上设有电子模块，其中，基板上开设有多个凹槽，且凹槽内壁上设有导电件，导电件与电子模块电连接。该墨盒具有壳体，壳体围成容纳墨水的腔体，腔体的下方设有出墨口，且壳体的外壁上安装有墨盒芯片。墨盒芯片具有基板，基板具有第一表面及背对第一表面的第二表面。基板上设有电子模块，其总基板上开设有多个凹槽，凹槽内壁上设有导电件，导电件与电子模块电连接。本实用新型可确保墨盒芯片的导电件与端子架的端子正确连接，且能有效避免端子因墨盒多次安装而发生折断的现象。
1. 墨盒芯片，包括
基板，具有第一表面及背对所述第一表面的第二表面，所述基板上设有电子模块；
其特征在于：
所述基板上开设有多条凹槽，所述凹槽内壁上设有导电件，所述导电件与所述电子模块电连接。

2. 根据权利要求1所述的芯片，其特征在于：
每一所述凹槽下端延伸至所述基板的下边缘，且每一所述凹槽的下端敞口。

3. 根据权利要求1或2所述的芯片，其特征在于：
每一所述凹槽贯穿所述基板的第一表面及第二表面。

4. 根据权利要求3所述的芯片，其特征在于：
所述导电件为自所述凹槽内壁向所述凹槽中部凸起的金属块。

5. 根据权利要求4所述的芯片，其特征在于：
每一所述凹槽内设有二个所述金属块，二个所述金属块设在所述凹槽相对的一对内壁上，且二个所述金属块相对设置。

6. 根据权利要求1或2所述的芯片，其特征在于：
每一所述凹槽自所述基板的第一表面向所述基板内部凹陷。

7. 根据权利要求6所述的芯片，其特征在于：
所述导电件为设置在所述凹槽底壁上的金属片。

8. 墨盒，包括
壳体，所述壳体围成容纳墨水的腔体，所述腔体的下方设有出墨口，且所述壳体的外壁上安装有墨盒芯片，所述墨盒芯片具有二块基板，所述基板具有第一表面及背对所述第一表面的第二表面，所述基板上设有电子模块；
其特征在于：
所述基板上开设有多条凹槽，所述凹槽内壁上设有导电件，所述导电件与所述电子模块电连接。

9. 根据权利要求8所述的墨盒，其特征在于：
每一所述凹槽下端延伸至所述基板的下边缘，且每一所述凹槽的下端敞口。

10. 根据权利要求8或9所述的墨盒，其特征在于：
每一所述凹槽贯穿所述基板的第一表面及第二表面，所述导电件为自所述凹槽内壁向所述凹槽中部凸起的金属块。
说明 书

墨盒芯片及墨盒

技术领域

本实用新型涉及喷墨打印领域，尤其是涉及一种墨盒芯片以及具有这种墨盒芯片的墨盒。

背景技术

喷墨打印机作为一种常见的办公设备，为现代化办公提供了极大的方便。现有的喷墨打印机大多使用装载有墨水的墨盒在纸张等介质上形成需要打印的文字或图案。

如图1所示，现有的一种喷墨打印机具有一个壳体1，在壳体1内设置有机芯2，机芯2内设有喷墨打印机的控制电路（图1中不可见），控制电路包括控制喷墨打印机工作的集成电路，控制电路通过数据线与计算机连接并接收计算机发出的打印命令。

机芯2上还安装有沿辅助扫描方向，即送纸方向设置的多个喷嘴的打印头，通过沿主扫描方向的滑车3移动该打印头，以此获得所需的打印结果。另一方面，安装在机芯2中的控制电路还通过数据排线4与滑车3上的打印头电连接，以向打印头驱动电路提供喷墨信号。

滑车3内可拆卸地安装有多个墨盒10，每墨盒10的结构如图2所示。墨盒10具有壳体11，壳体11围成一个容纳墨水的腔体，腔体的下方设有出墨口12，腔体内的墨水从出墨口12流向打印头。

滑车3的底部设有可与墨盒10出墨口12连接的供墨针，当墨盒10安装到滑车3上时，供墨针穿入墨盒10的出墨口12，墨水从出墨口12经供墨针进入打印头。打印工作时，控制电路将打印的控制信息通过数据排线4传送到滑车3上，并控制每一喷嘴向介质按信号要求喷射墨水。

在墨盒10的壳体11上设置一块墨盒芯片13，墨盒芯片13具有基板14，基板14的外表面设有一个电触点15，基板14的内表面设有与电触点15电连接的电子模块（图2中不可见）。电子模块具有存储器，其存储有墨盒10相关数据，如墨盒10的生产日期、墨水颜色、墨盒10中墨水余量等。

滑车内设有与机芯内控制电路电连接的转接电路板，转接电路板的一个表面上设有多个连接端子。在转接电路板的外侧设有端子架，端子架的结构如图3所示。端子架7具有一个本体，本体的两侧分别设有多个端子，其中朝向转接电路板一侧的多个端子8（图4示）抵接在连接端子上，从而实现转接电路板与端子架7的电连接。端子架7的另一个表面上设有多个端子9，用于与墨盒芯片上的电触点连接。

参见图4，墨盒10安装到滑车后，墨盒芯片13上的电触点15将抵接在端子9上，从而实现墨盒芯片13与端子9的电连接。此外，端子架7一侧的多个端子8抵接在转接电路板5多个连接端子6上。

由于端子架7两侧的多个端子8、9是一一对应连通的，因此墨盒芯片13的电触点15通过端子9、8及机芯2内的控制电路实现电连接，从而实现芯片13的电子模块与控制电路之间的数据交换。
说明书

发明内容

[0011] 但是，由于端子架 7 的端子 9 与墨盒芯片 13 的电触点 15 之间是直接接触的，墨盒 10 多次安装到滑车 3 后，容易导致端子 9 发生变形甚至折断，喷墨打印机将无法读取芯片 13 所存储的数据，也就无法执行打印工作。

[0012] 此外，端子 9 与电触点 15 之间的连接没有任何的限位结构，容易发生端子 9 与电触点 15 无法正确接触或接触错误情况的发生，也会导致喷墨打印机无法读取芯片 13 的数据，导致喷墨打印机无法正常工作。

[0013] 本实用新型的主要目的是提供一种确保端子架的端子与芯片的电触点正确连接的墨盒芯片。

[0014] 本实用新型的另一目的是提供一种不易导致端子架端子折断的墨盒。

[0015] 为实现上述的主要目的，本实用新型提供的芯片包括基板，具有第一表面及背对第一表面的第二表面，基板上设有电子模块，其中，基板上开设有多条凹槽，且凹槽内壁上设有导电件，导电件与电子模块电连接。

[0016] 由上述方案可见，墨盒安装到滑车时，端子架的端子将滑入凹槽内，并与凹槽内的导电件连接，从而实现端子架与芯片之间的电连接。这样，通过凹槽的限位作用，能确保每一端子滑入相应的凹槽内，避免端子与电触点连接错误的情况发生。

[0017] 一个优选的方案是，每一凹槽下端延伸至基板的下边缘，且每一凹槽的下端敞口。

[0018] 由此可见，墨盒安装到滑车时，端子架的端子可通过每一凹槽下端的敞口滑入凹槽内，从而与凹槽内的导电件连接，方便墨盒的安装。

[0019] 进一步的方案是，导电件为自凹槽内壁向凹槽中部凸起的金属块，且每一凹槽内设有二个金属块，二个金属块相对的一对内壁上，且二个金属块相对设置。

[0020] 这样，墨盒安装到滑车后，端子架的端子将被二个金属块所夹持实现连接，即端子不被抵接连接，从而避免端子被挤压而发生变形或折断。

[0021] 为实现上述的另一目的，本实用新型提供的墨盒包括壳体，壳体围成容纳墨水的腔体，腔体的下方设有出墨口，且壳体的外壁上安装有墨盒芯片，墨盒芯片具有一块基板，基板具有第一表面及背对第一表面的第二表面，基板上设有电子模块，其总，基板上开设有多条凹槽，凹槽内壁上设有导电件，导电件与电子模块电连接。

[0022] 由上述方案可见，墨盒安装到滑车后，端子架的端子将被限位在凹槽内，并与凹槽内的导电件电连接。这样，通过凹槽的限位作用，可避免端子与芯片的电触点发生错位连接的现象。

[0023] 一个优选的方案是，每一凹槽内设有二个作为导电件的金属块，二个金属块设在凹槽相对的一对内壁上，且二个金属块相对设置。

[0024] 由此可见，端子架的端子可被二个金属块所夹持并实现电连接，也就是端子不需要被电触点挤压，从而避免端子发生形变设置折断的现象，有效保护喷墨打印机。

附图说明

[0025] 图 1 是现有喷墨打印机的结构图。

[0026] 图 2 是现有墨盒的结构图。
具体实施方式

[0037] 墨盒实施例：

[0038] 本实施例具有壳体，壳体围成一个容纳有墨水的腔体，在腔体的下方设有与腔体
连通的出墨口，并且，壳体的外壁上可拆卸地安装有一块本实用新型所提供的墨盒芯片，
例如以下各墨盒芯片实施例所公开的墨盒芯片。

[0039] 墨盒芯片第一实施例：

[0040] 参见图5，本实施例具有一块基板21，基板21具有第一表面以及背对第一表面的
第二表面，其中图5所示为基板21的第一表面。在基板21下部设有八条凹槽22，每一凹槽
22的下端延伸至基板21的下边缘，并且，每一凹槽22的下端为散口端23。本实施例中，八条
凹槽22的长度不同，即八条凹槽22的上端在基板高度方向上具有不同的高度，以便与端子
架的多个端子对接。

[0041] 参见图6，每一凹槽22贯穿基板21的第一表面与第二表面，因此每一凹槽22具有
两个相对设置的内壁。在每一凹槽22相对的两个内壁上设有自内壁向凹槽22中部凸起的
金属块25，且两个金属块25相对设置。本实施例中，金属块25作为导电件，用于与端子架
上的端子电连接。优选地，两个金属块25之间留有较小的间隙，且金属块25受到挤压时可
发生弹性形变。每一凹槽22内金属块25的设置位置与相应的端子对应，以确保墨盒安装
到滑动后，金属块25能与端子正确对接。

[0042] 参见图7，墨盒安装到滑动时，墨盒芯片20将相对于端子架7自上而下地滑动，因
此端子9能从每一凹槽22的敞口端23滑入凹槽22内，并与金属块25电连接。

[0043] 如图8所示，墨盒安装到滑动后，端子9将被夹持在两个金属块25之间，从而实现
端子9与金属块25之间的电连接。如图7所示的，由于墨盒芯片20的金属块25与电子模
块26电连接，因此喷墨打印机可通过端子架7的端子9、墨盒芯片20的金属块25与电子模
块26连接，从而访问电子模块26。

[0044] 由上所述方案可见，喷墨盒安装到滑动时，端子架7的端子9将沿凹槽22下端的敞口
端23滑入凹槽22内，从而确保每一端子9对应的金属块25，避免端子9错位与错误的金属
块25连接。此外，端子9并不抵接在金属块25上，而是被金属块25所夹持，可避免墨盒多
次插拔后端子9发生变形或折断现象，有利于喷墨打印机的长期使用。

[0045] 墨盒芯片第二实施例：

5
[0046] 参见图9，本实施例具有基板31，其具有第一表面以及背对第一表面的第二表面，图9所示的是基板31的第一表面。在基板31的第一表面上开设有若干条第一表面向基板31内凹陷的凹槽32，每一凹槽32的长度根据其配合的底面位置确定，因此凹槽32的长度不相同。并且，每一凹槽32的下端延伸到基板31的下边缘，且每一凹槽32的下端均为敞口端33。在基板31的第二表面上设有电子模块（图9中不可见），其设有存储器，存储与墨盒相关的信息。

[0047] 参见图10，每一凹槽32均不穿通基板31的第二表面，因此每一凹槽32均具有位于凹槽32底面的底壁34，每一凹槽32的底壁34上设有作为导电件的金属片35，金属片35可以是以覆铜形式设置在底壁34上。

[0048] 参见图11，墨盒安装到滑车后，端子架7的端子9潜入凹槽32内，且端子9的端部抵接在凹槽32的底壁34上，从而与金属片35接触，实现端子9与金属片35之间的电连接。当然，金属片35还与电子模块电连接，这样，喷墨打印机可通过端子架7的端子9、金属片35与电子模块电连接，并以此访问电子模块。

[0049] 由于端子9与金属片35连接时受到凹槽32的限位，可有效避免端子9与错误的金属片35连接，确保喷墨打印机正确识别墨盒芯片30并正常执行打印操作。

[0050] 当然，上述实施例仅是本实用新型较佳的实施方案，实际应用时还可以有更多的变化，例如，第二实施例中，可使用在凹槽两侧相对内壁凹起的金属块替代金属片作为导电件；或者，第一实施例中，仅在凹槽的一个内壁上设置金属块；又或者，凹槽的下端不设置成敞口端等，这些改变同样可以实现本实用新型的目的。

[0051] 最后需要强调的是，本实用新型不限于上述实施方式，如凹槽形状的改变、导电件设置形式的改变等变化也应该包括在本实用新型权利要求的保护范围内。
图 11