Title: PROCESS AND DEVICE FOR THE HEAT TREATMENT OF GASIFIED MATERIAL

Abstract

Gasified material is converted into process gas and process ash in a shaft-shaped reactor (1). The process gas is drawn off in the region of the hottest reaction zones and cracked in a specially labyrinthine flame channel (62) in a controlled manner with the stepwise admission of air and completely converted into an exhaust gas containing few harmful substances, which is taken to a waste heat boiler (33). A dry adsorption agent is added to the exhaust gas in or after this stage. Finally, the exhaust gas thus treated is scrubbed of dust behind the waste heat boiler (33) at temperatures of about 200°C.

Zusammenfassung

Vergasungsgut wird in einem schachtartigen Reaktor (1) in Prozeßgas sowie Prozeßgas und Prozeßgas abgehobenen. Im Bereich der heissten Reaktionszonen wird das Prozeßgas abgezogen und in einem insbesondere labyrinthartigen Flammenkanal (62) unter stufenweiser Luftzufuhr kontrolliert gerauchert und vollständig in ein schadstoffarmes Rauchgas umgewandelt. Dieses wird einem Abhitzekessel (33) zugeführt. In oder nach diesem wird das Rauchgas mit einem Trockenadsorptionsmittel versetzt. Das so behandelte Rauchgas wird letztlich hinter dem Abhitzekessel (33) bei Temperaturen um 200°C entstaubt.
BENENNUNGEN VON "DE"

Bis auf weiteres hat jede Benennung von "DE" in einer internationalen Anmeldung, deren internationaler Anmeldetag vor dem 3. Oktober 1990 liegt, Wirkung im Gebiet der Bundesrepublik Deutschland mit Ausnahme des Gebietes der früheren DDR.

AT	Österreich
AU	Australien
BB	Barbados
BE	Belgien
BF	Burkina Faso
BG	Bulgarien
BJ	Benin
BR	Brasilien
CA	Kanada
CF	Zentralafrikanische Republik
CG	Kongo
CH	Schweiz
CM	Kamerun
DE	Deutschland, Bundesrepublik
DK	Dänemark
ES	Spanien
FI	Finnland
FR	Frankreich
GA	Gabon
GB	Vereinigtes Königreich
GR	Griechenland
HU	Ungarn
IT	Italien
JP	Japan
KP	Demokratische Volksrepublik Korea
KR	Republik Korea
LI	Liechtenstein
LK	Sri Lanka
LU	Luxemburg
MC	Monaco
MG	Madagaskar
ML	Mali
MR	Mauritänien
MW	Malawi
NL	Niederlande
NO	Norwegen
RO	Rumänien
SD	Sudan
SE	Schweden
SN	Senegal
SO	Sowjetunion
TD	Tschad
TG	Togo
US	Vereinigte Staaten von Amerika

LEDIGLICH ZUR INFORMATION

Code, die zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäß dem PCT veröffentlichen.
Verfahren und Vorrichtung zur thermischen Behandlung
von Vergasungsgut

Die Erfindung betrifft einerseits ein Verfahren zur thermischen Behandlung von Vergasungsgut gemäß den Merkmalen im Ogebegriff des Anspruchs 1.

Andererseits richtet sich die Erfindung auf eine Vorrichtung zur thermischen Behandlung von Vergasungsgut gemäß den Merkmalen im Oberbegriff der Ansprüche 4 bis 6.

Je älter beispielsweise ein fossiler Brennstoff als Vergasungsgut oder je komplexer die Zusammensetzung eines Vergasungsguts ist, desto problematischer sind die Schwierigkeiten bei der Umwandlung der Vergasungsprodukte des Vergasungsguts.

Hierbei spielt insbesondere die Verweilzeit des Prozeßgases im Flammenkanal eine wesentliche Rolle. Diese wird bestimmt durch die Komplexität der hochmolekularen Verbindungen im Prozeßgas und die Kompliziertheit ihrer Umwandlung in niedermolekulare Verbindungen. Folglich müßte in Abhängigkeit von der Zusammensetzung der Prozeßgase die Länge des Flammenkanals entsprechend anpaßbar sein. Eine beliebige Längenveränderung des bekannten nahezu geradlinigen Flammenkanals ist aber z. B. im Hinblick auf die sich damit stellenden Probleme bezüglich der zur Verfügung stehenden Räumlichkeiten nicht ohne weiteres möglich oder sinnvoll.

Im bekannten Fall hat die sich im wesentlichen geradlinig erstreckende Anordnung des Flammenkanals zwischen dem Festbettvergaser und dem Heizkessel bei quer bzw. tangential eingeführter Sekundärluft ausgereicht, um Prozeßgase aus vegetabilischen Vergasungsgütern, wie z. B. Hölzern, einwand-
frei in Rauchgase umzuwandeln. Extrem problematisches Vergasungsgut, wie beispielsweise Tierkot oder Ölschlamm konnte jedoch aufgrund der geschilderten Probleme bei einem geradlinigen Flammenkanal nicht ausreichend auf wirtschaftliche Art und Weise umgewandelt werden.

Der Erfindung liegt die Aufgabe zugrunde, sowohl das im Oberbegriff des Anspruchs 1 vorausgesetzte Verfahren als auch die im Oberbegriff der Ansprüche 4 bis 6 beschriebene Vorrichtung hinsichtlich der Verfahrensflexibilität und der Erweiterung der Akzeptanz von insbesondere problematischem Vergasungsgut zu verbessern sowie neben einer mit einfachen Mitteln automatisierbaren Prozeßtechnik eine von der Beschaffenheit des Vergasungsguts unabhängige Fahrweise des Reaktors bei sicherer Beherrschung der stoffartbedingten Emissionsentwicklung zu gewährleisten.

Was den verfahrenstechnischen Teil dieser Aufgabe anlangt, so besteht dessen Lösung in den im kennzeichnenden Teil des Anspruchs 1 aufgeführten Merkmalen.

Das im Reaktor entstehende Prozeßgas wird in einen labyrinthartigen Flammenkanal überführt. Ein derartiger Aufbau erlaubt es, auf kleinstem Raum einen ausreichend langen Flammenkanal bereitzustellen, bei welchem neben den reaktionskinetisch günstigen Turbulenzen die Verweilzeit von Prozeßgasen mit selbst komplexen hochmolekularen Verbindungen so gezielt steuerbar ist, daß ihre teerigen und ölfigen Bestandteile stufenweise durch Cracken in niedermolekulare Verbindungen umgewandelt und ihre vollständige Oxidation in ein ausgebranntes geruchloses Rauchgas gewährleistet werden kann.

Die auf diese Weise erzeugten Rauchgase gelangen aus dem Labyrinth-Flammenkanal in einen Abhitzekessel, insbesondere einen Dreizugabhitzekessel, in welchem die bei der Verbrennung und Inertisierung der Rauchgase anfallende Wärme wirksam und weitgehend energetisch genutzt werden kann.

Kern der den Erfindungsgedanken weiterbildenden Ausführungsform gemäß Anspruch 2 bildet die Maßnahme, das Vergasungsgut auf dem Weg von der Aufgabestelle bis letztlich zu den Verbrennungs- bzw. Schlackenzonen so gezielt in einem geneigt angeordneten Reaktor innerhalb einer vergleichsweise dünnen Schüttschicht abwärts zu verlagern, daß sich mehrmals aufeinanderfolgend in einer stationären Phase, also bei ruhendem Vergasungsgut, eine Reaktionszonenstruktur aufbauen kann, wie sie sich üblicherweise in einem reinen Gegenstromvergaser bildet, welche dann anschließend in einer Vorschubphase wieder zerstört und umgeschichtet wird.

Während der Umschichtung wird die zuvor gebildete Reaktionszonenstruktur des Vergasungsguts aufgerissen bzw. gelockert und dabei das vermischte Vergasungsgut sich selbst überrollend bzw. überschlagend weiter in Längsrichtung des Reaktor-

Auf diese Weise ist nach einer materialabhängig vorgegebenen Anzahl von abwechselnd aufeinanderfolgenden stationären Phasen und Vorschubphasen am unteren Ende des Reaktorraums das Vergasungsgut vollständig in einen inerten Rückstand sowie in klares Prozeßgas umgesetzt.

Das erfindungsgemäße Verfahren stellt sicher, daß in jedem hinter der Aufgabenstelle des Reaktorraums gelegenen Abschnitt, an dem das Vergasungsgut an den thermischen Umsetzungen des ablaufenden Vergasungsprozesses teilnimmt, die Oxidationszone bei gleichbleibenden Vergasungsbedingungen immer dicker im Vergleich zu der abnehmenden und schließlich
ganz verschwindenden Dicke der Trocknungs-, Schwel- und Reduktionszonen wird. Am unteren Ende des sich geneigt er-
streckenden Reaktorraums sind schließlich nur noch die Oxidationszone sowie die Schlackenzone und die Zone der kühlenden Asche vorhanden.

5 Während der taktweisen (absatz- bzw: stufenweise) Abwärts-
bewegung des Vergasungsguts werden in den höher liegenden Bereichen des Reaktorraums beim Durchtritt des Vergasungsmittels durch das Vergasungsgut, also bei noch geringen Temperaturen Schwelgase erzeugt, die in den Reaktorraum oberhalb des Vergasungsguts eintreten. Gleichzeitig werden in einem geringen Umfang auch Feststoffpartikel aus dem Vergasungsgut mit in diesen Raum hineingerissen. Je tiefer das Vergasungsgut dann zwangsweise im Reaktorraum abwärtsbe-
wegt wird, desto mehr verschiebt sich die Erzeugung von überwiegend Schwelgas in überwiegend Reduktionsgas und schließlich in CO₂ in der Oxidationszone. Alle vorgenannten Gase und hier im einzelnen nicht näher definierte weitere Reaktionsgase vermischen sich dann in dem oberhalb der Vergasungsgutschüttung befindlichen Raum, wo Temperaturen bis über 1000 °C erreicht werden, die zu der vorstehend bereits erwähnten Verschiebung des Boudouard'schen Gleichge-
wichts in Richtung CO führen.

10 Aus dem Reaktorraum werden die Prozeßgase gemeinsam abgezo-
gen und dann in den Flammenkanal überführt.

20 Variable Taktzeiten und/oder Taktabstände erlauben es nicht nur, die Verweildauer des Vergasungsguts in den stationären Phasen materialabhängig exakt bestimmen zu können, sondern gestatten es auch, die Verlagerungsgeschwindigkeit, d. h. also den Entmischungsvorgang einer zuvor während einer stationären Phase aufgebauten Reaktionszone definiert, ggf. programmiert, zu steuern. Die Verlagerungsgeschwindigkeit des Vergasungsguts kann extern gesteuert werden.
Eine weitere vorteilhafte Ausführungsform des erfindungsge-
maßen Verfahrens besteht in den Merkmalen des Anspruchs 3.

Durch die Mischung des ölkontaminierten Vergasungsguts mit kohlenstoffhaltigen Zuschlagstoffen, mit hochreaktiven
Trockenadsorptionsmitteln und Filterstaub sowie mit Prozeß-
asche, insbesondere in einem hierfür geeigneten Zwangs-
mischer, können jetzt alle vorher nicht bzw. nur sehr schwer
handhabbaren, weil zähen, klebrigen, zähflüssigen, stich-
festen oder klumpigen Ölschlämmen und/oder Ölböden zunächst
dosierbar und danach sicher verarbeitungsfähig gemacht wer-
den. Das erdig-krümelige Mischprodukt erfährt hierbei eine
solche Vergleichmäßigung und Auflockerung, daß seine Stapel-
und Zwischenlagerung bzw. Aufhäufung - auch in Silos
bzw. in großer Schütthöhe - problemlos möglich ist. Es muß
also nicht befürchtet werden, daß das Mischprodukt wieder
verdichtet, verklumpt oder verklebt. Eine derart gezielte
Vorbehandlung stellt darüberhinaus sicher, daß während der
thermischen Behandlung das Mischprodukt stets luft- bzw.
gasdurchlässig bleibt und demzufolge während der Vergasung
geregelt, das heißt planmäßig allen zu durchlaufenden
Reaktionen kontrollierter unterzogen werden kann.

Als kohlenstoffhaltige Zuschlagstoffe eignen sich besonders
hochthermoreaktive Biomassen. Hierzu zählen beispielsweise
aschearme organische Reststoffe, wie Säge-, Fräs- und Hobel-
späne sowie Hackschnitzel und Rinde von feiner bis mittlerer
Körnung. Aber auch erdalkalireiche Reststoffe aus der Nah-
 rungsmittelproduktion, wie z. B. Kakao- oder Erdnüßschalen,
sind als Zuschlagstoffe geeignet. Selbstverständlich können
auch Kokse zur Mindest-C_{f+X}-Einstellung eingesetzt werden.
Die benötigte Menge des Zuschlagstoffs kann je nach Art, Beschaffenheit und Zusammensetzung des zu behandelnden öl-

Das Untermischen von Trockenadsorptionsmitteln zu dem Vergasungsgut sowie zu den kohlenstoffhaltigen Zuschlagstoffen dient der Einbindung von vorhandenen, entstehenden oder sich umbildenden, rohstoffgebundenen, gelösten oder gasförmigen Schadstoffen, insbesondere Schwefel- und Chlorverbindungen, an der Quelle ihres Auftretens. Es kann sich z. B. um Kalk bzw. Kalkhydratprodukte oder entsprechend andere emissions-
senkende Produkte, beispielsweise Dolomit, handeln. Die benötigte Menge des Trockenadsorptionsmittels wird dabei in erster Linie durch den Gehalt an Schwefel und Halogenver-
bindungen in den ölkontaminierten Stoffen bestimmt.

Als besonderer Vorteil im Rahmen dieser erfindungsgemäßen Ausführungsform können jetzt die bei der Vergasung anfallen-
den Filterstäube und die Prozeßasche zu dem ölkontaminierten Vergasungsgut gemischt werden. Durch die Verwendung des Filterstaubs als Primärzuschlagstoff kann frisches Trocken-
additiv eingespart werden, da der Filterstaub eine hierfür genügend hohe Alkalität aufweist. Durch die hohen pH-Werte des Filterstaubs und der Prozeßasche kann desweiteren eine erhebliche Senkung des Ascheschmelzpunkts gewährleistet werden. Die die Verschlickung fördernde Schmelzpunktnerie-
drigung ergibt sich dabei im wesentlichen durch die Zugabe des Trockenadsorptionsmittels, beispielsweise in Form von Kalkhydraten und Dolomit, ohne daß die kritischen Dissoziationstemperaturen und -bedingungen für die aus den basischen Feststoffen Schwefel und anderen Halogenen bei der Trocken-
adsorption entstandenen neuen Verbindungen erreicht werden.

Das dem Mischprodukt zuzusetzende Trockenadsorptionsmittel sollte vorteilhaft auf ein Kornspektrum von erheblich kleiner als 1/100 mm feinstaufgemahlen werden.

Eine erste vorteilhafte Lösung des gegenständlichen Teils der der Erfindung zugrundeliegenden Aufgabe wird in den Merkmalen des Anspruchs 4 gesehen.

Die Absetzung des Reaktorbodens in ortsfeste Abschnitte und zu diesen relativbewegliche Abschnitte erlaubt es einerseits, das Vergasungsgut während der Abwärtsbewegung in Abhängigkeit von seiner Zusammensetzung entsprechend mehrfach im Ruhezustand zu belassen, so daß sich die üblicherweise bei der Gegenstromvergasung einstellenden Reaktionszonen ausbilden können und gestattet es andererseits, zum Anbacken, Versintern oder Verkleben neigendes Vergasungsgut ständig aufzulockern und die Strukturen der Reaktionszonen wieder zu vermischen.

Die festen Abschnitte des Reaktorbodens sind zweckmäßig durch stufenweise, im Abstand übereinander angeordnete Roste gebildet. Die Roste erstrecken sich hierbei vorzugsweise jeweils in einer horizontalen Ebene.

Die Vorrichtung gemäß der Erfindung erlaubt es, nicht nur stückiges und festes Vergasungsgut, sondern insbesondere auch erweichendes und zum Teigigwerden neigendes Vergasungsgut bei gleichmäßiger Durchgasung der Schüttung einsetzen zu können. Dabei wird die spezifische Durchsatzleistung des
Reaktors bei gleichzeitiger Anhebung der Austrittstemperatur des Prozeßgases aufgrund Erhöhung der Vergasungsgeschwindigkeit heraufgesetzt. Ferner werden kontrollierte Vergasungsbedingungen durch Übergang von einer für die Gegenstromvergasung typischen hohen und schwer zu durchgasenden Materialsäule auf eine Querstrom-Gegenstrom-Vergasung sichergestellt in zum Teil nur wenige Zentimeter betragenden niedrigen Reaktionszonen. Der Kohlenstoffumsetzungsgrad und der Vergaserwirkungsgrad werden heraufgesetzt, und zwar unabhängig davon, ob es sich um sortierte oder unsortierte Massen beliebiger Körnung erdiger, klebriger, faseriger, plattiger, teigiger, erweichender oder feuchter Vergasungsmaterialien wechselnder Zusammensetzung handelt.

Die obere keramische Wand des Rektorraums ist bevorzugt querbeweglich vorgesehen, um den Querschnitt des Rektorraums in Abhängigkeit von der Zusammensetzung des Vergasungsguts sowie der sich einstellenden Vergasungsbedingungen dahingehend verändern zu können, daß dadurch die vom Vergasungsgut abgegebene Wärme optimal auf dasselbe zurückgestrahlt wird.

Eine weitere vorteilhafte Lösung des gegenständlichen Teils der Aufgabe besteht in den Merkmalen des Anspruchs 5.

Als weiterer Vorteil der erfindungsgemäßen Lösung sind der höhere Kohlenstoffumsetzungsgrad, der höhere Vergaserwirkungsgrad sowie die im Vergleich zu entsprechenden Baugrößen herkömmlicher Gegenstromvergaser wesentlich verbesserte Durchsatzleistung anzuführen.

Eine Kastenform des Schiebers gestattet es in relativ einfacher Weise eine geeignete Kühlung zu integrieren.
Um den Querschnitt des vorwiegend parallelwandigen oder auch sich konisch nach unten erweiternden Reaktorschachts nicht einzuengen, kann in der der Ascheauftragsöffnung gegenüberliegenden Wand eine Schieberausnehmung vorgesehen sein.

In der Ausgangsposition befindet sich der Schieber vollständig in der Schieberausnehmung. Es ragen keine Teile in den Reaktorschacht hinein.

Die Standzeit des Schiebers und seiner Führungen in der Schieberausnehmung wird heraufgesetzt, wenn die Wände und der Boden der Schieberausnehmung und damit auch die Schieberführungen gekühlt sind.

Sowohl die Vorschublänge des Schiebers bzw. ggf. seiner Teilblöcke oder Module als auch sein Vorschubrhythmus sind bevorzugt variabel ausgebildet. Auf diese Weise kann die Bewegung des Schiebers gezielt auf die Zusammensetzung des jeweiligen Vergasungsguts und dessen Verhalten während des Vergasungsprozesses abgestellt werden.

In der Regel der durch die Praxis vorgegebenen Einsatzfälle wird der Rost eben ausgebildet sein. Denkbar ist aber auch eine endseitige Krümmung, mit der in bestimmten Situationen verhindert wird, daß Vergasungsgut in unzulässiger Weise in den Ascheauftrag gelangt.

Mit einer Ausbrennplatte im Bereich unterhalb der Ascheauftragsöffnung oder etwa in der Ebene des Rosts kann dafür Sorge getragen werden, daß noch nicht vollständig vergastes, aber schon ausgeschobenes Vergasungsgut auf der Ausbrennplatte bei hohem Sauerstoffüberschuß restlos umgesetzt, d. h. von Kohlenstoff befreit wird. Die bei diesem Verbrennungsvorgang auf der Ausbrennplatte entstehenden CO2-Gase werden dann oberhalb des Rosts im Hochtemperaturbereich am Koks der Reduktionszone zu CO reduziert, mit dem entste-
henden Prozeßgas vermischt und zusammen mit diesem schließ-
lich in Richtung Gasabzug geführt. D. h., daß es sich auch
bei diesem Vorgang um einen Teilprozeß der im Reaktorschacht
stattfindenden Vergasung handelt und nicht um eine Ver-
brennung.

In vorteilhafter Weise ist die Ausbrennplatte gekühlt, um
ihre Standzeit und damit auch die Betriebszeit des Vergasers
zu verlängern. Als Kühlmittel kann Wasser verwendet werden.
Auch der Reaktor, der Rost, der Schieber sowie die Schieber-
ausnehmung können wassergekühlt sein.

In der Aschezone des Reaktors kann eine insbesondere wassergekühlte Austragsschnecke angeordnet sein.

Eine dritte vorteilhafte Ausführungsform der Erfindung wird
in den Merkmalen des Anspruchs 6 gesehen.

Die Aufgliederung des Flammenkanals in eine Vielzahl von
kurzen Längenabschnitten und deren Relativzuordnung in tri-
axialer Konfiguration erlaubt es, auch auf kleinstem Raum
 einen ausreichend langen Flammenkanal bereitzustellen, bei
welchem die Verweilzeit von Prozeßgasen mit selbst komplexen
hochmolekularen Verbindungen so gezielt steuerbar ist, daß
ihre teerigen und ölichen Bestandteile stufenweise durch
Cracken in niedermolekulare Verbindungen umgewandelt und
ihre vollständige Oxidation in ausgebranntes geruchloses
Rauchgas gewährleistet werden kann.

Der vielfach gewundene labyrinthartige, durch eine sich
kreuzende, umschlingende, windende, auf- und absteigende,
also ständig seine Richtung wechselnde Führung erzeugte
Verlauf des Flammenkanals stellt auf der einen Seite die
vergasungsgutabhängige notwendige Verweilzeit des Prozeß-
gases sicher und erlaubt auf der anderen Seite eine optimale

Insbesondere erlaubt es die Erfindung, daß im Zuge der verschärften Bestimmungen in Sachen Umweltschutz unter Einhaltung der jeweiligen Vorschriften auch die Prozeßgase aus extrem problematischem Vergasungsgut nach gezielter Hochtemperaturenkrackung ihrer hochmolekularen Verbindungen zuverlässig in ein stets ausgebranntes geruchloses und schadstoffarmes Rauchgas umgewandelt werden.

Die Länge des Flammenkanals kann stets relativ problemlos auf die Beschaffenheit des jeweiligen Vergasungsguts abgestellt werden. Dabei kann insbesondere auch der Art der Entstehung sowie dem Alter fossiler Brennstoffe und deren Derivate gezielt Rechnung getragen werden.

Nach Anspruch 7 können die Längenabschnitte Bestandteile von vorwiegend ähnlich gestalteten und/oder gegeneinander austauschbaren Modulkörpern bilden. Derartige Modulkörper sind dann in Abhängigkeit von der Komplexität des umzuwandelnden Prozeßgases bausteinartig aneinandersetzbar. Hierbei können
auf kleinstem Aufstellungsraum unterschiedlich lange Flammenkanäle anwenderseitig problemlos zusammengestellt und bei Bedarf auch wieder zu einer anderen Konfiguration ausge- tauscht werden.

Bei den Modulkörpern kann es sich um Fertigsegmente aus form- und/oder gießbaren keramischen Massen handeln. Auch eine Zusammensetzung in Ziegelbauweise ist vorstellbar.

Denkbar ist nach Anspruch 8 aber auch eine Bauart, gemäß welcher die Längenabschnitte in einem monolytischen Gußblock ausgebildet sind.

Die Erfindung ist nachfolgend anhand von in den Zeichnungen dargestellten Ausführungsbeispielen näher erläutert. Es zeigen:

Figur 1 in schematischer perspektivischer Darstellung ein Mehrstufenverbrennungssystem;

Figur 2 im Schema in vergrößerter Darstellung einen Schrägbetreaktor für das Verbrennungssystem der Figur 1;

Figur 3 ebenfalls im Schema in vergrößerter Darstellung einen vertikalen Festbettreaktor für das Ver- brennungssystem der Figur 1;

Figur 4 einen für das Verbrennungssystem der Figur 1 geeigneten labyrinthartigen Flammenkanal in Modulbauweise und
Figur 5 ebenfalls in der Perspektive, teilweise im Schnitt, einen einzelnen Modulkörper.

Wie die Figuren 1 und 2 bei gemeinsamer Betrachtung erkennen lassen, ist in einem Reaktor 1 ein zur Horizontalen 2 unter einem Winkel α geneigter Reaktorraum 3 angeordnet, der seitlich von vertikalen Wänden 4 begrenzt wird. Der Boden des Reaktorraums 3 besteht aus stufenweise mit Abstand übereinander angeordneten ortsfesten horizontalen Rosten 5, zwischen denen querbewegliche Schieber 6 angeordnet sind. Die Schieber 6 können gemeinsam oder getrennt mit ggf. voneinander abweichenden stetigen oder unstetigen Geschwindigkeiten bewegt werden. Roste 5 und Schieber 6 sind wassergekühlt.

In Längsrichtung des Reaktorraums 3 gesehen ist hinter dem untersten Rost 5, jedoch mit dessen Oberseite in etwa gleicher Höhe liegend ein Ascheauftrag 7 mit einer Austragschnecke 8 angeordnet.

Im Abstand oberhalb des untersten Rosts 5 sowie des Ascheauftrags 7 erstreckt sich in den Reaktorraum 3 hinein ein rohrförmiger Gasabzugsstutzen 9 mit, insbesondere regelbaren, Öffnungen 10 für Sekundärluft. Andere in den Zeichnungen nicht näher dargestellte Öffnungen 10 können aber auch als Meß- und/oder Kontrollstellen eingerichtet sein.

Die obere Wand 11 des Reaktorraums 3 ist als keramisches Gewölbe quer zu den Rosten 5 bewegbar angeordnet, um den Querschnitt des Reaktorraums 3 in Abhängigkeit von dem jeweils zu vergasenden Gut 12 sowie den sich einstellenden Vergasungsbedingungen verändern zu können.

Stirnseitig des Reaktors 1 ist die Einspeisung 17 für das Vergasungsmittel 18, wie insbesondere Luftsaugerstoff, vorgesehen. Das Vergasungsmittel 18 gelangt in gezielter Querstromführung in nahezu gleichen Teilmengen im Bereich der Schieber 6 in den Reaktorraum 3 und zusätzlich im Gegenstrom über den Abstand 19 zwischen dem untersten Rost 5 und dem Ascheaustrag 7 in einer demgegenüber größeren Teilmenge vertikal in den Reaktorraum 3.

Aufgrund dieser Verfahrensweise wird die angestrebte Koks-
bildung bei gleichzeitiger Vergasung des Kokses in der Reduk-
tionszone 22 gefördert. Dabei nimmt die Dicke der Oxidations-
zone 21 in Längsrichtung des Rektorraums 3 ständig zu,
5 während die Trocknungszone 24, die Schmelzzone 23 und die
Reduktionszone 22 dünner werden und schließlich ganz ver-
schwinden. Am unteren Ende des Rektorraums 3 ist dann nur
noch die Oxidationszone 21 sowie die Schlackenzon 25 und
die Schicht der kühlenden Asche vorhanden.

Aufgrund des Sachverhalts, daß im Bereich 19 des Rektor-
raums 3 im Gegenstrom eine größere Menge an Vergasungsmittel
10 eingeleitet wird als in den Bereichen der Schieber 6,
können hier die angestrebten hohen Temperaturen bis über
1000 °C erzeugt werden, um u. a. die für eine heizwertreiche
15 Prozeßgaserzeugung günstigsten Boudouard'schen Vergasungsbe-
dingungen sicherzustellen. Dabei wird das zwangsläufig in
der Oxidationszone 21 überwiegend am Koks entstehende CO2
mit dem überwiegend in der Reduktionszone 22 entstehenden CO
im Rektorraum 3 oberhalb der Schüttsschicht 20 bei möglichst
hohen Temperaturen vermengt und so das Boudouard'sche Gleich-
gewicht in Richtung eines größeren CO-Oberschusses ver-

Das bei der Vergasung anfallende Prozeßgas wird über den
Gasabzugsstutzen 9 in einen labyrinthartigen Flammenkanal
25 zur vollständigen Umwandlung in ausgebranntes geruchloses
Rauchgas überführt (siehe Figuren 1, 4 und 5).

Der Flammenkanal 62 ist in kurze Längenabschnitte 26, 27
aufgegliedert, welche in triaxialer Konfiguration aneinandergesetzt sind. Der Richtungsverlauf des Flammenkanals 62
ist mit Pfeilen definiert.
Die Längenabschnitte 26, 27 sind in blockförmigen Modulkörpern 28 als Längskanäle und als an einem Ende der Längska-
näle diese schneidende Querkanäle ausgebildet.

In der Figur 5 ist ein solcher aus einer gießbaren kerami-
schen Masse hergestellter Modulkörper 28 näher veranschau-
licht. Es ist zu erkennen, daß je nach Verwendungszweck
die Längskanäle 26 und Querkanäle 27 endseitig durch Stopfen
oder Deckplatten 29 verschlossen werden können. Der Kanalquer-
schnitt ist beliebig. Beim Ausführungsbeispiel ist er eckig.

Außerdem ist in der Figur 5 angedeutet, daß den einzelnen
Längenabschnitten 26, 27 sowie den Stopfen und/oder Deckplatten
29 Sekundärluftzuführungen 30 zugeordnet sind, die in nicht
näher veranschaulichter Weise regelbar sind.

Desweiteren läßt die Figur 4 noch erkennen, daß die den
Flammenkanal 62 bildenden Modulkörper 28 von einem wärmeiso-
lierenden Mantel 31 umgeben sein können.

Je nach Komplexität des in dem Flammenkanal 62 bei 32 einge-
führten Prozeßgases kann dieses nun durch eine bestimmte
Zuordnung der Modulkörper 28 labyrinthartig auf einem langen
Weg geführt werden, wobei es durch gezielte Zuführung der
Sekundärluft möglich ist, das Prozeßgas und die Sekundärluft
turbulent und vollständig zu durchmischen. Wo die Sekundär-
luft zugegeben wird und in welcher Menge ist abhängig von
der Zusammensetzung des jeweiligen Prozeßgases und dessen
Verbrennungsverhalten. Die Verweilzeit des Prozeßgases im
Flammenkanal 62 zur Umwandlung in vollständig ausgebranntes
geruchloses und schadstoffarmes Rauchgas kann durch entspre-
chende Zuordnung von Modulkörpern 28 exakt vorbestimmt und
variert werden.

Hinter der als Mischer ausgebildeten Eingabestelle 34 für das Trocknadsorptionsmittel ist ein Rauchgasfilter 38, beispielsweise in Form eines Schüttfilters, vorgesehen. Bei diesem Rauchgasfilter 38 wird als Schüttgut ein Trocknadsorptionsmittel in Granulatform verwendet. Hiermit kann die Rauchgasreinigung noch effektiver im Sinne einer besseren Ausnutzung des Entstaubungs- und Nachentschwefelungsbzw. Nachentchlorungseffekts durchgeführt werden.

Mit 39 ist der Vorlauf und mit 40 der Rücklauf für den Dreizugabhitzekessel 33 bezeichnet. 41 ist ein in die Abzugsleitung 42 integriertes Rauchzuggebläse, das zur Stabilisierung der Druckverhältnisse durch ein zweites integriertes Rauchzuggebläse 43 hinter dem Rauchgasfilter 38 unterstützt wird.

Das in den Reaktor 1 eingegebene Vergasungsgut 12 ist insbesondere erdig-krümelig und wird dadurch erzeugt, daß ölkontaminierte Stoffe diverser Zusammensetzung, wie Ölschlämme oder ölkontaminierte Böden, in unvorbehandeltem Zustand mit kohlenstoffhaltigen Zuschlagstoffen, mit hochreaktiven Trocknadsorptionsmitteln, Filterstaub und mit Prozeßasche gemischt und dispergiert werden. Dabei ist es vorteilhaft, wenn die bei der Vergasung anfallende Prozeßasche den ölkontaminierten Stoffen zugemischt wird. Ferner können als Primärentschwefelungszuschlagstoff die Filterabgänge den
ölkontaminierten Stoffen zugesetzt werden, weil diese große Mengen von noch nicht umgesetzten Adsorptionsmitteln enthalten.

Statt des in den Figuren 1 und 2 veranschaulichten Schrägbettreaktors 1 kann auch ein Festbettreaktor 1' gemäß Figur 3 zum Einsatz gelangen, wenn Vergasungsgut 12', wie z. B. Hähnchenkot oder tropische Harthölzer behandelt werden sollen.

Mit 44 ist in der Figur 3 das in nicht näher dargestellter Weise wassergekühlte Gehäuse des Festbettvergasers 1' mit einem vertikal ausgerichteten Reaktorschacht 45 bezeichnet. Die Wände des Reaktorschachts 45 sind wassergekühlt.

Die Einfülleinrichtung mit einer Materialschleuse für das Vergasungsgut 12' ist in stark vereinfachter Darstellung mit dem Pfeil Pf veranschaulicht.

Am unteren Ende des Reaktorschachts 45 ist ein Rost 46 starr eingegliedert, welcher das Vergasungsgut 12' trägt, innerhalb dem sich während des Vergasungsprozesses die Reaktionszonen, wie Trocknungszone 47, Schweizzone 48, Reduktionszone 49, Oxidationszone 50 und Schlackenzone 51 ausbilden.

Der wassergekühlte Rost 46 dient auf seiner gesamten Breite als Gleitführung für einen dreistufigen mehrteiligen Schieber 52, welcher aus der Ausgangsstellung innerhalb einer Schieberausnehmung 53 in der Wand 54 des Reaktorschachts 45 quer zum Reaktorschacht 45 in Richtung auf eine in der Verlagerungsebene des Schiebers 52 gegenüberliegend angeordnete Ascheaustragsöffnung 55 verlagerbar ist. Unter Mehrteiligkigkeit wird hierbei ein Aufbau verstanden, bei dem der Schieber 52 aus mehreren nebeneinander liegenden baugleichen, aber verschieden breiten und unterschiedlich bzw. variabel einzeln bewegbaren Blöcken oder Modulen besteht. Die Verla-
gerung des Schiebers 52 bzw. der Blöcke oder Module ist frei
wäählbar und vergasungsgutabhängig hinsichtlich der Vorschub-
länge und/oder des Vorschubrhythmus vorbestimmbar.

Der Schieber 52 ist kastenartig ausgebildet und mit einer
Wasserkühlung versehen. Auch die die Schieberausnehmung 53
begrenzenden Wände sowie der Boden sind wassergekühlt.

Mit Hilfe des Schiebers 52 wird auf der einen Seite ausge-
branntes und vollständig in Asche umgesetztes Vergasungsgut
12' als inertes Material von dem Rost 46 über die Ascheaus-
tragsöffnung 55 in einen Ascheaustrag 56 mit Ascheaustrags-
schnecke 57 geschoben und auf der anderen Seite werden nach
dem Zurückverlagern des Schiebers 52 in die Schieberausneh-
mung 53 Freiräume geschaffen, in die von oben neues Verga-
sungsgut 12' nachsicken kann. Die bei der Verlagerung des
Schiebers 52 in Richtung auf die Ascheaustragsöffnung 55
kurzzeitig herbeigeführte Verdichtung des Vergasungsguts 12'
ist unerheblich. Nach dem Zurückverlagern des Schiebers
52 kommt es nämlich aufgrund verbesserter Zuführung von
Vergasungsmittel 58, insbesondere aus der Vergasungsmittel-
einspeisung 59 durch den Rost 46, zu einer forcierten Verga-
sung in dem dann aufgelockerten Bereich des Vergasungsguts
12' bzw. in der im Reaktorschacht 45 auf dem Rost 46 ruhen-
den Säule von nachgefallenem, mehr oder weniger unvergastem
Vergasungsgut 12'.

Unterhalb der Ascheaustragsöffnung 55 ist in einer auch
unterhalb des Rosts 46 liegenden Ebene eine wassergekühlte
Ausbrennplatte 60 angeordnet. Diese trägt dafür Sorge, daß
noch nicht vollständig vergastes, aber durch den Schieber
52 ausgeschobenes Vergasungsgut 12' hier bei hohem Sauer-
stoffüberschuß auch noch restlos umgesetzt wird.
Patentansprüche:

1. Verfahren zur thermischen Behandlung von Vergasungsgut (12, 12'), bei welchem das Vergasungsgut (12, 12') in einem schachtartigen Reaktor (1, 1') mit bodenseitiger Luftzuführung (18, 58) und unterer Ascheentnahme (7, 56) in Prozeßgas sowie Prozeßasche umgesetzt wird, worauf das im Bereich der heißesten Reaktionszonen abgezogene Prozeßgas in einem nachgeschalteten Flammenkanal (62) in Rauchgas umgewandelt und dieses anschließend der Wärmeanwendung zugeführt wird, dadurch gekennzeichnet, daß das Prozeßgas in einem labyrinthischen Flammenkanal (62) unter stufenweiser Luftzufuhr entsprechend dem vorgesehenen Temperaturprofil kontrolliert gecrackt und vollständig in ein schadstoffarmes Rauchgas umgewandelt wird, und daß dann das Rauchgas einem Abhitzekessel (33) zugeführt und in oder nach diesem mit einem hochreaktiven Trockenadsorptionsmittel dosiert versetzt wird, worauf letztlich das so behandelte Rauchgas hinter dem Abhitzekessel (33) bei Temperaturen um 200 °C entstaubt wird.
2. Verfahren nach Anspruch 1, durch gekennzeichnet, daß unter Einhaltung von abwechselnd aufeinanderfolgenden stationären Phasen und Vorschubphasen das Vergasungsgut (12) in einer geneigt verlaufenden, in ihrer Dicke in Längsrichtung des Reaktors (1) abnehmenden Schüttsschicht (20) taktweise schwerkraftabhängig in Längsrichtung des Reaktors (1) verlagert und das Vergasungsmittel (18) über die Länge des Reaktors (1) verteilt in im wesentlichen gleichen Teilmengen im Querstrom und Gegenstrom der Schüttsschicht (20) zugeführt wird, während im Bereich (19) der unten liegenden Oxidationszone (21) und Schlackenzone (25) eine im Vergleich zu einer im Querstrom zugeführten Teilmenge Vergasungsmittel (18) größere Teilmenge Vergasungsmittel (18) im Gegenstrom in den Reaktor (1) eingeleitet wird, wobei die sich während einer stationären Phase bei dann im Gegenstrom aufwärts geführtem Vergasungsmittel (18) unter weitgehend gleichbleibend gesteuerten Vergasungsbedingungen, jedoch ständiger Dickenzunahme der Oxidationszone (21) und stetiger Abnahme der Dicke der Trocknungszone (24), der Schmelzone (23) und der Reduktionszone (22) schichtweise bildenden örtlichen Reaktionszonen in der Vorschubphase wieder zerstört bzw. umgeschichtet und die während sowie nach diesem Vermischungsvorgang in den neu gebildeten Reaktionszonen entstehenden Reaktionsgase im Reaktor (1) oberhalb der Schüttsschicht (20) zum Prozeßgas vermischt werden.

3. Verfahren nach Anspruch 1 oder 2, zur thermischen Behandlung von durch Öl kontaminiertem Vergasungsgut, durch gekennzeichnet, daß das durch Öl kontaminierte Vergasungsgut (12) in unvorbehandeltem Zustand zusätzlich mit einem kohlenstoffhaltigen Zuschlagstoff, mit hochreaktiven Trockensorptionssmitteln, Filterstaub und Prozeßgas zu einem erdig-krümeligen Mischprodukt gemischt und dispersiert wird, welches dann zumindest diskontinuierlich in
den Reaktor (1) eingegeben und bei Temperaturen unter 1200 °C vollständig in Prozeßgas sowie ausgebrannte rieselfähige Prozeßasche umgewandelt wird.

4. Vorrichtung zur thermischen Behandlung von Vergasungsgut (12) in einem schachtartigen Reaktor (1) mit zumindest diskontinuierlicher kopfseitiger Beschickung des Reaktors (1) mit dem Vergasungsgut (12), mit bodenseitiger Zuführung des Vergasungsmittels, unterer Ascheentnahme sowie Abzug des Prozeßgases im Bereich oberhalb der heißesten Reaktionszonen, gekennzeichnet durch folgende Merkmale:

a) Der Reaktorraum (3) ist unter einem Winkel (α) zur Horizontalen (2) geneigt angeordnet;

b) der das Vergasungsgut (12) tragende Reaktorboden (5, 6) ist abwechselnd in mehrere ortsfeste Abschnitte (5) und zwischen diese eingegliederte, quer zum Vergasungsgut (12) bewegliche Abschnitte (6) unterteilt;

c) im Bereich der beweglichen Abschnitte (6) sind im wesentlichen horizontal gerichtete Zuführungen und im Bereich der unteren Ascheentnahme (7) zusätzlich vertikal gerichtete Zuführungen (19) für das Vergasungsmittel (18) vorgesehen;

d) ein Gasabzugsstutzen (9) erstreckt sich oberhalb der Oxidationszone (21) und Schlackenzone (25) in den Bereich des Reaktorraums (3) mit den heißesten Reaktionszonen.

5. Vorrichtung zur thermischen Behandlung von Vergasungsgut (12') mit einem im wesentlichen vertikalen, zumindest diskontinuierlich von oben beschickbaren Reaktor (1'), einem bodenseitigen Rost (46), unterhalb des Rosts (46) liegendem Ascheaustrag (56) und durch den Rost (46) zugeführtem Vergasungsmittel (58), dadurch gekennzeichnet,
daß auf dem in den hinsichtlich seiner Wände kühlbaren Reaktorschacht (45) vornehmlich starr eingegliederten und kühlbar ausgebildeten Rost (46) ein quer zum Reaktorschacht (45) in Richtung auf die gegenüberliegende Ascheaustragsöffnung (55) verlagerbarer Schieber (52) gleitend geführt ist, wobei die etwa in der Verlagerungsebene des in seiner Breite gleich der Rostbreite bemessenen Schiebers (52) liegende Ascheaustragsöffnung (55) zugleich eine Zuführung für im Querstrom in den Reaktorschacht (45) einleitbares Vergasungsmittel (58) bildet.

6. Vorrichtung zur thermischen Behandlung von Vergasungsgut (12, 12') nach einem der Ansprüche 4 oder 5, welche einen zwischen dem Reaktor (1, 1') und einem Abhitzekessel (33) eingegliederten keramischen Flammenkanal (62) mit Sekundärluftzuführung aufweist, daß der Flammenkanal (62) aus mehreren in triaxialer Konfiguration aneinandersetzbaren kurzen Längenabschnitten (26, 27) gebildet ist.

7. Vorrichtung nach Anspruch 6, daß die Längenabschnitte (26, 27) Bestandteile von vorwiegend ähnlich gestalteten und/oder gegeneinander austauschbaren Modulkörpern (28) bilden.

8. Vorrichtung nach Anspruch 6, daß die Längenabschnitte (26, 27) in einem monolytischen Gußblock ausgebildet sind.

9. Vorrichtung nach einem der Ansprüche 6 bis 8, daß die Längenabschnitte (26, 27) bzw. die Modulkörper (28) aus kleinteiligen keramischen Körpern zusammengesetzt sind.
INTERNATIONAL SEARCH REPORT

International Application No PCT/DE 89/00607

I. CLASSIFICATION OF SUBJECT MATTER

(if several classification symbols apply, indicate all)

According to International Patent Classification (IPC) or to both National Classification and IPC

<table>
<thead>
<tr>
<th>Int.Cl.</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>F 23 G 5/027</td>
<td></td>
</tr>
</tbody>
</table>

II. FIELDS SEARCHED

Minimum Documentation Searched

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int.Cl. 5</td>
<td>F 27 G; F 23 B; F 23 J; F 23 K;</td>
</tr>
</tbody>
</table>

Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched

III. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with Indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>GB, B, 1206338 (VON ROLL AG) 23 September 1970, see page 3, line 114 - line 122, figure 1</td>
<td>5</td>
</tr>
<tr>
<td>A</td>
<td>CH, A, 360152 (L. VON ROLL AG) 30 March 1962, see the whole document</td>
<td>5</td>
</tr>
<tr>
<td>Y</td>
<td>WO, A1, 85/01096 (EGON KROGEMANN) 14 March 1985, see the whole document</td>
<td>4</td>
</tr>
<tr>
<td>X</td>
<td>DE, A, 1955035 (A/S E. RASMUSSEN) 27 May 1970, see page 2, line 3 - line 15; page 3, line 5 - line 8</td>
<td>5</td>
</tr>
<tr>
<td>A</td>
<td>DE, A, 1965935 (TRUMMER & CO) 26 November 1970, see page 2, line 1 - line 24</td>
<td>2</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>A</td>
<td>EP, A2, 0124827 (DEFO-CHEMIE GMBH) 14 November</td>
<td>3</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier document but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another document or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed
 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
 "Z" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search
19 January 1990 (19.01.90)

Date of Mailing of this International Search Report
21 February 1990 (21.02.90)

International Searching Authority
European Patent Office

Signature of Authorized Officer

Form PCT/ISA/310 (second sheet) (January 1985)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DE, A1, 3543424 (C. DEILMANN AG) 11 June 1987, see column 3, line 30 - column 4, line 41</td>
<td>1, 6</td>
</tr>
</tbody>
</table>

1984, see abstract
This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office DHP file on 08/11/89. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>GB-B- 1206338</td>
<td>23/09/70</td>
<td>NL-A- 6809589</td>
<td>08/01/69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LU-A- 56371</td>
<td>04/10/68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR-E- 93993</td>
<td>13/06/69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE-A-C- 1551855</td>
<td>11/12/69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH-A- 516770</td>
<td>15/12/71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BE-A- 711636</td>
<td>15/07/68</td>
</tr>
<tr>
<td>CH-A- 360152</td>
<td>30/03/62</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>WO-A1- 85/01096</td>
<td>14/03/85</td>
<td>AU-D- 34397/84</td>
<td>29/03/85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE-A- 3335977</td>
<td>25/10/84</td>
</tr>
<tr>
<td>DE-A- 1955035</td>
<td>27/05/70</td>
<td>NL-A- 6916565</td>
<td>08/05/70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB-A- 1286530</td>
<td>23/08/72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE-A- 355063</td>
<td>02/04/73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH-A- 491327</td>
<td>31/05/70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE-A- 3327448</td>
<td>07/02/85</td>
</tr>
<tr>
<td>DE-A1- 3543424</td>
<td>11/06/87</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82
I. Klassifikation des Anmeldungsgegenstands

Nach der internationalen Patentklassifikation (IPC) oder nach der nationalen Klassifikation und der IPC.

IPC 5: F 23 G 5/027

II. Recherchierte Sachgebiete

Recherchierter Mindestprüfstoff?

<table>
<thead>
<tr>
<th>Klassifikationssystem</th>
<th>Klassifikationssymbole</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPC 5</td>
<td>F 27 G; F 23 B; F 23 J; F 23 K</td>
</tr>
</tbody>
</table>

Recherchierte nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Sachgebiete fallen.

III. Einschlägige Veröffentlichungen

<table>
<thead>
<tr>
<th>Art</th>
<th>Kennzeichnung der Veröffentlichung1, soweit erforderlich unter Angabe der maßgeblichen Teile12</th>
<th>Betr. Anspruch Nr.13</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>GB, B, 1206338 (VON ROLL AG) 23 September 1970, siehe Seite 3, Zeile 114 – Zeile 122, Figur 1</td>
<td>5</td>
</tr>
<tr>
<td>A</td>
<td>CH, A, 360152 (L. VON ROLL AG) 30 März 1962, siehe Dokument insgesamt</td>
<td>5</td>
</tr>
<tr>
<td>Y</td>
<td>WO, A1, 85/01096 (EGON KROGEMANN) 14 März 1985, siehe Dokument insgesamt</td>
<td>4</td>
</tr>
</tbody>
</table>

* Besondere Kategorien von angegebenen Veröffentlichungen10.
 A Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist.
 E Älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist.
 L Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt).
 O Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht.
 P Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist.

* "F" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert; sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist.

* "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden.

* "Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist.

* "8" Veröffentlichung, die Mitglied derselben Patentfamilie ist.

IV. Bescheinigung

Internationale Recherchenbehörde: Europäisches Patentamt

Unterschrift des beauftragten Bediensteten: T.K. Willis

Formblatt PCT/ISA/210 (Blatt 2) (Januar 1985)
<table>
<thead>
<tr>
<th>Art</th>
<th>Kennzeichnung der Veröffentlichung, soweit erforderlich unter Angabe der maßgeblichen Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
</table>
| X | DE, A, 1955035 (A/S E. RASMUSSEN)
27 Mai 1970, siehe Seite 2, Zeile 3 -
Zeile 15; Seite 3, Zeile 5 - Zeile 8 | 5 |
| A | DE, A, 1965935 (TRUMMER & CO) 26 November 1970,
siehe Seite 2, Zeile 1 - Zeile 24 | 2 |
| Y | | 4 |
| A | EP, A2, 0124827 (DEFO-CHEMIE GMBH) 14 November 1984, siehe Zusammenfassung | 3 |
| A | DE, A1, 3543424 (C. DEILMANN AG) 11 Juni 1987, siehe Spalte 3, Zeile 30 -
Spalte 4, Zeile 41 | 1,6 |

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten internationalen Recherchenbericht angeführten Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamtes am 08/11/89
Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

<table>
<thead>
<tr>
<th>Im Recherchenbericht angeführte Patentdokument</th>
<th>Datum der Veröffentlichung</th>
<th>Mitglieder der Patentfamilie</th>
<th>Datum der Veröffentlichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>GB-A- 1206338</td>
<td>23/09/70</td>
<td>NL-A- 6809589</td>
<td>08/01/69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LU-A- 56371</td>
<td>04/10/68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR-E- 93993</td>
<td>13/06/69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE-A-C- 1551855</td>
<td>11/12/69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH-A- 516770</td>
<td>15/12/71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BE-A- 711636</td>
<td>15/07/68</td>
</tr>
<tr>
<td>CH-A- 360152</td>
<td>30/03/62</td>
<td>KEINE</td>
<td></td>
</tr>
<tr>
<td>WO-A1- 85/01096</td>
<td>14/03/85</td>
<td>AU-D- 34397/84</td>
<td>29/03/85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE-A- 3335977</td>
<td>25/10/84</td>
</tr>
<tr>
<td>DE-A- 1955035</td>
<td>27/05/70</td>
<td>NL-A- 6916565</td>
<td>08/05/70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB-A- 1286530</td>
<td>23/08/72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE-A- 355063</td>
<td>02/04/73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH-A- 491327</td>
<td>31/05/70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE-A- 3316299</td>
<td>08/11/84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE-A- 3327448</td>
<td>07/02/85</td>
</tr>
<tr>
<td>DE-A1- 3543424</td>
<td>11/06/87</td>
<td>KEINE</td>
<td></td>
</tr>
</tbody>
</table>

Für nähere Einzelheiten zu diesem Anhang: siehe Amtsblatt des Europäischen Patentamtes, Nr.12/82