发明名称
超长人工挖孔桩穿越溶洞施工方法及穿越溶洞的超长桩

摘要
一种超长人工挖孔桩穿越溶洞施工方法及穿越溶洞的超长桩，其施工方法包括：1. 桩孔开挖步骤，所述开挖步骤为从上到下的逐层分节开挖。2. 胀模修补步骤，所述胀模修补步骤为在桩孔壁表面，由下至上进行胀模修补；3. 最后吊放钢筋笼，浇筑混凝土。本发明的人工挖孔桩穿越溶洞施工方法，能够有效的消除施工场地地质条件的影响，且能有效提高桩身强度，降低施工难度，加快施工速度，降低成本，保障施工安全。
1. 一种超长人工挖孔桩穿越溶洞施工方法及穿越溶洞的超长桩，所述挖孔桩为挖孔灌注桩，其特征在于：施工方法如下：
步骤一：场地平整，放线，定桩位；
步骤二：从上到下逐层分节开挖，先开挖第一节桩孔土方，支模浇筑第一节混凝土护壁；
步骤三：在第一节混凝土护壁上二次投测标高及桩位十字轴线；
步骤四：在桩孔上口安装活动井盖、垂直运输架、起重电动葫芦或卷扬机、吊土桶、排水，通风以及照明设施；
步骤五：开挖第二节桩孔土方，清理桩孔四壁、校核桩孔垂直度和直径，拆上节混凝土护壁模板；
步骤六：支第二节混凝土护壁模板，浇筑第二节混凝土护壁；
步骤七：依次重复步骤五和步骤六，循环分节作业直至溶洞顶部最下一节护壁距溶洞顶 1.2 米；
步骤八：在已施工完的混凝土护壁上搭设牢固水平防护，并在水平防护下作一操作平台；
步骤九：进行溶洞内护壁施工；
步骤十：检查洞底持力层并进行扩底，清底；
步骤十一：绑扎钢筋或吊放钢筋笼就位；
步骤十二：浇筑桩芯混凝土。
2. 根据权利要求 1 所述的超长人工挖孔桩穿越溶洞施工方法，其特征在于：步骤二中，每节高度为 0.9～1.2m，先挖中间部分的土方，然后挖及周边。
3. 根据权利要求 1 所述的超长人工挖孔桩穿越溶洞施工方法，其特征在于：步骤二中，第一节混凝土护壁高出地坪 150～200mm，桩位轴线和高程均标定在第一节混凝土护壁上口，护壁厚度 150mm，当桩径大于 2000mm 时，护壁厚度为 200mm。
4. 根据权利要求 1 所述的超长人工挖孔桩穿越溶洞施工方法，其特征在于：步骤八中，在溶洞顶部方开挖后，环绕孔壁植入钢筋，并与护壁钢筋焊接。
5. 根据权利要求 1 所述的超长人工挖孔桩穿越溶洞施工方法，其特征在于：步骤九中，穿越溶洞部分桩孔半径较原设计扩大 600mm，溶洞护壁外模为砖胎模。
6. 根据权利要求 5 所述的超长人工挖孔桩穿越溶洞施工方法，其特征在于：在护壁外 240mm 厚砖胎模砌筑前，先将在砖胎模砌筑范围内溶洞地坪钙化层进行清理、凿打至岩石，并进行平整，再浇灌 100mm 厚 C10 砼垫层。
7. 根据权利要求 6 所述的超长人工挖孔桩穿越溶洞施工方法，其特征在于：当砖胎模砌筑 1.2 米高时，在溶洞内地坪岩石内依次进行护壁竖向钢筋植筋、护壁钢筋绑扎、模板安、搭设模板支撑以及护壁砼浇筑。
8. 根据权利要求 7 所述的超长人工挖孔桩穿越溶洞施工方法，其特征在于：
当挖孔桩穿越溶洞高度小于 4 米时，先安装溶洞护壁内模板，再加设内支撑，溶洞护壁模板按每节 500～1000mm 进行配制，溶洞护壁顶处采用牛腿设计；
当挖孔桩穿越溶洞高度大于等于 4 米小于 5 米时，溶洞护壁施工方法为：溶洞内由下至上第一节护壁施工：先安装护壁内模板，再加设内支撑，然后浇灌护壁砼，溶洞内由
下至上第二节及以上护壁施工：在安装护壁内模板后，先拆除第一节或下面一节护壁内模板，再用土回填第一节或下面一节已成孔的孔桩以抬高施工作业面，一边进行砖胎模砌筑，一边进行挖孔桩钢筋绑扎、内模安装及砼浇筑，以此类推进行第三节挖孔桩护壁施工；

当挖孔桩穿越溶洞高度大于等于5米时，最下三节护壁厚度增加100mm。

9. 根据权利要求8所述的超长人工挖孔桩穿越溶洞施工方法，其特征在于：穿越溶洞护壁混凝土强度同挖孔桩混凝土强度，溶洞护壁混凝土随护壁砖胎模分节浇筑，每节浇筑高度500～1000mm。

10. 一种穿越溶洞的超长桩，桩体上下与钢筋混凝土灌注桩连接，其特征在于：桩体在穿越溶洞的部分直径扩大，护壁外模(3)为砖胎模，护壁内模板(1)为循环使用的钢板，护壁内模板(1)与护壁外模板(3)之间是浇灌的桩身护壁混凝土(4)，桩身护壁混凝土的顶部呈牛腿(6)状，牛腿上是洞顶护壁混凝土浇筑层(5)，环绕孔壁纵横方向植入桩纵筋(8)、螺旋筋(11)和加强筋，并与护壁钢筋焊接，在洞内地坪岩石上有洞底护壁混凝土浇筑层(10)，上述加强筋为与桩纵筋内侧相连的环向加强筋(12)，以及连接于环向加强筋内侧的斜拉加强筋(7)。
超长人工挖孔桩穿越溶洞施工方法及穿越溶洞的超长桩

（一）技术领域

本发明涉及一种人工挖孔桩施工方法，尤其涉及一种超长人工挖孔桩穿越溶洞的施工方法及穿越溶洞的超长桩。

（二）背景技术

对于传统的人工挖孔灌注桩来说，其施工深度一般控制在20m左右，最深可达40m。而对于人工挖孔桩的长度超过35m的超长桩来说，由于桩身长度超过一般施工长度，护壁的安全性直接关系到人工挖孔灌注桩的施工安全，同时由于现场地质条件复杂，钻孔深度较深，使其施工难度大，危险性高。而现有施工手册和规范中并没有相应的超长灌注桩的具体施工方法和规定可以依据，因此，对于如何保证超长桩的强度和安全性成为目前急待解决的技术问题。

另外由于场地地质条件的影响，我国大部分地区的地下存在单个溶洞或多个溶洞部分叠加的情况，相当部分地段的洞底均为溶塌堆积物，真实洞底不详。一般溶洞宽度小于7.5m，局部洞段大于12m，溶洞高一般2～20m不等，最大可超过20m。对于目前存在多层溶洞叠加现象，对穿越溶洞部分的桩身支护一般采取下列方案进行施工：

（1）采用10mm钢板护壁。优点是：省去护壁，施工速度快，施工操作简单。

缺点是：前期制作时间较长，施工时间短，造价太高。

（2）采用木模板进行支模。

由于溶洞深度一般在35m左右，模板单单位承受压力将超过50t。模板设计要求模板背方采用12号槽钢，间距@300mm。φ18对拉螺杆间距@300mm。模板及槽钢一次性投入。

优点：省去护壁，施工速度较快。

缺点：造价较高，施工复杂，施工时间较长。

因此，如何合理的确定一种能有效提高桩身强度、降低施工难度、加快施工速度，降低施工造价，又能保障施工安全的适用于无溶洞部分超长桩及需穿越溶洞的人工桩一直是困扰本领域技术人员的一个技术难题。

（三）发明内容

为解决上述问题，本发明提供了一种超长人工挖孔桩穿越溶洞施工方法及穿越溶洞的超长桩，该方法能有效提高桩身强度、降低施工难度、加快施工速度，保障施工安全。

为实现上述目的，本发明采用如下技术方案：

一种超长人工挖孔桩穿越溶洞施工方法，所述挖孔桩为挖孔灌注桩，其特征在于：具体施工方法如下：

步骤一：场地整平，放线，定桩位；
步骤二：从上到下逐层分节开挖，先开挖第一节桩孔土方，支模浇筑第一节混凝土护壁；
步骤三：在第一节混凝土护壁上二次投测标高及桩位十字轴线；
步骤四：在桩孔上口安装活动井盖、垂直运输架、起重电动葫芦或卷扬机、吊土桶、排水，通风以及照明设施；
步骤五：开挖第二节桩孔土方，清理桩孔四壁、校核桩孔垂直度和直径，拆上节混凝土护壁模板；
步骤六：支第二节混凝土护壁模板，浇筑第二节混凝土护壁；
步骤七：依次重复步骤五和步骤六，循环分节作业直至溶洞顶部最下一节护壁距溶洞顶 1.2 米；
步骤八：在已施工完的混凝土护壁护壁上搭设牢固水平防护，并在水平防护下作一操作平台；
步骤九：进行溶洞内护壁施工；
步骤十：检查洞内持力层并进行扩底，清底；
步骤十一：绑扎钢筋或吊放钢筋笼就位；
步骤十二：浇筑桩身混凝土。
所述的超长人工挖孔桩穿越溶洞施工方法，其特征在于：步骤二中，每节高度为 0.9～1.2m，先挖中间部分的土方，然后扩及周边。
所述的超长人工挖孔桩穿越溶洞施工方法，其特征在于：步骤二中，第一节混凝土护壁高出地表 150～200mm，桩位轴线和高程均标定在第一节混凝土护壁上口，护壁厚度 150mm，当桩径大于 2000mm 时，护壁厚度为 200mm。
所述的超长人工挖孔桩穿越溶洞施工方法，其特征在于：步骤八中，在溶洞顶部土方开挖完后，环绕孔壁植入钢筋，并与护壁钢筋焊接。
所述的超长人工挖孔桩穿越溶洞施工方法，其特征在于：步骤九中，穿越溶洞部分桩孔半径较原设计扩大 600mm，溶洞护壁外模为砖胎模。
所述的超长人工挖孔桩穿越溶洞施工方法，其特征在于：在护壁外 240mm 厚砖胎模砌筑前，先将在砖胎模砌筑范围内溶洞地表钙化层进行清理、凿打至岩石，并进行平整，再浇筑 100mm 厚 C10 砂垫层。
所述的超长人工挖孔桩穿越溶洞施工方法，其特征在于：当砖胎模砌筑 1.2 米高时，在溶洞内地坪岩石内依次进行护壁坚向钢筋植筋、护壁钢筋绑扎、模板安、搭设模板支撑以及护壁砼浇筑。
所述的超长人工挖孔桩穿越溶洞施工方法，其特征在于：
当开挖孔桩穿越溶洞高度小于 4 米时，先安装溶洞护壁内模板，再加设内支撑，溶洞护壁模板按每节 500～1000mm 进行配制，溶洞护壁顶处采用牛腿设计；
当开挖孔桩穿越溶洞高度大于等于 4 米小于 5 米时，溶洞护壁施工方法为：溶洞内由下至上第一节护壁施工：先安装护壁内模板，再加设内支撑，然后浇灌护壁砼，溶洞内由下至上第二节及以上护壁施工：在安装护壁内模板后，先拆除第一节或下面一节护壁内模板，再用土回填第一节或下面一节已成孔的孔桩以抬高施工作业面，一边进行砖胎模砌筑，一边进行挖孔桩钢筋绑扎、内模安装及砼浇灌，以此类推进行第三节挖孔桩
护壁施工：
[0036] 当挖孔桩穿越溶洞高度大于等于 5 米时，最下三节护壁厚度增加 100mm。
[0037] 所述的超长人工挖孔桩穿越溶洞施工方法，其特征在于：穿越溶洞护壁混凝
土强度同挖孔桩混凝土强度，溶洞护壁混凝土随护壁桩爬模分节浇筑，每节浇筑高度
500 ～1000mm。
[0038] 上述加强筋与桩纵横内侧相连的环向加强筋，以及连接于环向加强筋内侧的
斜拉加强筋。
[0039] 一种穿越溶洞的超长桩，桩体上下与钢筋混凝土灌注桩连接，其特征在于：桩
体在穿越溶洞的部直径加大，护壁外模为旋转模，护壁内模为循环使用的钢模，护
壁内模板与护壁外模板之间是浇灌的旋转护壁混凝土，桩身护壁混凝土的顶部呈牛腿
状，牛腿上是洞顶护壁混凝土浇筑层，环绕孔壁纵横方向植入桩纵横，螺旋筋和加强
筋，并与护壁钢筋焊接，在洞内地坪岩石上有洞底护壁混凝土浇筑层，上述加强筋为与
桩纵横内侧相连的环向加强筋，以及连接于环向加强筋内侧的斜拉加强筋。

（四）附图说明
[0040] 下面结合附图对本实用新型做进一步详细的说明。
[0041] 图 1 是本发明所述人工挖孔桩穿越溶洞施工方法的穿越溶洞桩身模具示意图；
[0042] 图 2 是本发明所述人工挖孔桩穿越溶洞施工方法的钢筋笼示意图。
[0043] 附图标记：1-护壁内模；2-内支撑；3-护壁外模；4-桩身护壁混凝土；
5-洞顶护壁混凝土浇筑层；6-牛腿；7-斜拉加强筋；8-桩纵横；9-十字钢筋；10-孔桩
护壁；11-螺旋筋；12-环形加强筋；13-纵筋保护层。

（五）具体实施方式
[0044] 下面具体结合附图 1-2 对本发明实施例作进一步详述：
[0045] 某工程实施例：由于部分桩基位于溶洞中，并且溶洞埋置深度在 35m 左右，桩
长设计 30 ～ 40m，部分桩将超过 40m；另由于场地地质条件，部分无溶洞人工挖孔桩
桩身长度超过 35m。此部分人工挖孔桩施工难度大，危险性高。为了保证该部分人工挖孔
桩灌注桩 (溶洞及超长桩) 施工安全可靠，特采用本发明的超长人工挖孔桩穿越溶洞施工
方法。
[0046] 施工步骤如下：
[0047] 步骤一：场地整平、放线、定位位；
[0048] 步骤二：从上到下逐层分节开挖，先开挖第一节桩孔土方，支模浇筑第一节混凝
土护壁；
[0049] 步骤三：在第一节混凝土护壁上二次定测标高及桩位十字轴线；
[0050] 步骤四：在桩孔上口安装活动井盖、垂直运输架、起重电动葫芦或卷扬机、吊
土桶、排水、通风以及照明设施；
[0051] 步骤五：开挖第二节桩孔土方，清理桩孔四壁、校核桩孔垂直度和直径，拆上
节混凝土护壁模板；
[0052] 步骤六：支第二节混凝土护壁模板，浇筑第二节混凝土护壁；
步骤七：依次重复步骤五和步骤六，循环分节作业直至溶洞顶部最下一节护壁距洞口1.2米；

步骤八：在已施工完的混凝土护壁上搭设牢固水平防护，并在水平防护下作一操作平台；

步骤九：进行溶洞内护壁施工（如图1所示）；

步骤十：检查洞底持力层并进行扩底、清底；

步骤十一：绑扎钢筋或吊放钢筋笼（具体结构布置如图2所示）就位；

步骤十二：浇筑桩身混凝土。桩身砼浇筑前对钢筋笼进行检查，清理完孔桩杂物，并沿桩底每间隔4米搭设一排墩台，施工照明、通风的操作平台，平台随砼面上升向土转移。桩身混凝土浇筑时，必须使用溜槽或串桶，由于桩孔深，混凝土泵管无法连接，为防止混凝土灌注产生离析，因此串筒采用软导管布设。软管钻直径同输送泵管直径，考虑混凝土要求，串筒分别按40m、35m、300、25m、20m、15m、15m系列长度制作。在桩芯砼浇筑过程中用吊管配合将串筒吊起，软管串筒随砼面上升及时更换小规格的串筒。同时，为防止因砼侧压力过大，将孔桩护壁打穿，砼浇灌速度不宜过快，坍落度控制在160mm以内。浇筑过程中，浇筑出料口处混凝土面应控制在2m，应连续进行，分层振捣密实。分层高度为1000～1500mm，混凝土塌落度160mm。混凝土浇筑高度，应按超过桩浇筑标高100mm，以保证在剔除浮浆后，桩顶标高符合设计要求。取样：按每50立方米必须一组；小于50立方米的桩，每根桩必须取一组。

对于步骤二，步骤八溶洞上方的土体开挖，其进一步要求如下:

1. 依据建筑物测量控制网的资料和基础平面布置图，测定柱位轴线方格控制网和高程基准点。经有关部门进行复查，调试性能后开始开挖。开挖柱孔应从上到下逐层进行，先挖中间部分的土方，然后挖及周边，有效地控制开挖柱的截面尺寸。每节的高度应根据土质好坏、操作条件而定，一般以0.9～1.2m为宜。第一节柱孔成孔后，即着手在柱孔口架设垂直运输支架。要求搭设稳定、牢固。护壁采用混凝土护壁，第一节护壁以高出地坪150～200mm为宜，便于挡土、挡水。柱位轴线和高程均应标定在第一节护壁上口，护壁厚度150mm，当桩径大于直径2000mm时，护壁厚度为200mm。桩孔每挖完一节以后应立即浇筑混凝土护壁。混凝土强度为C25，坍落度控制在100mm，确保孔壁的稳定性。混凝土用吊桶运输人工浇筑，上部留100mm高作为浇筑口，拆模后用砌砖或混凝土堵砌，混凝土达到一定强度后即可拆模。每节柱孔护壁做好以后，必须将柱位十字轴线和标高测设在护壁的上口，然后用十字线对中，吊线垂向井底投设，以保证打桩的垂直平整度。
2. 随之进行纠偏，井深必须以基准点为依据，进行引测。保证柱孔轴线位置、标高、截面尺寸满足设计要求。当地下水量不大时，随挖随将泥水用吊桶运出。地下渗水量较大时，先在柱孔底挖集水坑，用高程水位沉入抽水，边降水边挖土，水井的规格按抽水量确定。挖出的土应先将底部柱身的圆柱体挖好，再按标高部位的尺寸、形状自上而下削土扩充成设计图纸的要求。
边开挖，边在水平防护架下作一操作平台，并系好安全带；洞洞顶方开挖完成后，环绕孔壁纵横方向植入 φ12@200 的钢筋，并与护壁钢筋焊接。 洞洞顶护壁施工完之后，首先对洞内的桩位进行测量定位，按一般孔桩施工孔桩护壁 10，达到设计持力层后进行孔底清底。为便于孔内模板 1 安装及钢筋笼装箍，穿越溶洞部分桩身半径按原设计扩大 600mm，护壁外模为砖胎模 3，厚 240mm，采用 M7.5 水泥砂浆、标准页岩砖砌筑，内模板 1 采用 3mm 钢板，为加快护壁施工速度，每根超深桩配制三套 3mm 钢板做的内模板 1，并重复使用。在溶洞内护壁施工前，为了防止洞顶坍塌或坠石，保证洞内施工作业人员安全，孔桩周边 2.5 米范围内搭设安全防护脚手架，脚手架铺设两层木板作防护棚。

在护壁外 240mm 厚砖胎模 3 砌筑前，先将在砖胎模 3 砌筑范围内溶洞地坪钙化层进行清理、凿打至岩石，并进行平整，再浇灌 100MM 厚 C10 混凝土 5 层骨料达到一定强度后，开始护壁外 240mm 厚砖胎模 3 砌筑，当砖胎模 3 砌筑 1.2 米高时，在洞内地坪岩石内进行护壁竖向钢筋搭接，再进行护壁钢筋绑扎、模板安装及搭设模板支撑，为防止护壁砼浇灌振捣将砖胎模 3 振捣，待砖胎模 3 达到足够高强度后，再进行护壁砼浇灌。

[0063] 当挖孔桩穿越溶洞高度小于 4 米时，先安装护壁内模板 1，再加设内支撑 2：护壁模板按每节 500 ～ 1000mm 进行配制。护壁顶处采用牛腿 6 设计，以便混凝土浇灌。

[0064] 当挖孔桩穿越溶洞高度大于等于 4 米小于 5 米时，护壁施工方法：

[0065] 第一节（由下至上）护壁施工：先安装护壁内模板 1，再加设内支撑 2，然后浇灌护壁砼。

[0066] 第二节（由下至上）及以上护壁施工：由于孔桩在洞内高度大，无法搭设砌砖、绑扎钢筋及砼浇灌用的脚手架，为保障施工作业人员的安全，在安装护壁内模板 1 后，先拆除第一节或下节护壁内模板 1，再用土回填第一节或下节已成孔的孔桩以抬高施工作业面，桩然后浇灌护壁砼，一边进行砖胎模 3 砌筑，一边进行孔桩钢筋绑、内模板安装及砼浇灌，以此类推进行第二节孔桩护壁施工。

[0067] 当挖孔桩穿越溶洞高度大于等于 5 米时，为防止孔桩穿越溶洞高度大导致桩芯砼浇灌时将护壁打穿，将最下三节护壁厚度增加 100mm。

[0068] 穿越溶洞护壁混凝土强度同桩混凝土强度。护壁混凝土浇灌采用人工搅拌，人工浇灌，机械振捣。护壁混凝土随护壁砖胎模 3 分节浇灌，每节浇灌高度 500～1000mm。护壁混凝土要求振捣密实，混凝土强度满足设计和规范要求。

[0069] 这种穿越溶洞的超长桩，桩体上下与钢筋混凝土灌注桩连接，其特征在于：桩体在穿越溶洞的部分直径扩大，护壁外模为砖胎模，护壁内模板 1 为循环使用的钢板，护壁内模板 1 与护壁外模 3 之间是浇灌的桩身护壁混凝土，桩身护壁混凝土的顶部呈牛腿 6 状，牛腿上是洞顶护壁混凝土浇筑层 5，环绕孔壁纵横方向植入桩筋筋 8、螺旋筋 11 和加强筋，与护壁钢筋焊接，在洞内地坪岩石上有洞底护壁混凝土浇筑层 10，上述加强筋为与桩筋筋内侧相连的环向加强筋 12，以及连接于环向加强筋内侧的斜拉加强筋 7。

[0070] 通过采用以上工程实例表明：采取本发明的人工挖孔桩穿越溶洞施工方法，能够有效的消除施工场地地质条件的影响，尤其适用于无溶洞超长人工挖孔桩桩身以及地下室溶洞及多溶洞间的场地，能有效提高桩身强度、降低施工难度、加快施工速
度，保障施工安全。

【0071】以上为本发明的一个典型实施例，本发明的实施不限于此。