发明名称

通过双金属催化剂（DMC）催化制备的聚醚碳酸酯多元醇

摘要

本发明涉及一种聚醚碳酸酯多元醇，该聚醚碳酸酯多元醇通过在约 50-190℃的温度下，在约 0.001 重量％至 0.2 重量％的基本非结晶双金属催化剂（DMC）催化剂存在下，使起始物分子与压力在约 10psia-2,000psia 的二氧化碳以及氧化烯发生共聚反应制得，其中所述多元醇中结合的二氧化碳含量约为 1 重量％至 40 重量％，环碳酸酯产物与碳酸酯总量的比值小于约 0.3，所述重量百分数是以多元醇的重量为基准计的。本发明的聚醚碳酸酯多元醇可用于生产具有改性的性能的聚氨酯泡沫材料、弹性体、涂料、密封剂和粘合剂。
权利要求书

1. 一种聚醚碳酸酯多元醇，该聚醚碳酸酯多元醇通过在50-190℃的温度下、在0.001重量％至0.2重量％的基本非结晶双金属氯化物(DMC)催化剂存在下，使起始反应物分子与压力在10psia-2,000psia的二氧化碳以及氧化烯发生共聚反应制得。

其中所述聚醚碳酸酯多元醇中结合的二氧化碳含量为1重量％至40重量％，环碳酸酯副产物与碳酸酯总量的比值小于0.3，所述重量百分数是以多元醇的重量为基准计的。

2. 如权利要求1所述的聚醚碳酸酯多元醇，其特征在于，所述起始反应物分子选自：C_{1}-C_{30}单醇、乙二醇、二甘醇、三甘醇、丙二醇、二丙甘醇、三丙二醇、新戊二醇、1,3-丙二醇、1,4-丁二醇、1,2-丁二醇、1,3-丁二醇、2,3-丁二醇、1,6-己二醇、水、丙三醇、三羟甲基丙烷、三羟甲基乙烷、季戊四醇、α-甲基葡萄糖苷、山梨糖醇、甘露醇、羟甲基葡萄糖苷、羟丙基葡萄糖苷、蔗糖、1,4-环己二醇、环己烷二甲醇、氢醌、间苯二酚以及它们的烷氧基化物。

3. 如权利要求1所述的聚醚碳酸酯多元醇，其特征在于，所述起始反应物分子选自乙二醇、丙二醇、丙三醇和三羟甲基丙烷的烷氧基化物低聚物。

4. 如权利要求1所述的聚醚碳酸酯多元醇，其特征在于，所述氧化烯选自：环氧乙烷、环氧丙烷、环氧丁烷、环氧戊烷、1,2-环氧丁烷、2,3-环氧丁烷、1,1-二甲基环氧乙烷、表氯醇、环氧环己烷、氧化苯乙烯、C_{5}-C_{30} α-氧化烯、多羧酸酯和内酯，以及它们的混合物。

5. 如权利要求1所述的聚醚碳酸酯多元醇，其特征在于，所述氧化烯是环氧丙烷。

6. 如权利要求1所述的聚醚碳酸酯多元醇，其特征在于，所述多元醇中结合的二氧化碳的含量为1重量％至20重量％。

7. 如权利要求1所述的聚醚碳酸酯多元醇，其特征在于，所述环碳酸酯副产物与碳酸酯总量的比值小于0.15。

8. 如权利要求1所述的聚醚碳酸酯多元醇，其特征在于，所述基本非结晶双金属氯化物(DMC)催化剂是六氯基铝酸锌。

9. 一种生产聚醚碳酸酯多元醇的方法，其包括：在50-190℃的温度下、在0.001重量％至0.2重量％的基本非结晶双金属氯化物(DMC)催化剂存在下，使起始反应物分子与压力在10psia-2,000psia的二氧化碳以及氧化烯发生共聚反应，其中所述聚醚碳酸酯多元醇中结合的二氧化碳含量为1重量％至40重量％，环碳酸酯副产物与碳酸酯总量的比值小于0.3，所述重量百分数是以多元醇的重量为基准计的。

10. 如权利要求9所述的方法，其特征在于，所述起始反应物分子选自：C_{1}-C_{30}单醇、乙二醇、二甘醇、三甘醇、丙二醇、二丙甘醇、三丙二醇、新戊二醇、1,3-丙二醇、1,4-丁二醇、1,2-丁二醇、1,3-丁二醇、2,3-丁二醇、1,6-己二醇、水、丙三醇、三羟甲基丙烷、三羟甲基乙烷、季戊四醇、α-甲基葡萄糖苷、山梨糖醇、甘露醇、羟甲基葡萄糖苷、羟丙基葡萄糖苷、蔗糖、1,4-环己二醇、环己烷二甲醇、氢醌、间苯二酚以及它们的烷氧基化物。

11. 如权利要求9所述的方法，其特征在于，所述起始反应物分子选自乙二醇、丙二醇、丙三醇和三羟甲基丙烷的烷氧基化物低聚物。

12. 如权利要求9所述的方法，其特征在于，所述起始反应物分子在氧化烯之前加入。

13. 如权利要求9所述的方法，其特征在于，所述起始反应物分子在共聚反应的过程中连续加入。

14. 如权利要求9所述的方法，其特征在于，所述氧化烯选自：环氧乙烷、环氧丙烷、1,2-环氧丁烷、2,3-环氧丁烷、1,1-二甲基环氧乙烷、表氯醇、环氧环己烯、氧化苯乙烯、
C₅₋C₃₀ α-氧化烯、多羧酸酯和内酯、以及它们的混合物。

15. 如权利要求 9 所述的方法，其特征在于，所述氧化烯是环氧丙烷。

16. 如权利要求 11 所述的方法，其特征在于，所述多元醇中结合的二氧化碳的含量为 1 重量 % 至 20 重量 %。

17. 如权利要求 9 所述的方法，其特征在于，所述环碳酸酯副产物与碳酸酯总量的比值小于 0.15。

18. 如权利要求 9 所述的方法，其特征在于，所述基本非结晶双组份催化剂 (DMC) 催化剂是六氰基钴酸锌。

19. 如权利要求 9 所述的方法，其特征在于，所述二氧化碳压力为 40psia 至 150psia。

20. 如权利要求 9 所述的方法，其特征在于，所述温度为 60°C 至 140°C。
通过双金属氰化物 (DMC) 催化制备的聚醚碳酸酯多元醇

发明领域
[0001] 本发明一般涉及生产聚氨酯的组分，更具体地涉及由氧化烯烃和二氧化碳在双金属氰化物 (DMC) 催化剂存在下制得的聚醚碳酸酯多元醇。
[0002] 发明背景
[0003] 使用多种催化剂广泛研究了环氧丙烷-二氧化碳 (PO-CO₂) 共聚物的形成，对于这些催化剂用于这些材料的生产进行了评价。至今为止，该项工作的主要目标是提供一种将温室气体转化为有用产品的技术。这些研究的成功非常有限，这是因为大部分催化剂需要较长的反应时间和较高的催化剂负载量。双金属氰化物催化剂表现出最大的潜力，这是因为这类催化剂具有产率高和反应速率快的特点。使用 DMC 催化剂的一个缺点是产生混合聚醚聚碳酸酯，而不是纯聚碳酸酯的交替单体。另一项缺点是 DMC 催化剂还产生大量的副产物环氧化烃碳酸酯（依据下式方程式）。

\[
\begin{align*}
\text{起始物} + CO_2 + PO & \rightarrow \text{起始物} \quad \text{[O-O-C(CH\text{\textsubscript{3}})CH\text{\textsubscript{2}}]}_x \quad \text{[O-C(CH\text{\textsubscript{3}})CH\text{\textsubscript{2}}]}_y \quad \text{OH} + \text{O-CO}_2
\end{align*}
\]

[0004] 在一些专利和出版物中已经显示出形成较少的副产物酮基碳酸酯。在一些这样的专利中，没有给出环碳酸酯的量，这样就需要根据已有数据报导的相似的催化剂作一些假设。

[0005] 例如，Kuyper 等在美国专利第 4,826,983 号中揭示了 DMC 催化剂在生产聚醚聚碳酸酯中的应用，使用基于六氟磷酸酯与甘醇二甲醚配体的络合物。在 '953 专利中，Kuypers 等没有列出所产生的环碳酸酯的量，但是根据 '953 专利表 1 中的数据，可以计算出环碳酸酯的量大约为 13% 至 31%（参见下表）。

基于美国专利第 4,826,983 号第 1 表的数据

<table>
<thead>
<tr>
<th>运行</th>
<th>产物</th>
<th>多元醇</th>
<th>环碳酸酯</th>
<th>环碳酸酯 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1627.8</td>
<td>1419.4</td>
<td>208.4</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>1694.2</td>
<td>1352</td>
<td>342.2</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>1781.5</td>
<td>1234.6</td>
<td>546.9</td>
<td>31</td>
</tr>
<tr>
<td>4</td>
<td>1732.8</td>
<td>1297.9</td>
<td>434.9</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>1782.9</td>
<td>1260.5</td>
<td>522.4</td>
<td>29</td>
</tr>
<tr>
<td>6</td>
<td>1772.3</td>
<td>1345.2</td>
<td>427.1</td>
<td>24</td>
</tr>
<tr>
<td>7</td>
<td>1777.3</td>
<td>1317.1</td>
<td>460.2</td>
<td>26</td>
</tr>
</tbody>
</table>

[0009] "假设形成的碳酸异丙烯酯的量是产物产量和多元醇产量之间的差值，如第 62 行第 6 栏所述。

[0010] 由于形成环碳酸酯造成原料的浪费，因而降低了产率，提高了生产成本，并且需要多花费精力以除去环状的烷基碳酸酯。如本领域技术人员认识到的，如果允许环碳酸酯留在产物中，则直链碳酸酯转化为聚氨酯，环碳酸酯作为增塑剂改进产品性质。'953 专利中
用的催化剂是基于与甘醇二甲醚络合的六氟基钴酸锌，这些催化剂与各种盐如硫酸锌一起使用以提高催化剂活性。这些催化剂具有晶体结构（参见，Kuiper 和 Boxhorn, Journal of Catalysis, 105, 第 163–174 页（1987））。

[0011] 授予 Kruper, Jr. 等的美国专利第 4,500,704 号描述了 DMC 催化剂在生产基于下表所示的氧化烯和二氧化碳的聚合物中的应用。环碳酸酯的量在 12% -64% 的范围内，但是顺式 - 氧化环己烯例外，其物质不形成环碳酸酯。顺式 - 氧化环己烯与二氧化碳反应不形成环碳酸酯可能与该双环产物形成中的空间因素有关，人们认为这一情况并非是用其它氧化烯得到的产物的反映。‘704 专利中使用的催化剂是本地技术人员已知的具有晶体结构的甘醇二甲醚 - 六氟基钴酸锌络合物。

[0012] 美国专利 4,500,704 中的数据（参见表 1）

<table>
<thead>
<tr>
<th>实验例</th>
<th>环氧化物 (Dienol)</th>
<th>反应温度 (℃)</th>
<th>反应时间 (小时)</th>
<th>转化率 (%)</th>
<th>未反应物 (%)</th>
<th>辛酸酯 (%)</th>
<th>环碳酸酯 (%)</th>
<th>醋酸 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>环氧丙烷</td>
<td>35</td>
<td>48</td>
<td>71</td>
<td>75</td>
<td>18</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>环氧乙烷</td>
<td>30</td>
<td>84</td>
<td>31</td>
<td>50</td>
<td>18</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>- 环氧丙烷</td>
<td>35</td>
<td>48</td>
<td>38</td>
<td>71</td>
<td>17</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>环氧丙烷</td>
<td>25</td>
<td>84</td>
<td>65</td>
<td>85</td>
<td>12</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>环氧丙烷</td>
<td>30</td>
<td>48</td>
<td>64</td>
<td>66</td>
<td>11</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>环氧丙烷</td>
<td>30</td>
<td>24</td>
<td>55</td>
<td>8</td>
<td>64</td>
<td>36</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>环氧丙烷</td>
<td>30</td>
<td>24</td>
<td>55</td>
<td>8</td>
<td>64</td>
<td>36</td>
<td>0</td>
</tr>
</tbody>
</table>

[0014] Hinz 等在美国专利第 6,762,278 号中描述了具有片状结构的晶体 DMC 催化剂的适用，其中这种片状结构在颗粒中所占的百分含量超过 30%。Hinz 等的改进之处在于与使用其它催化剂（即使是使用叔丁醇 (TBA) 作为催化剂的配比的情况）相比，所得的聚醚聚碳酸酯具有更高的多分散度。参考下表可以看出，‘278 专利中的对比催化剂提供的多分散度大于 2.37。Hinz 等的‘278 专利的发明实施例中的聚醚聚碳酸酯的多分散度小于 1.8。在‘278 专利的一实施例中讨论了碳酸丙烯酯的形成；但是，没有给出具体的数据。

[0015] 美国专利第 6,762,278 号中的数据

<table>
<thead>
<tr>
<th>对比组</th>
<th>多分散度</th>
<th>发明实施例</th>
<th>多分散度</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.96</td>
<td>1.63</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.53</td>
<td>1.60</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3.85</td>
<td>1.73</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.37</td>
<td>1.62</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3.36</td>
<td>1.16</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5.52</td>
<td>1.26</td>
<td></td>
</tr>
</tbody>
</table>

[0017] '实施例 1–9 的数据。

[0019] 来自 S. Chen 等的数据

<table>
<thead>
<tr>
<th>聚合剂</th>
<th>环碳酸酯 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2 二甲氧基乙烷</td>
<td>13.1</td>
</tr>
<tr>
<td>成分</td>
<td>含量</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>2-甲氧基乙醇</td>
<td>12.5</td>
</tr>
<tr>
<td>1-甲氧基-2-丙醇</td>
<td>14.6</td>
</tr>
<tr>
<td>THF</td>
<td>16.2</td>
</tr>
<tr>
<td>PPG 1000</td>
<td>15.6</td>
</tr>
<tr>
<td>辛醇</td>
<td>14.2</td>
</tr>
<tr>
<td>无</td>
<td>16.5</td>
</tr>
</tbody>
</table>

[0021] *来自 S. Chen 等的第 3 的数据。

[0022] 其它数据参见 Chen 等的第 1。

[0023] 授予 Hinz 等的美国专利第 6,713,599 号描述了加入空间位阻链转移剂能够使多元醇质子化，以减少 DMC 催化的多元醇生产工艺中高分子量尾料 (tail) 的量。Hinz 等在 ‘599 专利中描述的发明似乎还能改善多分散度。

[0024] 美国专利第 6,713,599 号中的数据

[0025]
<table>
<thead>
<tr>
<th>实施例</th>
<th>多分散度</th>
<th>添加剂</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.31</td>
<td>TBA</td>
</tr>
<tr>
<td>2</td>
<td>1.36</td>
<td>TBA</td>
</tr>
<tr>
<td>3</td>
<td>1.41</td>
<td>2,4,6-三叔丁基苯酚</td>
</tr>
<tr>
<td>4</td>
<td>1.39</td>
<td>苯酚</td>
</tr>
<tr>
<td>5</td>
<td>1.47</td>
<td>二氯苯酚</td>
</tr>
<tr>
<td>6</td>
<td>1.54</td>
<td>3,5-二叔丁基苯甲酸</td>
</tr>
<tr>
<td>对比例 1</td>
<td>1.73</td>
<td>无</td>
</tr>
<tr>
<td>对比例 2</td>
<td>1.99</td>
<td>双丙醇</td>
</tr>
<tr>
<td>对比例 3*</td>
<td>1.12</td>
<td>二氟苯酚</td>
</tr>
<tr>
<td>对比例 4*</td>
<td>1.11</td>
<td>水</td>
</tr>
<tr>
<td>对比例 5</td>
<td>2.12</td>
<td>低催化剂</td>
</tr>
<tr>
<td>对比例 6</td>
<td>1.59</td>
<td>差催化剂</td>
</tr>
</tbody>
</table>

*失活的运行（Run Deactivated）
说明书

【0026】 但是，Hinz 等的‘599 专利的缺陷在于需要加入单官能引发剂。如本领域技术人员已知的，在这些材料转化为聚氨酯时，单官能物质会导致聚合物性质变差。

【0027】 因此，在本领域中仍然需要比通过本领域已知的常规方法得到的产品具有更低的环碳酸酯副产物含量的聚醚碳酸酯多元醇。

发明内容

【0028】 因此，本发明涉及一种聚醚碳酸酯多元醇，该聚醚碳酸酯多元醇通过在约 50~190°C 的温度下、在约 0.001 重量%至 0.2 重量%的基本非结晶双金属氧化物 (DMC) 催化剂存在下、使起始物分子与压力在约 10psi~2,000psi 的二氧化碳以及氧化烯发生共聚反应制得，其中所述多元醇中的非结晶二碳酸含量约为 1 重量%至 40 重量%，环碳酸酯副产物与氢酸酯总量的比值小于约 0.3，所述重量百分比是多元醇的重量为基准的。因为环碳酸酯的含量较低，所以本发明的聚醚碳酸酯多元醇可用于生产具有改善的性能的聚氨酯泡沫材料、弹性体、涂料、密封剂和粘合剂，这些改善的性能例如是二氧化碳发泡剂相容性和耐火性。

【0029】 通过以下本发明的详细描述可以清楚地了解本发明的这些和其它优点和益处。

【0030】 发明详述

【0031】 现在，为了说明而非限制的目的描述本发明。除非在工作实施例中或者另有说明，否则说明书中的数字、百分数、OH 值、官能度等的所有数字应理解为在所有情况中均用词“约”修饰。除非另有说明，否则文中以道尔顿 (Da) 给出的当量重量和分子量分别是数均当量重量和数均分子量。

【0032】 本发明提出一种聚醚碳酸酯多元醇，该聚醚碳酸酯多元醇通过在 50~190°C 的温度下、在 0.001 重量%至 0.2 重量%的基本非结晶双金属氧化物 (DMC) 催化剂存在下、使起始物分子与压力在 10psi~2,000psi 的二氧化碳以及氧化烯发生共聚反应制得，其中所述多元醇中的非结晶二碳酸含量为 1 重量%至 40 重量%，环碳酸酯副产物与氢酸酯总量的比值小于约 0.3，所述重量百分比是多元醇的重量为基准的。

【0033】 本发明还提供了一种生产聚醚碳酸酯多元醇的方法，该方法包括在 50~190°C 的温度下、在 0.001 重量%至 0.2 重量%的基本非结晶双金属氧化物 (DMC) 催化剂存在下、使起始物分子与压力在 10psi~2,000psi 的二氧化碳以及氧化烯发生共聚反应，其中所述多元醇中的非结晶二碳酸含量为 1 重量%至 40 重量%，环碳酸酯副产物与氢酸酯总量的比值小于约 0.3，所述重量百分比是多元醇的重量为基准的。

【0034】 本发明的发明人已经发现，使用基本非结晶双金属氧化物催化剂并控制二氧化碳压力和反应温度能够生产结合了二氧化碳和极低含量环碳酸酯副产物的聚醚碳酸酯多元醇。以本发明的聚醚碳酸酯多元醇的重量为基准计，该多元醇中结合的二氧化碳的含量优选为 1 重量%至 40 重量%，更优选为 1 重量%至 20 重量%。因此，本发明的聚醚碳酸酯多元醇可以使由这些多元醇制备的聚氨酯泡沫材料具有更强的二氧化碳发泡剂相容性和耐火性。

【0035】 本发明方法中的二氧化碳压力为 10psi 至 2,000psi，更优选为 40psi 至 150psi。本发明方法的反应温度为 50°C 至 190°C，更优选为 60°C 至 140°C。

【0036】 优选的双金属氧化物 (DMC) 催化剂是那些表现出基本非结晶性质（基本无定
形) 的催化剂，例如美国专利第 5,482,908 和 5,783,513 号中揭示的，其全部内容通过参考结合于此。这些催化剂比以前研究的催化剂表现出明显的改善，这是因为副产物环碳酸酯的量减少。因此，使用基本非结晶 DMC 催化剂生产这些聚碳酸酯具有明显的优势，因为美国专利第 4,500,704 和 4,826,953 号中的催化剂和方法相比，产生的碳酸丙烯酯的量更少。

【0037】 美国专利第 5,482,908 和 5,783,513 号中揭示的催化剂与其他 DMC 催化剂不同，因为这些催化剂表现出基本非结晶的形态。另外，这些催化剂基于配体的组合，例如叔丁醇和多齿配体（聚环氧丙烷多元醇）。显然，本发明聚碳酸酯的多分散度与聚合物中二氧化碳的量有关，随着聚合物中二氧化碳的量增加，多分散度增大。

【0038】 对本发明方法中 DMC 催化剂的浓度加以选择，以确保在给定的反应条件下对聚烷氧基化 (polyoxalkylation) 反应良好的控制。以产生的多元醇的重量为基准计，催化剂浓度优选为 0.001 重量%至 0.2 重量%，更优选为 0.0024 重量%至 0.1 重量%，最优选为 0.0025 重量%至 0.06 重量%。基本非结晶 DMC 催化剂的含量可以在这些值的任意组合的范围内，包括所述的这些值。

【0039】 合适的起始物或起始剂化合物包括但不限于 :C₁⁻C₅₀ 单醇、乙二醇、二甘醇、三甘醇、丙二醇、丙二醇、丙三醇、新戊二醇、1,3-丙二醇、1,4-丁二醇、1,2-丁二醇、1,3-丁二醇、1,6-己二醇、水、丙三醇、三羟甲基丙烷、三羟甲基乙烷、季戊四醇、α-甲基葡萄苷、山梨糖醇、甘露醇、羟基甲基葡萄糖苷、PEG 糖、1,4-环己二醇、环己烷二甲醇、氨羰基苯二酚等。还可以使用单体起始剂或它们的烷氧基化低聚物的混合物。优选的起始剂化合物是乙二醇、丙二醇、丙三醇或三羟甲基丙烷的烷氧基化低聚物。

【0040】 本发明中的起始物可以在加入氧化剂之前加入到反应器中，或者如美国专利第 5,777,177 号中连续加入起始物的方法所述在烷氧基化过程中连续地加入起始物，该专利文献的全部内容通过参考结合于此。

【0041】 可用于本发明的氧化剂包括但不限于：环氧乙烷、环氧丙烷、1,2-和 2,3-环氧丁烷、1,1-二甲基环氧乙烷、苯醇醇、氧化环己烯、氧化苯乙烯和更高级的氧化烯，例如 C₅⁻C₅₀ α-氧化烯。在本发明中特别优选单独使用环氧丙烷或环氧丙烷和环氧乙烷的混合物，环氧丙烷与环氧乙烷的比例最优选为 90:10。其它氧化烯与环氧丙烷的混合物也被证实可以用于本发明的方法。

【0042】 还可以使用其它可聚合单体，例如多羧酸酯（邻苯二甲酸酯、苯偏二酸酯、苯均四酸酯、甲基桥二甲基四氢邻苯二甲酸酯、桥亚基二甲基四氢邻苯二甲酸酯、氯磺酸酯和马来酸酯）内酯和美国专利第 3,404,109,5,145,883 和 3,538,043 中所述的其它单体。

【0043】 如本领域技术人员所知的，本发明的聚醚羧酸酯多元醇可与一种或多种多种异氧酸酯反应，生产聚氨酯泡沫材料、弹性体、涂料、密封剂和粘合剂。

【0044】 实施例

【0045】 通过以下实施例进一步说明本发明，但本发明不限于以下实施例。在以下实施例中，通常按照以下步骤制备聚醚羧酸酯多元醇：将称取分子量为 700 道尔顿的丙三醇起始的聚丙氧基化的三醇 (350 克) 和下表所列的依据美国专利 5,482,908 号制得的一定量的基本非结晶 DMC 催化剂加入多元醇反应器中。将混合物加热到 130℃，用氯气真空泵抽 20 分钟。在反应就要开始之前，将压力减少到 0.1psia，加入 53 克环氧丙烷 (PO) 以活化催化剂。在压力达到初始压力的一半之后，将反应器温度设定在表中所示的值 (90-150℃)。
使用压力调节器向反应器中加入二氧化碳。在表中所示的时间内加入环氧丙烷（1098 克）。在 PO 进料结束后，将反应混合物“保温（cookout）” 20 分钟。在氮气吹扫和真空后，将反应产物从反应器中排出。

[0046] 实施例 C1-6

[0047] 参考下表 I 可以看出，3,000 道尔顿三醇的粘度值与实施例 C1 中制备的所有 PO 三醇的粘度值相当。但是，如果向多元醇中加入大量 CO₂，粘度往往增加。因为 CO₂会降低 DMC 催化剂的活性，所以需要更多的催化剂来保持相同的活性。

[0048] 实施例 7-19

[0049] 下表 II 论证了温度、催化剂量和二氧化碳压力对聚醚中结合二氧化碳的影响。

[0050]
表 I

<table>
<thead>
<tr>
<th>实施例号</th>
<th>CO₂ (ppm)</th>
<th>反应温度 (℃)</th>
<th>PO 进料时间 (小时)</th>
<th>不溶和度</th>
<th>粘度 (CSt)</th>
<th>PDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>50</td>
<td>80</td>
<td>100</td>
<td>3</td>
<td>0.0033</td>
<td>6003</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>50</td>
<td>130</td>
<td>3</td>
<td>0.0047</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>80</td>
<td>130</td>
<td>3</td>
<td>0.0048</td>
<td>140</td>
</tr>
<tr>
<td>C2</td>
<td>3</td>
<td>50</td>
<td>130</td>
<td>3</td>
<td>0.0048</td>
<td>152</td>
</tr>
<tr>
<td>C3</td>
<td>4</td>
<td>50</td>
<td>130</td>
<td>3</td>
<td>0.0039</td>
<td>282</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>100</td>
<td>100</td>
<td>6</td>
<td>0.0036</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>100</td>
<td>80</td>
<td>6</td>
<td>0.0036</td>
<td>153</td>
</tr>
</tbody>
</table>

表 II

<table>
<thead>
<tr>
<th>实施例号</th>
<th>CO₂ (ppm)</th>
<th>时间 (小时)</th>
<th>催化剂</th>
<th>直链碳酸酯</th>
<th>环碳酸酯/环碳酸酯总量 (%)</th>
<th>环碳酸酯 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>90</td>
<td>200</td>
<td>6</td>
<td>2.35</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>8</td>
<td>90</td>
<td>200</td>
<td>6</td>
<td>2.96</td>
<td>0.070</td>
<td>0.070</td>
</tr>
<tr>
<td>9</td>
<td>90</td>
<td>200</td>
<td>6</td>
<td>2.33</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>200</td>
<td>6</td>
<td>3.76</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>11</td>
<td>100</td>
<td>200</td>
<td>6</td>
<td>3.76</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>12</td>
<td>120</td>
<td>200</td>
<td>6</td>
<td>3.76</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>13</td>
<td>150</td>
<td>200</td>
<td>6</td>
<td>3.76</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>14</td>
<td>150</td>
<td>200</td>
<td>6</td>
<td>3.76</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>15</td>
<td>150</td>
<td>200</td>
<td>6</td>
<td>3.76</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>16</td>
<td>150</td>
<td>200</td>
<td>6</td>
<td>3.76</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>17</td>
<td>150</td>
<td>200</td>
<td>6</td>
<td>3.76</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>18</td>
<td>150</td>
<td>200</td>
<td>6</td>
<td>3.76</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>19</td>
<td>150</td>
<td>200</td>
<td>6</td>
<td>3.76</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

[0051] 实施例 20-22

检测了混合速度的影响，结果总结在下表 III 中。令人惊奇的是，即使在多元醇中结合了较高含量直链碳酸酯的情况下，环碳酸酯的量仍然保持在低水平。
实施例 23-26

检测了 DMC 催化剂类型的影响。下表 IV 给出了使用三种不同催化剂形成的环碳酸酯的量。实施例 23、24 和 25 使用依据美国专利第 5,482,908 号制备的非结晶催化剂，而实施例 C26（甘醇二甲醚）使用结晶催化剂。实施例 23 使用用 TBA 和胆酸改性的 DMC 催化剂。

表 III

<table>
<thead>
<tr>
<th>实施例号</th>
<th>RPM</th>
<th>反应温度 (℃)</th>
<th>直链碳酸酯 (%)</th>
<th>环碳酸酯 (%)</th>
<th>PDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>600</td>
<td>90</td>
<td>2</td>
<td>168.1</td>
<td>1.31</td>
</tr>
<tr>
<td>21</td>
<td>600</td>
<td>90</td>
<td>2</td>
<td>172.6</td>
<td>1.24</td>
</tr>
<tr>
<td>22</td>
<td>1200</td>
<td>90</td>
<td>2</td>
<td>16.06</td>
<td>1.36</td>
</tr>
</tbody>
</table>

表 IV

<table>
<thead>
<tr>
<th>实施例号</th>
<th>催化剂形式</th>
<th>CO₂ 反应温度 (℃)</th>
<th>直链碳酸酯 (%)</th>
<th>环碳酸酯 (%)</th>
<th>PDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>基本非结晶</td>
<td>200</td>
<td>90</td>
<td>16.8</td>
<td>1.6</td>
</tr>
<tr>
<td>24</td>
<td>基本非结晶</td>
<td>200</td>
<td>90</td>
<td>17.3</td>
<td>1.2</td>
</tr>
<tr>
<td>25</td>
<td>基本非结晶</td>
<td>200</td>
<td>90</td>
<td>16.8</td>
<td>1.3</td>
</tr>
<tr>
<td>C26</td>
<td>甘醇二甲醚</td>
<td>500</td>
<td>120</td>
<td>7.8</td>
<td>1.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>实施例号</th>
<th>直链碳酸酯 (%)</th>
<th>环碳酸酯 (%)</th>
<th>环碳酸酯/总量 (%)</th>
<th>OH #</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>2.2</td>
<td>11.6</td>
<td>50.3</td>
<td>50.9</td>
</tr>
<tr>
<td>24</td>
<td>2.2</td>
<td>9.4</td>
<td>50.9</td>
<td>51.0</td>
</tr>
<tr>
<td>25</td>
<td>2.2</td>
<td>1.9</td>
<td>51.0</td>
<td>51.3</td>
</tr>
<tr>
<td>C26</td>
<td>2.2</td>
<td>6.6</td>
<td>45.8</td>
<td>54.9</td>
</tr>
</tbody>
</table>
[0056] 为了说明而非限制的目的，给出本发明的上述实施例。对本领域技术人员显而易见的是，在不偏离本发明的精神和范围的情况下可以各种方式修改或调整本文所述的实施方式。本发明的范围由所附权利要求书限定。