0 2006/045057 A2 | IV T 00 0O 0N

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
27 April 2006 (27.04.2006)

' N\
) I 0 O O

(10) International Publication Number

WO 2006/045057 A2

(51) International Patent Classification:
HO4L 12/56 (2006.01) HO4L 12/28 (2006.01)

(21) International Application Number:
PCT/US2005/037941

(22) International Filing Date: 19 October 2005 (19.10.2005)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

10/969,376 19 October 2004 (19.10.2004) US

(71) Applicant (for all designated States except US): NVIDIA
CORPORATION [US/US]; 2701 San Tomas Expressway,
Santa Clara, CA 95050 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MINAMI, John,
Shigeto [US/US]; 1212 Nuuanu Ave., #1206, Honolulu,
HI 96817 (US). UYESHIRO, Robin, Y. [US/US]; 1234
Kelewina St., Kailua, HI 96734 (US). OOI, Thien, E.
[MY/US]; 1920 Ala Moana Blvd., #604, Honolulu, HI
96815 (US). JOHNSON, Michael, Ward [US/US]; 482
Knottingham Circle, Livermore, CA 94550 (US). KA-
NURI, Mrudula [IN/US]; 872 Linden Drive, Santa Clara,
CA 95050 (US).

(74) Agent: ZILKA, Kevin, J.; Zilka-Kotab, PC, P.O. Box
721120, San Jose, CA 95172-1120 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ,BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY,
MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO,
NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK,
SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VC, VN, YU, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

(84)

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: SYSTEM AND METHOD FOR PROCESSING RX PACKETS IN HIGH SPEED NETWORK APPLICATIONS US-

ING AN RX FIFO BUFFER
- prOCESSOR
\:""-",; "\
L 204
i
PROCESSOR
BUS C—_—ﬁ SYSTEM
MEMORY _ \
¢ 206
MWL____N OFFLOAD
ENGINE (}:{) TO NETWORK/HOST
202 212
200

(57) Abstract: A system and method are provided for processing packets received via a network. In use, data packets and control
packets are received via a network. Further, the data packets are processed in parallel with the control packets.

10

15

20

25

30

WO 2006/045057

SYSTEM AND METHOD FOR PROCESSING RX
PACKETS IN HIGH SPEED NETWORK
APPLICATIONS USING AN RX FIFO BUFFER

FIELD OF THE INVENTION

The present invention relates to network communications, and more particularly

to processing received (RX) packets.

BACKGROUND OF THE INVENTION

Transport offload engines (TOE) include technology that is gaining
popularity in high-speed systems for the purpose of optimizing throughput, and
lowering processor utilization. TOE components are often incorporated into one of
various printed circuit boards, such as a network interface card (NIC), a host bus

adapter (HBA), a motherboard; or in any other desired offloading context.

In recent years, the communication speed in systems has increased faster than
processor speed. This has produced an input/output (I/O) bottleneck. The processor,
which is designed primarily for computing and not for /O, cannot typically keep up
with the data flowing through the network. As a result, the data flow is processed at
a rate slower than the speed of the network. TOE technology solves this problem by

removing the burden (i.e. offloading) from the processor and/or 1/O subsystem.

One type of processing often offloaded to the TOE includes Transmission
Control Protocol (TCP) packet processing. TCP is a set of rules (protocol) used
along with the Internet Protocol (IP) to send data in the form of message units
between computers over the Internet. While IP takes care of handling the actual
delivery of the data, TCP takes care of keeping track of the individual packets that a

message is divided into for efficient routing through the Internet.

PCT/US2005/037941

WO 2006/045057 PCT/US2005/037941

Handling TCP packets on a high speed network requires much processing.
Packets may arrive out of sequence and therefore must be stored if data is to be
passed to an application in sequence. Additionally, the processing of received

packets must be able to keep up with the line rate of the network connection.

There is thus a need for a technique of accelerating TCP and other packet

processing.

10

15

20

25

WO 2006/045057

SUMMARY OF THE INVENTION

A system and method are provided for processing packets received via a
network. In use, data packets and control packets are received via a network.

Further, the data packets are processed in parallel with the control packets.

In one embodiment, the control packets may be processed utilizing a first
processing path and the data packets may be processed utilizing a second processing

path, separate from the first processing path.

In another embodiment, the processing of the packets may include utilizing,
in parallel, a look-up table and a cache in order to identify a correct socket control
block associated with the packets. Similarly, the processing of the data packets may
include utilizing, in parallel, substantially duplicate logic in order to identify a

correct socket control block associated with the packets.

In yet another embodiment, control blocks associated with the packets may

be updated in parallel with processing of subsequent packets.

As a further option, tag information may be prepended to the data packets.
Such tag information may further be prepended to the data packets while buffered in
a receiver (RX) first-in-first-out (FIFO) buffer. Optionally, the tag information may
include the type of the corresponding packet, a socket handle associated with the
corresponding packet, status information associated with the corresponding packet,

and/or control information associated with the corresponding packet.

In use, the data packets may be buffered utilizing a RX FIFO buffer.

PCT/US2005/037941

10

15

20

25

WO 2006/045057

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates a network system, in accordance with one embodiment.

Figure 2 illustrates an architecture in which one embodiment may be

implemented.

Figure 3 illustrates a specific example of architecture for processing received

packets, in accordance with one embodiment.

Figure 4 illustrates an exemplary front-end module for processing received

packets, in accordance with one embodiment.

Figure 5 illustrates an exemplary receiver back-end module for processing

received packets, in accordance with one embodiment.

Figure 6 illustrates an exemplary front-end method for processing received

packets, in accordance with one embodiment.

Figure 7 illustrates an exemplary back-end method for processing received

packets, in accordance with one embodiment.

Figure 8 illustrates an exemplary control packet processing method for

processing received control packets, in accordance with one embodiment.

PCT/US2005/037941

10

15

20

25

30

WO 2006/045057 PCT/US2005/037941

DETAILED DESCRIPTION

Figure 1 illustrates a network system 100, in accordance with one
embodiment. As shown, a network 102 is provided. In the context of the present
network system 100, the network 102 may take any form including, but not limited

to a local area network (LAN), a wide area network (WAN) such as the Internet, etc.

Coupled to the network 102 are a local host 104 and a remote host 106 which
are capable of communicating over the network 102. In the context of the present
description, such hosts 104, 106 may include a web server, storage device or server,
desktop computer, lap-top computer, hand-held computer, printer or any other type
of hardware/software. It should be noted that each of the foregoing components as
well as any other unillustrated devices may be interconnected by way of one or more

networks.

Figure 2 illustrates an exemplary architecture 200 in which one embodiment
may be implemented. In one embodiment, the architecture 200 may represent one of
the hosts 104, 106 of Figure 1. Of course, however, it should be noted that the

architecture 200 may be implemented in any desired context.

For example, the architecture 200 may be implemented in the context of a
general computer system, a circuit board system, a game console system dedicated
for entertainment purposes, a set-top box, a router, a network system, a storage
system, an application-specific system, or any other desired system associated with

the network 102.

As shown, the architecture 200 includes a plurality of components coupled
via a bus 202. Included is at least one processor 204 for processing data. While the

processor 204 may take any form, it may, in one embodiment, take the form of a

10

15

20

25

30

WO 2006/045057 PCT/US2005/037941

central processing unit (CPU), a graphics module, a chipset (i.e. a group of
integrated circuits designed to work and sold as a unit for performing related
functions, etc.), a combination thereof, or any other integrated circuit for that matter.
In the example of a graphics module, such integrated circuit may include a transform
module, a lighting module, and a rasterization module. Each of the foregoing
modules may be situated on a single semiconductor platform to form a graphics

processing unit (GPU).

Further included is processor system memory 206 which resides in
communication with the processor 204 for storing the data. Such processor system
memory 206 may take the form of on-board or off-board random access memory
(RAM), a hard disk drive, a removable storage drive (i.e., a floppy disk drive, a
magnetic tape drive, a compact disk drive, etc.), and/or any other type of desired

memory capable of storing data.

In use, programs, or control logic algorithms, may optionally be stored in the
processor system memory 206. Such programs, when executed, enable the
architecture 200 to perform various functions. Of course, the architecture 200 may

simply be implemented directly in hardwired gate-level circuits.

Further shown is a transport offload engine 212 in communication with the
processor 204 and the network (see, for example, network 102 of Figure 1). In one
embodiment, the transport offload engine 212 may remain in communication with
the processor 204 via the bus 202. Of course, however, the transport offload engine
212 may remain in communication with the processor 204 via any mechanism that
provides communication therebetween. The transport offload engine 212 may
include a transport (i.e. TCP/IP) offload engine (TOE), system, or any integrated

circuit(s) that is capable of managing the data transmitted in the network.

While a single bus 202 is shown to provide communication among the

foregoing components, it should be understood that any number of bus(es) (or other

10

15

20

25

30

WO 2006/045057 PCT/US2005/037941

communicating mechanisms) may be used to provide communication among the
components. Just by way of example, an additional bus may be used to provide
communication between the processor 204 and processor system memory 206.
Further, in one embodiment, any two or more of the components shown in Figure 2

may be integrated onto a single integrated circuit.

During operation, the transport offload engine 212, processor 204 and/or
software works to process packets received via a network (i.e. see, for example,
network 102 of Figure 1, etc.). In accordance with one embodiment, data packets
and control packets are received via a network. Further, the data packets are

processed in parallel with the processing of the control packets.

In context of the present description, “data packets” may refer to any packets
that are used to communicate data, while “control packets” may refer to any packets
that exhibit any aspect of control over network communications. Moreover,
“parallel” may refer to processing where any aspect of the data packets and control
packets are processed, at least in part, simultaneously. To this end, received packet

processing is enhanced.

In another embodiment, the processing of the packets may include utilizing,
in parallel, substantially duplicate logic and/or multiple data structures (i.e. a look-up
table and a cache, etc.) in order to identify a correct socket control block (CB)
associated with the packets. As an option, during such search mode (i.e. when such
CB is being identified), if the correct socket control block is not in the cache, the
correct socket control block may be retrieved from a main memory, where the
retrieved correct socket control block is not stored in the cache when in the search
mode. In the context of the present description, a CB may include any information

capable of being used to track a connection attempt and/or connection.

By utilizing the identification results of the data structure that first correctly

identifies the CB, the foregoing identification process is accelerated. Further, by

10

15

20

WO 2006/045057 PCT/US2005/037941

utilizing substantially duplicate logic, the CB identification process may be
simultaneously carried out for multiple packets, thus providing further acceleration.

As a further option, tag information may be prepended to the packets (i.e.
data packets and/or control packets, etc.). Such tag information may further be
prepended to the packets while buffered in a receiver (RX) first-in-first-out (FIFO)
buffer. By prepending the tag information, the received packets may be stored while
the foregoing CB identification is carried out. Further, as an option, there may

possibly be no need for a separate buffer for the tag information.

In still yet another embodiment, CB’s may be updated, as additional packets
are received. Thué, in use, a CB associated with a first packet may be updatgd.
Further, after at least starting the updating of the CB associated with the first packet
and before finishing the updating, the processing of a second packet may be started,
thus enhancing performance. To this end, packet processing may be carried out in
parallel with CB updating, thus reducing the possibility of a bottleneck in one of the

processes creating a bottleneck in the other.

More optional features and exemplary implementation details will now be set
forth regarding the above embodiments. It should be noted that the following details
are set forth for illustrative purposes only, and should not be construed as limiting in

any manner.

Figure 3 illustrates an exemplary architecture 300 for processing received
packets, in accordance with one embodiment. As an option, the architecture 300
may be implemented in the context of the exemplary architecture 200 of Figure 2.
of course, however, it should be noted that the architecture 300 may be implemented

in any desired context.

As shown, a plurality of media access control (MAC) RX buffers 302 are

provided for receiving both data and control packets from a plurality of networks

10

15

20

25

WO 2006/045057 PCT/US2005/037941

102. It should be noted that the RX buffers 302 are not necessarily for the plurality
of networks 102. One embodiment may include one buffer for a single network.
Such MAC RX buffers 302 feed an Ethernet RX 306 which, in turn, feeds both an
Internet Protocol (IP) RX 310 and an exception handler 314. All IP packets are sent
to the IP RX 310 and all other packets are sent to the exception hander 314.

Within the IP RX 310, the packet IP header is parsed. All Internet protocol
security (IPSEC) protocol packets are then sent to an [PSEC RX handler 308 and
stored in an IPSEC RX buffer 304, and all TCP or UDP packets are sent to the TCP
RX front-end module 316. All other packets are sent to the exception hander 314.
A multiplexer 312 selects between normal TCP/UDP packets from the IP RX 310
and processed [PSEC packets from the IPSEC RX handler 308.

In use, the TCP RX front-end module 316 parses incoming TCP packets to
determine if a received packet either contains TCP data or is a TCP control packet.
Separate processing paths are then provided for each packet type. To this end,
packet processing is enhanced, in the manner set forth hereinabove. Further, the
processing of the packets may include utilizing, in parallel, substantially duplicate
logic and/or multiple data structures [i.e. a look-up table (see CB look-up table 318)
and a CB cache (see CB data cache 324), etc.] in order to identify a correct socket

CB associated with the packets.

Still yet, for the reasons set forth hereinabove, data packets are stored in
MAC RX FIFO buffers 322 while simultaneously searching for the corresponding
CB associated with the packet. After the data packet has been stored and the CB
look up is complete, tag information may be prepended to the data packets in the
MAC RX FIFO buffers 322. In still yet another aspect of the TCP RX front-end
module 316, a CB associated with a first packet may be updated. After at least
starting the updating of the CB associated with the first packet and before finishing

10

15

20

25

30

WO 2006/045057 PCT/US2005/037941

10

the updating, the processing of a second packet may be started, thus enhancing

performance.

More information regarding such TCP RX front-end module 316
functionality and optional implementation detail will be set forth in greater detail

during reference to Figure 4 and the accompanying description.

With continuing reference to Figure 3, the TCP RX front-end module 316
feeds an exception haﬁdler 314. All packets that are identified as causing any logic
exception are sent to the exception handler 314. As an example, packets that match
a received filter setting, or contain unsupported options may be sent to the exception
handler 314. As stated above, normal data packets are stored in the MAC RX FIFO
buffers 322 via an RX buffer controller 320. This RX buffer controller 320 accepts
requests to store packets from either the exception handler 314 or the TCP RX front-
end module 316, and arbitrates between the two sources. More information

regarding such interaction will be set forth hereinafter in greater detail.

The RX buffer controller 320 feeds additional MAC RX FIFO buffers 322
which, in turn, feed the RX back-end module 326. The MAC RX FIFO buffers 322
are thus coupled between the front-end module and the back-end module for

providing a boundary therebetween and decoupling the same.

As shown in Figure 3, the TCP RX front-end module 316 indicates to the RX
back-end module 326 that packets are available for servicing in the MAC RX FIFO
buffers 322. As will soon become apparent, the RX back-end module 326 handles
application level processing such as the Internet small computer system interface
(iSCSI) protocol or any other desired protocol [i.e. RDMA (remote data memory
access), etc.]. More information regarding such RX back-end module 326
functionality and optional implementation detail will be set forth in greater detail

during reference to Figure 5 and the accompanying description.

10

15

20

25

30

WO 2006/045057

11

Finally, the RX back-end module 326 uses both scatter-gather list (SGL) 334
[and/or possibly memory descriptor list (MDL)], and anonymous buffer lists 328, as
well as direct memory access (DMA) logic 330, to store the received packets in host
memory (i.e. see, for example, the processor system memory 206, 106 of Figure 2).
In the context of the present description, an SGL may include any data list object
provided to describe various locations in memory where incoming data is ultimately

stored.

Figure 4 illustrates an exemplary TCP RX front-end module 316 for
processing received packets, in accordance with one embodiment. As an option, the
TCP RX front-end module 316 may be implemented in the context of the exemplary
architecture 300 of Figure 3. Of course, however, it should be noted that the TCP

RX front-end module 316 may be implemented in any desired context.

As shown in Figure 4, the TCP RX front-end module 316 receives data from
the IP layer (i.e. via, for example, IP RX 310 of Figure 3, etc.), and either processes
the packet or treats it as an exception. To accomplish this, a TCP RX parser 414 and
socket locator module 402 are provided. As an option, multiple TCP RX parsers
414 and socket locator modules 402 may be provided. For that matter, any of the
logic modules disclosed herein may be provided in substantially duplicate or even

triplicate to enhance processing.

In use, the TCP RX parser 414 is responsible for parsing the received TCP
and user datagram protocol (UDP) packets. As an option, all UDP packets may be
sent up as exceptions (i.e. via, for example, exception handler module 314 of Figure
3, etc.) or may be processed in a similar manner to TCP data packets. As a further
option, a UDP checksum may be validated, and, if it is bad, the packet may be
aborted.

PCT/US2005/037941

10

15

20

25

30

WO 2006/045057 PCT/US2005/037941

12

For TCP packets, all data packets are stored in an RX FIFO buffer 322, and
all control packets are sent to a control packet queue 404. This determination may
be accomplished by examining FLAG bits in the TCP header as well as the packet
length. Thus, the control packets may be processed utilizing a first processing path
and the data packets may be processed utilizing a second processing path, separate

from the first processing path.

If the packet is a data packet, a socket hash is computed by the socket locator
module 402. By way of background, each data packet has associated therewith both
a pair of IP addresses and a pair of TCP or UDP ports. The hash may be generated

based on such IP addresses and ports (i.e. by utilizing the “socket 4-tuple,” etc.).

This hash may then be used to index into the CB look-up table 318. A
sample CB look-up table 318 is shown in Table 1.

Table 1

hash1/(address1 to socket CB1 in memory)
hash2/(address2 to socket CB2 in memory)
hash3/(address3 to socket CB3 in memory)

The CB addresses may be used to identify the location of the appropriate CB
in memory, and doubles as the socket handle identifier associated with the CB. CB’s
typically include such socket handle, along with other information such as the socket
state, etc. Within the CB structure is a field that points to the next CB that contains
the same generated hash value. In this manner, sockets with hash values that collide

can be resolved.

It is then determined, based on a comparison of the socket handle and the
actual socket associated with the current packet, whether the socket associated with

the CB is the correct socket or not. For example, if the 4-tuple in the packet matches

10

15

20

25

30

WO 2006/045057 PCT/US2005/037941

13

the parameters in the socket CB, the correct CB has been found. If it does not
match, the next linked socket handle is read from the CB and that socket CB is then
fetched.

This process of retrieving the next linked socket handle continues until the
correct socket CB is found or it is determined that no CB is present that can be
associated with the received packet. As an option, the size of the CB look-up table
318 may be twice the maximum number of sockets supported in order to reduce the

number of hash collisions, and may be located in external memory.

In parallel to this use of the CB look-up table 318, a look-up is performed in
the CB data cache 324. The CB data cache 324 contains the most recently used “n”
socket CB’s (i.e. 32 or so). The CB data cache 324 further contains a hash
association table that indicates the generated hash for each CB entry that is present in
the CB data cache 324. The socket locator module 402 can then query the CB data
cache 324 to determine if a matching CB hash is present in the CB data cache 324.
To this end, it is possible to determine if the possible CB match is in the CB data
cache 324 within a predetermined amount of time (i.e. a clock of generating the

hash).

By utilizing the identification results of the data structure (i.e. CB look-up
table 318 or CB data cache 324) that first correctly identifies the CB, the foregoing
identification process is accelerated. For example, the maximum number memory
reads required to find the correct socket when the CB is not in the CB data cache 324

may be given by Equation #1.
Equation #1
of clocks = 1 + p(n), where:

. the first read is due to the CB look-up table 318 look-

10

15

20

25

30

WO 2006/045057 PCT/US2005/037941

14
up,
o n is the number of CB hash collisions for that
particular hash, and
. p is the number of clock cycles required to read the

socket ports and IP addresses from a CB entry.

If the CB is in the CB data cache 324, the maximum number of clocks

required to find the CB is given by Equation #2.

Equation #2

of clocks = m, where:

e m refers to the number of CB’s in the CB data cache

324 that have the particular hash.

The parameters can be read out fast from the CB data cache 324, since the

cache bus width is ideally sized (i.e. 128 bits, etc.).

As a further feature, the CB data cache 324 may allow a special read through
mode when the socket locator module 402 is searching for CB’s referenced by the
CB look-up table 318. In this special read mode, the requested CB is first checked
to see if it is located in the CB data cache 324. If it is there, the contents can be
returned immediately. However, if it is not located in the CB look-up table 318, it is
read from main CB memory, but in this mode, the CB is not pulled into the CB look-
up table 318. This is because the search logic at this point is still looking for the CB
associated with the received packet. Once the correct CB is located, the handle
associated with the CB is passed to the TCP RX state controller 412 which reads the
CB through the CB data cache 324. At that time, the CB is retrieved from main CB

10

15

20

25

30

WO 2006/045057 PCT/US2005/037941

15

memory and placed in the CB data cache 324.

Data packets get stored in the RX FIFO buffer 322 at the same time as CB
look-ups are being performed. In this manner, for data packets that are larger than a
predetermined size (i.e. 80 bytes, etc.), minimal time is lost on average finding the
proper CB. Since locating the correct CB is a time critical task, this logic (i.e. TCP
RX parser 414 and/or socket locator module 402, etc.) may be substantially
duplicated (or even provided in triplicate) in the TCP RX front-end module 316 such

that multiple packets received from the IP layer may be processed simultaneously.

This allows the logic to look ahead and start searching for the CB for the next
packet while the first packet is still being processed. Once the CB is found and the
contents fetched, the packet processing (i.e. determining what to do with the packet,

etc.) is done within a few clock cycles.

Returning to the receive processing, if the correct CB is not in the CB data
cache 324, it is read from the main CB memory and, at the same time, placed into
the CB data cache 324. If the CB is already in the CB data cache 324, it can be read
directly. The socket state, control bits, and parameters (including the SEQ and ACK

numbers, etc.) may all be obtained using the CB.

Once all of the CB parameters have been fetched, processing of the packet is
completed within a predetermined amount of time (i.e. approximately 2 clock
cycles) depending on the state of the socket. Therefore, for data packets that are
larger than a predetermined size (i.e. 300 byte, on average), processing may be
completed by the time the data is stored in the RX FIFO buffer 322. This may apply
even if the CB needs to be fetched from main CB memory. If the CB is already in
the CB data cache 324, even smaller data packets can be processed with minimal

extra time required for packet processing.

10

15

20

25

30

WO 2006/045057

16

Pre-pended to each packet in the RX FIFO buffer 322 is tag information.
This tag information may include information on the type of the packet (i.e.
exception, TCP data packet, etc.), the socket handle associated therewith, and/or
other control and status information. The tag information may be filled in after the

entire packet has been received and verified to be valid.

Such tag information may further be prepended to the packets while buffered
in a RX FIFO buffer 322. By prepending the tag information in such manner, the
received packets may be stored while the foregoing CB identification is carried out.
Further, as an option, there may possibly be no need for a separate buffer for the tag

information.

Another function of the TCP parser 414 is to validate the TCP checksum.
This is done by snooping the packet as it is being parsed and stored in either the RX
FIFO buffer 322 (for data packets) or the control packet queue 404 (for TCP control
packets). The resulting checksum is combined with the pseudo header checksum
provided by the IP layer to produce the final checksum. This check is valid with a
predetermined timeframe (i.e. 3 clocks) after the last word from the IP module is
read. Ifthe packet is deemed to be bad from either a TCP check sum error or by any
other error from any of the lower layers, the packet is dropped from either the RX

FIFO buffer 322 or the control packet queue 404.

With continuing reference to Figure 4, a TCP RX state controller 412 is
provided. The TCP RX state controller 412 is responsible for determining the course
of action for received TCP data packets. The packet parameters are checked against
those in the socket CB. This includes checking a sequence number of the packet, the

state of the socket, etc.

The packet is processed as if it will be good, however. That way, after the
entire packet is received, all of the processing has already taken place and minimal

further calculations are necessary. If the packet turns out bad, the CB is not updated,

PCT/US2005/037941

10

15

20

25

30

WO 2006/045057

17

and the packet is dropped from the RX FIFO buffer 322 or the control packet queue
404. In this case, the write pointers for each buffer is reset to the point it was before

the packet arrived.

Once the entire data packet has been stored in the RX FIFO buffer 322, the
TCP RX state controller 412 may schedule an ACK via a TCP transmitter module
(not shown). Four ACK modes may be supported: normal immediate ACKs, normal

delayed ACKs, host-mode immediate ACKs, and host-mode delayed ACKs.

In the normal modes, the ACK or delayed ACK is requested or queued
immediately after the data packet is received and determined to be valid. In the two
host modes, the ACK is only requested or queued after the host has acknowledged
receiving the data via the RX DMA.

Returning again to the TCP RX parser 414, the logic block may separate out
pure TCP control packets (i.e. those packets that do not contain any data) from data
packets. This is because pure control packets are typically shorter packets, and are
not time critical to process. These TCP control packets are detected by the FLAG bit
settings in the TCP header, combined with the total length of the packet. If no data is
contained in the packet, and the push (PSH) bit is not set, the packet is considered to

be a pure control packet.

These packets are diverted to the control packet queue 404 of Figure 4. The
checksum for each packet is calculated as the packet is being diverted, and bad
packets are discarded. The socket hash is also calculated and pre-pended to the
packet in a separate section. A control packet handler 416 then reads the packet out
of the queue and processes the same. The following operations of Table 2 are then

performed for the control packets.

Table 2

PCT/US2005/037941

10

15

20

25

30

WO 2006/045057

PCT/US2005/037941
18

1. The socket hash is looked up in the CB look-up table 318. At the

same time, the hash is checked to see if the CB is already in the CB data cache

324.

2. Assuming that the CB is already in the CB data cache 324, the

applicable fields are read.

3. Ifthe CB is not in the CB data cache 324, it is read from main CB

memory and placed in the data cache 324.

4. Action is then determined by the type of packet that is received and

the current state of the socket. These actions could be, but is not limited to, any

of the following:
a.
b.
c.
d.

Request a response from the TCP transmitter
Send a status message to the host
Disregard the packet

Send the packet up as an exception

5. After the required action is determined, the CB is updated

accordingly.

The look-up and reading of the socket, processing the packet, and updating of

the CB are all pipelined operations, thereby allowing the handler to start finding the

next socket while the previous control packet is still being processed.

Figure 5 illustrates an exemplary RX back-end module 326 for processing

received packets, in accordance with one embodiment. As an option, the RX back-

end module 326 may be implemented in the context of the exemplary architecture

300 of Figure 3. Of course, however, it should be noted that the RX back-end

module 326 may be implemented in any desired context.

10

15

20

25

30

WO 2006/045057 PCT/US2005/037941

19

Once the packet has been completely stored in the RX FIFO buffer 322 and
the packet buffer header filled, the RX back-end module 326 begins to process the
same. The RX back-end module 326 starts by parsing and stripping the packet
buffer header, utilizing a data alignment and RX buffer header parsing module 502.
This tells the RX back-end module 326 the type of the packet (i.e. exception or TCP
data packet), the CB handle associated with the packet, and other status and control
information, as noted above. In one embodiment, the headers may be 256 bits in

length.

After the packet buffer header is parsed and stripped, the packet is re-aligned.
This re-alignment may be needed because for normal TCP (and optionally UDP)
data packets; the packet Ethernet, IP, and TCP headers are also stripped. Stripping of
these headers may cause the resulting data to be non-FIFO word aligned, and the re-
alignment makes it simpler for subsequent logic modules to operate on the packet

data.

After the re-alignment, the packet may be optionally passed through
application specific processing logic 504. This logic may include, but is not limited
to, logic that implements the iSCSI protocol or remote direct memory access
(RDMA) functions. For iSCSI support, this module may perform iSCSI cyclic
redundancy checking (CRC) verification, iSCSI protocol data unit (PDU) header

parsing, and fixed interval marker (FIM) removal.

All exception packets (from every layer in the network stack) are sent to host
memory as specified in an exception buffer list (i.e. temporary buffers, holding
buffers, eddy buffers, etc.). The exception list (i.e. see, for example, list 328 of
Figure 3, etc.) is provided by the host driver. The list may be continuously
augmented by the host as buffers are used. Retrieving exception buffer addresses
and managing of the exception buffer list is managed by the SGL processing logic
506.

10

15

20

25

30

WO 2006/045057 PCT/US2005/037941

20

Regular TCP data that arrives on a socket usually use a socket specific SGL
to specify where in host memory the data should be stored. The SGL (i.e. see, for
example SGL 334 of Figure 3, etc) is provided by the host driver. The list may be
continuously augmented by the host as the list is used. In the context of the present
description, an SGL may include any data list object provided to describe various
locations in memory where incoming data is ultimately stored. When data is
received on a socket, but the SGL associated with the socket does not contain any
valid buffer addresses, the received data is also sent to host memory using the
exception buffer list. SGL management is also handled by the SGL processing logic
506.

For normal TCP data packets, SGL entries are first retrieved from the SGL
memory 334. A sequence number of the received packet indicates where in the SGL
the data should be placed. This allows the correct alignment of even out of sequence
(OOS) data properly. For data received in order, only one read from the SGL is

required to obtain a host address of where to store the data.

A request to DMA the data into processor system memory can then be made.
When the DMA request is granted, the data is read from the RX FIFO buffer 322 and
sent to a host DMA interface 330 (see Figure 3) where it is DMA’ed into processor
system memory 206 at the specified address. Multiple SGL’s are supported per
socket so that a ping-pong mode of operation is possible. This allows the host driver
to provide the next SGL as soon as one is expired, without having any data diverted

to anonymous buffers.

In cases where a single data packet spans more than one SGL entry, the next
SGL entry may be fetched and processed while the first part of the packet is being
DMA’ed. In this way, subsequent DMA requests are made immediately after the

completion of each request.

Once the DMA is complete, status messages may optionally be generated to

10

15

20

25

30

WO 2006/045057

21

inform the host driver that data has arrived. At this time, certain CB parameters are

also updated using a TCP RX CB updating and status message request module 508.

The parsing of the packet headers, fetching the SGL’s, DMA’ing the data, and
updating the CB may all be pipelined operations. This allows the RX back-end
module 326 to start processing the next packet header even while the DMA for the
previous packet is still completing, ensuring maximum throughput of data. Again,
any of the logic modules disclosed herein may be provided in substantial duplicate

or even triplicate to enhance processing.

Figure 6 illustrates an exemplary front-end method 600 for processing
received packets, in accordance with one embodiment. As an option, the method
600 may be carried out in the context of the exemplary architecture 200 of Figure 2,
or even the exemplary frameworks of Figures 3-5. Of course; however, it should be
noted that the method 600 may be implemented in any desired context. Moreover,
while various functions may be attributed to exemplary components (i.e. like those
set forth hereinabove), it is important to understand that the various functionality

may be carried out by any desired entity.

Figure 6 depicts the processing flow for received packets up to a RX buffer
(i.e. see, for example, the RX FIFO buffer 322 of Figure 3), and thus focuses on

front-end processing.

In operation 602, an Internet Protocol (IP) layer indicates whether a received
packet is available. In response to such indication, in decision 604, it is determined
whether a RX parser (i.e. see, for example, the RX parser 414 of Figure 4) is

available.

If it is determined that a RX parser is not available, the method 600 waits for

an available RX parser. Note operation 606. If available, the received packet is sent

PCT/US2005/037941

10

15

20

25

30

WO 2006/045057 PCT/US2005/037941

22

to the available RX parser in operation 608.

Once an RX parser is available, a hash is generated for the packet based upon
parameters contained within the packet headers 624. The RX parser then looks at
the TCP header to determine the packet type (see decision 610), and to parse out
packet parameters. If the packet is a pure TCP control packet (i.e. the packet
contains no TCP data), the packet is sent to a control packet queue (i.e. see, for

example, the control packet queue 404 of Figure 4). See operation 612.

If the packet does contain TCP data, a CB search is started in operations 616
and 618. The search may be done via dual data structures (i.e. see, for example, the
CB look-up table 318 and CB data cache 324, etc.) in parallel. Whichever path
finishes first ends the search processing. However, if searching the CB data cache
fails to find a matching CB entry, the logic waits until the CB look-up table look-up
finishes, as indicated in operation 620. In one embodiment, it is never the case
where the CB look-up table fails to find the CB, but the CB is found in the CB data

cache.

In parallel to finding the CB, the TCP data is stored in a RX buffer (i.e. see,
for example, the RX FIFO buffer 322, etc.). Note operation 614. Once all the data
has been written, in operation 622, a tag section is prepended to the data section in
the RX FIFO. This tag includes parameters for the packet (i.e. what type of data it
is), as well as some status information obtained from the CB entry (if one was
found). After the tag is written to the RX FIFO, the particular parser is free to accept

another received packet.

Figure 7 illustrates an exemplary back-end method 700 for processing
received packets, in accordance with one embodiment. As an option, the method
700 may be carried out in the context of the exemplary architecture 200 of Figure 2,
or even the exemplary frameworks of Figures 3-5. Still yet, the method 700 may be

10

15

20

25

30

WO 2006/045057

23

carried out in conjunction with the front-end method 600 of Figure 6.

Of course, however, it should be noted that the method 700 may be
implemented in any desired context. Moreover, while various functions may be
attributed to exemplary components (i.e. like those set forth hereinabove), it is
important to understand that the various functionality may be carried out by any

desired entity.

Figure 7 depicts the processing flow for received packets after a RX buffer
(i.e. see, for example, the RX FIFO buffer 322 of Figure 3), and thus focuses on

back-end processing.

Flow in Figure 7 begins when data is available at the output of a RX FIFO
buffer (i.c. see, for example, the RX FIFO buffer 322, etc.). Initially, in operations
702 and 704, the header section for the RX FIFO buffer entry is read if the packet is
available. This indicates to the back-end logic the type of the data packet, as well as

other status information.

After the packet buffer header is parsed, it is stripped along with the
Ethernet, IP, and TCP/UDP headers (for packets received on offloaded connections),

and the data is re-aligned. See operation 706.

The data is then optionally passed through optional allocation specific
processing logic. See operation 708. This logic is where iSCSI and RDMA support

processing is performed, for example.

If the packet belongs to an offloaded connection (i.e. a CB entry was found
that matched the packet parameters), a check is made to see if any SGL buffers are
available for the data. Note decision 710. If there are buffers available, the data is
DMA ’ed to the socket buffers in processor system memory. This is accomplished

by obtaining a host buffer address from an SGL of the socket in operation 712, after

PCT/US2005/037941

10

15

20

25

30

WO 2006/045057 PCT/US2005/037941

24

which the data is DMA’ed to the processor system memory. See operation 716.

If no socket buffers are available, the data is DMA’ed to general exception
buffers (also located in processor system memory) using an exception buffer address
from a global list. See operation 714. A notification may then also be sent to the

host indicating that there is data for it to process.

If a CB was used for the packet (per decision 718), the CB is updated in
operation 722. If not, no additional operation is required (as noted in operation 720).
In parallel, the back-end logic may start to process the next packet from the RX

FIFO buffer.

Figure 8 illustrates an exemplary control packet processing method 800 for
processing received packets, in accordance with one embodiment. As an option, the
method 800 may be cafried out in the context of the exemplary architecture 200 of
Figure 2, or even the exemplary frameworks of Figures 3-5. Still yet, the method
800 may be carried out in conjunction with the methods 600 and 700 of Figures 6

and 7, respectively.

Of course, however, it should be noted that the method 800 may be
implemented in any desired context. Moreover, while various functions may be
attributed to exemplary components (i.e. like those set forth hereinabove), it is
important to understand that the various functionality may be carried out by any

desired entity.

The method 800 of Figure 8 begins when a control packet is available at the
output of a control packet queue (i.e. see, for example, the control packet queue 404
of Figure 4). Note operation 802. The first thing that is done is that the packet
buffer header is parsed. See operation 804. This header contains the generated

packet hash, along with other status information associated with the control packet.

10

15

20

25

WO 2006/045057

25

Next, a search of a matching CB is started using the retrieved hash value. Similar to
the method 600 of Figure 6 used in the front -end logic for data packets, dual data
structures (i.e. see, for example, the CB look-up table 318 and CB data cache 324,
etc.) are queried in parallel. See operations 806 and 808, followed by a wait for the

result in operation 810.

If no CB was found to match the received TCP control packet per decision
812, the packet is scheduled to be sent to the host via DMA in operation 816, the RX |
control logic can start to process the next control packet from the queue. The logic
does not necessarily wait for the control packet to be DMA’ed to the host in

operation 824, before continuing.

If a matching CB was found for the control packet per decision 812, the
packet is processed in operation 814. A check is then made to see if the socket CB
needs updating as a result of the packet processing. See decision 818. If the CB
does need updating, the CB is scheduled for an update in operations 820 and 822.
The control packet logic can then start processing the next control packet from the
queue. In parallel, the CB is updated for the current control packet, as set forth

earlier.

While various embodiments have been described above, it should be
understood that they have been presented by way of example only, and not
limitation. Thus, the breadth and scope of a preferred embodiment should not be
limited by any of the above-described exemplary embodiments, but should be

defined only in accordance with the following claims and their equivalents.

PCT/US2005/037941

WO 2006/045057 PCT/US2005/037941

26
CLAIMS
What is claimed is:
1. A method for processing packets received via a network, comprising:

receiving data packets and control packets via a network; and
processing the data packets in parallel with the processing of the control

packets.

2. The method as recited in claim 1, wherein the control packets are processed
utilizing a first processing path and the data packets are processed utilizing a second

processing path separate from the first processing path.

3. The method as recited in claim 1, wherein the processing of the packets
includes utilizing, in parallel, a look-up table and a cache in order to identify a

correct socket control block associated with the packets.

4. The method as recited in claim 1, wherein the processing of the data packets
includes utilizing, in parallel, substantially duplicate logic in order to identify a

correct socket control block associated with the packets.

5. The method as recited in claim 1, wherein control blocks associated with the

packets are updated in parallel with processing of subsequent packets.

6. The method as recited in claim 1, wherein tag information is prepended to

the data packets.

7. The method as recited in claim 6, wherein the tag information is prepended

to the data packets while buffered in a receiver (RX) first-in-first-out (FIFO) buffer.

WO 2006/045057 PCT/US2005/037941
27

8. The method as recited in claim 6, wherein the tag information is selected
from the group consisting of a type of the corresponding packet, a socket handle
associated with the corresponding packet, status information associated with the
corresponding packet, and control information associated with the corresponding

packet.

9. A method for processing packets received via a network, comprising:
processing received packets utilizing a front-end module; and
processing received packets utilizing a back-end module;
wherein a receiver (RX) first-in-first-out (FIFO) buffer is coupled between
the front-end module and the back-end module for providing a boundary

therebetween.

WO 2006/045057 PCT/US2005/037941
1/8

LOCAL HOST

102
100

: 106

REMOTE HOST

Figure 1

WO 2006/045057 PCT/US2005/037941
2/8

"""" Y PROCESSOR
o RN

204

[LN
¥

A

\‘:--~,

PROCESSOR
BUS (}—_—_{) SYSTEM
- MEMORY _ :\

— ¢) 206

l—N OFFLOAD c:> TO NETWORK/HOST

ENGINE

202 212

200
Figure 2

WO 2006/045057 PCT/US2005/037941

3/8
TO HOST 300
328 i ' - 5
DMA LOGIC IN _P_? 30
HOST INTERFACE
EXCEPTION
BUFFER LIST
RX BACK END
(INCLUDES ISCSI
PROCESSING)
SGL BUFFER
LIST
MAC RX
334 BUFFERS
320 CB MEMORY
r—l
RX BUFFER
CONTROL
314 T
. 318
EXCEPTION
L &——— TCP RX FRONT END |¢—————
HANDLER |t D@J;B-LUT
I Tt
316 312
310
|~ 308
1P RX I IPSEC RX T
* 306
ETHERNETRX | 304
A
302
Figure 3

MAC RX
BUFFERS

WO 2006/045057 PCT/US2005/037941

322 e
TCP RX Butfor
320 I
From RX Buffor
P e Controllor
Hanlder)
B 316
TCP RX Front End) 412
Host Status
Regquests
TCP RX State
Controiler TCP Control
< » Packot
< l 324 Requests
M4 Y
[H Main CB
To jon CB Data Cache ¢—> Memory
Hantder 402
TCP RX Parser < T
TCP Control Control 318
ToTCP TX Packet < Packet — »| Socket Locator
Processor Queue r
Host Status v € » CB LUT
Mossages R
S T
416 404
Y A 4
cBLUT CB Cacho From IP Modute

Figure 4

WO 2006/045057 PCT/US2005/037941

5/8
To RX DMA Logic
A
_5 326

I ittt bt Sttt sl b

!)

' 508 !

1

: 5 506 S |

SGLM ' TCPRX CB | To Status Message
emory < - P Updatingand | T > Generator

Exception _ ! SGL Processing < P Status M ge : » To CB Cache
Buffer List (d Requesting \

| A :

1] ,

E : » To CB Cache

504 '

' | Application :

H Specific < 1 » To CB Cache

' Processing :

' A :

! [

! |

! [

' |

! 1

' 502 i

| L Data Alignment :

: and RX Buffer i

I Header Parsing i

' i

' RX BACK END !

! CONTROLLER 1

1

Y Figure 5

TCP RX Buffer

WO 2006/045057 PCT/US2005/037941
6/8

600
» Stant I
¢ 602
IP layer indicates packetis | f~
available
606
~ 604
. . Is an RX parser
Wait for available parser Available?
608
» Packet sent to RX parser S
l 624
. Generate Hash J
610
TCP Control Yes
Packet?
h i 612
l l J_,61 8 Add packet to Control J
Packet Queue
Store data in RX CB query made to CB LUT 'CB query made to CB LUT
FIFO and CB Cache and CB Cache
614 616 i

620

Wait for CB Find Result S

'

Write Packet header into 622
» RXFIFO (prependedto | f~
data section

t ,

Figure 6

WO 2006/045057 PCT/US2005/037941
7/8

700
————bli Start J
¢ 702
Packetavailable fromRX |/~
F
i 704
Readheader forpacketto |~
determine packettype
| 706
Stripheaders andre-align(if |/~
necessary)
l 708
Performapplicationspecific |y~
processing

710

SocketBuffers
availbleforpacket?

712

A 714

Obtainhostbufferaddress ObtainExceptionBuffer |y~
fromSGLforsocket addressfromgloballist

;

DMA Data to host memory

A

716

y 718

Was a CB Entry

iti d
used? Noadditional steps neede

S

722 720 Figure 7
|~ g

Update CB Entry

WO 2006/045057

8/8

—

Start J »
i 802

Packetavailablefrom [/~
Control Packet Queue

¢ 804

Parsepacketbufferheader /

l

808

PCT/US2005/037941

800

v v 806
CB guery made to CB LUT CB query made to CBLUT [/~
and CB Cache and CB Cache
810
Wait for CB Find Result J
812
CB Entry Found? o
814 - 816
Process Control Packet W/ ™" Schedule Packet tobe sent | y~
to host
y
— 820 : 824
Schedule CBUpdate | Send packet to host 94
l 822
Update C8 Entry v F'g ure 8

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

