发明名称

一种蜂花粉提取物及其制备和应用

摘要

本发明公开了一种蜂花粉提取物的制备方法，具体地说先提取蜂花粉的黄酮类化合物，再用提取残渣制备蜂花粉中的生物活性肽，再将黄酮类化合物和活性肽混合制备成为蜂花粉提取物。所制备的蜂花粉提取物同时兼备活性肽和黄酮类化合物的活性。
1. 一种蜂花粉提取物，其特征在于：

是由蜂花粉溶剂提取出的黄酮类化合物与蜂花粉溶剂提取剩余残渣的蛋白水解酶解
解蜂花粉活性肽混合而成，成为蜂花粉提取物。

2. 一种权利要求1所述蜂花粉提取物的制备方法，其特征在于：首先用溶剂提取花粉
中的黄酮类化合物，再将提取剩余的残渣用蛋白水解酶解制备蜂花粉活性肽，然后将黄
酮类化合物和活性肽合并，成为蜂花粉提取物。

3. 按照权利要求2所述的制备方法，其特征在于：蜂花粉提取物按照以下方法制备：干燥
的蜂花粉按照原料：溶剂=1kg:5～50L的比例加入溶剂，20-70℃提取1～10小时，提
取结束后过滤或离心将提取液与固形物分离分别进行处理：

（1）提取液的处理方法：提取液经真空浓缩，浓缩样品用体积浓度40-70%乙醇溶解后
上大孔树脂柱，先用2～10倍柱体积的去离子水淋洗，然后再用体积浓度40～90%乙醇洗
柱子并收集流分，将含乙醇洗脱剂洗脱的流分真空浓缩得到组分1；

（2）固形物处理方法：按照原料：溶剂=1kg:2～10L的比例加入水或缓冲液混合，pH
调整混合液在范围2～10，再加入原料质量的0.001～3%的蛋白水解酶，于20～60℃酶
解1～48小时，酶解结束后将反应体系温度升至80-100℃保持10-60分钟，使酶失活，然
后离心或过滤，收集滤液浓缩干燥得到组分2；

将组分1与组分2再次混合，得到蜂花粉提取物。

4. 按照权利要求3所述的制备方法，其特征在于：蜂花粉提取物所用的溶剂为：水、甲醇、
乙醇、乙酸乙酯、二氯甲烷、三氯甲烷、环己烷、正己烷、石油醚中的一种或二种以上的溶剂
混合物。

5. 按照权利要求2或3所述的制备方法，其特征在于：固体物酶解中所用的蛋白水解
酶为：胃蛋白酶、胰蛋白酶、风味蛋白酶、菠萝蛋白酶、木瓜蛋白酶、碱性蛋白酶或中性蛋白
酶中的一种或二种以上。

6. 按照权利要求3所述的制备方法，其特征在于：所述缓冲液为：磷酸缓冲液、
Tris-HCl缓冲液，或醋酸缓冲液中的一种。

7. 按照权利要求3所述的制备方法，其特征在于：所述蜂花粉为油菜花粉、松花粉、玉
米花粉、茶花粉、板栗花粉、荷花花粉、荞麦花粉、杏花粉、桃花粉、向日葵花粉中的一种或二
种以上不同花粉混合物。

8. 一种权利要求1所述蜂花粉提取物的应用，其特征在于：权利要求1所述蜂花粉提
取物作为活性成份用于药物，功能食品或食品的制备中：

其可制备成任何形式，

例如口服剂型：粉剂、片剂、胶囊剂、软胶囊剂、水性药物、糖浆剂、酊剂、丸剂、散剂、小
包、或颗粒剂；

外用局部剂型：乳膏、软膏、乳液、凝胶、半固体膏、贴剂糊膏、喷雾剂或气雾剂；

注射剂：溶液、悬剂、或乳剂。
一种蜂花粉提取物及其制备和应用

技术领域

[0001] 本发明涉及蜂花粉提取物的制备方法，具体地说先提取蜂花粉的黄酮类化合物、再用提取残渣制备蜂花粉中的生物活性肽，再将黄酮类化合物和活性肽混合制备成为蜂花粉提取物，所制备的蜂花粉提取物同时兼备活性肽和黄酮类化合物的活性。本发明属于生物化工、制药、食品等技术领域。

背景技术

[0002] 蜂花粉是蜜蜂采蜜有花植物的花粉粒，在采集过程中加上蜂蜜自身的腺上分泌物，唾液和花蜜而形成。蜂花粉是蜂蜜生长和繁衍的主要营养来源之一，具有很高的营养价值。蜂花粉包含蛋白质、碳水化合物、黄酮类化合物、微量元素、酶等多种营养成分，因此蜂花粉素来就有“天然微型营养库”等美誉。关于蜂花粉的生物活性研究表明，蜂花粉具有改善心血管疾病、增强免疫力、降血糖、抗氧化、抗衰老、抑制前列腺疾病等功效。

[0003] 文献 1（中国专利 CN200810007853.2）公开用不同有机溶剂提取油菜蜂花粉的有效部位，有效部位在预防酒精性肝损伤的新用途。文献 2（中国专利 200610052876.6）公开了用酒精提取蜂卵蜂花粉活性组分，该活性组分具有降血脂的功能。文献 3（中国专利 200810134816.8）公开了提取蜂花粉蛋白质并用酶法治制备肽，蜂花粉肽具有血管紧张素转移酶抑制。文献 4（中国专利 201010295791.7）公开了从油菜蜂花粉中得到了一种具有抗炎、镇痛、抗菌活性的提取物的方法。文献 5（中国专利 201010169477.4）公开了一种从蜂花粉中提取生物类化合物的方法。文献 6（中国专利 201110364321.6）公开了一种从蜂花粉中提取辅酶 Q10 的方法。文献 7（中国专利 200410073514.6）公开了从油菜花粉中制备具有治疗前列腺肿瘤的有效部位的方法。尽管目前关于蜂花粉活性组分提取的方法已有越来越多，但是现有方法都是以蜂花粉中某种单一物质为目标产物。虽然提取得到的组分具有较好的活性，但在提取过程中损失了蜂花粉中其他活性成分，使蜂花粉仅仅成为某种成分的原料，而无法体现蜂花粉“全能营养库”的特点。未经加工的蜂花粉作为功能性食品或者药物时使用时要达到理想的功效所需剂量较大。

发明内容

[0004] 目前蜂花粉存在原药直接使用所需剂量大，提取物活性成分单一无法体现蜂花粉全效的问题，至今为止还未见有关蜂花粉保留全效的制备方法。本发明人经过研究发现蜂花粉中的主要生物活性成分为黄酮类化合物以及肽类化合物，提出一种全新的蜂花粉提取物制备方法，该技术浓缩黄酮类化合物、精制蜂花粉肽化合物，利用该技术制备的蜂花粉提取物最大程度地保留了蜂花粉的生物活性，同时又大大降低了蜂花粉的有效剂量。

[0005] 本发明的目的是提供一种蜂花粉提取物的制备方法。

[0006] 为实现上述目的，本发明采用的技术方案如下：

[0007] 选用干燥的蜂花粉，首先用溶剂提取蜂花粉中的黄酮类化合物，再将提取剩余的残渣用水解酶解制备蜂花粉活性肽，然后将黄酮类化合物和活性肽合并，成为蜂花粉
提取物。

蜂花粉提取物按照以下方法制备，干燥的蜂花粉按原料液 = 1kg : 5～50 L 的比例加入溶剂，20～70 ℃提取 1～10 小时，提取结束后过滤或离心将提取液与固体物分离进行处理。

（1）提取液的处理方法：提取液经真空浓缩，浓缩样品用体积浓度 40～70% 乙醇溶解后上大孔树脂柱，先用 2～10 倍柱体积的去离子水淋洗，然后再用体积浓度 40～90% 乙醇洗柱子并收集流分，将含乙醇洗脱剂洗脱的流分真空浓缩得到组分 1。

（2）固形物处理方法：按照原料：溶液 = 1kg : 2～10 L 的比例加入水或者缓冲液混合，pH 调整混合液在范围 2～10，再加入原料质量的 0.001～3% 的蛋白水解酶，于 20～60 ℃酶解 1～48 小时；酶解结束后将反应体系温度升至 80～100 ℃保持 10～60 分钟，使酶失活，然后离心或过滤，收集滤液浓缩干燥得到组分 2。

将组分 1 与组分 2 再次混合，得到蜂花粉提取物。

本发明干燥花粉提取所用的溶剂为：水、甲醇、乙醇、乙酸乙酯、氯仿、正已烷、石油醚中的一种或二种以上的溶剂混合物。

本发明冻干物酶解中所用的蛋白水解酶为：蛋白水解酶为胃蛋白酶、胰蛋白酶、风味蛋白酶、菠萝蛋白酶、木瓜蛋白酶、碱性蛋白酶或中性蛋白酶中的一种或二种以上。

本发明所述缓冲液为：磷酸缓冲液、Tris-HCl 缓冲液、醋酸缓冲液、去离子水中的一种。

含有本发明的提取物的药物、功能食品、食品可制备成任何形式，例如口服剂型：粉剂、片剂、胶囊剂、软胶囊剂、水性药物、糖浆剂、酏剂、丸剂、散剂、小包、颗粒剂；局部制剂：乳膏、软膏、乳液。凝胶。半固体膏、贴剂糊膏。喷雾剂、气雾剂等；注射剂；溶液、悬剂、乳剂。

本发明的优点如下：

1. 本发明的技术工艺设计巧妙，首先提取蜂花粉中的黄酮类化合物，既浓缩了黄酮类化合物又不影响后续工艺中生物活性肽的制备；生物肽制备的过程又是其浓缩的过程，工艺最后又将这种活性组分按原药的比例组合，不仅最大程度地保留了蜂花粉的生物活性，而且减少了使用的有效剂量。

2. 工艺简单，效率高。本发明的提取过程中蜂花粉不需要破壁等特殊处理，生物活性肽制备过程中不需要单独提取蛋白质，因此制备工艺简、效率高，易于实现产业化，提取过程所使用溶剂易回收，有机溶剂残留可控，具有绿色环保的特点。

3. 具有良好的应用前景。蜂花粉的效有悠久的历史，但是由于通常所需剂量较大、疗效不显著，因此在市场推广中受到限制。现有的蜂花粉活性成分提取技术都仅仅是单一组分的提取，无法体现蜂花粉原有及多功效的特点。本发明的技术工艺克服了不仅现有技术存在的缺陷而且，因此通过浓缩活性组分从而达到提高活性的目的，因此将在食品、保健品、药品、化妆品等领域有良好的应用前景。

具体实施方式

实施例 1

一、蜂花粉提取物制备方法
以油菜花粉为原料，按照以下工艺制备蜂花粉提取物：

取干燥的蜂花粉 1000 克，加入体积浓度 70% 乙醇 5 L，20℃提取 10 小时，提取结束后过滤将提取液与固体物分离分别进行处理。

（1）提取液的处理方法：提取液经真空浓缩干燥，浓缩样品用体积浓度 70% 乙醇溶液上大孔树脂柱，先用 5 倍柱体积的去离子水淋洗，然后再用体积浓度 70% 乙醇洗柱子并收集洗流，将 70% 乙醇所洗的组分真空浓缩干燥得到组分 1。

（2）固体物处理方法：固体物按原料：溶液 =1kg:10 L 的比例加入水，pH 调整混合液在范围 2，再加入原料质量的 0.2% 的胃蛋白酶，于 40℃酶解 48 小时；酶解结束后将反应体系温度升至 90℃保持 20 分钟，使酶失活，然后离心或过滤，收集滤液浓缩干燥得到组分 2。

将组分 1 与组分 2 再次混合，得到油菜蜂花粉提取物。

一、蜂花粉提取物成分及活性测定方法

1. 油菜蜂花粉提取物的主要成分测定方法：

（1）蛋白质含量测定：凯氏定氮法；

（2）多糖含量测定：硫酸-苯酚法；

（3）黄酮类化合物含量测定：硝酸铝比色法；

（4）酚酸测定：Folin-Ciocalteu 法。

2. 油菜蜂花粉提取物的生物活性测定方法：

（1）ACE 抑制活性测定方法：

ACE 在 37℃、PH8.3 的条件下催化分解血管紧张素 I 的模拟底物 Hippury1-L-His
diy1-L-Leucine (HHL) 产生马尿酸，该物质在 228nm 处有特征紫外吸收峰。当加入 ACE 抑制物时，ACE 对 HHL 的催化作用受到抑制，马尿酸的生成量会减少。通过测定加入抑制剂前后的马尿酸紫外吸收值可以计算出抑制活性的大小。

反应体系

缓冲液为 0.05M，PH8.3 磷酸盐缓冲液；底物为 Hippuryl-L-Histidyl-L-Leucine (HHL)，MW249.47，用上述缓冲液配成 5mM；ACE（angiotensin-converting enzyme）用上述缓冲液配成 0.1U/ml。

ODA（对照组，不存在抑制剂但存在酶时的吸光值）：50 μL 酶液 +50 μL 碱液 +50 μL HHL +50 μL 缓冲液于 37℃水浴 5min，然后加入 50 μL ACE，37℃水浴 30min，加入 200 μL 1M 的 HCl 终止反应，再加入 1ml 乙酸乙酯萃取产物马尿酸，振荡 15s，3500r/min 离心 5min，取 0.8ml 上清，90℃水浴干燥 15min，重溶于 0.8ml 蒸馏水中，228nm 处检测吸光值为 ODA。

ODB（样品组，存在抑制剂和酶时的吸光值）：50 μL 蜂花粉提取液 +50 μL HHL +50 μL 缓冲液于 37℃水浴 5min，然后加入 50 μL ACE，37℃水浴 30min，加入 200 μL 1M 的 HCl 终止反应，再加入 1ml 乙酸乙酯萃取产物马尿酸，振荡 15s，3500r/min 离心 5min，取 0.8ml 上清，90℃水浴干燥 15min，重溶于 0.8ml 蒸馏水中，228nm 处检测吸光值为 ODB。

ODC（空白组，不存在抑制剂和酶时的吸光值）：50 μL 碱液 +50 μL HHL +50 μL 缓冲液于 37℃水浴 5min，然后加入 50 μL 碱液，37℃水浴 30min，加入 200 μL 1M 的 HCl
说明书

终止反应，再加入1ml 乙酸乙酯萃取产物马尿酸，振荡15S，3500r/min 离心 5min，取 0.8ml 上清，90°C 水浴干燥 15min，重溶于 0.8ml 蒸馏水中，228nm 处检测吸光值为 ODC。

0041 ACE 抑制率 (%) = (ODA-ODB) / (ODA-ODC) ×100%

0042 (2) α-葡萄糖苷酶抑制活性测定方法：

0043 2.1 原理：此法以 PNPG (4-nitrophenyl-α-D-glucopyranoside, 4-硝基苯基 ─α-D-吡喃葡萄糖苷) 为底物，利用 α-葡萄糖苷酶将其分解成 PNP 及葡萄糖，而 PNP 在碱性条件下显色的原理利用紫外分光光度计在 405nm 测定。当加入 α-葡萄糖苷酶抑制物时，α-葡萄糖苷酶对 PNPG 的催化作用受到抑制，PNP 的生成量会减少。通过测定加入抑制剂前后的 PNP 紫外吸收值可以计算出抑制活性的大小。

0044 2.2 活性测定

0045 反应体系

0046 A: 200 μL 缓冲液（20mM KH₂PO₄-KOH，其中含有 6.4mM MgCl₂・6H₂O）加 200 μL α-葡萄糖苷酶，37℃ 维持 5min，加入 200 μL PNPG，37℃ 维持 30min，加入 0.1M Na₂CO₃400 μL 终止反应，405nm 检测吸光度

0047 A₀: 将 A 中的 200μL α-葡萄糖苷酶换成 200μL 缓冲液，其他同 A 操作

0048 B: 200 μL 样品加 200 μL α-葡萄糖苷酶，37℃ 维持 5min，加入 200 μL PNPG，37℃ 维持 30min，加入 0.1M Na₂CO₃400 μL 终止反应，405nm 检测吸光度

0049 B₀: 将 B 中的 200μL α-葡萄糖苷酶换成 200μL 缓冲液，其他同 B 操作

0050 抑制率: [(1-(OD₆-OD₆₀)/(OD₆-OD₆₀))] ×100%

0051 OD₆₀ 为不存在抑制剂时 control 组的吸光值

0052 OD₆₀ 为 control 组的空白对照值

0053 OD₆₀ 为存在抑制剂时样品组的吸光值

0054 OD₆₀ 为样品组的空白对照值

0055 (3) 酪氨酸酶抑制活性

0056 3.1 原理：酪氨酸酶又称多酚氧化酶，是一种含铜的金属酶，它广泛存在于动植物体内，是生物体合成黑色素的关键酶。酪氨酸酶催化反应分为两步，第一步能够催化单酚氧化成二酚，表现出单酚氧化活性，即以酪氨酸为底物生成多巴；第二步把二酚氧化成醌，表现出二酚氧化活性，即以多巴为底物生成多巴醌。醌又在非酶促条件下形成最终的反应产物黑色素。

0057 3.2 酪氨酸酶单酚氧化活性抑制率的测定

0058 Aₙ 值的测定: 100 μL 花粉提取液加入 600 μL pH=6.8 PBS，再加入 250 μL 0.015% L-酪氨酸溶液，37°C 水浴 10min，最后加入 50 μL 250U/mL 的酪氨酸酶溶液，37°C 反应 (反应时间为

0059 3.3 确定的 30min)，测定 475nm 处的吸光度。

0060 Αₙ 值的测定: 以同体积 PBS 缓冲液代替酪氨酸酶溶液，其他同 Aₙ 测定方法。

0061 Αₙ 值的测定: 以同体积 PBS 替代样品溶液，其他同 Aₙ 测定方法。

0062 Αₙ 值的测定: 以同体积 PBS 替代样品溶液，同时以同体积 PBS 缓冲液代替酪氨酸酶溶液，其他同 Aₙ 测定方法。

0063 抑制率 (%) = [1 - (Aₙ-Aₙ') / (Aₙ-Aₙ)] ×100
[0064] A_i: 样品组吸光度值
[0065] A₀: 样品组空白对照
[0066] A_i: control 组吸光度值
[0067] A₀: control 组的空白对照
[0068] (4) 抗氧化能力测定方法
[0069] 4. 1 DPPH 自由基清除能力
[0070] 2ml 蜂花粉提取液样品 +2ml 0.1mM DPPH (2, 2-Diphenyl-1-Picrylhydrazyl, 2, 2'-二苯基-1- 苦肼基自由基) 激荡混匀, 室温放置 30min, 于 517nm 检测吸光度变化
[0071] 清除率 % = (A_{control}-A_{sample}) / A_{control} X 100
[0072] 乙醇做 control
[0073] 4. 2 秩基自由基清除能力
[0074] 0.5ml, 7.5mM FeSO₄ + 0.5ml, 7.5mM, 10-phenanthroline + 2.5ml, 0.2M, pH 7.8 磷酸缓冲液 + 0.5ml, 30mM H₂O₂ + 0.5ml 样品, 于室温放置 5min, 536nm 检测吸光度
[0075] 清除率: (A_i-A_j) / (A_i-A₀) X 100
[0076] A_j 相当于 blank, 无样品
[0077] A_i 相当于 control, 无 H₂O₂
[0078] A₀ 样品组
[0079] 4. 3 铁还原能力测定
[0080] 2ml 蜂花粉提取液样品 +2ml, 0.2M, pH 6.6 磷酸缓冲液 + 2ml, 1% 铁氰化钾, 50℃, 20min, 再加入 10% TCA, 于 3000rpm 离心 10min, 取 2ml 上清 + 2ml 蒸馏水 + 4ml, 0.1% FeCl₃, 室温放置 10min, 700nm 检测吸光度变化。
[0081] GSH 做对照
[0082] 三、蜂花粉主要成分及活性测定结果
[0083] 乙菜蜂花粉分别进行主要成分和生物活性分析, 结果见表 1 和表 2。
[0084] 表 1 蜂菜蜂花粉提取物的主要成分分析结果（质量含量）
[0085]
<table>
<thead>
<tr>
<th>成分</th>
<th>黄酮类化合物 %</th>
<th>总多酚含量 %</th>
<th>蛋白含量 %</th>
<th>多糖含量 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>含量</td>
<td>5</td>
<td>57</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

[0086] 表 2 蜂菜蜂花粉提取物的生物活性

<table>
<thead>
<tr>
<th>ACE 抑制活性</th>
<th>α-葡萄糖苷酶抑制活性</th>
<th>酪氨酸酶抑制活性</th>
<th>抗氧化活性</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC₅₀（mg/mL）</td>
<td>DPPH 自由基清除活性</td>
<td>羟基自由基</td>
<td>铁还原能力</td>
</tr>
</tbody>
</table>

[0087]

[0088]
<table>
<thead>
<tr>
<th>IC₅₀ (mg/mL)</th>
<th>IC₅₀ (mg/mL)</th>
<th>除能力 IC₅₀ (μg/mL)</th>
<th>清除能力 IC₅₀ (mg/mL)</th>
<th>提取物（μgVC/mg）</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0974</td>
<td>2.1575</td>
<td>0.8338</td>
<td>68.955</td>
<td>1.574</td>
</tr>
</tbody>
</table>

[0089] ACE 抑制活性是常用的降血压药物筛选模型，油菜蜂花粉提取物的 ACE 抑制活性 IC₅₀ 为 0.094 mg/mL，表明油菜蜂花粉提取物具有很强的抑制 ACE 的活性，因此是具有潜在的降血压活性。

[0090] α-葡萄糖苷酶抑制活性是常用的降血糖药物筛选模型，油菜蜂花粉提取物的 IC₅₀ 为 2.1575 mg/mL，表明油菜蜂花粉提取物具有较弱的抑制 α-葡萄糖苷酶活性，具有潜在的降血糖活性。

[0091] 酪氨酸酶抑制活性是常用的美容美白化妆品有效成分的筛选模型，油菜蜂花粉提取物的 IC₅₀ 为 0.8338 mg/mL，表明油菜蜂花粉提取物具有较强的抑制酪氨酸酶活性，具有潜在的美白功效。

[0092] 根据现代生物研究成果，氧应激反应是目前很多疾病的根源，抗氧化是从根本上预防疾病和抗衰老，因此具有抗氧化活性的物质可能成为膳食补充剂、药物等。油菜蜂花粉的表现出较强的 DPPH 自由基清除能力、抗氧自由基清除能力和铁还原能力，以上表明油菜蜂花粉具有很强的抗氧化能力。

[0093] 综上所述，利用本发明所制备的油菜蜂花粉提取物不仅保留而且增强了油菜蜂花粉的生物活性。

[0094] 实施例 2

[0095] 以茶花粉为原料，按照以下工艺制备蜂花粉提取物：

| [0096] | 迸干空的油菜花粉 1000 克，加入乙酸乙酯 50L，50℃提取 2 小时，提取结束后过滤将提取液与固形物分离分别进行处理： |

[0097] （1）提取液的处理方法：提取液经真空浓缩干燥，浓缩样品用 7% 乙醇溶解后上大孔树脂柱，先用 5 倍柱体积的去离子水淋洗，然后再用 7% 乙醇洗柱子并收集流分，将 7% 乙醇所洗的组分真空浓缩干燥得到组分 1。

[0098] （2）固形物处理方法：固形物按原料：溶液 =1kg:2L 的比例加入 0.01M 的 Tris-HCl 缓冲液，pH 调整混合液在范围 7.再加入原料质量的 5% 的菠萝蛋白酶于 50℃酶解 1 小时；酶解结束后将反应体系温度升至 90℃保持 20 分钟，使酶失活，然后离心或过滤，收集滤液浓缩干燥得到组分 2。

[0099] 将组分 1 与组分 2 再次混合，得到茶蜂花粉提取物。

[0100] 茶蜂花粉按照实施例 1 的方法测定其含量及生物活性，茶蜂花粉的生物活性与油菜蜂花粉具有相似的生物活性。

[0101] 实施例 3

[0102] 以玉米蜂花粉为原料，按照以下工艺制备玉米蜂花粉提取物：

| [0103] | 取干空的玉米花粉 1000 克，加入正己烷 20L，30℃提取 5 小时，提取结束后过滤将提取液与固形物分离分别进行处理： |
[0104] （1）提取液的处理方法：提取液经真空浓缩干燥，浓缩样品用 70% 乙醇溶解后上大孔树脂柱，先用 10 倍柱体积的去离子水淋洗，然后再用 50% 乙醇洗柱子并收集流分，将 50% 乙醇所洗的组分合并后真空浓缩干燥得到组分 1。

[0105] （2）固形物处理方法：固形物按照原料：溶液 =1kg：5L 的比例加入 0.05M 磷酸缓冲液，pH 调整混合液在范围 7，再加入原料质量的 0.1% 的胰蛋白酶，于 40℃ 酶解 10 小时，酶解结束后将反应体系温度升至 80℃ 保持 60 分钟，使酶失活，然后离心或过滤，收集滤液浓缩干燥得到组分 2。

[0106] 将组分 1 与组分 2 再次混合，得到玉米蜂花粉提取物。

[0107] 玉米蜂花粉按照实施例 1 的方法测定其含量及生物活性，玉米蜂花粉的生物活性与油菜蜂花粉具有一样的生物活性。