(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum

(10) Internationale Veröffentlichungsnummer
WO 02/068710 A1

(51) Internationale Patentklassifikation*: C23C 16/44, 16/02, 16/42, 16/24, 16/513, 14/56

(21) Internationales Aktenzeichen: PCT/CH02/00090

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US); UNAXIS BALZERS AKTIENGESELLSCHAFT [LI/LI]; FL-9496 Balzers (LI).

(72) Erfinder:
WAGNER, Rudolf [CH/CH]; Im Zugg, CH-9476 Fontinas (CH).
WILTSCHE, Siegfried [AT/AT]; Rundblick 8, A-6800 Feldkirch (AT).

(74) Anwalt: TROESCH, Jacques; Patentanwaltsbüro, Troesch Scheidegger Werner AG, Schwäntenmos 14, CH-8126 Zumikon (CH).

(81) Bestimmungsstaaten (national): CN, JP, KR, SG, US.

(84) Bestimmungsstaaten (regional): europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

(57) Abstract: When producing coated parts, the same demands for coating the parts are made as those for effecting a coating with an epitaxial layer. According to the invention, a reactive gas is admitted into a process chamber (PR) and is activated by means of a low-energy plasma discharge. In order to improve the industrial capability of a method of the aforementioned type, the process chamber (PR) is separated (14) from the inner wall of the recipient (1) located in the surrounding area.

(57) Zusammenfassung: Bei der Herstellung beschichteter Teile, bei deren Beschichtung die gleichen Anforderungen zu stellen sind wie bei einer Beschichtung mit einer epitaktischen Schicht wird Reaktivgas in einen Prozessraum eingelassen (PR) und mittels einer niederenergetischen Plasmaentladung das Reaktivgas aktiviert. Um die Industrietauglichkeit eines solchen Verfahrens zu erhöhen, wird dabei der Prozessraum (PR) von der Innenwandung des an der Umgebung liegenden Rezipienten (1) getrennt (14).
Verfahren zur Herstellung von Teilen und Vakuumbehandlungssystem

Es liegt dieser Beschreibung die WO98/58099 als eine Verfahrensbeschreibung bei.

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Teilen als elektronische, optoelektronische, optische oder mikromechanische Bauelemente oder als Zwischenprodukte hierfür durch den Einsatz mindestens eines plasmaunterstützten Behandlungsschrittes, bei dem in einen Prozessraum eingelassenes Reaktivgas oder -gasmisch mittels einer niederenergetischen Plasmaentladung mit Ionenenergie E an der Oberfläche des Teiles von

$$0 \text{ eV} < E \leq 15 \text{ eV}$$

aktiviert wird, gemäß dem Oberbegriff von Anspruch 1.

Grundsätzlich bezieht sich die vorliegende Erfindung auf die Herstellung von Teilen, an welche die gleichen Forderungen zu stellen sind, wie bei der Beschichtung von Teilen mit einer epitaktischen Schicht.

$$0 \text{ eV} < E \leq 15 \text{ eV}$$

aktiviert wird, ausführlich und ausschließlich die Beschichtung eines Werkstückes mit für Epitaxie genügender Qualität beschrieben und beansprucht. Das durch die niedereenergetische Plasmaentladung erzeugte Plasma setzt sich im wesentlichen aus Elektronen, ein- und mehrfach geladenen Ionen und Neutralteilchen (Atomen, dissoziierten Molekülen) sowie angeregten, aber nichtionisierten Neutralteilchen zusammen. Charakterisierend für das hierin beschriebene Plasma ist der Energiebereich

$$0 \text{ eV} < E \leq 15 \text{ eV}$$

der einfach ionisierten Ionen. 15 eV stellt die sogenannte Sputterschwelle dar, ab der bei Einwirken der Ionen auf das Substrat dort Schäden auftreten können. Elektronen tragen selbst bis 100 eV im wesentlichen nur zur Aufheizung des Substrats bei. Es ist weiter bekannt, dass insbesondere bei der – wie noch zu erläutern sein wird – vorliegend besonders bevorzugten DC-Niederspannungs-Plasmaerzeugungsanordnung der oben erwähnte Energiebereich der einfach geladenen Ionen gleichzeitig den Energiebereich der im Plasma vorhandenen Neutralteilchen sowie angeregten Neutralteilchen nach oben begrenzt. Grund dafür ist, dass
die Neutralteilchen ihren wesentlichen Energiebeitrag durch Stöße mit den Ionen erhalten.

Das Prinzip dieser Niederspannungs-Plasmaserzeugungsanordnung ist gegenüber ebenfalls vorbekannten anderen Plasmaserzeugungsverfahren (z. B. Mikrowellenplasma) für die hierin beschriebenen Verfahren weitaus bevorzugt, weil sie die oben aufgeführte Energiecharakteristik in bevorzugter Weise zu erfüllen in der Lage ist.

Einerseits geht somit die vorliegende Erfindung von Verfahren und einem System dieser Art aus, andererseits soll u.a. das in der W098/58099 beschriebene Verfahren auch gemäß vorliegender Anmeldung realisiert werden, wenn gleich – wie noch zu erläutern sein wird – zusätzliche Kriterien erfüllend, gemäß Aufgabe der vorliegenden Erfindung.
Es ist nämlich Aufgabe der vorliegenden Erfindung, ein Verfahren bzw. ein System obgenannter Art zu schaffen, dessen Industrietauglichkeit wesentlich erhöht ist im Sinne wirtschaftlicher Kriterien, insbesondere verlängerter Standzeiten und hoher Durchsätze.

Während der geforderten hohen Standzeiten muss somit die für die Verfahren obgenannter Art einzuhaltende hohe Systemreinheit gewährleistet sein. Weiter soll eine optimale Integrierbarkeit der Verfahrensschritte einerseits, des Systems andererseits in den automatisierten Fertigungsablauf erreicht werden.

Diese Aufgabe wird am Verfahren eingangs genannter Art dadurch gelöst, dass die Prozessatmosphäre während dem plasmaunterstützten Behandlungsschritt von der Innenwandung eines an Umgebung liegenden Vakuumrezipienten getrennt wird. Die grundsätzliche Erkenntnis ist dabei, dass eine funktionale Trennung von Strukturen, welche gegenüber Umgebungsdruck die erforderlichen vakuumtechnischen Druckverhältnisse sicherstellen einerseits, und von Strukturen, die dem Behandlungsprozess direkt ausgesetzt sind andererseits, die obgenannte Aufgabe löst.

der Innenfläche während vorangegangenen Prozess-
Expositionen, führt dies, sofern in der industriellen
Fertigung eingesetzt, zu einer nicht tolerablen
Kontamination der Behandlungsschritt-Prozessatmosphäre bzw.
zur Bildung von nicht tolerablen Restgas-Partialdrucken.
Wir verstehen dabei unter Restgas in einer
Prozessatmosphäre diejenigen Gasanteile, die weder vom
Plasmaentladungs-Arbeitsgas, wie beispielsweise Argon, noch
vom eingelassenen Reaktivgas bzw. Reaktivgasgemisch noch
von deren gasförmigen Reaktionsprodukten herrühren. Durch
das erfindungsgemäße Vorgehen wird es nun möglich, die
Prozessbeeinflussung durch die Vakuumrezipientenwand zu
minimalisieren.

Das erfindungsgemäße Verfahren wird nach dem Wortlaut von
Anspruch 2 in weitaus bevorzugter Art und Weise (a) für das
Beschichten des Teiles oder (b) das Verändern der
Materialzusammensetzung des Teiles bis zu einer
vorgegebenen Eindringtiefe, oder (c) zum Ätzen der
Oberfläche des Teiles, wie insbesondere zu dessen
Strukturätzen, eingesetzt. In allen erwähnten Fällen ist
die Einhaltung von Prozessbedingungen, wie sie für das
Aufwachsen epitaktischer Schichten notwendig sind, im
Rahmen der erfindungsgemäss angestreben
Herstellungsprozesse, unabdingbar. Dabei ist durch das
erfindungsgemäße Verändern der Materialzusammensetzung
gemäss (b) die Materialimplantation angesprochen in ein
vorgegebenes Zielmaterial.

Im weiteren wird als erfindungsgemäss durchgeführter,
plasmaunterstützter Behandlungsschritt ein
Reinigungsschritt gemäss Anspruch 3 vorgeschlagen oder,
zusätzlich zu einem erfindungsgemässen, plasamaunterstützten Behandlungsschritt, ein Reinigungsschritt nach Anspruch 4.

In einer bevorzugten Ausführung des erfindungsgemässen Verfahrens wird gemäss Wortlaut von Anspruch 5 ein virtuelles Substrat hergestellt. Als virtuelles Substrat bezeichnet man einen Halbleiter-Wafer, der, anders als ein Wafer aus durchgängig einkristallinem Halbleitermaterial, einen besonderen Schichtaufbau aufweist, aber funktionell ebenfalls als Ausgangsmaterial für Halbleiter-Bauelemente eingesetzt wird.

Nutzschichtmaterial kann wiederum eine Mischung zweier Halbleiter eingesetzt werden, aber auch eine Schicht aus reinem Halbleiter, beispielsweise „B“. Diese Schicht ist in der Regel so dünn, dass keine Versetzungen daran auftreten, sondern der Stress in dieser Schicht erhalten bleibt (band gap engineering). Das Aufwachsen dieser Nutzschicht kann mit dem Aufbau des virtuellen Substrates kombiniert werden, es können aber auch vorgefertigte virtuelle Substrate nachmals mit der Nutzschicht versehen werden.

Erfindungsgemäß und gemäß Wortlaut von Anspruch 5 wird die Basis bzw. das genannte Substrat erst einer plasmamunterstützten Reinigung unterworfen, im Unterschied zu bisherigen Verfahren, bei welchen, im Rahmen der Fertigung virtueller Substrate, Nassreinigungen eingesetzt wurden. Danach wird die hetero-epitaktische Pufferschicht abgelegt sowie, falls erforderlich, die erwähnte Deckschicht. Gegebenenfalls wird dann erfindungsgemäß auch die zu nutzende Nutzschicht abgelegt, oder nach Ablegen der Pufferschicht, übergehend in die Deckschicht, das
eigentlich fertig gestellte virtuelle Substrat für ein später zu erfolgendes Nutzschicht-Ablegen bereitgestellt.

Es sei bereits hier darauf hingewiesen, dass im Rahmen bekannter Fertigungsverfahren für virtuelle Substrate (darunter MBE – molecular beam epitaxy, UHVCVD – ultra high vacuum CVD, ALD – atomic layer deposition u. a.) der Ersatz der dabei eingesetzten nasschemischen Reinigungsschritte durch einen plasmamunterstützten Reinigungsschritt in niedereenergetischem Plasma für sich auch als erfinderisch erachtet wird und ganz wesentliche fertigungstechnische Vorteile erbringt.
Es sei diesbezüglich auf das Fertigungsverfahren nach Anspruch 28 hingewiesen.

Es ist generell, im Zuge der angesprochenen industriellen Herstellung vielfach notwendig, die nachmals durch die erwähnten plasmanunterstützten Behandlungsschritte (a), (b), (c) zu behandelnden Teile erst einer Reinigung zu unterziehen, beispielsweise von Umgebungsatmosphärebedingten Oberflächen-Kontaminationen.

Weiterhin kann nach jedem der erwähnten Plasmabehandlungsschritte (a), (b), (c) ein Reinigungsschritt notwendig sein, z. B. ein Reinigen von beim Ätzen freigesetzten Kontaminations-Materialien bzw. -Gasen.

In einer Ausführungsform des Reinigungsverfahrens können dabei Reaktivgase (Wasserstoff, Wasserstoff-Edelgasmischungen) zur Anwendung gelangen, die für die Umkapselung der Prozessatmosphäre eingesetzten Materialien beeinträchtigen können.

Deshalb wird auch gemäß Anspruch 4 vorgeschlagen, für solche Reinigungsschritte entweder eine relativ kostengünstige metallische Umkapselung der Prozessatmosphäre vorzusehen, oder die Reinigungsprozessatmosphäre direkt durch die Innenwand des an Umgebung liegenden Vakuumrezipienten zu begrenzen.

Für die oben erwähnten Behandlungsschritte (a), (b), (c) der Teile werden nämlich, wie nachmals noch ausgeführt, nicht metallische Begrenzungen der Prozessatmosphäre weitaus bevorzugt, d.h. Materialien, die gegen die
eingesetzten plasmaaktivierten Reaktivgase inert sind. Im weiteren muss aber auch bei diesem Reinigungsschritt sichergestellt werden, dass die gereinigten Oberflächen des Teiles der nachmaligen Behandlung gleichermassen unbeeinträchtigt zugänglich sind, wie wenn diese Behandlung das Ablegen epitaktischer Schichten wäre. Deshalb wird auch beim plasmachemischen Reinigungsschritt des Teiles das oben erwähnte niedereenergetische Plasma mit der spezifizierten Ionenenergie an der Oberfläche des Teiles eingesetzt.

Im Lichte der erfindungsgemäss gestellten Aufgabe, insbesondere mit Blick auf die Realisation langer Standzeiten, wird mithin ein betrachteter Prozessraum, nach Durchlaufen einer vorgegebenen Anzahl Behandlungsschritte, plasmaunterstützt gereinigt. Normalerweise werden dabei in einem Prozessraum Teile entweder gemäss (a) oder (b) oder
(c) bearbeitet oder gereinigt, sei dies nach Wortlaut von Anspruch 3, oder sei dies gegebenenfalls gemäß Anspruch 4. Es kann aber durchaus auch der Fall vorliegen, wo in einem einzigen betrachteten Prozessraum, in programierter Abfolge sequentiell, beschichtet, geätzt oder eine Veränderung der Materialzusammensetzung oder, dann gemäß Anspruch 3, eine Reinigung des Teiles vorgenommen wird.

Die bisherigen Ausführungen zusammenfassend, ergibt sich mithin, dass mit dem erfindungsgemässen Herstellungsprozess, im Sinne für Epitaxie zu stellender Qualitätsanforderungen, sowohl eine Beschichtung, eine Änderung der Materialzusammensetzung des Teiles, Strukturätzen am Teil oder dessen Reinigung unter Vermeidung nasschemischer Reinigungsschritte vorgenommen werden kann, und dass zwischen solchen Behandlungsschritten eine Selbstreinigung des Prozessraumes vorgenommen werden kann, lediglich durch Ändern von Prozessparametern,
insbesondere der eingelassenen Reaktivgase. Dasselbe
Verfahren kann auch zur Reinigung der Teile im Zuge ihrer
erfindungsgemässen Herstellung vorgenommen werden, indem
die Abtrennung von Prozessatmosphäre und Vakuumrezipient
geändert wird bzw. weggelassen wird.

Dem Wortlaut von Anspruch 7 folgend, wird bevorzugt das
teil örtlich getrennt mindestens zwei der erwähnten
plasmaunterstützen Behandlungsschritte unterzogen und der
Transport dazwischen in Vakuum vorgenommen. Dem Wortlaut
von Anspruch 8 folgend, erfolgt dies bevorzugt in einer
linearen Bewegung von Behandlungsschritt zu
Behandlungsschritt, im Sinne einer Linearanlage oder
entlang einer Kreisbahn, im Sinne einer Zirkularanlage,
beachtet unter dem Ausdruck „Cluster-Anlage“. Dort werden um
einen Zirkulartransport gruppierte Behandlungsstationen,
programmiert, ggf. frei programmierbar, durch den Zirkular-
Transport mit Teilen bzw. Werkstücken bedient.

In einer weitaus bevorzugten Ausführungsform - Anspruch 9 -
der erfindungsgemässen Verfahrens wird die Abtrennung
zwischen Prozessatmosphäre und Vakuumrezipientenwand-
Oberfläche durch Begrenzung des Prozessraumes mittels einer
im Neuzustand chemisch gegen das plasmaaktivierten
Reaktivgas oder -Gasgemisch inerten Oberfläche vorgenommen,
vorzugsweise mittels einer dielektrischen oder
graphitischen Oberfläche.

Während des Betriebes, also insbesondere Beschichten (a),
Verändern der Materialzusammensetzung (b) oder Ätzen (c),
insbesondere Strukturätzen oder auch Reinigen, wird auf
diese Oberfläche jedenfalls Material abgesetzt. Dieses
Material ist aber nicht oder nur tolerabel prozesskontaminierend. Gerade dann, wenn im selben betrachteten Prozessraum gleiche Behandlungsschritte an in Serie anfallenden Teilen durchgeführt werden, ist es gar erwünscht, die im Neuzustand wie erwähnt inerte, vorzugsweise dielektrische oder graphitischen Trennoberfläche mit den erwähnten Reaktionsprodukt-Materialien zu beschichten, allerdings nur so weit, als die resultierende Beschichtung gesichert an der erwähnten Oberfläche auch haftet.

Das Vorsehen der geforderten inerten, vorzugsweise dielektrischen Oberfläche kann so erfolgen, dass unmittelbar auf der Innenfläche des Vakuumrezipienten eine inerte, vorzugsweise dielektrische Oberfläche bildende Struktur angebracht wird, sei dies im Sinne einer Beschichtung mit derartigem Material oder durch Montage selbsttragender Wandungspartien mit einer solchen innengekehrten Oberfläche direkt auf die Vakuumrezipienten-Innenwand.

Gemäß Wortlaut von Anspruch 11 können der Prozessraum und der erwähnte Zwischenraum gleich oder unterschiedlich
gepumpt werden. Unter anderem hiermit kann es gegebenenfalls möglich sein, im Zwischenraum eine Atmosphäre zu realisieren, die erwünschte Wärmeleitungsverhältnisse zwischen Vakuumrezipientwandung und der erwähnten Oberfläche ergibt. Wird dabei in diesem Zwischenraum ein Gas mit hoher Wärmeleitungskapazität, wie beispielsweise Helium, eingelassen und/oder mindestens zeitweise in diesem Zwischenraum ein höherer Druck als im Prozessraum realisiert, so wird die Wärmeleitung in diesem Zwischenraum gegenüber derjenigen im Prozessraum erhöht, was ermöglichen kann, die Oberfläche auf erwünschten Temperaturen zu halten. Es sei daran erinnert, dass die Wärmeleitung unterhalb eines bestimmten Vakuumdruckes mit dem Druck abnimmt und selbstverständlich von der Wärmekapazität des betroffenen enthaltenen Gases abhängt.

Als Wirkungsrate am Teil verstehen wir dabei, je nach Behandlung, Beschichtungsrate, Eindringrate, Ätzrate, Reinigungsrate.

Teil verschlossen wird, mindestens in dem Ausmass, als dass Austreten von Ladungsträgern aus dem Prozessraum gehindert werden.

In einer weiteren bevorzugten Ausführungsform wird die niederenenergetische Plasmaentladung gemäß Anspruch 14 mit einer Elektronenquelle mit Elektronenergie \(\leq 100 \text{ ev} \), bevorzugt \(\leq 50 \text{ ev} \) eingesetzt, insbesondere bevorzugt mit einer DC-Entladung realisiert, dabei bevorzugt unter, gemäß Anspruch 15 mittels einer thermionischen Kathode, vorzugsweise einer direkt beheizten. Weitaus bevorzugt ist weiter die behandelte Oberfläche des Teiles direkt, unmittelbar dem Plasma ausgesetzt.

eines Behandlungsschrittes im Prozessraum ändernden Verhältnissen Rechnung zu tragen und diese kompensierend aufzufangen oder auch eine erwünschte zeitliche Änderung der Plasmadichte an der Teiloberfläche zu erzielen.

Im weiteren wird, nach dem Wortlaut von Anspruch 17 bevorzugterweise, im Prozessraum ein Magnetfeld erzeugt, welches, im gleichen Sinne wie die eben erwähnten Parameter Anodenpotential und/oder Anodentemperatur stationär oder dynamisch, die Plasmadichteverteilung an der Teiloberfläche einstellt oder steuert. Durch gesteuerte, zeitliche Veränderung des Magnetfeldes kann die Plasmadichteverteilung entlang der Teiloberfläche geändert werden, insbesondere bevorzugt so, wie wenn sich das Teil periodisch in einem stationär verteilten Plasma bewegt.

Durch solches Wobbeln des Magnetfeldes und oszillierendes Verändern der Plasmadichteverteilung entlang der Oberfläche des stationär gehaltenen Teils wird derselbe Effekt erzielt, wie wenn das Teil oszillierend oder rotierend bewegt würde, jedoch insbesondere vakuumtechnisch vorteilhaft ohne bewegte Teile.

Dadurch, dass – gemäß Anspruch 18 – das Reaktivgas verteilt in die Prozessatmosphäre eingelassen wird, dabei vorzugsweise mit einer Einströmungsrichtung im wesentlichen parallel zur Teiloberfläche und, weiter bevorzugt, mit von der Teiloberfläche äquidistanten Eindüsungsstellen, wird eine optimale Exposition der Oberfläche des Teiles dem plasmaaktivierten Reaktivgas erreicht und eine optimale Ausnutzung eingelassenen frischen Reaktivgases, im Sinne eines inversen Wirkungsgrades, nämlich des Quotienten von
pro Zeiteinheit eingelassenen frischen Reaktivgases zu pro
Zeiteinheit abgepumptem, weiterhin frischem Reaktivgas.

Zum Erreichen von Wirkungen durch die erwähnten
Behandlungsschritte, insbesondere gemäß (a), (b), (c) oder
dem Reinigen des Teiles gemäß Anspruch 3, mit einer
Qualität, wie sie für das Ablegen epitaktischer Schichten
erforderlich ist, wird der Partialdruck von Restgasen, wie
oben definiert, auf höchstens 10^{-8} mbar, vorzugsweise auf
höchstens 10^{-9} mbar gehalten, gemäß Anspruch 19.

Der erwähnte, mindestens eine plasmaunterstützte
Behandlungsschritt am erfindungsgemäßen Verfahren ist in
einer bevorzugten ersten Ausführungsform das Ablegen einer
homo- oder hetero-epitaktischen Schicht. Eine solche
Schicht wird weiter bevorzugt, nach Anspruch 21, als
Silizium-Germanium-Schicht abgelegt.

Im weiteren wird, nach Anspruch 22, als Teil, ein im
wesentlichen scheinbar wenig Teil hergestellt.

Gemäß Wortlaut von Anspruch 23 ist in einer weiteren
bevorzugten Ausführungsform das der Behandlung unterworfene
Teil ein Silizium-Wafer oder ein Wafer aus einem
Verbindungshalbleiter, vorzugsweise aus Galliumarsenid,
Indiumphosphid, Siliziumkarbid oder aus Glas. Anspruch 24
spezifiziert am erfindungsgemäßen Herstellungsverfahren
bevorzugt abgelegte Schichtmaterialien.

In einer äußerst wesentlichen Ausführungsform des
erfindungsgemäßen Herstellungsverfahrens gemäß Anspruch
25 werden virtuelle Substrate oben erwähnter Art, die
bevorzugterweise Silizium-Germanium enthalten, hergestellt.
In einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Herstellungsverfahrens, gemäß Anspruch 26, werden Teile, dabei insbesondere die erwähnten im wesentlichen flächigen bzw. scheibenförmigen Teile, mit Durchmessern von mindestens 150 mm, bevorzugterweise von mindestens 200 mm, vorzugsweise gar von mindestens 300 mm hergestellt.

In einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Herstellungsverfahrens, gemäß Anspruch 27, wird das Beschichten von Teilen mit einer Beschichtungsrate von mindestens 60 nm/Min. realisiert.

Im Zusammenhang mit virtuellen Substraten, dabei insbesondere auf Silizium-Germanium-Basis werden heute üblicherweise nasschemische Reinigungsverfahren eingesetzt, sei dies, um die Oberfläche eines fertiggestellten virtuellen Substrates für weiteren Bearbeitungsschritte zu reinigen, sei dies, um die Oberfläche eines bereits epitaktisch beschichteten Substrates für die Weiterbereitung eines virtuellen Substrates zu reinigen, sei dies, um die Unterlage, geeignet für epitaktisches Wachstum vor Aufwachsen der Pufferschicht, zu reinigen. Im Rahmen der vorliegenden Erfindung wurde nun erkannt, dass durch Einsatz des erwähnten niedereenergetischen Plasmas für einen plasmunterstützten Reinigungsschritt, die Reinigung so realisiert wird, dass die nachfolgende Realisation der Fertigung virtueller Substrate oder der Fertigung von Bauteilen, ausgehend von virtuellen Substraten, problemlos möglich ist. Einerseits ergibt sich dadurch, d.h. die Umgebung von nasschemischen Reinigungsverfahren durch Einsatz eines plasmunterstützten Reinigungsverfahrens,
grundsätzlich ein eminenter Vorteil, und zudem ermöglicht
 diese Erkenntnis die Integration einer solchen
 plasmaunterstützten Reinigung in das Fertigungsverfahren
 virtueller Substrate oder darauf basierter Bauteile. Damit
 wird nach dem Wortlaut von Anspruch 28 ein Verfahren zur
 Herstellung eines virtuellen Substrates oder eines Bauteils
 auf Basis eines virtuellen Substrates, vorzugsweise auf
 Silizium-Germanium-Basis, vorgeschlagen, welches mindestens
 einen Reinigungsschritt umfasst, der plasmaunterstützt ist
 und bei dem das Werkstück in einen Prozessraum
 eingelassenem Reaktivgas oder -gasgemisch ausgesetzt wird.
 Dieses wird mittels einer niederenergetischen
 Plasmaentladung mit Ionenenergie an der Oberfläche des
 Teiles von höchsten 15 eV aktiviert.

Den überraschenden Erfolg, den die Erfinder mit diesem
 Trockenreinigungsverfahren im Zusammenhang mit den
 hochdiffizilen Oberflächen erzielten, wird dem Einsatz des
 niederenergetischen Plasmas, wie definiert, zugeschrieben.

In den Ansprüchen 29 und 30 wird ein erfindungsgemässes
 Vakuumbehandlungssystem spezifiziert, das sich insbesondere
eignet, das Verfahren nach einem der vorerwähnten Aspekte
durchzuführen: Nach Anspruch 29 ist die Prozesskammer-
Innenwandoberfläche im Neuzustand aus einem gegen das
plasmak aktivierte Reaktivgas oder -Gasgemisch inerten
Material, vorzugsweise aus dielektrischen Material
realisiert, nach dem Wortlaut von Anspruch 30 wird die den
Prozessraum umfassende Prozesskammer von der
Vakuumkammerwandung nach innen abgesetzt, d.h. beidseitig
realisiert. Bevorzugte Ausführungsformen des
erfindungsgemäßen Vakuumbehandlungssystems sind anschliessend in den Ansprüchen 42 bis 60 spezifiziert.

Die Erfindung wird nun anhand von Figuren erläutert. Es zeigen:

5 Fig. 1 schematisch, eine erste Ausführungsvariante eines erfindungsgemäßen Prozessmoduls zur Durchführung der erfindungsgemässen Verfahren;

Fig. 2 in Darstellung analog zu derjenigen von Fig. 1, eine bevorzugte Ausführungsvariante des Prozessmoduls gemäss Fig. 1 zur Durchführung der erfindungsgemässen Verfahren;

Fig. 3 in einer Darstellung analog zu den Fig. 1 bzw. 2, ein weiterer erfindungsgemässer Prozessmodultyp zur Durchführung erfindungsgemässer Verfahren, nämlich erfindungsgemässer Reinigung;

Fig. 4 in Darstellung analog zu den Fig. 1 bis 3, eine Abwandlung des in Fig. 3 dargestellten Prozessmoduls zur Durchführung erfindungsgemässer Verfahren, nämlich erfindungsgemässer Reinigung;

20 Fig. 5 vereinfacht, eine bevorzugte Ausführungsform eines erfindungsgemässen Prozessmoduls gemäss Fig. 2, wandelbar in ein Prozessmodul gemäss Fig. 3 oder 4 zur Durchführung der erfindungsgemässen Verfahren;

Fig. 6 mit Bezug auf eine Blendenachse A des Prozessmoduls gemäss Fig. 5, die durch Steuerung bewirkte örtliche und zeitliche Modulation zur
Achse A paralleler Magnetfeldkomponenten über einer Ebene E, senkrecht zur Blendenachse A;

Fig. 7 schematisch die Durchlaufbeschichtung eines Prozessmoduls gemäß einer der Fig. 1 bis 5 mit Werkstücken und, über der Zeitzachse, dessen Selbstreinigung nach einer vorgegebenen Anzahl durchgeführter Behandlungsschritte oder nach Bedarf;

Fig. 8 die Kombination von Prozessmodulen nach den Fig. 1 bis 5 in einer Inline-Durchlaufanlage, und

Fig. 9 in Aufsicht und vereinfacht, die Kombination von Prozessmodulen gemäß den Fig. 1 bis 5 zu einer Zirkulär- bzw. Cluster-Anlage, insbesondere für die erfindungsgemässe Herstellung virtueller Substrate bzw. von Bauteilen auf Basis virtueller Substrate.

In Fig. 1 ist schematisch ein erfindungsgemässe Prozessmodul Typ I dargestellt. Eine Kammerwand 1 eines Vakuumrezipienten 3 umschliesst einen Prozessraum PR, worin ein Plasma erzeugt wird. Im Prozessraum PR ist ein Substratträger 5 vorgesehen, und es kommuniziert eine Zuführleitung 7 einerseits mit dem Prozessraum PR, anderseits mit einer Reaktivgas-Tankanordnung 9. Der Prozessraum PR wird über einen Pumpanschluss 11, wie schematisch mit der Vakuumpumpe 13 dargestellt, auf den zur Durchführung des erfindungsgemässen Herstellungsverfahrens geforderten Druck von höchstens 10^{-8} mbar, bevorzugterweise von höchstens 10^{-9} mbar, abgepumpt. Der Aufbau des Rezipienten genügt UHV-Bedingungen (z. B. metallisch
gedichteter Vakuumkessel, ausheizbar). Der weitaus überwiegende Oberflächenbereich der dem Prozessraum PR zugewandten Oberfläche der Kammerwand 1, welche üblicherweise aus rostfreiem Stahl bzw. Inox besteht, ist aus einem gegenüber dem plasmaaktivierten Reaktivgas in Tank 9 inerten Material gefertigt. Gemäß der in Fig. 1 dargestellten Ausführungsform des Typ I-Prozessmoduls, ist hierzu die Kammerwand 1 mit dem erwähnten inerten Material innen beschichtet, oder es sind an der Kammerwand 1 innen Wandungspartien mindestens mit Innen-Oberflächen aus dem erwähnten inerten Material montiert. Diese Beschichtung bzw. diese Inertmaterial-Oberflächen sind in Fig. 1 mit bezeichnet. Nach Abpumpen des Prozessraumes PR auf den erwähnten geforderten Restgas-Partialdruck wird unter Einlass eines Arbeitgases, wie beispielsweise von Argon, im Prozessraum PR das erfindungsgemäss geforderte niederenergetische Plasma erzeugt, welches im Bereich des Substratträgers 5 bzw. eines darauf abgelegten Teiles in Ionenenergien E von

$$0 \text{ eV} < E \leq 15 \text{ eV}$$

resultiert. Bevorzugterweise wird als Material der dem Prozessraum PR zugewandten Oberfläche 15 ein dielektrisches, dabei bevorzugterweise mindestens eines der in nachfolgender Gruppe G aufgeführten Materialien eingesetzt:

Quarz, Graphit, Siliziumkarbid, Siliziumnitrid, Aluminiumoxid, Titanoxid, Tantaloxid, Nioboxid, Zirkonoxid, diamantähnlicher Kohlenstoff oder Diamant, letztere Oberflächenmaterialien als Schichtmaterialien eingesetzt.
In Fig. 2 ist in einer Darstellung analog zu derjenigen von Fig. 1, weiterhin schematisch, eine bevorzugte Ausführungsform des erfindungsgemäßen Typ I-Prozessmoduls gemäß Fig. 1 dargestellt. Es sind darin für die bereits in Fig. 1 beschriebenen Teile dieselben Bezugszeichen verwendet. Im Unterschied zur Ausführungsform gemäß Fig. 1 ist bei der Ausführungsform gemäß Fig. 2 der Prozessraum PR durch eine entlang überwiegender Abschnitte der Kammerwand 1, weiterhin bevorzugt aus rostfreiem Stahl bzw. Inox, beabstandete Prozessraumwandung 14 begrenzt. Mindestens ihre dem Prozessraum PR zugewandte Oberfläche 15a ist aus dem gegenüber plasmaaktivierten Reaktivgas in der Tankanordnung 9 inertem Material, vorzugsweise aus dielektrischem Material, dabei weiterhin insbesondere bevorzugt aus mindestens einem der erwähnten Materialien der Gruppe G.

Die eigentlich eine Prozessraumummantelung innerhalb der Vakuumbürke mit Wand 1 bildende Wandung 14 kann dabei aus dem die Oberfläche 15a bildenden Material bestehen, oder es ist das die Oberfläche 15a bildende inerte Material auf einer tragenden, der Wandung 1 zugewandten Wandung (nicht dargestellt) aufgebaut, wie beispielsweise aufgeschichtet, welch letztere dann, weil dem Prozessraum PR nicht ausgesetzt, beispielsweise aus rostfreiem Stahl bzw. Inox aufgebaut sein kann. Durch den Pumpanschluss 11 bzw. die Pumpe 13 wird der Prozessraum PR auf den im Zusammenhang mit Fig. 1 erläuterten Restgaspartialdruck abgepumpt, während beispielsweise und wie in Fig. 2 gezeigt der Zwischenraum ZW zwischen Vakuumbürkewandung 1 und Ummantelung 14 über einen separaten Pumpanschluss 11a durch dieselbe oder durch eine andere Vakuumpumpe abgepumpt wird.
Der Fachmann erkennt ohne weiteres, dass auch beim Einsatz
derselben Pumpe 13 zum Abpumpen beider Räume, nämlich des
Prozessraumes PR und des Zwischenraumes Zw, entsprechende
steuerbare Drosselorgane in den zugeordneten Pumpstutzen 11
bzw. 11a eingebaut werden. Bezüglich des
niederen energetischen Plasmas, welches zur Durchführung des
erfindungsgemäßen Verfahrens am Modul gemäß Fig. 2
eingesetzt wird, gelten die bereits im Zusammenhang mit dem
in Fig. 1 erläuterten Modul gemachten Voraussetzungen. Die
bei der Ausführungsform gemäß Fig. 2 vorgesehen, durch
die Wandung 14 gebildete Prozessraum-Ummantelung ist
bevorzugweise im Rezipienten 3a auswechselbar gestaltet.

In Fig. 3 ist in Darstellung analog zu den Fig. 1 und 2 ein
Prozessmodul des Typs II, dargestellt, welches sich,
vergleichen mit dem in Fig. 2 dargestellten, lediglich
dadurch unterscheidet, dass die den Prozessraum PR
umschliessende Oberfläche 15b den im Zusammenhang mit dem
Prozessmodul gemäß Fig. 2 erläuterten Inertheits-
Anforderungen nicht genügt, und bei welchem die Wandung
14a, beispielsweise wie die Wandung 1, aus rostfreiem Stahl
bzw. Inox oder einem anderen Metall gefertigt ist.
Bezüglich eingestellter Restgas-Partialdrucks,
Ionenenergien im Substratträgerbereich gelten die bereits
zu den Fig. 1 und 2 gemachten Ausführungen, ebenfalls ist
die üblicherweise metallische Wandung 14a auswechselbar, so
dass der Prozessmodul-Typ II, gemäß Fig. 3 ohne weiteres
in einen Prozessmodul-Typ I gemäß Fig. 2 und umgekehrt
gewandelt werden kann.
Unabhängig von den daran vollzogenen Prozessen sind die Prozessmodulstrukturen gemäß den Fig. 1 bis 3 erfindungsgemäß.

In Fig. 4 ist, weiterhin in Darstellung analog zu den Fig. 1 bis 3, ein weiterer, nicht erfindungsgemäßer Prozessmodul-Typ II_{ne} dargestellt. Im Unterschied zu den anhand von den Fig. 1 bis 3 erläuterten Prozessmodulen ist beim Typ II_{ne} der Prozessraum durch die Prozesskammerwandung 1 begrenzt mit einer Oberfläche, die beispielsweise aus rostfreiem Stahl bzw. Inox besteht. Wird dieses in seiner Struktur nicht erfindungsgemäß Prozessmodul jedoch erfindungsgemäß eingesetzt, d.h. mit ihm ein erfindungsgemäßes Verfahren durchgeführt oder ein solches Modul im Rahmen eines erfindungsgemässen Verfahrens eingesetzt, so gelten bezüglich erstelltem Restgaspartialdruck und Plasma die bereits für die Module Typ I und Typ II_{e} erläuterten Angaben.

Es ist ohne weiteres ersichtlich, dass die Module Typ I, Typ II_{e} und Typ II_{ne} durch entsprechendes Entfernen bzw. Einsetzen der entsprechenden Prozessraumummantelung 14, 15b ineinander gewandelt werden können.

In Fig. 5 ist eine bevorzugte Realisationsform des Typ I-Prozessmoduls gemäß Fig. 2 dargestellt. Dabei ist darauf hinzuweisen, dass alle vom Modul gemäß Fig. 2 ausgehenden, beim Modul gemäß Fig. 5 zusätzlich oder spezifisch bevorzugt eingesetzten Massnahmen am prinzipiellen Modul gemäß Fig. 2 einzeln oder in beliebigen Teilkombinationen eingesetzt werden können.
Das in Fig. 5 dargestellte Prozessmodul Typ I in bevorzugter Ausführungsform kann, wie sich zeigen wird, ohne weiteres in ein Typ II₈-Modul oder in Typ II₈₆-Modul gewandelt werden. Die Rezipientenwand 101 des Prozessmoduls gemäß Fig. 5, vorzugsweise aus rostfreiem Stahl bzw. Inox gefertigt, trägt zentral, bevorzugterweise an ihrer oberen Stirnplatte 103, eine Elektronenquelle 105 zur Miterzeugung der Plasmaentladung im Prozessraum PR. Obwohl im Rahmen der erfindungsgemäss prinzipiell geforderten Ionenenergien im Substratrträgerbereich auch andere Plasmen, wie beispielsweise Mikrowellenplasmen, eingesetzt werden können, wird bevorzugterweise eine Elektronenquelle wie die Elektronenquelle 105 eingesetzt, welche Elektronen mit einer Elektronenenergie von höchstens 100 eV, vorzugsweise von höchstens 50 eV, abgibt. In bevorzugter Ausführungsform wird dabei die Plasmaentladung als DC-Entladung realisiert. Die Elektronenquelle 105 gemäß Fig. 5 ist bevorzugt ausgebildet mit einer thermonischen Kathode, vorzugsweise einer direkt beheizten thermonischen Kathode 107, eingebaut in eine Kathodenkammer 109 mit elektrisch von der Rezipientenwand 101, 103 isolierter Kathodenkammerwand. Die Kathodenkammer kommuniziert über eine Blende 111 mit dem Prozessraum PR. Das Arbeitsgas, wie beispielsweise Argon, wird bevorzugterweise (nicht dargestellt) in die Kathodenkammer 109 eingelassen, u.a. um die thermonische Kathode 107 vor Einflüssen des Reaktivgases im Prozessraum PR zu schützen und eine höhere Elektronenemission zu ermöglichen.

Von der Rezipientenwand 103, 101 beabstandet und mit ihr den Zwischenraum ZW aufspannend, ist, den Prozessraum PR umschliessend, die Prozessraum-Ummantelung 113, in Analogie
zu Fig. 2, vorzugsweise auswechselbar montiert. Der Prozessraum PR innerhalb der Ummantelung 113 sowie der Zwischenraum ZW werden hier über denselben Pumpanschluss 115 gepumpt, wobei gegebenenfalls unterschiedliche Pumpquerschnitte von diesem Anschluss 115 einerseits zum Zwischenraum ZW, anderseits zum Prozessraum PR führen.

Innerhalb des Prozessraumes PR wirkt eine Anodenanordnung. Diese ist, wie in Fig. 5 dargestellt, bevorzugterweise durch zwei oder mehr konzentrisch zur Blendenachse A angeordnete Anoden 117a bzw. 117b gebildet. Sie sind (nicht dargestellt) je unabhängig voneinander auf Massenpotential oder auf elektrische Anodenpotentiale führbar, die weiter bevorzugt unabhängig voneinander eingestellt werden können. Weiter bevorzugt ist die metallische Rezipientenwand 101, 103 auf Bezugspotential, vorzugsweise Massenpotential, gelegt. Die entlang der Blendenachse A versetzten Anoden 117a, 117b sind nebst unabhängig voneinander elektrisch betreibbar, bevorzugterweise (nicht dargestellt) auch unabhängig voneinander beheizbar bzw. kühlbar. Dies wird dadurch realisiert, dass in diesen Anoden Temperiermediumsleitungen geführt sind und/oder Heizwendeln eingebaut sind.

Strichpunktiert ist in Fig. 5 der durch die bevorzugt eingesetzte Plasmaerzeugungsanordnung erzeugte Plasmastrahl PL dargestellt, mit bei V rein heuristisch eingetragener Plasmadichteverteilung, koaxial zur Blendenachse A. Durch entsprechende Beaufschlagung der Anoden 117a und 117b mit anodischen Potentialen bzw. gesteuerter Temperierung dieser Anoden kann die Plasmadichteverteilung V gezielt eingestellt werden.
Im Prozessraum PR ist ein Waferhalter 119 montiert bzw. ist - wie noch zu erläutern sein wird - in den Prozessraum PR gesteuert einführbar. Obwohl es durchaus möglich ist, den Substrathalter 119, für die bevorzugte Behandlung scheibenförmiger Werkstücke 120 eine Trägerfläche 119a definierend, mit dieser Trägerfläche 119a parallel zur Blendenachse A, diesbezüglich schiefwinklig oder diesbezüglich – gemäss Fig. 5 – senkrecht, aber exzentrisch vorzusehen, wird der Waferhalter 119 mit seiner Trägerfläche 119a weitaus bevorzugt zur Achse A der Blende 111 konzentrisch angeordnet. Mittels eines externen Antriebes 121 ist der Waferhalter 119, wie mit dem Doppelpfeil F dargestellt, gegen die durch die Prozessraumummantelung 113 definierte Aufnahmeöffnung 123 hin bzw. von ihr rückholbar. Ist der Waferhalter 119 mittels des Antriebes 121 vollständig gegen den Prozessraum PR hochgefahren, so verschliesst seine Randpartie 125 die lichte Öffnung 123 der Prozessummantelung 113 mindestens so, dass Ladungsträger gehindert werden, aus dem Prozessraum PR auszutreten.

Die Stützen 126 sind an einer Werkstücktemperiereinrichtung 127 montiert, welche über Temperiermedium-Zu- und Ableitungen 128 Temperiermedium-beaufschlagt ist. Üblicherweise wird das eingeführte Substrat 120 über die Platte 128a beheizt. Gestrichelt ist in Fig. 5 der Waferhalter 119 in seiner Bearbeitungsposition dargestellt.

Außerhalb des Vakuumrezipienten sind Helmholz-Spulen 133 sowie verteilte Umlenkspulen 135 montiert. Mittels der Helmholz-Spulen 133 ein im wesentlichen zur Achse A paralleles und diesbezüglich symmetrisches Magnetfeldmuster im Prozessraum PR erzeugt. Dieses kann mit Hilfe der Umlenkspulen 135 in Ebenen senkrecht zur Achse A wie in Fig. 6 schematisch dargestellt verschoben werden. Durch diese „Verschiebung“ der Magnetfeldstärke-Verteilung H_A ergibt sich eine „Verschiebung“ der Plasmadichteverteilung V an einem auf dem Substratrträger 119 aufgebrachten Substrat. Damit wird eine Relativbewegung zwischen Plasmadichteverteilung V und zu behandelnder Werkstückoberfläche auf dem Substratrträger 119 erreicht, wie wenn das Substrat bezüglich des Plasmas mit zeitlich konstanter Plasmadichteverteilung verschoben würde. Durch diese Feldverteilungs-Steuerung ergibt sich am Substrat der gleiche Effekt, wie wenn dieses bezüglich des Plasmas
mechanisch bewegt würde, aber ohne mechanische Substratbewegung.

Reaktivgas wird über einen Reaktivgaseinlass 137 in den Prozessraum PR eingelassen. Wie dargestellt, ist der Reaktivgaseinlass vorzugsweise koaxial zu Achse A in unmittelbarem Bereich des in Bearbeitungsposition liegenden Substrates 120 bzw. Substratträgers 119 angeordnet, mit Einlassöffnungen im wesentlichen parallel zu der zu behandelnden Substratfläche.

Bezüglich des Materials der Prozessraum-Ummantelung 113, insbesondere deren dem Prozess ausgesetzten Oberfläche, gilt das bereits anhand von Fig. 1 Erläuterte: Das inerte Material, bevorzugterweise ein dielektrisches und wie erwähnt bevorzugt aus der Materialgruppe G gewählt, ist bei den hohen Prozesstemperaturen stabil und geht mit den verwendeten Reaktivgasen, wie insbesondere Wasserstoff, Silan, German, Diboran, Chlor, NF₃, HCl, SiH₂CH₃, GeH₃CH₃, N₂, ClF₃, PH₃, AsH₃, keine gasförmigen Verbindungen ein.

Damit wird erreicht, dass es zu keinen Kontaminationen des Teils 120 kommt. Eine Störbeschichtung der inneren Oberfläche der Prozessraum-Ummantelung 113 ist nur unter dem Aspekt der Partikelbildung kritisch. Eine dünne Störbeschichtung kann sogar bevorzugt werden, um eine noch
bessere Reinheit des Prozesses zu gewährleisten, der dann praktisch ausschliesslich durch Prozess-inhärentes Material umgeben ist.

Bei den Typ I Prozessmodulen wird die Vakuumkammerwand, üblicherweise aus rostfreiem Stahl, nicht beschichtet, weil sie durch die Prozessraum-Ummantelung 113 vor den reaktiven Gasen und dem Plasma geschützt ist, weiter, weil die, wie in Fig. 5 dargestellt, intensive Kühlung eine Abscheidung aus der Gasphase dort zusätzlich stark reduziert. Was bezüglich der inneren Oberfläche der Prozessraum-Ummantelung 113 gilt, gilt auch für die dem Prozess ausgesetzten Oberflächen des Substralthalters 119.

Die Prozessraum-Ummantelung 113 wird bevorzugterweise mehrteilig (nicht dargestellt) ausgebildet, so dass sie ohne Demontage der Anodenanordnung 117a, 117b entfernt bzw. ausgewechselt werden kann. Durch Entfernen der in Fig. 5 dargestellten Prozessraum-Ummantelung 113 wird eine bevorzugte Ausführungsform des Prozessmodul-Typs IIₚ realisiert, bzw. durch Ersatz der Prozessraum-Ummantelung 113 durch eine ebenso geformte Ummantelung aus einem Metall ein Prozessmodul des Typs IIₚ gemäss Fig. 3.

Im folgenden sind die jeweils mit den anhand der Fig. 1 bis 5 vorgestellten Prozessmodulen durchgeführten Verfahren zusammengestellt.

Typ I

Mit diesem Prozessmodul werden unter Einhalt von Qualitätsanforderungen, wie sie bei der Beschichtung von Teilen mit einer epitaktischen Schicht erfordert sind,
plasmaunterstützt reaktive Beschichtungen vorgenommen, oder
plasmaunterstütztes reaktives Ätzen, oder
plasmaunterstützte reaktive Veränderungsprozesse der
Materialzusammensetzung am Werkstück bis hin zu
vorgegebenen Eindringtiefen, oder es werden, insbesondere
kombiniert mit vorerwähnten, erfindungsgemäßen
Verfahrensschritten, die Oberflächen der Werkstücke bzw.
Teile einer plasmaunterstützten reaktiven Reinigung,
insbesondere in Wasserstoffplasma, unterzogen. Diese
Prozessmodultypen I werden nach Durchlaufen einer
vorgegebenen Anzahl der erwähnten Behandlungsschritte, oder
bei Bedarf, einer Selbstreinigung unterzogen, ohne dass ein
Werkstückteil darin eingeführt wäre bzw. eine
Substratatmappre verwendet wird. Diese Selbstreinigung
umfasst bevorzugterweise einerseits einen
plasmaunterstützten reaktiven Ätzschnitt, anderseits einen
anschliessenden plasmaunterstützten reaktiven
Reinigungsschnitt von Ätzrückständen, bevorzugt in einem
Wasserstoffplasma durchgeführt.

Typ II

Die Typ II Prozessmodule werden eingesetzt, um Werkstücke
tiefergreifend zu reinigen, wie dies beispielsweise
notwendig ist, wenn sie aus Umgebungsatmosphäre den oben
erwählten, epitaktischen Qualitätsanforderungen genügenden
Behandlungsschritten zugeführt werden. Auch in diesen
Prozessmodultypen II werden in Kombination mit den
vorerwähnten qualitativ höchsten Anforderungen genügenden
Behandlungsprozessen, mit dem erwähnten niederenergetischen
Plasma, reaktiv, vorzugsweise erst durch
plasmaunterstütztes reaktives Ätzen, dann durch
plasmaunterstütztes reaktives Reinigen, vorzugsweise in Wasserstoffplasma, die Teile gereinigt.

Als bevorzugte Beschichtungsverfahren, nämlich für das Ablegen hetero- oder homo-epitaktischer Schichten mit den Modulen des Typs I, wird vollumfänglich auf das Vorgehen gemäß der bereits eingangs erwähnten WO98/58099 verwiesen.

In Fig. 7 ist, schematisch, ein Prozessmodul 140 des Typs I oder des Typs II dargestellt. Im Durchlaufbetrieb werden dem Prozessmodul 140 sequentiell zu behandelnde Teile 142 zugeführt bzw. behandelte vom Modul weggeführt. Auf der in Fig. 7 dargestellten Zeitachse t sind, rein beispielsweise, schraffiert erfindungsgemässe Beschichtungs- und/oder Ätz- und/oder Materialveränderungs- und/oder Reinigungsschritte an den Teilen 142 dargestellt, jeweils gefolgt, bei Bedarf oder nach vorgegebener Anzahl derartiger Behandlungsschritte, von einem nicht schraffierten Selbstreinigungsschritt des im Durchlaufbetrieb beschickten Moduls 140.

In Fig. 8 ist schematisch dargestellt, innerhalb von Vakuumatmosphäre einer Anlage 144, z.B. einer Inline-Anlage, wie beispielsweise Werkstücke erst in einem Prozessmodul Typ II einer Eingangsreinigung, danach in Prozessmodulen I Beschichtungs-, Ätz-, Materialveränderungs- und ggf. auch Reinigungsschritten unterworfen werden. Auch hier werden die vorgesehenen Prozessmodule in Analogie zu den Betrachtungen in Fig. 7 nach einer jeweilig gegebenen Anzahl Verarbeitungszyklen einer Selbstreinigung unterzogen.

Wie dem Fachmann durchaus geläufig, können auch bei der Fertigung des virtuellen Substrates weitere Schichten eingebaut werden bzw. zwischen den Beschichtungsschritten Reinigungsschritte vorgesehen werden, dann bevorzugt als „sanfte Reinigungsschritte“ in einem Prozessmodul des Typs I.

In Fig. 8 ist - wenn auch schematisch - eine „Inline“-Anlage dargestellt, bei welcher der Werkstücktransport von einem Modul zum andern, in Vakuum, im wesentlichen linear erfolgt.
In Fig. 9 ist schematisch, in Aufsicht, die bevorzugte Anordnung mehrerer Typ I und Typ II Prozessmodule als jeweilige Cluster zu einer Cluster-Anlage dargestellt. Diese umfasst eine Zirkular-Vakuumtransportkammer 150, welche im wesentlichen radial die Prozessmodule bedient. Unbearbeitete Substrate werden einer Schleusenkammer 152 entnommen und darin behandelte Substrate abgelegt, wo letztere beispielsweise auskühlen. Von der beispielsweise vorgesehenen einen Ein- und Ausgabe-Schleusenkammer 152 werden die Substrate mit einer an Normalatmosphäre liegenden Rotobereinheit 154 entnommen bzw. ihr zugeführt, ab Speichermagazinen 156 für unbehandelte bzw. in Speichermagazine 158 für behandelte, fertiggestellte Substrate. Die Anlage wird durch eine Programmsteuerung betreffs ihrer zeitlichen Abläufe gesteuert, beispielsweise einer frei programmierbaren.

Die beschriebenen Prozessmodule, die alle ineinander gewandelt werden können, können Substrate mit Durchmesser von mindestens 150 mm, vorzugsweise von mindestens 200 mm, vorzugsweise gar von mindestens 300 mm behandeln. Bei der Epitaxie-Beschichtung mit dem in der erwähnten WO98/58099 beschriebenen Verfahren, die bezüglich der Verfahrensoffenbarung der vorliegenden Anmeldung als Anhang A beigefügt ist, werden Beschichtungsraten an den erwähnten Substraten von mindestens 60 nm/min. erreicht.
Verfahren zur Herstellung beschichteter Werkstücke, Verwendungen des Verfahrens und Anlage hierfür

(Anhang "A" Anfang der Beschreibung PCT/CH98/00221)

Dabei geht die vorliegende Erfindung von den Problemen aus, die sich bei der Herstellung dünner Schichten mit CVD- und PECVD-Verfahren ergeben. Die dabei erfindungsgemäß gemachten Erkenntnisse lassen sich insbesondere auf die Herstellung von Halbleiterschichten, wie bei der Solarzellen-Herstellung oder modulationsdotierte Fet oder heterobipolare Transistoren, übertragen.

Dünne Halbleiterfilme werden entweder in einkristalliner Form, d.h. epitaktisch, auf ein ebenfalls einkristallines Substrat, wie ein Siliziumsubstrat abgeschieden, oder aber in polykristalliner Form oder amorpher Form auf polykristalline oder amorphe Substrate, z.B. auf Glas. Obwohl im folgenden die Erfindung vor allem mit Bezug auf die Herstellung Silizium- und/oder Germanium-beschichteter Substrate beschrieben wird, kann sie, wie erwähnt, auch für die Herstellung anderer und mit anderen Materialien beschichteter Werkstücke eingesetzt werden.

Bekannte Verfahren zur Abscheidung epitaktischer Halbleiterfilme sind:

- Molekularstrahl-Epitaxie, MBE (Molecular Beam Epitaxy)

- Thermo-Chemische Gasphasenabscheidung, CVD (Chemical Vapour Deposition)
Remote-Plasmaunterstützte CVD-Verfahren mit DC- oder Hf-Entladung, RPECVD (Remote-Plasma-Enhanced CVD)

- Mikrowellen-Plasmaunterstützte chemische Gasphasenabscheidung und ECRCVD (Electron-Cyclotron-Resonance-Plasma-Assisted CVD)

Beim CVD-verfahren handelt es sich um einen Sammelbegriff einer grossen Anzahl von thermischen Abscheidungsmethoden, die sich entweder durch den Aufbau der zugeordneten Apparaturen unterscheiden, oder durch deren Betriebsart. So kann z.B. ein CVD-Verfahren bei Normal-Atmosphärendruck durchgeführt werden, oder aber bei viel kleineren Drücken bis hinunter ins Gebiet des Ultra-Hochvakuum. Es kann hierzu auf (1) verwiesen werden, sowie auf (2).

In der kommerziellen Produktion von epitaktischen Si-Schichten ist ausschliesslich CVD gebräuchlich. Die verwendeten Reaktivgase sind dabei siliziumhaltige Gase, z.B. Chlorsilane, SiCl₄, Si₃HCl und SiH₂Cl₂ sowie Silane, z.B. SiH₄ oder Si₂H₆. Charakteristisch für die Standard-CVD-Verfahren sind die hohen Abscheidetemperaturen in der Grössenordnung von 1000°C und mehr, sowie Drücke von typischerweise 20 mbar bis 1000 mbar, d.h. bis Normal-Atmosphärendruck.

Je nach Prozessbedingungen können damit Beschichtungsraten von mehreren µm pro Minute erzielt werden, entsprechend mehreren 100 Å/sec, wozu wiederum auf (1) verwiesen sei.

Niederdruck-chemische Gasphasenabscheidung (LPCVD, Low Pressure Chemical Vapour Deposition, gleichbedeutend mit LPVPE, Low-Pressure Vapour Phase Epitaxy) findet dagegen bei Drücken unter 1 mbar statt und erlaubt tiefere Prozesstemperaturen bis auf typischerweise 700°C. Diesbezüglich sei nebst auf (1) auch auf (3) und (6) verwiesen.
Bezüglich LPCVD und unter Verweis auf (6) wird bei einer Abscheidetemperatur von 650°C eine Wachstumsrate (growth rate) von

\[GR = 50 \text{ Å/min} \]

angegeben. Dies bei einem Reaktivgasfluss für Silan von

\[F = 14 \text{ sccm}. \]

Daraus ergibt sich eine für die Gasausbeutung relevante Kennzahl, nämlich die Wachstumsrate pro Reaktivgasfluss-Einheit, \(GR_F \) zu

\[GR_F = 3,6 \text{ Å/(sccm \cdot min)} \]

Auf 5"-Wafern, entsprechend einer Fläche

\[A_0 = 123 \text{ cm}^2, \]

umgerechnet von der aktuellen Fläche \(A_2 \) für 2"-Wafer ergibt sich eine Abscheidemenge (growth amount) \(GA \) zu

\[GA = 5,2 \cdot 10^{16} \text{ Si-Atome/sec}. \]

Wiederum bezogen auf eine Reaktivgasfluss-Einheit ergibt sich die Kennzahl "Abscheidemenge pro Reaktivgasfluss-Einheit", im weiteren "Gasausnützungszahl" genannt, \(GA_F \) zu

\[GA_F = 8,4 \cdot 10^{-3}, \]

entsprechend 8,4 %./oo.

Bei 650°C entsteht eine epitaktische Schicht.

Wird die Abscheidetemperatur auf 600°C reduziert, so entsteht eine polykristalline Schicht. Dies mit:

\[GR = 3 \text{ Å/min} \]

\[F = 28 \text{ sccm Silan} \]
(Anhang "A" PCT/CH98/00221)

\[GR_F = 0,11 \, \text{Å/(sccm/min)} \]
\[GA = 3,1 \cdot 10^{15} \, \text{Si-Atome/sec auf A} \]
\[GA_F = 2,5 \cdot 10^{-4}, \text{entsprechend 0,25 } \text{o/00}. \]

Grundsätzlich sind folgende Kriterien für ein defektfreies epitaktisches Schichtwachstum erforderlich:

- Bei Transmissionselektronen-Mikroskopie an Querschnittspräparaten wird der Nachweis der Epitaxie durch Elektronendiffraktion und Hochauflösung erstellt.

- In dabei typischerweise durchstrahlbaren Bereich von 10 - 15 \(\mu \text{m} \) längs der Grenzfläche zum Substrat, dürfen keine Defekte sichtbar sein. Typische Vergrößerungen bei der Defektenalyse sind 110'000 bis 220'000.

Eine weitere Entwicklung ist die Ultraohdvakuum-chemische Gasphasenabscheidung (UHV-CVD) mit Arbeitsdrücken im Bereich von \(10^{-4} \) bis \(10^{-2} \) mbar, typischerweise im Bereich von \(10^{-3} \) mbar, wozu verwiesen sei auf (4) sowie auf (5), (7). Sie lässt sehr niedrige Werkstücktemperaturen zu, wobei allerdings die Wachstums- bzw. Beschichtungsraten extrem klein sind, so z.B. ca. 3 Å/min für reines Silizium bei 550°C gemäss (5).

Der Grund für die kleinen Wachstumsraten liegt darin, dass die Absorptions- und Zerfallsrate der reaktiven Moleküle, so z.B. von SiH₄, mit zunehmender Wasserstoffbeladung der Werkstück-Oberfläche abnimmt. Das Schichtwachstum wird also durch die Desorptionrate von H₂ limitiert, die aber exponentiell mit der Temperatur zunimmt. Hierzu sei auf (8) verwiesen. Wegen der kleineren Bindungsenergie der Ge-H-Bindung im Vergleich zur Si-H-Bindung ist die Wasserstoffdesorption von einer Si-Ge-Legierungsoberfläche grösser, so dass bei gleicher Substrattemperatur eine höhere Wachstumsrate als bei reinem Si resultiert,
z.B. bei einem Gehalt von 10% Ge um einen Faktor 25 bei 550°C (5).

Eine weitere Möglichkeit, bei niedrigen Substrattemperaturen hohe Abscheideraten mit Epitaxie-Qualität zu erzielen, besteht darin, (9), die reaktiven Gase mit Hilfe eines μ-Wellen-Plasmas zu zersetzen (ECRCVD).

Durch den Einsatz von Plasmaquellen, die auf dem Prinzip der Elektronen-Zyklotron-Resonanz beruhen, soll der Einfall hochenergetischer Ionen auf das Substrat vermieden werden.

Solche Quellen arbeiten in der Regel im Druckbereich von 10^{-3} bis 10^{-4} mbar, was aber zu größeren freien Weglängen führt, als im Fall von kapazitiv eingekoppelten Hochfrequenz-Hf-Plasmen. Dies kann wiederum zu unerwünschtem Ionenbeschuss des Substrates führen und damit zur Erzeugung von Defekten, wie sich aus (10) ergibt. Die Energie der auf das Substrat auftreffenden Ionen kann aber durch eine externe Kontrolle des Substratepotentials begrenzt werden, wodurch sich Ionenschäden weitgehend vermeiden lassen. Auch mit ECRCVD-Methode betragen die Wachstumsraten für reines Silizium in der Regel nur einige 10 Å/min, bei tiefen Abscheidetemperaturen $\leq 600°C$.

Zusammengefasst ergibt sich folgendes:

Schichten, die mit einer Qualität abgelegt werden, die sich auch für das Ablegen von epitaktischen Schichten eignet, können, bei Abscheidetemperaturen $\leq 600°C$, bis heute:

- durch UHV-CVD mit Wachstumsraten GR von ca. 3 Å/min oder
- durch ECRCVD mit einer um ca. 1 Größenordnung (30 Å/min) höheren Wachstumsrate GR

abgelegt werden.

Über die Verwendung von kapazitiv eingekoppelten Hochfrequenzfeldern zur Erzeugung von Hf-Plasmen für PECVD-Verfahren wurde anderseits schon sehr früh berichtet, wozu verwiesen sei auf (11). Die Schwierigkeit bei diesem Vorgehen liegt darin, dass in solchen Hf-Plasmen nicht nur die reaktiven Gase zersetzt werden. Gleichzeitig ist die Substratoberfläche einem intensiven Beschuss hochenergetischer Ionen ausgesetzt, wie dies spezifisch auch bei reaktivem Zerstäuben oder Hochfrequenzätzen ausgenützt wird. Dies begünstigt einerseits die Wasserstoff-Desorption, führt aber gleichzeitig zu Defekten in den wachsenden Schichten. Eine davon abgewandelte Methode, die RPCVD, Remote Plasma Chemical Vapour Deposition, berücksichtigt dies dadurch, dass die zu beschichtenden Substrate nicht direkt dem Hf-Plasma ausgesetzt werden, was zu besseren Resultaten führt (12). Allerdings sind die erzielten Wachstumsraten gering, nämlich meist Bruchteile von nm pro Minute bis höchstens einige nm pro Minute gemäß (13).

Aufgabe der vorliegenden Erfindung ist es, ein in der industriellen Fertigung einsetzbares Verfahren anzugeben, das erlaubt, Schichten mit Epitaxie-Qualität aufzuwachsen mit wesentlich höheren Wachstumsraten, als bis anhin bekannt.

Dies wird durch Verfahren eingangs genannter Art erreicht, welche sich nach dem Wortlaut des kennzeichnenden Teils von Anspruch 1 auszeichnen, bzw. durch eine Anlage, die sich nach dem kennzeichnenden Teil des Anspruches 36 auszeichnet. Bevorzugte
Ausführungsformen der Verfahrens sind in den Ansprüchen 2 bis 27 spezifiziert, bevorzugte Ausführungsformen der Anlage in den Ansprüchen 37 bis 50. Das erfindungsgemäße Verfahren eignet sich insbesondere für die Herstellung von Halbleiter-
beschichteten Substraten mit epitaktischer, amorpher oder poly-
kristalliner Schicht, dabei insbesondere von Si-, Ge- oder Si/Ge-Legierungs-Schichten sowie von Ga- oder Ga-Verbindungs-
Schichten.

Dabei können insbesondere auch dotierte Halbleiterschichten ab-
gelegt werden. Silizium und/oder Germanium enthaltende Schich-
ten, dotiert vorzugsweise mit mindestens einem Element aus den Gruppen III oder V des Periodensystems bzw. Gallium enthaltende Schichten mit mindestens einem Element der Gruppen II, III, IV oder VI des Periodensystems, z.B. mit Mg oder Si.

Aus den eingangs abgehandelten Beschichtungstechniken zur Er-
zeugung epitaktischer Schichten kann zusammenfassend folgendes ausgeführt werden:

- Die CVD-Verfahren, insbesondere die UHV-CVD-Verfahren führen zu ausgezeichneten Schichtqualitäten, selbst bei Substrattem-
peraturen unterhalb von 500°C. Sie bieten sich deshalb an, auch epitaktische Schichten herzustellen, wo an die Schicht-
qualität extrem hohe Anforderungen gestellt werden. Die Wachstumsrate beispielsweise für Si ist aber bei diesen Ver-
fahren extrem tief, wie erwähnt in der Größenordnung von 3 Å/min bei 550°C.

- Mikrowellen-Plasma-unterstützte Verfahren, ECRCVD, haben den Vorteil, dass die Zersetzung der reaktiven Moleküle ohne hohe thermische Energie stattfinden kann. Der Ionenbeschuss des Substrates führt zu erhöhter Wasserstoffdesorption. Beide Ef-
fekte könnten zu einer beträchtlichen Zunahme der Wachstums-
rate führen. Bei tiefen Temperaturen werden aber inakzeptabel hohe Defekt-Dichten beobachtet, induziert durch Ionenbe-
schuss. Eine Kontrolle über die Substrat-Bias-Spannung erhöht zwar die Schichtqualität, ändert aber nichts an den ver-
gleichsweise kleinen Raten.

Damit scheint ein inhärenter Widerspruch zu bestehen: Ionenbe-
schuss des Substrates führt einerseits zu erhöhter Wachstumsra-
te aufgrund erhöhter Wasserstoffdesorption, führt aber gleich-
zeitig zur Erhöhung der Defekt-Dichte.

Für unter Atmosphärendruck betriebene, thermische CVD-Verfahren
ergibt sich laut (2) folgendes Bild:

- Si-Wachstumsrate GR: 2 x 10^{-3} nm/min

 (bei 600°C, 3 ∙ 10^{-2} nm/min gemessen und auf 550°C umge-
 rechnet)

- Gasfluss, SiCl₂H₂, F: 100 sccm.

Daraus ergibt sich eine Wachstumsrate GR pro SiCl₂H₂-Fluss-
Einheit, GR₉ ≈ 2 x 10^{-4} Å/(sccm.min).

Ein Gasfluss F von 100 sccm SiCl₂H₂ entspricht 4,4 x 10^{19} Mole-
külen/sec.

Die Wachstumsrate GR von 2 x 10^{-3} nm/min entspricht einer
Wachstumsrate von 2 x 10^{-4} Silizium-Monolagen pro Sekunde auf
einem 5"-Wafer, entsprechend einer Fläche A₅ von 123 cm². Damit
ergibt sich auf der Gesamtfläche pro Sekunde eine abgelegte
Menge von

\[GA = 1,7 \times 10^{13} \text{ Siliziumatome/sec}. \]

Durch Inbeziehungsetzen der pro Sekunde abgelegten Siliziummen-
ge und der pro Sekunde eingelassenen Reaktivgasmenge ergibt
sich die Gasausnützungsziffer GA₉ zu

\[GA₉ = 3,9 \times 10^{-7}. \]
(Anhang "A" PCT/CH98/00221)

Dies entspricht einer Ausnützung von ungefähr 0,0004 0/00.

Wir halten fest, dass sich bei atmosphärischem CVD ergibt:

\[GR_F \approx 2 \times 10^{-4} \text{ Å/(sccm.min)} \]

\[GA_F \approx 0,0004 \text{ 0/00.} \]

5 Aus (5), kombiniert mit (4) und (7), ergibt sich die Abschätzung für UHV-CVD zu

\[GR_F \approx 0,1 \text{ Å/(sccm.min)} \] und

\[GA_F \approx 0,0035 \text{ entsprechend ca. 35 0/00.} \]

Dies zu den bis anhin industriell eingesetzten Verfahren für die Herstellung von Schichten in Epitaxie-Qualität.

Aus der DE-OS 36 14 384 ist nun weiter ein PECVD-Verfahren bekannt, bei welchem DC-Glimmentladung in Form einer Niederspannungs-Entladung eingesetzt wird. Damit sollen Schichten mit besonders guten mechanischen Eigenschaften schnell, d.h. mit hoher Wachstumsrate, abgelegt werden.

Eine Kathodenkammer mit Heisskathode kommuniziert mit einem Vakuumrezipienten über eine Blende. Der Blende gegenüberliegend ist eine Anode vorgesehen. Parallel zu der zwischen Blende und Anode gebildeten Entladungsschachse ist eine Einlassanordnung für ein Reaktivgas vorgesehen, dieser Anordnung, bezüglich der Entladungsschachse gegenüberliegend, sind die Werkstücke angeordnet. Mit Bezug auf Anodenpotential, werden Entladungsspannungen \(U_{AK} \) unterhalb 150 V angelegt, und die Entladung wird mit einer Stromstärke \(I_{AK} \) von wenigstens 30 A betrieben. Für die Beschichtung werden die Werkstücke auf negative Potentiale zwischen 48 und 610 V gebracht.

Die darin gezeigten Versuche ergeben folgendes Bild:
(Anhang "A" PCT/CH98/00221)

<table>
<thead>
<tr>
<th>Beispiel</th>
<th>GR[Å/min]</th>
<th>GR₉[Å/(sccm.min)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10³</td>
<td>2,5</td>
</tr>
<tr>
<td>2</td>
<td>380</td>
<td>1,2</td>
</tr>
<tr>
<td>3</td>
<td>2 x 10³</td>
<td>2,5</td>
</tr>
<tr>
<td>4 (Si)</td>
<td>166</td>
<td>0,7</td>
</tr>
<tr>
<td>5</td>
<td>466</td>
<td>1,2</td>
</tr>
<tr>
<td>6</td>
<td>750</td>
<td>0,7</td>
</tr>
<tr>
<td>7</td>
<td>250</td>
<td>0,5</td>
</tr>
<tr>
<td>8</td>
<td>500</td>
<td>0,75</td>
</tr>
<tr>
<td>9</td>
<td>316</td>
<td>0,38</td>
</tr>
<tr>
<td>10</td>
<td>344</td>
<td>0,18</td>
</tr>
<tr>
<td>11</td>
<td>62</td>
<td>0,18</td>
</tr>
<tr>
<td>12</td>
<td>58</td>
<td>0,14</td>
</tr>
</tbody>
</table>

Wie gezeigt werden wird, ist es dabei möglich, in Epitaxie-Qualität

a) Wachstumsraten GR von mindestens 150 Å/min, gar von mindestens 600 Å/min

b) GR₉ von mindestens 7,5 Å/(sccm.min), oder gar 40 Å/(sccm.min), vorzugsweise gar 75 Å/(sccm.min) zu erzielen, und weiter

c) Gasausnutzungsziffern GA₉ zu erzielen mindestens im Bereich von 5%.
(Anhang "A" PCT/CH98/00221)

Es wird erkannt, dass am erfindungsgemäss eingesetzten DC-PECVD-Verfahren die Plasmaentladung zu tiefstenergetischen Ionen führt, ebenso zu tiefstenergetischen Elektronen, dass aber die Ladungsträgerdichte, insbesondere die Elektronendichte an der ausgenutzten Entladung sehr gross ist.

Die Erfindung wird anschliessend anhand von Figuren beispielsweise erläutert. Es zeigen:

Fig. 1: schematisch eine erste bevorzugte Ausführungsform einer erfindungsgemässen Anlage zur Durchführung der erfindungsgemässen Verfahren,

Fig. 2: schematisch eine zweite bevorzugte Ausführungsform einer Anlage gemäss Fig. 1 mit mehreren Betriebsvarianten,

Fig. 3: bei Betrieb einer Anlage gemäss Fig. 2 für eine Siliziumbeschichtung, die Abhängigkeit der Wachstumsrate von der Wafer-Temperatur,

Fig. 4: in Funktion des Entladungsstromes, die Zunahme der Wachstumsrate bezogen auf den Reaktivgasfluss, GR,

Fig. 5: in Funktion des Reaktivgasflusses, die Wachstumsrate bei unterschiedlichen Plasmadichten im Bereich der Werkstücke,

Fig. 6: in Funktion der Germanium-Konzentration an der abgeschiedenen Schicht, die Wachstumsrate und

Fig. 7: Im Feld Wachstumsrate/Gasausnutzungsziffer die Resultate gemäss Stand der Technik und gemäss Erfindung.

Vorab, eine Anlage gemäss z.B. der DE-OS 36 14 384 kann durchaus für die Durchführung der erfindungsgemässen Verfahren eingesetzt werden, sofern sie so betrieben wird, dass die erfindungsgemässen Bedingungen eingehalten werden.
Gemäß Fig. 1 weist eine heute bevorzugte erste Anlage zur Durchführung des erfindungsgemäßen Verfahrens einen Vakuumrezipienten 1 auf, an welchen, über eine Blende 3, eine Kathodenkammer 5 angeflanscht ist. In bekannter Art und Weise kann die Kathodenkammer 5 auf das elektrische Potential des Rezipienten 1 gelegt sein, oder die Kathodenkammer 5 kann bezüglich des Rezipienten 1 isoliert und auf davon abweichendes Potential gelegt sein (nicht dargestellt).

In der Kathodenkammer 5 ist eine Heisskathode 7, ein Filament, vorgesehen, vorzugsweise direkt beheizt mittels eines Heizstromgenerators 9.

Konzentrisch zur Achse A der Entladung mit dem Entladungs-Strom \(I_{AX} \) ist ein Gaseindüsring 23 vorgesehen als Reaktivgaseindüsranordnung, verbunden mit einer Gastankanordnung 25 für Reaktivgas, welches, mit steuerbarem Fluss \(F \) (sccm), in den Rezipienten eingelassen wird.

(Anhang "A" PCT/CH98/00221)

Die Anlage in ihrer Ausführungsform gemäß Fig. 1 wird wie folgt betrieben:

- Die Rezipientenwand entsprechend 1 wird als Anode der Entladung eingesetzt und ist hierzu auf ein Bezugspotential, wie dargestellt vorzugsweise auf Masse, geschaltet. Entsprechend ist mittels eines vorzugsweise einstellbaren DC-Generators 11 die Kathode 7 auf (negatives) Potential gelegt. Über dem Generator 11 liegt die Entladespannung \(U_{\text{AK}} \), der Entladestrom \(I_{\text{AK}} \) fließt zwischen Kathode 7 und Rezipienten 1.

- In einer zweiten Betriebsvariante der in Fig. 1 dargestellten Anlage wird der Werkstückträger 13 mittels eines DC-Bias-Generators 15 auf die Spannung \(U_S \) gelegt.

In Fig. 2 ist eine weitere bevorzugte, erfindungsgemässe Anlage zur Durchführung des erfindungsgemässe Verfahrens dargestellt. Es sind für gleiche Teile die selben Bezugszeichen wie in Fig. 1 verwendet. Die Anlage nach Fig. 2 unterscheidet sich wie folgt von der in Fig. 1 dargestellten und beschriebenen:

Es ist eine ringförmige Hilfsanode 19 vorgesehen, welche konzentrisch zur Entladungssachse A angeordnet ist.

Folgende Betriebsarten sind hier möglich:

- Wie mit dem Variationsschalter S schematisch dargestellt, wird die Rezipientenwandung des Rezipienten 1, wie bereits in Fig. 1, auf Bezugs- vorzugsweise Massepotential gelegt oder, über ein Impedanzelement 14, vorzugsweise ein Widerstandselement, an ein Potential, vorzugsweise das Bezugspotential, gefesselt oder aber potential-schwebend betrieben. Die Hilfsanode 19 wird dann, wenn der Rezipient 1 auf Bezugspotential gelegt ist entweder auf das Potential des Rezipienten gelegt oder mittels eines vorzugsweise einstellbaren DC-Generators 21 an Spannung gelegt.
(Anhang "A" PCT/CH98/00221)

- Wenn der Rezipient 1 über Impedanzelement 14 an ein Bezugspotential gefesselt wird, dann wird die Hilfsanode mittels des DC-Generators 21 betrieben, es erscheint die Entladespannung U_{AK} wie gestrichelt dargestellt zwischen Kathode 7 und Hilfsanode 19. Dies ist auch dann der Fall, wenn die Rezpientenwandung 1 potential-schwebend betrieben wird.

Heute wird der Betrieb der Anlage nach Fig. 2 mit auf Masse gelegter Rezpientenwand und Hilfselektrode 19 sowie potenti-al-kontrolliert betriebenem Werkstückträger 13 bevorzugt. In allen Anlagen-Varianten sind folgende Einstellungen wesent-
lich:

- **Totaldruck P_T im Rezpienten:**

 10^{-4} mbar $\leq P_T \leq 10^{-1}$ mbar

 vorzugsweise 10^{-3} mbar $\leq P_T \leq 10^{-2}$ mbar

 typischerweise im Bereich von $5 \cdot 10^{-3}$ mbar. Dieser Druck wird vornehmlich sichergestellt durch den Partialdruck des Arbeitsgases, vorzugsweise Argon. Die Vakuumpumpe 27 ist des-
halb, wie erwähnt, vorzugsweise als Turbovakuumpumpe ausge-
bildet, insbesondere als Turbomolekularpumpe.

- **Arbeitsgasdruck P_A:**

 Dieser wird wie folgt gewählt:

 10^{-4} mbar $\leq P_A \leq 10^{-1}$ mbar

 vorzugsweise zu

 10^{-3} mbar $\leq P_A \leq 10^{-2}$ mbar

- **Reaktivgaspartialdruck P_R:**

 Dieser wird vorzugsweise wie folgt gewählt:
(Anhang "A" PCT/CH98/00221)

\[10^{-5} \text{ mbar} \leq P_R \leq 10^{-1} \text{ mbar} \]

ergänzt durch
\[10^{-4} \text{ mbar} \leq P_R \leq 10^{-2} \text{ mbar}. \]

Insbesondere für Silizium- und/oder Germanium-haltige Gase werden Partialdrücke zwischen \(10^{-4}\) mbar und \(25 \cdot 10^{-3}\) mbar an-geraten. Zur Unterstützung der Planarität (Oberflächenrauhig-
keit), vor allem für Mehrfachschicht-Abscheidungen und Schichten mit Dotierung wird weiter anerkannt, zusätzlich ei-
en Wasserstoff-Partialdruck in der Größenordnung von \(10^{-4}\) bis \(10^{-2}\) mbar, vorzugsweise von ca. \(10^{-3}\) mbar vorzusehen.

- **Gasströme:**

Argon: weitestgehend abhängig von Rezipienten- und Kathoden-
kammer-Volumen, zur Einstellung des erforderlichen Partial-
druckes \(P_A\) bzw. \(P_T\).

Reaktionsfluss: 1 bis 100 sccm, insbesondere für Silizium-
und/oder Germanium-haltige Gase:

\(H_2\): 1 bis 100 sccm.

- **Entladespannung \(U_{AK}\):**

Die Entladespannung, sei dies zwischen Kathode 7 und Rezi-
pienten 1 gemäß Fig. 1 oder zwischen Kathode 7, Rezipienten
1 und Hilfsanode 19 bzw. zwischen Kathode 7 und Hilfsanode
19, wird wie folgt eingestellt:

\[10 \text{ V} \leq U_{AK} \leq 80 \text{ V}, \text{ vorzugsweise} \]

\[20 \text{ V} \leq U_{AK} \leq 35 \text{ V}. \]

- **Entladesströme, \(I_{AK}\):**
Diese werden wie folgt gewählt:

\[5 \text{ A} \leq I_{\text{A}} \leq 400 \text{ A}, \text{ vorzugsweise} \]
\[20 \text{ A} \leq I_{\text{A}} \leq 100 \text{ A}. \]

- **Werkstückspannung \(U_s \):**

5 In jedem Fall wird diese Spannung unterhalb der Sputterschwelle der Entladung gewählt. Sie wird in allen Fällen wie folgt eingestellt:

\[-25 \text{ V} \leq U_s \leq +25 \text{ V}, \]

vorzugsweise für Ga-Verbindungen, vorzugsweise für Si, Ge und deren Verbindungen

10 \[-20 \text{ V} \leq U_s \leq +20 \text{ V}, \]

vorzugsweise negativ, und dabei vorzugsweise zu

\[-15 \text{ V} \leq U_s \leq -3 \text{ V}. \]

- **Stromdichte am Ort der zu beschichtenden Werkstückoberfläche:**

15 Diese wird vorab mittels einer Sonde am Ort, wo nachmals die zu beschichtende Oberfläche positioniert wird, gemessen. Sie wird eingestellt bezogen auf die Sondenoberfläche zu mindes-

tens 0,05 A/cm², vorzugsweise zu mindestens 0,1 A/cm² bis max-

timal Entladungsstrom/Substratfläche.

20 Diese Stromdichte wird wie folgt gemessen und eingestellt:

Eine oder mehrere Sonden werden am Ort der nachmals zu be-

schichtenden Fläche positioniert und bezüglich Masse bzw. An-

odenpotential auf variable positive Spannung gelegt. Diese

wird solange erhöht, bis der gemessene Strom nicht mehr wei-

ter ansteigt. Der gemessene Stromwert ergibt, bezogen auf die
(Anhang "A" PCT/CH98/00221)

Sondenfläche, die gesamte Stromdichte. Diese wird nun durch Einstellung der Entladung auf den geforderten Wert gestellt. Die Einstellung der erwähnten Stromdichtewerte ist mit den bevorzugt eingestellten Entladeströmen I_{AK} zwischen 5 und 400 A, bzw. und bevorzugt zwischen 20 und 100 A ohne weiteres möglich.

Der hohe Fluss niederenergetischer Ionen und Elektronen, die auf das Werkstück auftreten, ist ein charakteristisches Merkmal des erfindungsgemässen Verfahrens, welches mithin als LEPECVD abgekürzt wird für "Low Energy Plasma Enhanced CVD".

Werden Galliumschichten oder Galliumverbindungs-Schichten abgelegt, so können diese durch Verwendung eines Dotierungsgases mit einem Element aus den Gruppen II oder III oder IV oder VI des Periodensystems dotiert werden, z.B. mit Mg oder Si.

Aufgrund der unüblich tiefen Entladespannungen, wie erwähnt bevorzugt im Bereich von 20 bis 35 V, ergibt sich ein Plasmapotential der Entladung entsprechend (15) nahe am Anodenpotential. Das Werkstück- bzw. Substratpotential kann potentialmäßig leicht so verstell werden, dass die Ionenenergien unterhalb 15 eV liegen, womit sich Ionenschäden während des Schichtwachstums am Werkstück vollständig vermeiden lassen.

Wie erwähnt wurde, ist eine möglichst hohe Plasmadichte am Werkstück anzustreben. Vorliegendenfalls wird die Plasmadichte durch die Stromdichte an der Werkstückoberfläche gegeben. Sie wird wie vorgängig angegeben mittels Sonden in einem Kalibrier-Arbeitsgang gemessen und eingestellt.

Die Anlagen, wie sie schematisch in den Fig. 1 und 2 dargestellt sind, sind wohl heute bevorzugte Ausführungsformen, wobei die erfindungsgemäßen Verfahren sich durchaus auch an Anlagen realisieren lassen, die beispielsweise in der DE-OS 36 14 384 dargestellt sind, wenn sie entsprechend bestückt und geführt werden. Wesentlich erscheint bis heute der potential-kontrollierte Betrieb des Werkstückes.

20 Mittels einer Anlage, wie sie in Fig. 2 schematisch dargestellt ist, wurden 3"-Silizium-Einkristallsubstrate mit Silizium bzw. einer Silizium/Germanium-Legierung epitaktisch beschichtet. Das Volumen des Rezipienten 1 betrug 60 l.

Die Anlage wurde wie folgt betrieben:

25 Hilfsanode 19 auf Potential des Rezipienten 1; Werkstückträger 13 auf kontrolliertes Biaspotential. Rezipient als Anode auf Masse.

Folgende Arbeitspunkteinstellungen wurden vorgenommen:

- **Werkstücktemperaturen Tₜ**
Plasmainduziert ergeben sich Werkstücktemperaturen von nur wenigen 100°C, so z.B. von ca. 150°C.

Dies ist ausserordentlich vorteilhaft zum Beschichten thermisch kritischer Substrate, wie z.B. organischer Substrate.

Höhere, erwünschte Temperaturen werden durch separates Heizen erreicht. Für die Herstellung von Si- und/oder Ge-Schichten und Schichten mit Ge-Si-Verbindungen werden Werkstücktemperaturen T_s

$$300^\circ C \leq T_s \leq 600^\circ C$$

angeraten, für Ga-Schichten oder Ga-Verbindungsschichten:

$$300^\circ C \leq T_s \leq 800^\circ C.$$

Weil das Verfahren "kalt" ist, ist man höchst flexibel in der Temperatur-Wahl, je nach Schichtmaterial und Substratmaterial.

<table>
<thead>
<tr>
<th>Fluss [sccm]</th>
<th>Partialdruck [mbar]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar</td>
<td>6.8×10^{-3}</td>
</tr>
<tr>
<td>H$_2$</td>
<td>7×10^{-4}</td>
</tr>
<tr>
<td>SiH$_4$</td>
<td>10^{-5}</td>
</tr>
</tbody>
</table>

Entladestrom $I_{A\kappa}$: 70 A.

Entladespannungen $U_{A\kappa}$: 25 V.

Substrat-Temperatur: 550°C (mit Heizung geheizt)

In einem ersten Versuch wurde mit Hilfe der Heizung 17 die Substrattemperatur variiert. Dabei wurden die übrigen Arbeitspunkt-Parameter konstant gelassen. In Fig. 3 ist das Resultat dargestellt. Aus dieser Figur ist ersichtlich, dass die Wachs-
tumsrate GR nur sehr wenig von der Werkstück- bzw. Substrattemperatur T_{13} abhängt. Die grosse Streuung der Messwerte rührt davon her, dass bei der Versuchsanlage vor jeder Abscheidung Betriebsparameter jeweils von Hand wieder eingestellt werden mussten.

Ausgehend von den erwähnten Arbeitspunktwerten wurde nun der Entladestrom I_{AK} variiert, durch Einstellung der Entladespannung U_{AK} und gegebenenfalls Variation des Kathoden-Heizstromes. Alle übrigen Parameter wurden wieder konstant gehalten. Wenn auch der Entladestrom I_{AK} nicht direkt der Ladungsträgerdichte bzw. Plasmadichte an der zu beschichtenden Oberfläche entspricht, so ist doch, bei sonst konstant belassenen Parametern, die Plasmadichte, entsprechend der Stromdichte an der zu beschichtenden Werkstückoberfläche, im wesentlichen proportional zum Entladestrom. Deshalb zeigt das in Fig. 4 dargestellte Resultat durchaus die Proportionalität und den Proportionalitätsfaktor zwischen der Wachstumsrate GR und der Plasmadichte. Diese Proportionalität dürfte anhalten, solange die Gasausnutzung nicht ca. 60 % übersteigt und Sättigungseffekte auftreten. Wie erwähnt kann die Plasmadichte nebst z.B. durch Verstellung des Entladestromes auch durch Fokussierung bzw. Defokussierung der Niederspannungsentladung bzw. durch deren Umlenken beeinflusst werden. Auch hier erklärt sich die relative grosse Streuung durch das Vorgehen bei der Einstellung der Entladebedingungen.

Höchst aufschlussreich ist schliesslich Fig. 5. Diese ist das Ergebnis von Versuchen, bei welchen, bei sonst konstant gehaltenen Parametern, der Reaktivgasfluss F variiert wurde, ausgehend vom Arbeitspunkt 10 sccm. Die Gerade (a) ergab sich bei bezüglich der Achse A von Fig. 1 durch Magnetfeldeinstellung örtlich leicht versetzter Niederspannungsentladung, was am Substrat zu einer Plasmadichtereduktion führte bzw. geringerer Rate, bei einem Entladestrom I_{AK} von 20 A.
Kurve (b) zeigt die Rate bei nicht abgelenkter Entladung und bei \(I_{AK} = 20 \) A. Schliesslich zeigt (c) die erhöhte Rate bei nicht abgelenkter Entladung mit \(I_{AK} = 70 \) A.

Bei einem Reaktivgasfluss von 10 sccm ergibt sich bei einer Temperatur des Substrates von 550°C und 70 A Entladestrom \(I_{AK} \), wie Fig. 3 bestätigt, eine GR von ca. 15 Å/sec.

Bei einem Entladestrom von 70 A bei einem Reaktivgasfluss von 10 sccm wird dieses Resultat auch durch Fig. 4 bestätigt. Die GR fällt bei einem Entladestrom von 20 A auf ca. 6 Å/sec ab.

Es seien nun die erfindungsgemässen Resultate mit den Resultaten vorbekannter Techniken verglichen.

a) Vergleich mit APCVD (2)

Aus Fig. 5 ergibt sich beispielsweise für den Punkt P1:

\[
GR \approx 1200 \text{ Å/min}, \text{ verglichen mit}
\]

\[
GR \approx 2 \times 10^{-2} \text{ Å/min bei APCVD}.
\]

Aus Fig. 5 ergibt sich für den Punkt P1 ein Wert \(\text{GR}_f \) von 80 Å/(sccm.min)

Der entsprechende Wert bei APCVD beträgt

\[
\text{GR}_f \approx 2 \times 10^{-4} \text{ Å/(sccm.min)}
\]

Berechnet man bei LEPECVD gemäss Erfindung die Gasausnützungsziffer für ein 3"-Substrat, so ergibt sich

\[
\text{GA}_f \approx 6,8 \times 10^{-2}, \text{ entsprechend ca. 6,8 \%}.
\]

Dabei ist zu berücksichtigen, dass diese Ziffer mit grösser werdenden Substratfläche, z.B. auf 5", noch wesentlich besser wird.
(Anhang "A" PCT/CH98/00221)

In Fig. 7 sind folgende Resultate dargestellt:

- Im Feld I: für APCVD, LPCVD, RPECVD;
- Im Feld II: für UHVCVD
- Im Feld III: für ECRCVD

- Im Feld IV: gemäß vorliegender Erfindung.

Sie gelten für Temperaturen ≤ 600°C.

In diesem Zusammenhang muss nochmals betont werden, dass es das erfindungsgemäße Vorgehen erlaubt, relativ grosse Flächen zu beschichten, womit die Gasausnutzungsziffer G_A zusätzlich steigt.

Werden, analog, die Grössen Wachstumsrate GR, Wachstumsrate pro Reaktivgasflusseinheit GR_F und die Gasausnutzungsziffer G_A mit den entsprechenden Zahlen für CVD unter atmosphärischen Druckbedingungen verglichen, so ergeben sich erfindungsgemäss in jeder Beziehung drastische Verbesserungen. Vergleicht man schliesslich die Resultate gemäß vorliegender Erfindung mit denjenigen, die erhalten werden, wenn ein PECVD-Verfahren mit Niederspannungsentladung gemäss der DE-OS 36 14 384 betrieben wird, so zeigt sich, dass erstaunlicherweise die erfindungsgemäss erzielte Wachstumsrate von 1200 Å/min wesentlich grösser ist, als die höchsten, mit dem vorbekannten Vorgehen erzielten Wachstumsraten und dass zusätzlich die erfindungsgemäss erzielte Wachstumsrate pro Reaktivgasflusseinheit GR_F praktisch um zwei 10er-Potenzen höherliegt.

Es ist somit höchst erstaunlich, dass durch ganz bestimmte Betriebsbedingungen an der Anlage, prinzipiell wie sie aus der DE-OS 36 14 384 vorbekannt war, derartige Verbesserungen erzielbar sind, unter Berücksichtigung, dass die erfindungsgemäss
abgelegten Schichten, bezüglich Defektdichte, Epitaxiespiegelung gegeben.

Dies wurde höchst einfach dadurch überprüft, dass beim beschriebenen Betrieb der Anlage nach Fig. 2 mit den angegebenen Arbeitspunktparametern, bei Einlegen eines monokristallinen Substrates eine hochwertige Epitaxieschicht erzielt wurde, bei Einlegen eines amorphen Substrates hingegen, bei weiterhin festgehaltenen Arbeitspunktparametern, eine amorphe Beschichtung.

In Fig. 5 ist im weiteren bei P2 der Messpunkt eingetragen, wenn anstelle einer reinen Si-Schicht eine SiGe-Epitaxieschicht abgelegt wird, die 4 % Ge enthält.

Wie bereits daraus ersichtlich, ändern sich entgegen den vorerwähnten Erkenntnissen beim erfindungsgemäßen Vorgehen die Verhältnisse nicht, wenn eine Ge/Si-Legierung abgelegt wird. Dies bestätigt Fig. 6, wo in Funktion des Ge-Gehaltes in % bei den angegebenen Arbeitspunkten die Wachstumsrate GR angegeben ist. Daraus ist ersichtlich, dass sich die Wachstumsrate in einem sehr grossen Bereich des Ge- zu Si-Verhältnisses im wesentlichen nicht ändert.

Mit dem erfindungsgemäßen Vorgehen werden, kombiniert, höchste Schichtqualität bei sehr hohen Abscheidungsraten und gleichzeitig bei sehr hohem Wirkungsgrad, was abgelegtes Schichtmaterial pro eingelassener Reaktivgasmenge anbelangt, und bei tiefen Temperaturen ≤ 600°C, erreicht. Damit eignet sich das vorgeschlagene Vorgehen ausserordentlich gut für die industrielle...
(Anhang "A" PCT/CH98/00221)

Fertigung, seien dies epitaxialer Schichten oder seien dies anderer Schichten in höchster Qualität.
Literaturangaben:

(2) Atmospheric pressure chemical vapor deposition of Si and SiGe at low temperatures, T.O. Sedgwick and P.D. Agnello, J. Vac.Sci.Technol. A10, 1913 (1992)

(4) Low-temperature silicon epitaxy by ultrahigh vacuum/chemical vapor deposition, B.S. Meyerson, Appl. Phys. Lett. 48, 797 (1986)

(6) Silicon epitaxy at 650 - 800°C using low-pressure chemical vapor deposition both with and without plasma enhancement, T.J. Donahue and R. Reif. J. Appl. Phys. 57, 2757 (1985)

Patentansprüche:

1. Verfahren zur Herstellung beschichteter Werkstücke, mit
 für die Epitaxie genügender Qualität, dadurch gekennzeichnet,
 dass man das Werkstück mittels PECVD beschichtet unter Einsatz
 einer DC-Entladung.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass
 die Beschichtung mit einer Wachstumsrate
 \[\text{GR} \geq 150 \text{ Å/min} \]
 und mit einer Gasausnützungs-Ziffer
 \[1 \% \leq \text{GA}_p \leq 90 \% \]
 erfolgt.

3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass
 die Wachstumsrate
 \[\text{GR} \geq 300 \text{ Å/min} \]
 beträgt, vorzugsweise
 \[\text{GR} \geq 600 \text{ Å/min}, \text{ besonders bevorzugt} \]
 \[\text{GR} \geq 1'000 \text{ Å/min}. \]

4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass
 die Gasausnützungsziffer
 \[\text{GA}_p \geq 5 \% \]
 ist.

5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass man die Entladung so stellt, dass sich bei
 Sondenmessung am Ort, wo nachmals die zu beschichtende Werk-
 stückfläche positioniert wird, und auf gleichem Potential eine
 Stromdichte von mindestens 0,05 A/cm² Sondenfläche einstellt,
 vorzugsweise von mindestens 0,1 A/cm² bis zu einer Dichte von
 höchstens Entladestrom/Substratfläche.

6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass
 die gemessene Stromdichte überwiegend durch Elektronen-Einfall
 erzeugt wird.

7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass man einen Entladestrom I_{AE} zu
5 A ≤ \(I_{AK} \) ≤ 400 A

wählt, vorzugsweise zu

20 A ≤ \(I_{AK} \) ≤ 100 A.

8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass man die Entladungsspannung \(U_{AK} \) zu

10 V ≤ \(U_{AK} \) ≤ 80 V

vorzugsweise zu

20 V ≤ \(U_{AK} \) ≤ 35 V

wählt.

9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass man den Reaktivgas-Partialdruck \(P_R \) im Prozessraum zu

\[10^{-5} \text{ mbar} ≤ P_R ≤ 10^{-1} \text{ mbar} \]

wählt, vorzugsweise zu

\[10^{-4} \text{ mbar} ≤ P_R ≤ 10^{-2} \text{ mbar}. \]

10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass man die Entladung vornehmlich als Elektronenquelle für die Reaktivgas-Dissociation einsetzt.

12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass man im Prozessraum einen Totaldruck \(P_T \) wie folgt einstellt:
(Anhang "A" PCT/CH98/00221)

\[10^{-4} \text{ mbar} \leq P_T \leq 10^{-1} \text{ mbar}, \]

vorzugsweise

\[10^{-3} \text{ mbar} \leq P_T \leq 10^{-2} \text{ mbar}. \]

5 13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass man im Rezipienten einen Arbeitsgaspartialdruck \(P_A \) wie folgt einstellt:

\[10^{-4} \text{ mbar} \leq P_A \leq 10^{-1} \text{ mbar}, \text{ vorzugsweise} \]

\[10^{-3} \text{ mbar} \leq P_A \leq 10^{-2} \text{ mbar}. \]

10 14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass man die Entladespansnung zwischen Entladungskathode und auf ein Bezugspotential, vorzugsweise Massepotential, gelegte Vakuum Rezipientenwand anlegt.

15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass man das Werkstück im Prozessraum

- auf Schwebepotential betreibt oder

- auf ein aufgeschaltetes Biaspotential legt.

16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, dass man das Werkstück auf einer Spannung \(U_S \) bezüglich Entladungsanode betreibt, die negativ ist, vorzugsweise \(U_S \geq -25 \text{ V} \) beträgt, vorzugsweise zwischen \(-15 \text{ V} \) bis \(-3 \text{ V} \) beträgt.

17. Verfahren nach einem der Ansprüche 14 bis 16, dadurch gekennzeichnet, dass man entlang der Entladungs-Strecke eine Hilfsanode vorsieht, vorzugsweise in Form einer die Entladung umschlingenden Ringanode, und diese auf eine vorzugsweise ein-
stellbare Spannung bezüglich Entladungskathode betreibt, die vorzugsweise nicht grösser ist als die Entladungs-Spannung.

18. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass im Vakuum-Rezipienten eine diesbezüglich isoliert montierte Anode für die Entladung vorgesehen wird, vorzugsweise in Form einer Ringanode.

19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass man das Werkstück im Prozessraum

- auf Schwebeopotential oder

- auf ein aufgeschaltetes Biaspotential

legt.

21. Verfahren nach einem der Ansprüche 18 bis 20, dadurch gekennzeichnet, dass man die Vakuum-Rezipientenwand

- auf Schwebeopotential oder

- über ein Impedanzelement an ein Bezugspotential gefesselt

betreibt.

22. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass man das Werkstück bezüglich Anode der Entladung auf einer Spannung zwischen -25 V und +25 V betreibt, vorzugsweise für Ga-Verbindungen, vorzugsweise für Si-, Ge- oder deren Verbindungen, vorzugsweise

\[-20 \text{ V} \leq U_8 \leq +20 \text{ V}\]
(Anhang "A" PCT/CH98/00221)

dabei vorzugsweise auf einer negativen.

23. Verfahren nach einem der Ansprüche 1 bis 22, dadurch gekennzeichnet, dass man die Werkstücktemperatur auf höchstens 600°C hält, vorzugsweise zwischen 300°C und 600°C, vorzugsweise für Si-, Ge- oder deren Verbindungen und vorzugsweise für Ga-Verbindungen zwischen 300° und 800°C.

24. Verfahren nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, dass man die Beschichtung mit einer Beschichtungsrate pro Reaktivgasfluss-Einheit GR₂ vornimmt, welche mindestens 7,5 Å/(sccm.min) beträgt, vorzugsweise mindestens 40 Å/(sccm.min), besonders vorzugsweise mindestens 75 Å/(sccm.min) beträgt.

25. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass man erwünschte Beschichtungsratenänderungen durch im wesentlichen hierzu proportionales Verstellen des Reaktivgasflusses in den Vakuumrezipienten vornimmt.

27. Verfahren nach einem der Ansprüche 1 bis 26, dadurch gekennzeichnet, dass man das Werkstück unabhängig von der Entladung heizt.

(Anhang "A" PCT/CH08/00221)

30. Verwendung nach Anspruch 29 für die Herstellung von Substraten mit einer Halbleiter-Epitaxieschicht oder einer polykristallinen oder einer amorphen Halbleiterschicht, vorzugsweise gesteuert durch das unbeschichtete Substrat, insbesondere dessen Oberflächeneigenschaften.

32. Verwendung nach einem der Ansprüche 28 bis 30 für die Herstellung von Substraten mit einer Ga-Schicht oder einer Ga-Verbindungs-Schicht, vorzugsweise dotiert mit mindestens einem Element der Gruppen II, III, IV oder VI des Periodensystems, z.B. mit Mg oder Si.

34. Verwendung nach einem der Ansprüche 28 bis 33 für die Werkstückbeschichtung mit Beschichtungsraten pro Reaktivgasfluss-Einheit, GRₚ, von mindestens 7,5 Å/(sccm.min), vorzugsweise von mindestens 40 Å/(sccm.min), vorzugsweise gar von mindestens 75 Å/(sccm.min).

35. Verwendung nach Anspruch 34 für die Beschichtung von Substraten bei Substrattemperaturen unterhalb 600°C, vorzugsweise zwischen 300° und 600°C für Si- Ge- und deren Verbindungen,
vorzugsweise zwischen 300° und 800° für vorzugsweise Ga-
Verbindungen.

36. Anlage zur Durchführung des Verfahrens nach einem der An-
sprüche 1 bis 26 mit einem Vakuumrezipienten, über eine Blende
daran angekoppelt, einer Kathodenkammer mit mindestens einer
Heisskathode und einem im Rezipienten angeordneten Werkstück-
träger sowie einer Anodenanordnung, wobei der Werkstückträger
elektrisch isoliert im Rezipienten montiert ist.

37. Anlage nach Anspruch 36, dadurch gekennzeichnet, dass der
Werkstückträger bezüglich der Anode auf einstellbare Spannung
legbar ist oder potential-schwebend ist, dabei das Rezipienten-
gehäuse auf Anodenpotential liegt und die Kathode mit Bezug auf
Anodenpotential auf kathodisches Potential, vorzugsweise zwi-
schen 10 und 80 V, dabei besonders bevorzugterweise zwischen 20
und 35 V, legbar ist, wobei vorzugsweise der Werkstückträger
bezogen auf das Anodenpotential höchstens um ± 25 V verstellbar
ist.

38. Anlage nach Anspruch 36 oder 37, dadurch gekennzeichnet,
dass die Anodenanordnung für die Entladung die Vakuum-
Rezipientenwand umfasst oder die Anodenanordnung im Rezipienten
isoliert montiert ist.

39. Anlage nach Anspruch 38, dadurch gekennzeichnet, dass der
Werkstückträger potential-schwebend ist und so angeordnet ist,
dass seine Spannung bezüglich der Anodenanordnung sich nicht
negativer als -25 V einstellt, vorzugsweise auf -3 V bis -15 V.

40. Anlage nach Anspruch 38, dadurch gekennzeichnet, dass der
Werkstückträger mittels einer vorzugsweise einstellbaren Bias-
Quelle bezüglich der Anodenanordnung auf eine Spannung von -25
V bis +25 V legbar ist, vorzugsweise auf eine negative, vor-
zugsweise von -15 V bis -3 V.
(Anhang "A" PCT/CH98/00221)

41. Anlage nach einem der Ansprüche 36 bis 40, dadurch gekennzeichnet, dass eine Hilfsanode vorgesehen ist, vorzugsweise in Form einer konzentrisch zur Achse der Blende angeordneten Ringanode, die bezüglich Rezipientenwandung auf gleiches oder unterschiedliches Potential legbar ist bzw. gelegt ist.

42. Anlage nach einem der Ansprüche 36 bis 41, dadurch gekennzeichnet, dass die Rezipientenwand potential schwebend oder über ein Impedanzelement, vorzugsweise ein Widerstandselement, an ein Bezugspotential gefesselt ist.

43. Anlage nach einem der Ansprüche 36 bis 42, dadurch gekennzeichnet, dass zwischen Heisskathode und mindestens einem Teil der Anodenanordnung eine Spannung U_{AK} von

\[10 \, V \leq U_{AK} \leq 80 \, V, \text{ vorzugsweise} \]
\[20 \, V \leq U_{AK} \leq 35 \, V \]

eingestellt ist.

44. Anlage nach einem der Ansprüche 36 bis 43, dadurch gekennzeichnet, dass zwischen Werkstückträger und höchstem Potential an der Anodenanordnung eine Spannung U_s von

\[-25 \, V \leq U_s \leq +25 \, V \]

eingestellt ist, vorzugsweise eine negative, vorzugsweise von

\[-15 \, V \leq U_s \leq -3 \, V. \]

45. Anlage nach einem der Ansprüche 36 bis 44, dadurch gekennzeichnet, dass in die Kathodenkammer eine mit einem Arbeitsgas- tank, vorzugsweise einem Argongastank, verbundene Gaszuführeite einmündet.

46. Anlage nach einem der Ansprüche 36 bis 45, dadurch gekennzeichnet, dass im wesentlichen konzentrisch zur Blendenachse
(Anhang "A" PCT/CH98/00221)

eine Magnetanordnung vorgesehen ist zur Erzeugung eines zur Blendenachse koaxialen oder diesbezüglich versetzten Magnetfeldes im Rezipienten, wobei die Magnetanordnung Permanentmagnete und/oder mindestens eine Spulenordnung umfasst.

47. Anlage nach einem der Ansprüche 36 bis 46, dadurch gekennzeichnet, dass der Rezipient an eine Turbovakuumpumpe, vorzugsweise eine Turbomolekularpumpe, angeschlossen ist.

48. Anlage nach einem der Ansprüche 36 bis 47, dadurch gekennzeichnet, dass die Heisskathode einen Elektronenstrom von 5 bis 400 A liefert, vorzugsweise zwischen 20 und 100 A.

49. Anlage nach einem der Ansprüche 36 bis 48, dadurch gekennzeichnet, dass der Werkstückträger am Ort höchster Elektronendichte der Entladung, vorzugsweise im wesentlichen konzentrisch zur Blendenachse im Rezipienten angeordnet ist.

50. Anlage nach einem der Ansprüche 36 bis 49, dadurch gekennzeichnet, dass der Rezipient mit einer Gastankanordnung verbunden ist, die ein Si- und/oder Ge-haltiges Gas enthält oder ein Ga-haltiges Gas, vorzugsweise zusätzlich mit H₂.

51. Verwendung der Anlage nach einem der Ansprüche 36 bis 50 nach den Ansprüchen 28 bis 35.

52. Verwendung eines PECVD-Beschichtungsverfahrens mit DC-Entladung für das Aufwachsen von Epitaxie-Schichten.

54. Verwendung des Verfahrens nach einem der Ansprüche 1 bis 27 bzw. einer Anlage nach einer der Ansprüche 36 bis 50 für die Herstellung von Solarzellen.
Zusammenfassung:

(Ende des Anhangs "A" der Beschreibung PCT/CH98/00221)

Es wird vorgeschlagen, Schichten auf Werkstücke in für Epitaxie genügender Qualität abzulegen und dabei die Abscheiderate dadurch wesentlich zu erhöhen, dass anstelle beispielsweise von UHV-CVD oder ECR-CVD ein PECVD-Verfahren eingesetzt wird, unter Einsatz einer DC-Plasmaentladung.

(keine Fig.)
(Anhang "A")

FIG.1

Anhang "A"

FIG.2
(Anhang "A")

FIG. 3

![Graph](image1)

FIG. 4

![Graph](image2)
Intense Plasma, $I_{AK} = 70 \text{A}$

Deflected Plasma, $I_{AK} = 20 \text{A}$

$Si_{0.96}Ge_{0.04}$

FIG. 5

FIG. 6
(Anhang "A")

Anhang "A"

FIG. 7
Patentansprüche:

1. Verfahren zur Herstellung von Teilen als elektronische, optoelektronische, optische oder mikromechanische Bauelemente oder als Zwischenprodukte hierfür, durch Einsatz mindestens eines plasmaunterstützten Behandlungsschrittes, bei dem in einem Prozessraum (PR) eingelassenes Reaktivgas oder -gasgemisch mittels einer niedrigerenergetischen Plasmaentladung (PL) mit Ionenenergie E an der Oberfläche des in der Plasmaentladung gelegenen Teiles von $0 \text{ eV} < E \leq 15 \text{ eV}$ aktiviert wird, dadurch gekennzeichnet, dass die Prozessatmosphäre (PR) während dem Behandlungsschritt von der Innenwandung eines an Umgebung liegenden Vakuumrezipienten (1) getrennt (15; 15a; 14; 15b) wird.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der mindestens eine plasmaunterstützte Behandlungsschritt einer der folgenden ist:

 (a) Beschichten des Teiles oder

 (b) Verändern der Materialzusammensetzung des Teiles bis zu einer vorgegebenen Eindringtiefe

 (c) Ätzen der Oberfläche des Teiles.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass vor und/oder nach dem mindestens einen plasmaunterstützten Behandlungsschritt ein plasmaunterstützter Reinigungsschritt als ein weiterer
plasmaunterstützter Behandlungsschritt genannter Art vorgenommen wird, bevorzugterweise in einem Plasma, enthaltend Wasserstoff, Edelgas oder eine Mischung daraus.

\[0 \text{ eV} < E \leq 15 \text{ eV} \]

15 aktiviert wird, wobei während dem Teilreinigungsschritt die Reinigungsprozessatmosphäre mittels einer metallischen Umkapselung (15b) von der Innenwandung eines an Umgebung liegenden Vakuumrezipienten abgetrennt wird oder - und dies bevorzugt - die Reinigungsprozessatmosphäre direkt durch die Innenwandung des an Umgebung liegenden Vakuumrezipienten (1) begrenzt wird.

5. Verfahren nach einem der Ansprüche 3 oder 4 zur Erzeugung eines virtuellen Substrates, dadurch gekennzeichnet, dass man

i) ein Substrat einer Reinigung nach Anspruch 3 oder 4, vorzugsweise unter Mitverwendung von Wasserstoff als Reaktivgas, unterzieht;
ii) eine heteroepitaktische Schicht als plasmaunterstützten Behandlungsschritt aufwächst;

iii) gegebenenfalls eine zu nutzende Halbleiterschicht als weiteren plasmaunterstützten Behandlungsschritt aufwächst.

7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass man das Teil, örtlich getrennt, mindestens zweien der plasmachemischen Behandlungsschritte unterzieht und den Transport des Teiles dazwischen in Vakuum vornimmt.

9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Trennung durch Begrenzung des Prozessraumes mittels einer im Neuzustand chemisch gegen das plasmaaktivierte Reaktivgas oder -gasmisch inerte Oberfläche erfolgt, vorzugsweise mittels einer dielektrischen oder graphitischen Oberfläche.

10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die inerte Oberfläche die Oberfläche einer Trennwand ist, die entlang Überwiegender Flächenabschnitte von der Innenwandung des Vakuumrezipienten beabstandet (ZW) wird.

11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass der Prozessraum (PR) und der Zwischenraum (ZW) zwischen Trennwand und Innenwandung des Vakuumrezipienten gleich oder unterschiedlich (13a, 13b, 115) gepumpt werden.

12. Verfahren nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass die Oberfläche im Neuzustand aus mindestens einem der folgenden Materialien realisiert wird:

Quarz, Graphit, Siliziumkarbid, Siliziumnitrid, Aluminiumoxid, Titanoxid, Tantaloxid, Nioboxid, Zirkonoxid, oder einer geschichteten Kombination dieser Materialien, diamantähnlicher Kohlenstoff oder Diamant.

13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass man in einer Trennwand eine Zuführungöffnung (123) für das Teil (120) vorsieht und diese, für die Behandlung, mit dem Teil und/oder mit einem Träger (119) für das Teil (120) verschließt.

14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass man die Plasmaentladung mit einer
Elektronenquelle (105) mit Elektronenenergie ≤ 100 eV, vorzugsweise ≤ 50 eV, insbesondere bevorzugt mittels einer DC-Entladung realisiert.

15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass man die Plasmaentladung mittels einer thermionischen Kathode (107) realisiert, vorzugsweise mit einer direkt beheizten thermionischen Kathode.

16. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass man im Prozessraum mindestens zwei örtlich versetzte und vorzugsweise je beheizbare Anoden (117a, 117b) für die Plasmaentladung vorsieht, vorzugsweise je getrennt elektrisch betätigbar, und durch Steuerung der je daran angelegten elektrischen Potentiale und/oder ihrer Temperatur die Plasmadichteverteilung (V) im Prozessraum dynamisch oder statisch einstellt oder steuert.

17. Verfahren nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass man im Prozessraum (PR) ein Magnetfeld (H) erzeugt (133, 135) und mittels dieses Magnetfeldes, stationär und/oder dynamisch, die Plasmadichteverteilung (V) an der Teiloberfläche einstellt oder steuert, vorzugsweise mindestens örtlich wobbelt.

18. Verfahren nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass das Reaktivgas verteilt in die Prozessatmosphäre eingelassen (137) wird, vorzugsweise mit einer Einströmrichtung im wesentlichen parallel zur Teiloberfläche (120) und, weiter bevorzugt, mit von der Teiloberfläche äquidistanten Eindüsungsstellen.
19. Verfahren nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass man für den mindestens einen plasmaunterstützten Behandlungsschritt den Partialdruck von Gasen in der Prozessatmosphäre (PR), abgesehen von einem Arbeitsedelgas und dem Reaktivgas bzw. dessen gasförmige Reaktionsprodukte, auf höchstens 10^{-8} mbar, vorzugsweise auf höchstens 10^{-9} mbar hält (UHV).

20. Verfahren nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass der mindestens eine plasmaunterstützte Behandlungsschritt das Ablegen einer homo- oder heteroepitaktischen Schicht ist.

22. Verfahren nach einem der Ansprüche 1 bis 21, dadurch gekennzeichnet, dass das Teil ein im wesentlichen scheibenförmiger Teil (120) ist.

23. Verfahren nach einem der Ansprüche 1 bis 22, dadurch gekennzeichnet, dass das der Behandlung unterworfene Teil ein Silizium-Wafer oder ein Wafer aus einem Verbindungshalbleiter, vorzugsweise aus Galliumarsenid oder Indiumphosphid oder Siliziumkarbid oder aus Glas ist.

24. Verfahren nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, dass eine Schicht mit mindestens einem der folgenden Materialien abgelegt wird:

Silizium, Silizium-Germanium-Verbindung, Silizium-Germanium-Kohlenstoff-Verbindung, Diamant, diamantähnliche Verbindung, Siliziumkarbid, Siliziumnitrid, Aluminiumoxid,
Siliziumoxid, Galliumnitrid, Galliumarsenid, Aluminium, Kupfer, Indiumphosphid, kubisches Bornitrid.

25. Verfahren nach einem der Ansprüche 1 bis 24 für die Herstellung von virtuellen Substraten, die vorzugsweise Silizium-Germanium enthalten.

26. Verfahren nach einem der Ansprüche 1 bis 25 für die Behandlung von Teilen mit einem Durchmesser der jeweils gleichzeitig zu behandelnden Oberflächen von mindestens 150 mm, vorzugsweise von mindestens 200 mm, vorzugsweise gar von mindestens 300 mm.

27. Verfahren nach einem der Ansprüche 1 bis 26, dadurch gekennzeichnet, dass die plasmaunterstützte Behandlung ein Beschichten des Teiles mit einer Beschichtungsrate von mindestens 60 nm/Min. ist.

\[0 \text{ eV} < E \leq 15 \text{ eV} \]
29. Vakuumbehandlungssystem, insbesondere für die Durchführung eines der Verfahren nach einem der Ansprüche 1 bis 28 mit

- mindestens einer Vakuумkammer (1), darin

5 - mindestens einem Werkstückträger (5),

- einer Plasmaerzeugungsanordnung zur Erzeugung eines Plasmas in der Kammer (1),

- einer mit einer Gastankanordnung mit mindestens einem Reaktivgas oder -Gasgemisch verbundenen Gaseinlassanordnung (7) in der Kammer (1),

dadurch gekennzeichnet, dass in der Vakuумkammer (1) eine Prozesskammer (PR) vorgesehen ist, worin der Werkstückträger (5) in Bearbeitungsposition freiliegt, worin das Plasma (PL) erzeugt wird und womit die Gaseinlassanordnung in Wirkverbindung steht, wobei weiter die Prozesskammer-Innenwandoberfläche, im Neuzustand, aus einem gegen das plasmaaktivierte Reaktivgas oder -Gasgemisch inerten Material (15, 15a, 113) besteht, vorzugsweise aus einem dielektrischen Material oder graphitischen Material.

30. Vakuuumbehandlungssystem nach dem Oberbegriff von Anspruch 29, dadurch gekennzeichnet, dass in der Vakuумkammer eine Prozesskammer (PR) vorgesehen ist, worin der Werkstückträger (15) in Bearbeitungsposition freiliegt, worin das Plasma (PL) erzeugt wird und womit die Gaseinlassanordnung (7) in Wirkverbindung steht, wobei weiter die Prozesskammer (PR) von einer entlang
überwiegender Flächenabschnitte von der Vakuumkammerwandung nach innen abgesetzten Ummantelung (14, 15b) gebildet ist.

32. Vakuumbehandlungssystem nach einem der Ansprüche 29 bis 31, dadurch gekennzeichnet, dass im Neuzustand die Innenfläche (15, 15a, 113) der Prozesskammer mindestens an überwiegenden Abschnitten aus mindestens einem der folgenden Materialien besteht:

10 Quarz, Graphit, Siliziumkarbid, Siliziumnitrid, Aluminiumoxid, Titanoxid, Tantaloxid, Nioboxid, Zirkonoxid, oder einer geschichteten Kombination dieser Materialien, diamantähnlicher Kohlenstoff oder Diamant.

33. System nach einem der Ansprüche 29 bis 32, dadurch gekennzeichnet, dass die Prozesskammerwand (14, 15b, 113) austauschbar bezüglich der Vakuumkammerwand (1) befestigt ist.

34. System nach einem der Ansprüche 29 bis 33, dadurch gekennzeichnet, dass die Plasmaerzeugungsanordnung eine Anordnung zur Erzeugung einer niederenergetischen Plasmaentladung ist mit Ionenergie E im Bereich des Werkstückträgers (5) von $0 \, \text{eV} < E \leq 15 \, \text{eV}$.

35. System nach Anspruch 34, dadurch gekennzeichnet, dass die Plasmaerzeugungsanordnung eine Elektronenquelle (105) mit Elektronenenergie $\leq 100 \, \text{eV}$, vorzugsweise $\leq 50 \, \text{eV}$ umfasst, vorzugsweise eine DC-Niederspannung-Plasmaerzeugungsanordnung ist, insbesondere bevorzugt mit
thermionischer Kathode (107), insbesondere einer direkt geheizten thermionischen Kathode.

36. System nach einem der Ansprüche 29 bis 35, dadurch gekennzeichnet, dass an der Vakuumkammer (1) und diesbezüglich bevorzugterweise elektrisch isoliert, eine Kathodenkammer (109) angebracht ist, mit der Vakuumkammer (1) über eine Blende (111) kommunizierend.

37. System nach Anspruch 36, dadurch gekennzeichnet, dass die Achse (A) der Blende (111) die Werkstückaufnahmefläche (119a) des Werkstückträgers (119) schneidet, vorzugsweise im wesentlichen senkrecht schneidet, vorzugsweise im wesentlichen zentral.

38. System nach Anspruch 30 oder einem der Ansprüche 32 bis 37, sofern von Anspruch 30 abhängig, dadurch gekennzeichnet, dass das Material der Prozesskammerwandung (15b) aus einem Metall, vorzugsweise aus Tantal oder Inkonell, besteht.

39. System nach einem der Ansprüche 35 bis 38, dadurch gekennzeichnet, dass in der Prozesskammer (PR) mindestens zwei örtlich versetzte Anoden (117a, b) vorgesehen sind, welche auf unterschiedliche elektrische Potentiale legbar sind und welche bevorzugterweise je beheizbar sind.

40. System nach Anspruch 36 oder 37, dadurch gekennzeichnet, dass entlang der Blendenachse (A), in ihrer Längsausrichtung versetzt, mindestens zwei bevorzugt zur Achse koaxiale Anoden (117a, b) in der Prozesskammer vorgesehen sind, welche, weiter bevorzugt, auf
unterschiedliche elektrische Potentiale legbar sind und, weiter bevorzugt, je unterschiedlich beheizbar sind.

41. System nach einem der Ansprüche 29 bis 40, dadurch gekennzeichnet, dass die Vakuumkammerwand (101) in überwiegenden Flächenabschnitten doppelwandig ausgebildet ist und der Zwischenraum mit einem Temperiermediumanschluss verbunden ist, vorzugsweise mit einem Anschluss für eine Temperierflüssigkeit.

42. System nach der Ansprüche 29 bis 41, dadurch gekennzeichnet, dass eine Magnetfelderzeugungsanordnung (133, 135), vorzugsweise eine steuerbare, vorgesehen ist, die in der Prozesskammer (PR) ein Magnetfeld erzeugt und die bevorzugterweise ausserhalb der Vakuumkammer vorgesehene Helmholtz-Spulen (133) umfasst.

43. System nach einem der Ansprüche 29 bis 42, dadurch gekennzeichnet, dass die Prozesskammer (PR) entlang überwiegender Flächenabschnitte von der Vakuumkammerwand (1) beabstandet ist, und dass das Innere der Prozesskammer (PR) und der so gebildete Zwischenraum über gleiche oder unterschiedliche Pumpquerschnitte mit einem gemeinsamen Pumpanschluss wirksmäßig sind oder für Prozesskammer und Zwischenraum je mindestens ein Pumpanschluss vorgesehen ist.

44. System nach einem der Ansprüche 29 bis 43, dadurch gekennzeichnet, dass der Werkstückträger (119) bezüglich einer Öffnung (123) an der Prozesskammer (PR), vorzugsweise linear und in Richtung der Öffnungsflächennormalen, getrieben (121) beweglich ist und bevorzugterweise in gegen
die Prozesskammer (PR) hochgefahrener Position den
Prozesskammer-Innenraum verschliesst.

45. System nach einem der Ansprüche 29 bis 44, dadurch
gekennzeichnet, dass der Werkstückträger (119) mit einer
Temperiereinrichtung (127) wirkverbunden ist.

46. System nach einem der Ansprüche 29 bis 45, dadurch
gekennzeichnet, dass die Vakuumkammer (1) mindestens eine
dichtend verschliessbare Werkstückzuführöffnung (129)
aufweist.

47. Vakuumbehandlungssystem nach einem der Ansprüche 29
bis 46, dadurch gekennzeichnet, dass die Vakuumkammer (1)
eine gesteuert verschliessbare Werkstückzuführöffnung (129)
hat, und dass mindestens zwei der Vakuumkammern vorgesehen
sind, deren Zuführöffnungen über eine Vakuum-
Werkstücktransportanordnung verbunden sind.

48. System nach Anspruch 47, dadurch gekennzeichnet, dass
die Vakuumtransportanordnung eine lineare
Transportanordnung oder eine rotatorische (150)
Transportanordnung ist, vorzugsweise letzteres.

49. System nach einem der Ansprüche 47 oder 48, dadurch
gekennzeichnet, dass die Prozesskammer (PR) in einer der
vorgesehenen Vakuumkammern (1) durch die metallische
Innenfläche der Vakuumkammer (1) selbst begrenzt ist und
die Plasmaerzeugungsanordnung zur Erzeugung des Plasmas
sowie die mit einer Tankanordnung mit mindestens einem
Reaktivgas verbundene Gaseinlassanordnung aufweist.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>IPC</th>
<th>Classification</th>
<th>IPC</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>C23C16/44</td>
<td></td>
<td>C23C16/02</td>
<td></td>
</tr>
<tr>
<td>C23C16/42</td>
<td></td>
<td>C23C16/24</td>
<td></td>
</tr>
<tr>
<td>C23C16/513</td>
<td></td>
<td>C23C14/56</td>
<td></td>
</tr>
</tbody>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C23C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

WPI Data, PAJ, EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 4 786 616 A (AWAL MUHAMMAD A ET AL) 22 November 1988 (1988-11-22) column 2, line 15 - column 4, line 58; figure 1 column 5, line 45 - column 5, line 58</td>
<td>2,3,5-8, 19-29, 46,47</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

8 May 2002

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk

Tel: (+31-70) 940-0240, Tx: 31 651 epo nl,
Fax: (+31-70) 940-3016

Authorized officer

Thanos, I
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>WO 98 58099 A (BALZERS HOCHVAKUUM AG; ROSENBLAD CARSTEN (CH); RANNM JUERGEN (CH)); 23 December 1998 (1998-12-23) page 16, line 21 -page 20, line 22; figures 1,2 page 13, line 5 -page 16, line 2 page 6, line 4 -page 6, line 10 page 7, line 13 -page 7, line 24 page 17, line 8 -page 18, line 5</td>
<td>2,3,5-8, 19-29, 46,47</td>
</tr>
<tr>
<td>Y</td>
<td>EP 0 859 070 A (APPLIED MATERIALS INC) 19 August 1998 (1998-08-19)</td>
<td>1,3,9, 14,15, 19,29, 34-40,42</td>
</tr>
<tr>
<td>X</td>
<td>column 1, line 8 -column 2, line 53 column 5, line 45 -column 5, line 55 column 2, line 24 -column 2, line 54; figure 1</td>
<td>29,32,38</td>
</tr>
<tr>
<td>Y</td>
<td>column 3, line 30 -column 4, line 56 column 5, line 2 -column 5, line 55</td>
<td>1,2,32</td>
</tr>
<tr>
<td>Y</td>
<td>US 5 891 350 A (LUSCHER PAUL ERNEST ET AL) 6 April 1999 (1999-04-06)</td>
<td>1,2,32</td>
</tr>
<tr>
<td>X</td>
<td>column 6, line 12 -column 6, line 37 column 11, line 17 -column 11, line 29 column 14, line 25 -column 14, line 42; figure 1</td>
<td>29,33</td>
</tr>
<tr>
<td>A</td>
<td>EP 0 884 401 A (APPLIED MATERIALS INC) 16 December 1998 (1998-12-16) column 3, line 10 -column 6, line 18 column 12, line 16 -column 12, line 28; figure 1A</td>
<td>1,2,9, 24,29, 32,46,49</td>
</tr>
<tr>
<td>A</td>
<td>US 5 824 365 A (WESTMORELAND DONALD L ET AL) 20 October 1998 (1998-10-20) column 1, line 21 -column 1, line 39 column 2, line 15 -column 2, line 33 column 3, line 21 -column 3, line 64; figures 2,4</td>
<td>1,2,9, 24,29, 32,49</td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. ☐ Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. ☐ Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. ☐ Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

See supplemental sheet

1. ☐ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. ☐ As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. ☐ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. ✗ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims, it is covered by claims Nos.:

 Claims Nos. 1, 2 (in part), 3, 5, 6 to 9 (all in part), 12 (in part), 15, 19, 22, 23 (in part), 25-27, 28 (in part), 29, 32 to 40 (all in part), 42 (in part), 46, 47, 48 (in part) and 49.

Remark on Protest

☐ The additional search fees were accompanied by the applicant's protest.

☐ No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)
The International Searching Authority has found that this international application contains multiple inventions, as follows:

1 Claims Nos. 1, 2 (in part), 3, 5, 6 to 9 (all in part), 12 (in part), 15, 19, 22, 23 (in part), 25-27, 28 (in part), 29, 32 to 40 (all in part), 42 (in part), 46, 47, 48 (in part) and 49.

The invention also refers to the provision of a suitable vacuum processing system for carrying out a method for producing parts, on which the same demands are made as those for coating parts with an epitaxial layer. In order to achieve longer serviceable lives and high production rates, the invention provides, as a special technical feature, that the structures of a vacuum recipient, which ensure the necessary vacuum-technology pressure ratios with regard to the ambient pressure, are functionally separated from those, which are directly subjected to the processing process. Otherwise, a plasma-supported processing step is provided which uses a low-energy plasma discharge in accordance with the contents of document WO 98/58099.

2. Claims Nos. 10, 11, 12 (in part), 30, 31, 32 to 40 (all in part), 41 and 43

"The delimitation of the process chamber of a vacuum recipient" is regarded as a common special technical feature of the subject matter of these claims (directed at a production method and at a vacuum processing system) for carrying out the aforementioned method as per Claim No. 1 by means of a separating wall, which is comprised of a material suited for the process atmosphere and which is located at a distance from the inner wall of the vacuum recipient. This enables the dimensions of the process chamber, which is located under UHV and which accommodates a workpiece to be processed, to be smaller than those of the vacuum recipient.

3. Claims Nos. 4, 6 to 9 (all in part), and 28 (in part)

Production method as per Claim No. 1, according to which the special technical feature lies in a cleaning step in a recipient, said cleaning step preceding a planned coating. The metallic surface of the inner wall is exposed to the process atmosphere or the process chamber of the vacuum processing system to be used is delimited by the metallic inner surface of the vacuum chamber itself.
Additional matter PCT/ISA/210

The International Searching Authority has found that this international application contains multiple inventions, as follows:

1 Claims Nos. 1, 2 (in part), 3, 5, 6 to 9 (all in part), 12 (in part), 15, 19, 22, 23 (in part), 25-27, 28 (in part), 29, 32 to 40 (all in part), 42 (in part), 46, 47, 48 (in part) and 49.

The invention also refers to the provision of a suitable vacuum processing system for carrying out a method for producing parts, on which the same demands are made as those for coating parts with an epitaxial layer. In order to achieve longer serviceable lives and high production rates, the invention provides, as a special technical feature, that the structures of a vacuum recipient, which ensure the necessary vacuum-technology pressure ratios with regard to the ambient pressure, are functionally separated from those, which are directly subjected to the processing process. Otherwise, a plasma-supported processing step is provided which uses a low-energy plasma discharge in accordance with the contents of document WO 98/58099.

2. Claims Nos. 10, 11, 12 (in part), 30, 31, 32 to 40 (all in part), 41 and 43

"The delimitation of the process chamber of a vacuum recipient" is regarded as a common special technical feature of the subject matter of these claims (directed at a production method and at a vacuum processing system) for carrying out the aforementioned method as per Claim No. 1 by means of a separating wall, which is comprised of a material suited for the process atmosphere and which is located at a distance from the inner wall of the vacuum recipient. This enables the dimensions of the process chamber, which is located under UHV and which accommodates a workpiece to be processed, to be smaller than those of the vacuum recipient.

3. Claims Nos. 4, 6 to 9 (all in part), and 28 (in part)

Production method as per Claim No. 1, according to which the special technical feature lies in a cleaning step in a recipient, said cleaning step preceding a planned coating. The metallic surface of the inner wall is exposed to the process atmosphere or the process chamber of the vacuum processing system to be used is delimited by the metallic inner surface of the vacuum chamber itself.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 4786616</td>
<td>22-11-1988</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1260009 T</td>
<td>12-07-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0988407 A1</td>
<td>29-03-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002504061 T</td>
<td>05-02-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69801291 D1</td>
<td>13-09-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69801291 T2</td>
<td>02-05-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 10219434 A</td>
<td>18-08-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 53145 A1</td>
<td>28-09-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0814495 A2</td>
<td>29-12-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 10970199 A</td>
<td>10-03-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6221782 B1</td>
<td>24-04-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2061014540 A1</td>
<td>16-08-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 8279399 A</td>
<td>22-10-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 11016845 A</td>
<td>22-01-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 469943 B</td>
<td>21-10-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6121161 A</td>
<td>19-09-2000</td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

A. KLASSEFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 C23C16/44 C23C16/02 C23C16/42 C23C16/24 C23C16/513 C23C14/56

Nach der internationalen Patenklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE
Recherchierter Mindestproßtstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 C23C

Recherchierte aber nicht zum Mindestproßtstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)
WPI Data, PAJ, EPO-Internal

C. ALS WESENTLICH ANGEGEHEN UND ANRINGEN UNTERLAGEN

| Kategorie* | Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile | Betr. Anspruch Nr.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spalte 2, Zeile 15 -Spalte 4, Zeile 58; Abbildung 1 Spalte 5, Zeile 45 -Spalte 5, Zeile 58</td>
<td>--- --/--</td>
</tr>
</tbody>
</table>

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

X Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen :
 A Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
 E älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
 L Veröffentlichung, die geprüft ist, ohne Prioritätanspruch zweiseitig erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll
 O Veröffentlichung, die sich auf eine mögliche Entdeckung, die Benutzung, eine Ausstellung oder andere Maßnahme bezicht
 P Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

Datum des Abschlusses der internationalen Recherche
8. Mai 2002

Name und Postanschrift der internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlant 2 NL - 2280 HV Rijswijk Tel. (+31-70) 540-0490, Tx. 31 651 ecp nl, Fax: (+31-70) 540-3016

Absenderdatum des internationalen Recherchenberichts

Bevollmächtigter Bediensteter
Thanos I
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröfentlichtung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>WO 98 58099 A (BALZERS HOCHVAKUUM AG; ROENBLAD CARSTEN (CH); RAMM JUERGEN (CH)); 23. Dezember 1998 (1998-12-23)</td>
<td>2, 3, 5-8, 19-29, 46, 47</td>
</tr>
<tr>
<td></td>
<td>Seite 16, Zeile 21 - Seite 20, Zeile 22; Abbildungen 1, 2</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Seite 13, Zeile 5 - Seite 16, Zeile 2</td>
<td>1-3, 9, 14, 15, 19, 29, 34-40, 42</td>
</tr>
<tr>
<td>Y</td>
<td>Seite 6, Zeile 4 - Seite 6, Zeile 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seite 7, Zeile 13 - Seite 7, Zeile 24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seite 17, Zeile 8 - Seite 18, Zeile 5</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Spalte 1, Zeile 8 - Spalte 2, Zeile 53</td>
<td>29, 32, 38</td>
</tr>
<tr>
<td></td>
<td>Spalte 5, Zeile 45 - Spalte 5, Zeile 55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spalte 2, Zeile 24 - Spalte 2, Zeile 54; Abbildung 1</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Spalte 3, Zeile 30 - Spalte 4, Zeile 56</td>
<td>1, 2, 32</td>
</tr>
<tr>
<td></td>
<td>Spalte 5, Zeile 2 - Spalte 5, Zeile 55</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>US 5 891 350 A (LUSCHER PAUL ERNEST ET AL) 6. April 1999 (1999-04-06)</td>
<td>1, 2, 32</td>
</tr>
<tr>
<td>X</td>
<td>Spalte 6, Zeile 12 - Spalte 6, Zeile 37</td>
<td>29, 33</td>
</tr>
<tr>
<td></td>
<td>Spalte 11, Zeile 17 - Spalte 11, Zeile 29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spalte 14, Zeile 25 - Spalte 14, Zeile 42; Abbildung 1</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>EP 0 884 401 A (APPLIED MATERIALS INC) 16. Dezember 1998 (1998-12-16)</td>
<td>1, 2, 9, 24, 29, 32, 46, 49</td>
</tr>
<tr>
<td></td>
<td>Spalte 3, Zeile 10 - Spalte 6, Zeile 18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spalte 12, Zeile 16 - Spalte 12, Zeile 28; Abbildung 1A</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US 5 824 365 A (WESTMORELAND DONALD L ET AL) 20. Oktober 1998 (1998-10-20)</td>
<td>1, 2, 9, 24, 29, 32, 49</td>
</tr>
<tr>
<td></td>
<td>Spalte 1, Zeile 21 - Spalte 1, Zeile 39</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spalte 2, Zeile 15 - Spalte 2, Zeile 33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spalte 3, Zeile 21 - Spalte 3, Zeile 64; Abbildungen 2, 4</td>
<td></td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

Field I Bemerkungen zu den Ansprüchen, die sich als nicht recherchierbar erwiesen haben (Fortsetzung von Punkt 2 auf Blatt 1)

Gemäß Artikel 17(2)a) wurde aus folgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt:

1. □ Ansprüche Nr. weil sie sich auf Gegenstände beziehen, zu deren Recherche die Behörde nicht verpflichtet ist, nämlich

2. □ Ansprüche Nr. weil sie sich auf Teile der internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, daß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, nämlich

3. □ Ansprüche Nr. weil es sich dabei um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regel 6.4 a) abgefaßt sind.

Field II Bemerkungen bei mangelnder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 3 auf Blatt 1)

Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält:

siehe Zusatzblatt

1. □ Da der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht auf alle recherchierbaren Ansprüche.

2. □ Da für alle recherchierbaren Ansprüche die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine zusätzliche Recherchengebühr gerechtfertigt hätte, hat die Behörde nicht zur Zahlung einer solchen Gebühr aufgefordert.

3. □ Da der Anmelder nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht nur auf die Ansprüche, für die Gebühren entrichtet worden sind, nämlich auf die Ansprüche Nr.

4. □ Der Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der internationale Recherchenbericht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen erfaßt:
 1, 2 (teilweise), 3, 5, 6 bis 9 (alle teilweise), 12 (teilweise), 15, 19, 22, 23 (teilweise), 25–27, 28 (teilweise), 29, 32 bis 40 (alle teilweise), 42 (teilweise), 46, 47, 48 (teilweise) und 49

Bemerkungen hinsichtlich eines Widerspruchs □ Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt.
□ Die Zahlung zusätzlicher Recherchengebühren erfolgte ohne Widerspruch.
Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere (Gruppen von) Erfindungen enthält, nämlich:

1. Ansprüche: 1, 2 (teilweise), 3, 5, 6 bis 9 (alle teilweise), 12 (teilweise), 15, 19, 22, 23 (teilweise), 25-27, 28 (teilweise), 29, 32 bis 40 (alle teilweise), 42 (teilweise), 46, 47, 48 (teilweise) und 49

2. Ansprüche: 10, 11, 12 (teilweise), 30, 31, 32 bis 40 (alle teilweise), 41 und 43

Als gemeinsames, besonderes technisches Merkmal der Gegenstände dieser Ansprüche (gerichtet auf ein Herstellungsverfahren und auf ein Vakuumbehandlungssystem) gilt "die Begrenzung des Prozessraums eines Vakuumrezipienten" zur Durchführung des gattungsgemäßen Verfahrens gemäß Anspruch 1 anhand einer Trennwand bestehend aus einem für die Prozessatmosphäre passenden Material, die von der Innenwandung des Vakuumrezipienten befestigt wird. Dadurch wird ermöglicht, die Abmessungen des unter UHV befindlichen und einen zu behandelnden Werkstück aufnehmenden Prozessraums kleiner als jene des Vakuumrezipienten zu gestalten.

3. Ansprüche: 4, 6 bis 9 (alle teilweise) und 28 (teilweise)

Herstellungsverfahren nach Anspruch 1, bei dem das besondere technische Merkmal in einem einer geplanten Beschichtung vorgeschalteten Reinigungsschritt in einem Rezipienten liegt, dessen metallische Oberfläche der Innenwandung der Prozessatmosphäre ausgesetzt wird, bzw die Prozeßkammer des zu gebrauchenden Vakuumbehandlungssystems durch die metallische Innenfläche der Vakuumkammer selbst begrenzt ist.
4. Ansprüche: 13 (teilweise), 44 (teilweise) und 45

Herstellungsverfahren nach Anspruch 1 und Vakuumbehandlungssystem nach Anspruch 29 mit einem Vakuumrezipient mit besonderen strukturellen Merkmalen eines im Rezipient vorgesehenen Werkstückträgers.

5. Anspruch: 13 (teilweise) und 24 (teilweise)

Herstellungsverfahren nach Anspruch 1, bei dem andere Materialien als Si/Ge zur Herstellung von elektronischen und optoelektronischen Teilen vorgesehen sind.

6. Anspruch: 18

Herstellungsverfahren nach Anspruch 1 nach dem, in einem Vakuumrezeptiven eine besondere Gaszuführungsrichtung für Reaktionsgase in den Prozessraum vorgesehen ist.

7. Ansprüche: 16, 17 und 42 (teilweise)

Herstellungsverfahren nach Anspruch 1 und Vakuumbehandlungssystem nach Anspruch 29 bei denen besondere strukturelle Elemente zur temporalen und räumlichen Steuerung der Magnetfeldlinien innerhalb des Prozessraums eines Vakuumbehandlungssystem vorgesehen sind.

8. Anspruch: 8 und 48 (beide teilweise)

Herstellungsverfahren nach Anspruch 1 und Vakuumbehandlungssystem nach Anspruch 29 bei denen eine spezielle Anordnung zur sequentiellen Behandlung von Werkstücken (lineare oder rotatorische) in geeigneten Vakuumbehandlungsrezipienten definiert wird.
<table>
<thead>
<tr>
<th>Patentnummer</th>
<th>Anmeldung</th>
<th>Veröffentlichung</th>
<th>Mitglied(en) der Patentfamilie</th>
<th>Veröffentlichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 4786616</td>
<td>A</td>
<td>22-11-1988</td>
<td>KEINE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CN 1260009 T</td>
<td>12-07-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EP 0988407 A1</td>
<td>29-03-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JP 2002504061 A</td>
<td>05-02-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DE 69801291 D1</td>
<td>13-09-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DE 69801291 T2</td>
<td>02-05-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JP 10219434 A</td>
<td>18-08-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SG 53145 A1</td>
<td>28-09-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EP 0814495 A2</td>
<td>29-12-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JP 10070109 A</td>
<td>10-03-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>US 6221782 B1</td>
<td>24-04-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>US 2061014540 A1</td>
<td>16-08-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JP 8279399 A</td>
<td>22-10-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JP 11016845 A</td>
<td>22-01-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TW 469943 B</td>
<td>21-10-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>US 6121161 A</td>
<td>19-09-2000</td>
</tr>
</tbody>
</table>