

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(10) International Publication Number

WO 2020/025728 A1

(43) International Publication Date
06 February 2020 (06.02.2020)

(51) International Patent Classification:
A24D 1/02 (2006.01) *A24F 47/00* (2006.01)

SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:
PCT/EP2019/070726

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

(22) International Filing Date:
31 July 2019 (31.07.2019)

(25) Filing Language: English

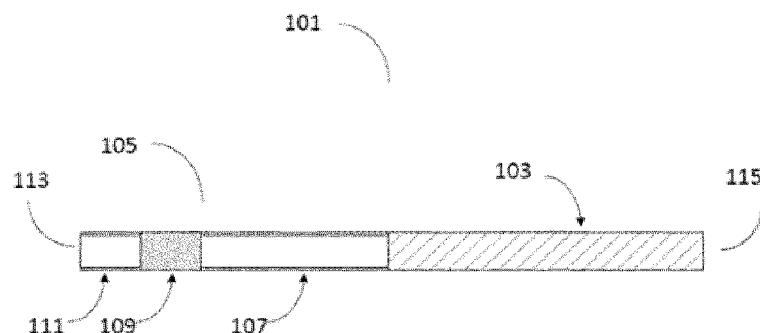
(26) Publication Language: English

(30) Priority Data:
1812502.1 31 July 2018 (31.07.2018) GB

(71) Applicant: NICOVENTURES TRADING LIMITED [GB/GB]; Globe House, 1 Water Street, London Greater London WC2R 3LA (GB).

(72) Inventors: AOOUN, Walid Abi; Globe House, 1 Water Street, London greater London WC1R 3LA (GB). LEAH, Thomas David; c/o British American Tobacco (Investments) Limited, Globe House, 1 Water Street, London Greater London WC2R 3LA (GB).

(74) Agent: EIP; Fairfax House, 15 Fulwood Place, London Greater London WC1V 6HU (GB).


(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

(54) Title: AEROSOL GENERATION

Figure 2

(57) Abstract: An aerosol generating article (101) for use in an aerosol generating assembly, the aerosol generating article comprising a rod (103) of aerosolisable material circumscribed by a wrapper, wherein the wrapper comprises an aerosol-forming amorphous solid.

AEROSOL GENERATIONTechnical Field

The present invention relates to aerosol generation.

5

Background

Smoking articles such as cigarettes, cigars and the like burn tobacco during use to create tobacco smoke. Alternatives to these types of articles release an inhalable aerosol or vapour by releasing compounds from a substrate material by heating without 10 burning. These may be referred to as non-combustible smoking articles or aerosol generating assemblies.

One example of such a product is a heating device which release compounds by heating, but not burning, a solid aerosolisable material. This solid aerosolisable 15 material may, in some cases, contain a tobacco material. The heating volatilises at least one component of the material, typically forming an inhalable aerosol. These products may be referred to as heat-not-burn devices, tobacco heating devices or tobacco heating products. Various different arrangements for volatilising at least one component of the solid aerosolisable material are known.

20

As another example, there are e-cigarette / tobacco heating product hybrid devices, also known as electronic tobacco hybrid devices. These hybrid devices contain a liquid source (which may or may not contain nicotine) which is vaporised by heating to produce an inhalable vapour or aerosol. The device additionally contains a solid 25 aerosolisable material (which may or may not contain a tobacco material) and components of this material are entrained in the inhalable vapour or aerosol to produce the inhaled medium.

Some known aerosol generating include more than one heater, with each heater 30 configured to heat different parts of the aerosolisable material in use. This then allows the different parts of the aerosolisable material to be heated at different times so as to provide longevity of aerosol formation over the use lifetime.

Summary

According to a first aspect of the present invention, there is provided an aerosol generating article for use in an aerosol generating assembly, the aerosol generating article comprising a rod of aerosolisable material circumscribed by a wrapper, wherein the wrapper comprises an aerosol-forming amorphous solid.

In some embodiments, the wrapper comprises a carrier, and the aerosol-forming amorphous solid is disposed on the carrier.

10

A second aspect of the invention provides an aerosol generating assembly comprising an aerosol generating article according to the first aspect of the invention and a heater configured to heat but not burn the aerosolisable material and/or the aerosol-forming amorphous solid.

15

A further aspect of the invention provides a method of making an aerosol generating article, comprising (a) forming of a slurry comprising components of the amorphous solid or precursors thereof, (b) applying the slurry to a carrier, (c) setting the slurry to form a gel, (d) drying to form an amorphous solid, and (e) arranging the wrapper such that it circumscribes the aerosolisable material.

Further aspects of the invention described herein may provide the use of the aerosol generating article or the aerosol generating assembly, in the generation of an inhalable aerosol.

25

Further features and advantages of the invention will become apparent from the following description, given by way of example only, and with reference to the accompanying figures.

30 Brief Description of the Figures

Figure 1 is an exploded schematic diagram of wrapper.

Figure 2 shows a section view of an example of an aerosol generating article.

Figure 2a show a side view of the example of Figure 2

Figures 3 and 3a show a perspective view of the article of Figure 2.

Figure 4 shows a sectional elevation of an example of an aerosol generating article.

5 Figure 5 shows a perspective view of the article of Figure 4.

Figure 6 shows a perspective view of an example of an aerosol generating assembly.

Figure 7 shows a section view of an example of an aerosol generating assembly.

10 Figure 8 shows a perspective view of an example of an aerosol generating assembly.

Detailed Description

The aerosol-forming “amorphous solid” may alternatively be referred to as a “monolithic solid” (i.e. non-fibrous), or as a “dried gel”. The amorphous solid is a solid material that may retain some fluid, such as liquid, within it. The amorphous solid may form part of an aerosol-forming material which comprises from 50wt%, 60wt% or 15 70wt% of amorphous solid, to about 90wt%, 95wt% or 100wt% of amorphous solid. In some cases, the aerosol-forming material consists of amorphous solid.

20 According to a first aspect of the present invention, there is provided an aerosol generating article for use in an aerosol generating assembly, the aerosol generating article comprising a rod of aerosolisable material circumscribed by a wrapper, wherein the wrapper comprises an aerosol-forming amorphous solid. In some embodiments, the wrapper comprises a carrier, and the aerosol-forming amorphous solid is disposed on 25 the carrier.

30 The aerosolisable material is heated in use to generate an inhalable aerosol or vapour. The invention provides an amorphous solid as a component of the wrapper, and this amorphous solid may contain volatile components, such as nicotine and derivatives of nicotine, flavourants and aerosol generating agents. These volatiles in the amorphous solid are volatilised in use and inhaled; the provision of the amorphous solid allows the composition of the aerosol or vapour to be altered/enhanced.

5 In some cases, the aerosol generating article of the first aspect of the invention comprises two sections, and the amount of volatiles in the amorphous solid in the wrapper portion circumscribing a first section is greater than the amount of volatiles in the amorphous solid in the wrapper portion circumscribing a second section.

10 In use, the two sections may be heated at different times/rates. The use of two or more sections containing different amounts of amorphous solid-derived volatiles allows the composition of the inhaled aerosol to be selectively tuned.

This non-uniform distribution of amorphous solid-derived volatiles can be achieved in a number of ways. For example, the amorphous solid composition may differ between the first and sections.

15 In some cases, such as where the wrapper comprises a carrier, the amount of amorphous solid per unit area of carrier in the wrapper portion circumscribing a first section is greater than the amount of amorphous solid per unit area of carrier in the wrapper portion circumscribing a second section. In such cases, the amorphous solid composition may be substantially homogenous in each section. In one particular case, 20 the amorphous solid may be disposed on the carrier in a substantially triangular shape. Such an embodiment is illustrated in Figure 1. The wrapper illustrated in Figure 1 has an amorphous solid-shaped triangle 2 on a carrier layer 4. (The dotted lines are provided to indicate that the diagram has been exploded. The two layers are attached.) It can be seen that the section of wrapper adjacent to a first end 8 has a greater amount of amorphous solid per unit area of carrier than the section of wrapper adjacent to a second 25 end 6.

30 The inventors have established that in known aerosol generating assemblies, in which a uniform aerosol generating article is used, the delivery of components of the aerosol reduces over the use lifetime. Where only one heater is used in such prior art devices, the most volatile components of the aerosolisable material are consumed quickly and the delivery of such components generally reduces puff-by-puff.

In some known devices, more than one heater is used and these heaters are arranged to heat different parts of the aerosolisable material, with the intention that parts of the aerosolisable material are not heated initially, thereby saving the volatiles in those 5 parts for consumption later in the product use lifetime. However, the inventors have determined that bleeding of heat between different heating zones in such devices causes depletion of volatiles in zones where direct heating has not yet been initiated. This increases the delivery of such volatiles early in the consumption period, and reduces the levels of such volatiles available for consumption later. Thus, the delivery of such 10 volatile components generally reduces puff-by-puff.

The inventors have established that an aerosol generating article which comprises two sections, wherein the amount of amorphous solid-derived volatiles in the wrapper portion circumscribing a first section is greater than the amount of amorphous 15 solid-derived volatiles in the wrapper portion circumscribing a second section, can be used to improve the puff profile and specifically, to provide a sustained release of aerosolisable components during use.

In use, the first section of the aerosol generating article may be heated later than 20 the second section. In some cases, a consistent aerosol delivery per puff may be provided; volatile delivery during heating of the second section is enhanced by heat migration within the assembly resulting in some consumption of volatiles from the first section. Prior to heating, the total amount of volatiles in the first section is greater than the second section as a result of the amorphous solid configuration; partial depletion of 25 the volatiles by heat migration from the first section therefore results in an approximately equal delivery of volatiles during heating of the two respective sections.

In other cases, the enhanced levels of volatiles in the first section (resulting from 30 the amorphous solid configuration) can be used to provide an aerosol in which the volatile delivery per puff increases over time. In such cases, and where the aerosolisable material comprises tobacco, the nicotine and/or tobacco flavour sensation may be stronger at the end of the smoking period. This mimics the smoking sensation

of a combustible smoking article (cigarettes, cigars and the like) which may improve the acceptance by smokers of the aerosol generating assembly as an alternative to such combustible smoking articles.

5 In some cases, the aerosol generating article comprises two sections. In other cases, there may be 3, 4, 5 or more sections. The amount of amorphous solid-derived volatiles in the wrapper portion circumscribing each section may be the same or different, provided that the amount in the wrapper portion circumscribing a first section is greater than the amount of amorphous solid-derived volatiles in the wrapper portion 10 circumscribing a second section.

15 In some cases, the sections may be arranged axially along the length of the aerosol generating article. For example, the sections may be in the form of co-axial cylinders arranged along the length of the aerosol generating article. In other cases, the sections may be prismatic sections that are arranged to together form, for example, a cylinder. For example, in the case where there are two sections, they may be hemicylindrical and arranged with their respective planar faces in contact.

20 In some cases, the first section of the aerosol generating article may be closer to the mouth end of the article of than the second section. In some cases, the second section of the aerosol generating article may be closer to the mouth end of the article of than the first section.

25 The aerosolisable material in the aerosol generating article of the first aspect typically comprises a tobacco material.

30 In some cases, the aerosol-forming amorphous solid material may comprise embedded heating means, such as resistive or inductive heating elements.

35 The carrier may be any suitable material which can be used to support an amorphous solid and wrap a rod of aerosolisable material. In some cases, the carrier may be formed from materials selected from metal foil, paper, carbon paper,

greaseproof paper, carbon allotropes such as graphite and graphene, plastic or combinations thereof. In some cases, the carrier may comprise or consist of a tobacco material, such as a sheet of reconstituted tobacco. In some cases, the carrier may be formed from materials selected from metal foil, paper or combinations thereof. In 5 some cases, the carrier itself be a laminate structure comprising layers of materials selected from the preceding lists. In some cases, the carrier may also function as a flavour carrier. For example, the carrier may be impregnated with a flavourant or with tobacco extract.

10 In some cases, the carrier in the aerosol generating article may comprise or consist of a porous layer that abuts the amorphous solid. For example, the porous layer may be a paper layer. In some particular cases, the amorphous solid is disposed in direct contact with the porous layer; the porous (e.g. paper) layer abuts the amorphous and forms a strong bond. The amorphous solid is formed by drying a gel and, without 15 being limited by theory, it is thought that the slurry from which the gel is formed partially impregnates the porous layer (e.g. paper) so that when the gel sets and forms cross-links, the porous layer is partially bound into the gel. This provides a strong binding between the gel and the porous layer (and between the dried gel and the porous layer). The porous layer (e.g. paper) may also be used to carry flavours. In some cases, 20 the porous layer may comprise paper, suitably having a porosity of 0-300 Coresta Units (CU), suitably 5-100 CU or 25-75 CU.

25 Additionally, surface roughness may contribute to the strength of bond between the amorphous material and the carrier. The inventors have found that the paper roughness (for the surface abutting the carrier) may suitably be in the range of 50-1000 Bekk seconds, suitably 50-150 Bekk seconds, suitably 100 Bekk seconds (measured over an air pressure interval of 50.66-48.00 kPa). (A Bekk smoothness tester is an instrument used to determine the smoothness of a paper surface, in which air at a specified pressure is leaked between a smooth glass surface and a paper sample, and 30 the time (in seconds) for a fixed volume of air to seep between these surfaces is the "Bekk smoothness".)

Conversely, the surface of the carrier facing away from the amorphous solid may be arranged in contact with the heater, and a smoother surface may provide more efficient heat transfer. Thus, in some cases, the carrier is disposed so as to have a rougher side abutting the amorphous material and a smoother side facing away from the amorphous material.

In one particular case, the carrier may be a paper-backed foil; the paper layer abuts the amorphous solid layer and the properties discussed in the previous paragraphs are afforded by this abutment. The foil backing is substantially impermeable, providing control of the aerosol flow path. A metal foil backing may also serve to conduct heat to the gel.

In another case, the foil layer of the paper-backed foil abuts the amorphous solid. The foil is substantially impermeable, thereby preventing water provided in the amorphous solid to be absorbed into the paper which could weaken its structural integrity.

In some cases, the carrier is formed from or comprises metal foil, such as aluminium foil. A metallic carrier may allow for better conduction of thermal energy to the amorphous solid. Additionally, or alternatively, a metal foil may function as a susceptor in an induction heating system. In particular embodiments, the carrier comprises a metal foil layer and a support layer, such as cardboard. In these embodiments, the metal foil layer may have a thickness of less than 20 μm , such as from about 1 μm to about 10 μm , suitably about 5 μm .

25

In some cases, the carrier may be omitted; the wrapper does not comprise a carrier. In some cases, the wrapper consists of only the aerosol-forming amorphous solid. This may be the case when the aerosol-forming amorphous solid is of sufficient strength (such as sufficient tensile strength) so as to be self-supporting.

30

In some cases, the amorphous solid may have a thickness of about 0.015mm to about 1.0mm. Suitably, the thickness may be in the range of about 0.05mm, 0.1mm or

0.15mm to about 0.5mm or 0.3mm. The inventors have found that a material having a thickness of 0.2mm is particularly suitable. The amorphous solid may comprise more than one layer, and the thickness described herein refers to the aggregate thickness of those layers.

5

The inventors have established that if the aerosol-forming amorphous solid is too thick, then heating efficiency is compromised. This adversely affects the power consumption in use. Conversely, if the aerosol-forming amorphous solid is too thin, it is difficult to manufacture and handle; a very thin material is harder to cast and may be 10 fragile, compromising aerosol formation in use.

The inventors have established that the amorphous solid thicknesses stipulated herein optimise the material properties in view of these competing considerations.

15

The thickness stipulated herein is a mean thickness for the material. In some cases, the amorphous solid thickness may vary by no more than 25%, 20%, 15%, 10%, 5% or 1%.

20

The aerosol generating material comprising the amorphous solid may have any suitable area density, such as from 30 g/m² to 120 g/m². In some embodiments, aerosol generating material may have an area density of from about 30 to 70 g/m², or about 40 to 60 g/m². In some embodiments, the amorphous solid may have an area density of from about 80 to 120 g/m², or from about 70 to 110 g/m², or particularly from about 90 to 110 g/m².

25

30

In some examples, the amorphous solid in sheet form may have a tensile strength of from around 200 N/m to around 900 N/m. In some examples, such as where the amorphous solid does not comprise a filler, the amorphous solid may have a tensile strength of from 200 N/m to 400 N/m, or 200 N/m to 300 N/m, or about 250 N/m. In some examples, such as where the amorphous solid comprises a filler, the amorphous solid may have a tensile strength of from 600 N/m to 900 N/m, or from 700 N/m to 900 N/m, or around 800 N/m.

The aerosol generating article of the first aspect of the invention may additionally comprise a cooling element and/or a filter. The cooling element, if present, may act or function to cool gaseous or aerosol components. In some cases, it may act 5 to cool gaseous components such that they condense to form an aerosol. It may also act to space the very hot parts of the apparatus from the user. The filter, if present, may comprise any suitable filter known in the art such as a cellulose acetate plug.

In some cases, the cooling element and/or filter (where present) may be wrapped 10 by a layer that at least partially extends over the rod of aerosolisable material. This layer may be the wrapper that comprises a carrier and amorphous solid and circumscribes the aerosolisable material.

The aerosol generating article may additionally comprise ventilation apertures. 15 These may be provided in the sidewall of the article. In some cases, the ventilation apertures may be provided in the filter and/or cooling element. These apertures may allow cool air to be drawn into the article during use, which can mix with the heated volatilised components thereby cooling the aerosol.

20 The ventilation enhances the generation of visible heated volatilised components from the article when it is heated in use. The heated volatilised components are made visible by the process of cooling the heated volatilised components such that supersaturation of the heated volatilised components occurs. The heated volatilised components then undergo droplet formation, otherwise known as nucleation, and eventually the size of the aerosol particles of the heated volatilised components increases by further condensation of the heated volatilised components and by coagulation of newly formed droplets from the heated volatilised components.

30 In some cases, the ratio of the cool air to the sum of the heated volatilised components and the cool air, known as the ventilation ratio, is at least 15%. A ventilation ratio of 15% enables the heated volatilised components to be made visible by the method described above. The visibility of the heated volatilised components

enables the user to identify that the volatilised components have been generated and adds to the sensory experience of the smoking experience.

5 In another example, the ventilation ratio is between 50% and 85% to provide additional cooling to the heated volatilised components. In some cases, the ventilation ratio may be at least 60% or 65%.

10 A second aspect of the invention provides an aerosol generating assembly comprising an aerosol generating article according to the first aspect of the invention and a heater configured to heat but not burn the aerosolisable material and/or the aerosol-forming amorphous solid.

15 The heater is configured to heat not burn the aerosol generating material(s). In some cases, the heater may heat but not burn the aerosolisable material(s) to between 120°C and 350°C in use. In some cases, the heater may heat but not burn the aerosolisable material(s) to between 140°C and 250°C in use. In some cases in use, substantially all of the amorphous solid is less than about 4mm, 3mm 2mm or 1mm from the heater. In some cases, the solid is disposed between about 0.010mm and 2.0mm from the heater, suitably between about 0.1mm and 1.0mm. In some cases, a 20 surface of the amorphous solid may directly abut the heater.

25 In some cases, the assembly contains an aerosol generating article which comprises two sections, and the amount of amorphous solid-derived volatiles in the wrapper portion circumscribing a first section is greater than the amount of amorphous solid-derived volatiles in the wrapper portion circumscribing a second section, and wherein device is configured to provide a different heat profile to each of the different sections. In some cases, the assembly is configured such that heating of the first section of the aerosol generating article is initiated after heating of the second section.

30 The aerosol generating assembly according to the second aspect may comprise at least two heaters, wherein the heaters are arranged to respectively heat different sections of the aerosol generating article. In some cases, the aerosol generating article

may comprise more than two sections, and the assembly may comprise further heaters, arranged such that each directly heats one or more sections of the aerosol generating article. In some cases, the number of heaters is equivalent to the number of sections in the aerosol generating article, and the heaters are arranged such that each heats one section.

In some cases, the assembly may be configured such that at least a portion of the aerosolisable material is exposed to a temperature of at least 180°C or 200°C for at least 50% of the heating period. In some examples, the aerosolisable material may be exposed to a heat profile as described in co-pending application PCT/EP2017/068804, the contents of which are incorporated herein in their entirety.

In some particular cases, an assembly is provided which is configured to heat the at least two sections of the aerosolisable material separately. By controlling the temperature of the first and second sections over time such that the temperature profiles of the sections are different, it is possible to control the puff profile of the aerosol during use. The heat provided to the two portions of the aerosolisable material may be provided at different times or rates; staggering the heating in this way may allow for both fast aerosol production and longevity of use.

20

In one particular example, the assembly may be configured such that on initiation of the consumption experience, a first heating element corresponding to a first section of the aerosolisable material is immediately heated to a temperature of 240°C. This first heating element is maintained at 240°C for 145 seconds and then drops to 135°C (where it remains for the rest of the consumption experience). 75 seconds after initiation of the consumption experience, a second heating element corresponding to a second section of the aerosolisable material is heated to a temperature of 160°C. 135 seconds after initiation of the consumption experience, the temperature of the second heating element is raised to 240°C (where it remains for the rest of the consumption experience). The consumption experience lasts 280 seconds, at which point both heaters are cool to room temperature.

In some cases, the aerosol generating assembly according to the second aspect may be a heat-not-burn device, also known as a tobacco heating product or tobacco heating device.

5

The heater provided in devices according to the second aspect may be, in some cases, a thin film, electrically resistive heater. In other cases, the heater may comprise an induction heater or the like. The heater may be a combustible heat source or a chemical heat source which undergoes an exothermic reaction to product heat in use.

10 Where more than one heater is present, each heater may be the same or different.

Generally, the or each heater is powered by a battery, which may be a rechargeable battery or a non-rechargeable battery. Examples of suitable batteries include for example a lithium-ion battery, a nickel battery (such as a nickel-cadmium battery), an alkaline battery and/ or the like. The battery is electrically coupled to the heater to supply electrical power when required to heat the aerosolisable material (to volatilise components of the aerosolisable material without causing the aerosolisable material to burn).

20

In one example, the heater is generally in the form of a hollow cylindrical tube, having a hollow interior heating chamber into which the aerosolisable material is inserted for heating in use. Different arrangements for the heater are possible. For example, the heater may be formed as a single heater or may be formed of plural heaters aligned along the longitudinal axis of the heater. (For simplicity, reference to a “heater” herein shall be taken to include plural heaters, unless the context requires otherwise.) The heater may be annular or tubular. The heater may be is dimensioned so that substantially the whole of the aerosolisable material when inserted is located within the heating element(s) of the heater so that substantially the whole of the aerosolisable material is heated in use. The heater may be arranged so that selected zones of the aerosolisable material can be independently heated, for example in turn (sequentially) or together (simultaneously) as desired.

The heater may be surrounded along at least part of its length by a thermal insulator which helps to reduce heat passing from the heater to the exterior of the aerosol generating assembly. This helps to keep down the power requirements for the heater as it reduces heat losses generally. The insulator also helps to keep the exterior of the 5 aerosol generating assembly cool during operation of the heater.

Referring to Figures 2 and 3, there are shown a partially cut-away section view and a perspective view of an example of an aerosol generating article 101. The article 101 is adapted for use with a device having a power source and a heater. The article 10 101 of this embodiment is particularly suitable for use with the device 51 shown in Figures 6 to 8, described below. In use, the article 101 may be removably inserted into the device shown in Figure 6 at an insertion point 20 of the device 51.

The article 101 of one example is in the form of a substantially cylindrical rod 15 that includes a body of aerosolisable material 103 and a filter assembly 105 in the form of a rod. As shown in Figures 2a and 3a, the aerosolisable material 103 is circumscribed by the wrapper illustrated in Figure 1, comprising a carrier 4 and an amorphous solid 2 disposed on the carrier 4. In the illustrated configuration, the amorphous solid is visible on the wrapper exterior. In other configurations (not shown), the amorphous solid is 20 disposed on the interior surface of the wrapper. The wrapper may circumscribe the aerosolisable material and at least some of the filter assembly, as shown.

The filter assembly 105 includes three segments, a cooling segment 107, a filter 25 segment 109 and a mouth end segment 111. The article 101 has a first end 113, also known as a mouth end or a proximal end and a second end 115, also known as a distal end. The body of aerosolisable material 103 is located towards the distal end 115 of the article 101. In one example, the cooling segment 107 is located adjacent the body of aerosolisable material 103 between the body of aerosolisable material 103 and the filter segment 109, such that the cooling segment 107 is in an abutting relationship with 30 the aerosolisable material 103 and the filter segment 103. In other examples, there may be a separation between the body of aerosolisable material 103 and the cooling segment 107 and between the body of aerosolisable material 103 and the filter segment 109. The

filter segment 109 is located in between the cooling segment 107 and the mouth end segment 111. The mouth end segment 111 is located towards the proximal end 113 of the article 101, adjacent the filter segment 109. In one example, the filter segment 109 is in an abutting relationship with the mouth end segment 111. In one embodiment, the 5 total length of the filter assembly 105 is between 37mm and 45mm, more preferably, the total length of the filter assembly 105 is 41mm.

In one example, the rod of aerosolisable material 103 is between 34mm and 50mm in length, suitably between 38mm and 46mm in length, suitably 42mm in length.

10

In one example, the total length of the article 101 is between 71mm and 95mm, suitably between 79mm and 87mm, suitably 83mm.

15

An axial end of the body of aerosolisable material 103 is visible at the distal end 115 of the article 101. However, in other embodiments, the distal end 115 of the article 101 may comprise an end member (not shown) covering the axial end of the body of aerosolisable material 103. The end member may be part of the wrapper described herein in some cases.

20

The body of aerosolisable material 103 is joined to the filter assembly 105 by annular tipping paper (not shown), which is located substantially around the circumference of the filter assembly 105 to surround the filter assembly 105 and extends partially along the length of the body of aerosolisable material 103. In one example, the tipping paper is made of 58GSM standard tipping base paper. In one example the tipping paper has a length of between 42mm and 50mm, suitably of 46mm.

30

In one example, the cooling segment 107 is an annular tube and is located around and defines an air gap within the cooling segment. The air gap provides a chamber for heated volatilised components generated from the body of aerosolisable material 103 to flow. The cooling segment 107 is hollow to provide a chamber for aerosol accumulation yet rigid enough to withstand axial compressive forces and bending moments that might arise during manufacture and whilst the article 101 is in

use during insertion into the device 51. In one example, the thickness of the wall of the cooling segment 107 is approximately 0.29mm.

The cooling segment 107 provides a physical displacement between the aerosolisable material 103 and the filter segment 109. The physical displacement provided by the cooling segment 107 will provide a thermal gradient across the length of the cooling segment 107. In one example the cooling segment 107 is configured to provide a temperature differential of at least 40 degrees Celsius between a heated volatilised component entering a first end of the cooling segment 107 and a heated volatilised component exiting a second end of the cooling segment 107. In one example the cooling segment 107 is configured to provide a temperature differential of at least 60 degrees Celsius between a heated volatilised component entering a first end of the cooling segment 107 and a heated volatilised component exiting a second end of the cooling segment 107. This temperature differential across the length of the cooling element 107 protects the temperature sensitive filter segment 109 from the high temperatures of the aerosolisable material 103 when it is heated by the device 51. If the physical displacement was not provided between the filter segment 109 and the body of aerosolisable material 103 and the heating elements of the device 51, then the temperature sensitive filter segment 109 may become damaged in use, so it would not perform its required functions as effectively.

In one example the length of the cooling segment 107 is at least 15mm. In one example, the length of the cooling segment 107 is between 20mm and 30mm, more particularly 23mm to 27mm, more particularly 25mm to 27mm, suitably 25mm.

25

The cooling segment 107 is made of paper, which means that it is comprised of a material that does not generate compounds of concern, for example, toxic compounds when in use adjacent to the heater of the device 51. In one example, the cooling segment 107 is manufactured from a spirally wound paper tube which provides a hollow internal chamber yet maintains mechanical rigidity. Spirally wound paper tubes are able to meet the tight dimensional accuracy requirements of high-speed manufacturing processes with respect to tube length, outer diameter, roundness and straightness.

5 In another example, the cooling segment 107 is a recess created from stiff plug wrap or tipping paper. The stiff plug wrap or tipping paper is manufactured to have a rigidity that is sufficient to withstand the axial compressive forces and bending moments that might arise during manufacture and whilst the article 101 is in use during insertion into the device 51.

10 The filter segment 109 may be formed of any filter material sufficient to remove one or more volatilised compounds from heated volatilised components from the aerosolisable material. In one example the filter segment 109 is made of a mono-acetate material, such as cellulose acetate. The filter segment 109 provides cooling and irritation-reduction from the heated volatilised components without depleting the quantity of the heated volatilised components to an unsatisfactory level for a user.

15 In some embodiments, a capsule (not illustrated) may be provided in filter segment 109. It may be disposed substantially centrally in the filter segment 109, both across the filter segment 109 diameter and along the filter segment 109 length. In other cases, it may be offset in one or more dimension. The capsule may in some cases, where present, contain a volatile component such as a flavourant or aerosol generating 20 agent.

25 The density of the cellulose acetate tow material of the filter segment 109 controls the pressure drop across the filter segment 109, which in turn controls the draw resistance of the article 101. Therefore the selection of the material of the filter segment 109 is important in controlling the resistance to draw of the article 101. In addition, the filter segment performs a filtration function in the article 101.

30 In one example, the filter segment 109 is made of a 8Y15 grade of filter tow material, which provides a filtration effect on the heated volatilised material, whilst also reducing the size of condensed aerosol droplets which result from the heated volatilised material.

The presence of the filter segment 109 provides an insulating effect by providing further cooling to the heated volatilised components that exit the cooling segment 107. This further cooling effect reduces the contact temperature of the user's lips on the surface of the filter segment 109.

5

In one example, the filter segment 109 is between 6mm to 10mm in length, suitably 8mm.

10 The mouth end segment 111 is an annular tube and is located around and defines an air gap within the mouth end segment 111. The air gap provides a chamber for heated volatilised components that flow from the filter segment 109. The mouth end segment 111 is hollow to provide a chamber for aerosol accumulation yet rigid enough to withstand axial compressive forces and bending moments that might arise during manufacture and whilst the article is in use during insertion into the device 51. In one 15 example, the thickness of the wall of the mouth end segment 111 is approximately 0.29mm. In one example, the length of the mouth end segment 111 is between 6mm to 10mm, suitably 8mm.

20 The mouth end segment 111 may be manufactured from a spirally wound paper tube which provides a hollow internal chamber yet maintains critical mechanical rigidity. Spirally wound paper tubes are able to meet the tight dimensional accuracy requirements of high-speed manufacturing processes with respect to tube length, outer diameter, roundness and straightness.

25 The mouth end segment 111 provides the function of preventing any liquid condensate that accumulates at the exit of the filter segment 109 from coming into direct contact with a user.

30 It should be appreciated that, in one example, the mouth end segment 111 and the cooling segment 107 may be formed of a single tube and the filter segment 109 is located within that tube separating the mouth end segment 111 and the cooling segment 107.

Referring to Figures 4 and 5, there are shown a partially cut-away section and perspective views of an example of an article 301. The reference signs shown in Figures 4 and 5 are equivalent to the reference signs shown in Figures 2 and 3, but with an 5 increment of 200.

In the example of the article 301 shown in Figures 4 and 5, a ventilation region 317 is provided in the article 301 to enable air to flow into the interior of the article 301 from the exterior of the article 301. In one example the ventilation region 317 takes the 10 form of one or more ventilation holes 317 formed through the outer layer of the article 301. The ventilation holes may be located in the cooling segment 307 to aid with the cooling of the article 301. In one example, the ventilation region 317 comprises one or more rows of holes, and preferably, each row of holes is arranged circumferentially around the article 301 in a cross-section that is substantially perpendicular to a 15 longitudinal axis of the article 301.

As noted above, the wrapper illustrated in Figure 1 may circumscribe the aerosolisable material and optionally some or all of the filter assembly. Although not illustrated, it should be understood that the ventilation region 317 may in some 20 embodiments be provided in the wrapper illustrated in Figure 1. In some other cases, such as those where the wrapper of Figure 1 does not extend over the whole length of the aerosol generating article, the ventilation holes may be provided in an outer layer of the article at a point where the wrapper of Figure 1 is not disposed.

25 In one example, there are between one to four rows of ventilation holes to provide ventilation for the article 301. Each row of ventilation holes may have between 12 to 36 ventilation holes 317. The ventilation holes 317 may, for example, be between 100 to 500 μ m in diameter. In one example, an axial separation between rows of ventilation holes 317 is between 0.25mm and 0.75mm, suitably 0.5mm.

30

In one example, the ventilation holes 317 are of uniform size. In another example, the ventilation holes 317 vary in size. The ventilation holes can be made using

any suitable technique, for example, one or more of the following techniques: laser technology, mechanical perforation of the cooling segment 307 or pre-perforation of the cooling segment 307 before it is formed into the article 301. The ventilation holes 317 are positioned so as to provide effective cooling to the article 301.

5

In one example, the rows of ventilation holes 317 are located at least 11mm from the proximal end 313 of the article, suitably between 17mm and 20mm from the proximal end 313 of the article 301. The location of the ventilation holes 317 is positioned such that user does not block the ventilation holes 317 when the article 301
10 is in use.

Providing the rows of ventilation holes between 17mm and 20mm from the proximal end 313 of the article 301 enables the ventilation holes 317 to be located outside of the device 51, when the article 301 is fully inserted in the device 51, as can
15 be seen in Figures 7 and 8. By locating the ventilation holes outside of the device, non-heated air is able to enter the article 301 through the ventilation holes from outside the device 51 to aid with the cooling of the article 301.

The length of the cooling segment 307 is such that the cooling segment 307 will
20 be partially inserted into the device 51, when the article 301 is fully inserted into the device 51. The length of the cooling segment 307 provides a first function of providing a physical gap between the heater arrangement of the device 51 and the heat sensitive filter arrangement 309, and a second function of enabling the ventilation holes 317 to be located in the cooling segment, whilst also being located outside of the device 51, when the article 301 is fully inserted into the device 51. As can be seen from Figures
25 7 and 8, the majority of the cooling element 307 is located within the device 51. However, there is a portion of the cooling element 307 that extends out of the device 51. It is in this portion of the cooling element 307 that extends out of the device 51 in which the ventilation holes 317 are located.

30

Referring now to Figures 6 to 8 in more detail, there is shown an example of a device 51 arranged to heat aerosolisable material to volatilise at least one component of

said aerosolisable material, typically to form an aerosol which can be inhaled. The device 51 is a heating device which releases compounds by heating, but not burning, the aerosolisable material.

5 A first end 53 is sometimes referred to herein as the mouth or proximal end 53 of the device 51 and a second end 55 is sometimes referred to herein as the distal end 55 of the device 51. The device 51 has an on/off button 57 to allow the device 51 as a whole to be switched on and off as desired by a user.

10 The device 51 comprises a housing 59 for locating and protecting various internal components of the device 51. In the example shown, the housing 59 comprises a uni-body sleeve 11 that encompasses the perimeter of the device 51, capped with a top panel 17 which defines generally the 'top' of the device 51 and a bottom panel 19 which defines generally the 'bottom' of the device 51. In another example the housing 15 comprises a front panel, a rear panel and a pair of opposite side panels in addition to the top panel 17 and the bottom panel 19.

20 The top panel 17 and/or the bottom panel 19 may be removably fixed to the uni-body sleeve 11, to permit easy access to the interior of the device 51, or may be "permanently" fixed to the uni-body sleeve 11, for example to deter a user from accessing the interior of the device 51. In an example, the panels 17 and 19 are made of a plastics material, including for example glass-filled nylon formed by injection moulding, and the uni-body sleeve 11 is made of aluminium, though other materials and other manufacturing processes may be used.

25

The top panel 17 of the device 51 has an opening 20 at the mouth end 53 of the device 51 through which, in use, the article 101, 301 including the aerosolisable material may be inserted into the device 51 and removed from the device 51 by a user.

30

The housing 59 has located or fixed therein a heater arrangement 23, control circuitry 25 and a power source 27. In this example, the heater arrangement 23, the control circuitry 25 and the power source 27 are laterally adjacent (that is, adjacent

when viewed from an end), with the control circuitry 25 being located generally between the heater arrangement 23 and the power source 27, though other locations are possible.

5 The control circuitry 25 may include a controller, such as a microprocessor arrangement, configured and arranged to control the heating of the aerosolisable material in the article 101, 301 as discussed further below.

10 The power source 27 may be for example a battery, which may be a rechargeable battery or a non-rechargeable battery. Examples of suitable batteries include for example a lithium-ion battery, a nickel battery (such as a nickel–cadmium battery), an alkaline battery and/ or the like. The battery 27 is electrically coupled to the heater arrangement 23 to supply electrical power when required and under control of the control circuitry 25 to heat the aerosolisable material in the article (as discussed, to 15 volatilise the aerosolisable material without causing the aerosolisable material to burn).

20 An advantage of locating the power source 27 laterally adjacent to the heater arrangement 23 is that a physically large power source 25 may be used without causing the device 51 as a whole to be unduly lengthy. As will be understood, in general a physically large power source 25 has a higher capacity (that is, the total electrical energy that can be supplied, often measured in Amp-hours or the like) and thus the battery life for the device 51 can be longer.

25 In one example, the heater arrangement 23 is generally in the form of a hollow cylindrical tube, having a hollow interior heating chamber 29 into which the article 101, 301 comprising the aerosolisable material is inserted for heating in use. Different arrangements for the heater arrangement 23 are possible. For example, the heater arrangement 23 may comprise a single heating element or may be formed of plural heating elements aligned along the longitudinal axis of the heater arrangement 23. The 30 or each heating element may be annular or tubular, or at least part-annular or part-tubular around its circumference. In an example, the or each heating element may be a thin film heater. In another example, the or each heating element may be made of a

ceramics material. Examples of suitable ceramics materials include alumina and aluminium nitride and silicon nitride ceramics, which may be laminated and sintered. Other heating arrangements are possible, including for example inductive heating, infrared heater elements, which heat by emitting infrared radiation, or resistive heating 5 elements formed by for example a resistive electrical winding.

In one particular example, the heater arrangement 23 is supported by a stainless steel support tube and comprises a polyimide heating element. The heater arrangement 23 is dimensioned so that substantially the whole of the body of aerosolisable material 10 103, 303 of the article 101, 301 is inserted into the heater arrangement 23 when the article 101, 301 is inserted into the device 51.

The or each heating element may be arranged so that selected zones of the aerosolisable material can be independently heated, for example in turn (over time, as 15 discussed above) or together (simultaneously) as desired.

The heater arrangement 23 in this example is surrounded along at least part of its length by a thermal insulator 31. The insulator 31 helps to reduce heat passing from the heater arrangement 23 to the exterior of the device 51. This helps to keep down the 20 power requirements for the heater arrangement 23 as it reduces heat losses generally. The insulator 31 also helps to keep the exterior of the device 51 cool during operation of the heater arrangement 23. In one example, the insulator 31 may be a double-walled sleeve which provides a low pressure region between the two walls of the sleeve. That is, the insulator 31 may be for example a “vacuum” tube, i.e. a tube that has been at 25 least partially evacuated so as to minimise heat transfer by conduction and/or convection. Other arrangements for the insulator 31 are possible, including using heat insulating materials, including for example a suitable foam-type material, in addition to or instead of a double-walled sleeve.

30 The housing 59 may further comprises various internal support structures 37 for supporting all internal components, as well as the heating arrangement 23.

The device 51 further comprises a collar 33 which extends around and projects from the opening 20 into the interior of the housing 59 and a generally tubular chamber 35 which is located between the collar 33 and one end of the vacuum sleeve 31. The chamber 35 further comprises a cooling structure 35f, which in this example, comprises 5 a plurality of cooling fins 35f spaced apart along the outer surface of the chamber 35, and each arranged circumferentially around outer surface of the chamber 35. There is an air gap 36 between the hollow chamber 35 and the article 101, 301 when it is inserted in the device 51 over at least part of the length of the hollow chamber 35. The air gap 36 is around all of the circumference of the article 101, 301 over at least part of the 10 cooling segment 307.

The collar 33 comprises a plurality of ridges 60 arranged circumferentially around the periphery of the opening 20 and which project into the opening 20. The ridges 60 take up space within the opening 20 such that the open span of the opening 15 20 at the locations of the ridges 60 is less than the open span of the opening 20 at the locations without the ridges 60. The ridges 60 are configured to engage with an article 101, 301 inserted into the device to assist in securing it within the device 51. Open spaces (not shown in the Figures) defined by adjacent pairs of ridges 60 and the article 20 101, 301 form ventilation paths around the exterior of the article 101, 301. These ventilation paths allow hot vapours that have escaped from the article 101, 301 to exit the device 51 and allow cooling air to flow into the device 51 around the article 101, 301 in the air gap 36.

In operation, the article 101, 301 is removably inserted into an insertion point 25 20 of the device 51, as shown in Figures 6 to 8. Referring particularly to Figure 7, in one example, the body of aerosolisable material 103, 303, which is located towards the distal end 115, 315 of the article 101, 301, is entirely received within the heater arrangement 23 of the device 51. The proximal end 113, 313 of the article 101, 301 extends from the device 51 and acts as a mouthpiece assembly for a user.

In operation, the heater arrangement 23 will heat the article 101, 301 to volatilise at least one component of the aerosolisable material from the body of aerosolisable material 103, 303.

5 The primary flow path for the heated volatilised components from the body of aerosolisable material 103, 303 is axially through the article 101, 301, through the chamber inside the cooling segment 107, 307, through the filter segment 109, 309, through the mouth end segment 111, 313 to the user. In one example, the temperature of the heated volatilised components that are generated from the body of aerosolisable 10 material is between 60°C and 250°C, which may be above the acceptable inhalation temperature for a user. As the heated volatilised component travels through the cooling segment 107, 307, it will cool and some volatilised components will condense on the inner surface of the cooling segment 107, 307.

15 In the examples of the article 301 shown in Figures 4 and 5, cool air will be able to enter the cooling segment 307 via the ventilation holes 317 formed in the cooling segment 307. This cool air will mix with the heated volatilised components to provide additional cooling to the heated volatilised components.

20 *AEROSOL-FORMING MATERIAL COMPOSITION*

In some cases, the amorphous solid may comprise 1-60wt% of a gelling agent wherein these weights are calculated on a dry weight basis.

25 Suitably, the amorphous solid may comprise from about 1wt%, 5wt%, 10wt%, 15wt%, 20wt% or 25wt% to about 60wt%, 50wt%, 45wt%, 40wt%, 35wt%, 30wt% or 27wt% of a gelling agent (all calculated on a dry weight basis). For example, the amorphous solid may comprise 1-50wt%, 5-40wt%, 10-30wt% or 15-27wt% of a gelling agent.

30

In some embodiments, the gelling agent comprises a hydrocolloid. In some embodiments, the gelling agent comprises one or more compounds selected from the

group comprising alginates, pectins, starches (and derivatives), celluloses (and derivatives), gums, silica or silicones compounds, clays, polyvinyl alcohol and combinations thereof. For example, in some embodiments, the gelling agent comprises one or more of alginates, pectins, hydroxyethyl cellulose, hydroxypropyl cellulose, 5 carboxymethylcellulose, pullulan, xanthan gum guar gum, carrageenan, agarose, acacia gum, fumed silica, PDMS, sodium silicate, kaolin and polyvinyl alcohol. In some cases, the gelling agent comprises alginate and/or pectin, and may be combined with a setting agent (such as a calcium source) during formation of the amorphous solid. In some cases, the amorphous solid may comprise a calcium-crosslinked alginate and/or a 10 calcium-crosslinked pectin.

In some embodiments, the gelling agent comprises alginate, and the alginate is present in the amorphous solid in an amount of from 10-30wt% of the amorphous solid (calculated on a dry weight basis). In some embodiments, alginate is the only gelling 15 agent present in the amorphous solid. In other embodiments, the gelling agent comprises alginate and at least one further gelling agent, such as pectin.

In some embodiments the amorphous solid may include gelling agent comprising carrageenan.

20

Suitably, the amorphous solid may comprise from about 5wt%, 10wt%, 15wt%, or 20wt% to about 80wt%, 70wt%, 60wt%, 55wt%, 50wt%, 45wt% 40wt%, or 35wt% of an aerosol generating agent (all calculated on a dry weight basis). The aerosol generating agent may act as a plasticiser. For example, the amorphous solid may comprise 5-60wt%, 10-50wt% or 20-40wt% of an aerosol generating agent. In some cases, the aerosol generating agent comprises one or more compound selected from erythritol, propylene glycol, glycerol, triacetin, sorbitol and xylitol. In some cases, the aerosol generating agent comprises, consists essentially of or consists of glycerol. The inventors have established that if the content of the plasticiser is too high, the amorphous solid may absorb water resulting in a material that does not create an appropriate consumption experience in use. The inventors have established that if the plasticiser content is too low, the amorphous solid may be brittle and easily broken.

The plasticiser content specified herein provides an amorphous solid flexibility which allows the amorphous solid sheet to be wound onto a bobbin, which is useful in manufacture of aerosol generating articles.

5 In some cases, the amorphous solid comprises an active substance. For example, in some cases, the amorphous solid additionally comprises a tobacco material and/or nicotine. For example, the amorphous solid may additionally comprise powdered tobacco and/or nicotine and/or a tobacco extract. In some cases, the amorphous solid may comprise from about 1wt%, 5wt%, 10wt%, 15wt%, 20wt% or 25wt% to about 10 70wt%, 50wt%, 45wt% or 40wt% (calculated on a dry weight basis) of active substance. In some cases, the amorphous solid may comprise from about 1wt%, 5wt%, 10wt%, 15wt%, 20wt% or 25wt% to about 70wt%, 60wt%, 50wt%, 45wt% or 40wt% (calculated on a dry weight basis) of a tobacco material and/or nicotine.

15 In some cases, the amorphous solid comprises one or more active substances and flavourants. In some cases, the amorphous solid comprises one or more of nicotine, tobacco extract and flavourants.

20 In some cases, the amorphous solid comprises an active substance such as tobacco extract. In some cases, the amorphous solid may comprise 5-60wt% (calculated on a dry weight basis) of tobacco extract. In some cases, the amorphous solid may comprise from about 5wt%, 10wt%, 15wt%, 20wt% or 25wt% to about 55wt%, 50wt%, 45wt% or 40wt% (calculated on a dry weight basis) tobacco extract. For example, the amorphous solid may comprise 5-60wt%, 10-55wt% or 25-55wt% of 25 tobacco extract. The tobacco extract may contain nicotine at a concentration such that the amorphous solid comprises 1wt% 1.5wt%, 2wt% or 2.5wt% to about 6wt%, 5wt%, 4.5wt% or 4wt% (calculated on a dry weight basis) of nicotine. In some cases, there may be no nicotine in the amorphous solid other than that which results from the tobacco extract.

30

In some embodiments the amorphous solid comprises no tobacco material but does comprise nicotine. In some such cases, the amorphous solid may comprise from

about 1wt%, 2wt%, 3wt% or 4wt% to about 20wt%, 15wt%, 10wt% or 5wt% (calculated on a dry weight basis) of nicotine. For example, the amorphous solid may comprise 1-20wt% or 2-5wt% of nicotine.

5 In some cases, the amorphous solid may comprise a flavour. Suitably, the amorphous solid may comprise up to about 60wt%, 50wt%, 40wt%, 30wt%, 20wt%, 10wt% or 5wt% of a flavour. In some cases, the amorphous solid may comprise at least about 0.1wt%, 0.5wt%, 1wt%, 2wt%, 5wt% 10wt%, 20wt% or 30wt% of a flavour (all calculated on a dry weight basis). For example, the amorphous solid may comprise 0.1-10wt%, 1-60wt%, 5-60wt%, 10-60wt%, 20-50wt% or 30-40wt% of a flavour. In some cases, the flavour (if present) comprises, consists essentially of or consists of menthol. In some cases, the amorphous solid does not comprise a flavour.

15 In some cases, the total content of active substance and flavour may be at least about 0.1wt%, 1wt%, 5wt%, 10wt%, 20wt%, 25wt% or 30wt%. In some cases, the total content of active substance (e.g. tobacco material and/or nicotine) and flavour may be less than about 80wt%, 70wt%, 60wt%, 50wt% or 40wt% (all calculated on a dry weight basis).

20 In some embodiments, the amorphous solid is a hydrogel and comprises less than about 20wt% of water calculated on a wet weight basis. In some cases, the hydrogel may comprise less than about 15wt%, 12wt% or 10 wt% of water calculated on a wet weight basis (WWB). In some cases, the hydrogel may comprise at least about 1wt%, 2wt% or at least about 5wt% of water (WWB). In some cases, the amorphous solid comprises from about 1wt% to about 15wt% water, or from about 5wt% to about 15wt% calculated on a wet weight basis. Suitably, the water content of the amorphous solid may be from about 5wt%, 7wt% or 9wt% to about 15wt%, 13wt% or 11wt% (WWB), most suitably about 10wt%.

30 The amorphous solid may be made from a gel, and this gel may additionally comprise a solvent, included at 0.1-50wt%. However, the inventors have established that the inclusion of a solvent in which the flavour is soluble may reduce the gel stability

and the flavour may crystallise out of the gel. As such, in some cases, the gel does not include a solvent in which the flavour is soluble.

In some embodiments, the amorphous solid comprises less than 60wt% of a 5 filler, such as from 1wt% to 60wt%, or 5wt% to 50wt%, or 5wt% to 30wt%, or 10wt% to 20wt%.

In other embodiments, the amorphous solid comprises less than 20wt%, suitably less than 10wt% or less than 5wt% of a filler. In some cases, the amorphous solid 10 comprises less than 1wt% of a filler, and in some cases, comprises no filler.

The filler, if present, may comprise one or more inorganic filler materials, such as calcium carbonate, perlite, vermiculite, diatomaceous earth, colloidal silica, magnesium oxide, magnesium sulphate, magnesium carbonate, and suitable inorganic 15 sorbents, such as molecular sieves. The filler may comprise one or more organic filler materials such as wood pulp, cellulose and cellulose derivatives. In particular, in some cases, the amorphous solid comprises no calcium carbonate such as chalk.

In particular embodiments which include filler, the filler is fibrous. For example, 20 the filler may be a fibrous organic filler material such as wood pulp, hemp fibre, cellulose or cellulose derivatives. Without wishing to be bound by theory, it is believed that including fibrous filler in an amorphous solid may increase the tensile strength of the material. This may be particularly advantageous in examples wherein the amorphous solid is provided as a sheet, such as when an amorphous solid sheet 25 circumscribes a rod of aerosolisable material.

In some embodiments, the amorphous solid does not comprise tobacco fibres. In particular embodiments, the amorphous solid does not comprise fibrous material.

30 In some embodiments, the aerosol generating material does not comprise tobacco fibres. In particular embodiments, the aerosol generating material does not comprise fibrous material.

In some embodiments, the aerosol generating substrate does not comprise tobacco fibres. In particular embodiments, the aerosol generating substrate does not comprise fibrous material.

5

In some embodiments, the aerosol generating article does not comprise tobacco fibres. In particular embodiments, the aerosol generating article does not comprise fibrous material.

10

In some cases, the amorphous solid may consist essentially of, or consist of a gelling agent, an aerosol generating agent, an active substance (such as a tobacco material and/or a nicotine source), water, and optionally a flavour.

METHOD OF WRAPPER MANUFACTURE

15

The wrapper may be manufactured by a method comprising (a) forming of a slurry comprising components of the amorphous solid or precursors thereof, (b) applying the slurry to a carrier, (c) setting the slurry to form a gel, (d) drying to form an amorphous solid.

20

The step (b) of forming a layer of the slurry may comprise spraying, casting or extruding the slurry, for example. In some cases, the layer is formed by electrospraying the slurry. In some cases, the layer is formed by casting the slurry.

25

In some cases, the steps (b) and/or (c) and/or (d) may, at least partially, occur simultaneously (for example, during electrospraying). In some cases, these steps may occur sequentially.

30

In some examples, the slurry has a viscosity of from about 10 to about 20 Pa·s at 46.5 °C, such as from about 14 to about 16 Pa·s at 46.5 °C.

The step (c) of setting the gel may comprise the addition of a setting agent to the slurry. For example, the slurry may comprise sodium, potassium or ammonium alginate as a gel-precursor, and a setting agent comprising a calcium source (such as calcium chloride), may be added to the slurry to form a calcium alginate gel.

5

The total amount of the setting agent, such as a calcium source, may be 0.5-5wt% (calculated on a dry weight basis). The inventors have found that the addition of too little setting agent may result in a gel which does not stabilise the gel components and results in these components dropping out of the gel. The inventors have found that 10 the addition of too much setting agent results in a gel that is very tacky and consequently has poor handleability.

15 Alginate salts are derivatives of alginic acid and are typically high molecular weight polymers (10-600 kDa). Alginic acid is a copolymer of β -D-mannuronic (M) and α -L-guluronic acid (G) units (blocks) linked together with (1,4)-glycosidic bonds to form a polysaccharide. On addition of calcium cations, the alginate crosslinks to 20 form a gel. The inventors have determined that alginate salts with a high G monomer content more readily form a gel on addition of the calcium source. In some cases therefore, the gel-precursor may comprise an alginate salt in which at least about 40%, 45%, 50%, 55%, 60% or 70% of the monomer units in the alginate copolymer are α -L-guluronic acid (G) units.

25 The slurry itself may also form part of the invention. In some cases, the slurry solvent may consist essentially of or consist of water. In some cases, the slurry may comprise from about 50wt%, 60wt%, 70wt%, 80wt% or 90wt% of solvent (WWB).

30 In cases where the solvent consists of water, the dry weight content of the slurry may match the dry weight content of the amorphous solid. Thus, the discussion herein relating to the solid composition is explicitly disclosed in combination with the slurry aspect of the invention.

EXEMPLARY EMBODIMENTS

In some embodiments, the amorphous solid comprises menthol.

In some such embodiments, the amorphous solid may have the following 5 composition (DWB): gelling agent (preferably comprising alginate, more preferably comprising a combination of alginate and pectin) in an amount of from about 20wt% to about 40wt%, or about 25wt% to 35wt%; menthol in an amount of from about 35wt % to about 60wt%, or from about 40wt% to 55wt%; aerosol generating agent (preferably comprising glycerol) in an amount of from about 10wt% to about 30wt%, or from about 10 15wt% to about 25wt % (DWB).

In one embodiment, the amorphous solid comprises about 32-33wt% of an alginate/pectin gelling agent blend; about 47-48wt% menthol flavourant; and about 19-20wt% glycerol aerosol generating agent (DWB).

15

The amorphous solid of these embodiments may have any suitable water content. For example, the amorphous solid may have a water content of from about 2wt% to about 10wt%, or from about 5wt% to about 8wt%, or about 6wt%.

20

Suitably, the amorphous solid is generated in sheet form and has a thickness of from about 0.015mm to about 1mm, preferably from about 0.02mm to about 0.07mm.

25

In some further embodiments, the amorphous solid may have the following composition (DWB): gelling agent (preferably comprising alginate, more preferably comprising a combination of alginate and pectin) in an amount of from about 5wt% to about 40wt%, or about 10wt% to 30wt%; menthol in an amount of from about 10wt% to about 50wt%, or from about 15wt% to 40wt%; aerosol generating agent (preferably comprising glycerol) in an amount of from about 5wt% to about 40wt%, or from about 10wt% to about 35wt%; and optionally filler in an amount of up to 60wt% - for 30 example, in an amount of from 5wt% to 20wt%, or from about 40wt% to 60wt% (DWB).

In one of these embodiments, the amorphous solid comprises about 11wt% of an alginate/pectin gelling agent blend, about 56wt% woodpulp filler, about 18% menthol flavourant and about 15wt% glycerol (DWB).

5 In another of these embodiments, the amorphous solid comprises about 22wt% of an alginate/pectin gelling agent blend, about 12wt% woodpulp filler, about 36% menthol flavourant and about 30wt% glycerol (DWB).

10 In some of the above embodiments, the sheet is provided on a carrier comprising paper. In some other embodiments, the sheet is provided on a carrier comprising metal foil, suitably aluminium metal foil. In some such embodiments, the amorphous solid may abut the metal foil.

15 In one embodiment, the sheet forms part of a laminate material with a layer (preferably comprising paper) attached to a top and bottom surface of the sheet. Suitably, the sheet of amorphous solid has a thickness of from about 0.015mm to about 1mm.

20 In some embodiments, the amorphous solid comprises a flavourant which does not comprise menthol. In these embodiments, the amorphous solid may have the following composition (DWB): gelling agent (preferably comprising alginate) in an amount of from about 5 to about 40wt%, or from about 10wt% to about 35wt%, or from about 20wt% to about 35wt%; flavourant in an amount of from about 0.1wt% to about 40wt%, of from about 1wt% to about 30wt%, or from about 1wt% to about 20wt%, or from about 5wt% to about 20wt%; aerosol generating agent (preferably comprising glycerol) in an amount of from 15wt% to 75wt%, or from about 30wt% to about 70wt%, or from about 50wt% to about 65wt%; and optionally filler (suitably woodpulp) in an amount of less than about 60wt%, or about 20wt%, or about 10wt%, or about 5wt% (preferably the amorphous solid does not comprise filler) (DWB).

In one of these embodiments, the amorphous solid comprises about 27wt% alginic acid, about 14wt% flavourant and about 57wt% glycerol aerosol generating agent (DWB).

5 In another of these embodiments, the amorphous solid comprises about 29wt% alginic acid, about 9wt% flavourant and about 60wt% glycerol (DWB).

In some embodiments, the amorphous solid comprises tobacco extract. In these embodiments, the amorphous solid may have the following composition (DWB):
10 gelling agent (preferably comprising alginic acid) in an amount of from about 5wt% to about 40wt%, or about 10wt% to 30wt%, or about 15wt% to about 25wt%; tobacco extract in an amount of from about 30wt% to about 60wt%, or from about 40wt% to 55wt%, or from about 45wt% to about 50wt%; aerosol generating agent (preferably comprising glycerol) in an amount of from about 10wt% to about 50wt%, or from about 15 20wt% to about 40wt%, or from about 25wt% to about 35wt% (DWB).

In one embodiment, the amorphous solid comprises about 20wt% alginic acid, about 48wt% Virginia tobacco extract and about 32wt% glycerol (DWB).

20 The amorphous solid of these embodiments may have any suitable water content. For example, the amorphous solid may have a water content of from about 5wt% to about 15wt%, or from about 7wt% to about 13wt%, or about 10wt%.

25 Suitably, in any of these tobacco-extract containing embodiments, the amorphous solid has a thickness of from about 50 μm to about 200 μm , or about 50 μm to about 100 μm , or about 60 μm to about 90 μm , suitably about 77 μm .

The slurry for forming this amorphous solid may also form part of the invention. In some cases, the slurry may have an elastic modulus of from about 5 to 1200 Pa (also referred to as storage modulus); in some cases, the slurry may have a viscous modulus of about 5 to 600 Pa (also referred to as loss modulus).

DEFINITIONS

The active substance as used herein may be a physiologically active material, which is a material intended to achieve or enhance a physiological response. The active 5 substance may for example be selected from nutraceuticals, nootropics, psychoactives. The active substance may be naturally occurring or synthetically obtained. The active substance may comprise for example nicotine, caffeine, taurine, theine, vitamins such as B6 or B12 or C, melatonin, cannabinoids, or constituents, derivatives, or combinations thereof. The active substance may comprise one or more constituents, 10 derivatives or extracts of tobacco, cannabis or another botanical.

In some embodiments, the active substance comprises nicotine.

In some embodiments, the active substance comprises caffeine, melatonin or 15 vitamin B12.

As noted herein, the active substance may comprise one or more constituents, derivatives or extracts of cannabis, such as one or more cannabinoids or terpenes.

20 Cannabinoids are a class of natural or synthetic chemical compounds which act on cannabinoid receptors (i.e., CB1 and CB2) in cells that repress neurotransmitter release in the brain. Cannabinoids may be naturally occurring (phytocannabinoids) from plants such as cannabis, from animals (endocannabinoids), or artificially manufactured (synthetic cannabinoids). Cannabis species express at least 85 different phytocannabinoids, and are divided into subclasses, including cannabigerols, 25 cannabichromenes, cannabidiols, tetrahydrocannabinols, cannabinoids and cannabinols, and other cannabinoids. Cannabinoids found in cannabis include, without limitation: cannabigerol (CBG), cannabichromene (CBC), cannabidiol (CBD), tetrahydrocannabinol (THC), cannabinol (CBN), cannabinol (CBDL), cannabicyclol (CBL), cannabivarain (CBV), tetrahydrocannabivarain (THCV), 30 cannabidivarain (CBDV), cannabichromevarin (CBCV), cannabigerovarin (CBGV), cannabigerol monomethyl ether (CBGM), cannabinerolic acid, cannabidiolic acid

(CBDA), Cannabinol propyl variant (CBNV), cannabitriol (CBO), tetrahydrocannabmolic acid (THCA), and tetrahydrocannabivarinic acid (THCV A).

As noted herein, the active substance may comprise or be derived from one or 5 more botanicals or constituents, derivatives or extracts thereof. As used herein, the term "botanical" includes any material derived from plants including, but not limited to, extracts, leaves, bark, fibres, stems, roots, seeds, flowers, fruits, pollen, husk, shells or the like. Alternatively, the material may comprise an active compound naturally existing in a botanical, obtained synthetically. The material may be in the form of liquid, 10 gas, solid, powder, dust, crushed particles, granules, pellets, shreds, strips, sheets, or the like. Example botanicals are tobacco, eucalyptus, star anise, hemp, cocoa, cannabis, fennel, lemongrass, peppermint, spearmint, rooibos, chamomile, flax, ginger, ginkgo biloba, hazel, hibiscus, laurel, licorice (liquorice), matcha, mate, orange skin, papaya, rose, sage, tea such as green tea or black tea, thyme, clove, cinnamon, coffee, aniseed 15 (anise), basil, bay leaves, cardamom, coriander, cumin, nutmeg, oregano, paprika, rosemary, saffron, lavender, lemon peel, mint, juniper, elderflower, vanilla, wintergreen, beefsteak plant, curcuma, turmeric, sandalwood, cilantro, bergamot, orange blossom, myrtle, cassis, valerian, pimento, mace, damien, marjoram, olive, lemon balm, lemon basil, chive, carvi, verbena, tarragon, geranium, mulberry, ginseng, 20 theanine, theacrine, maca, ashwagandha, damiana, guarana, chlorophyll, baobab or any combination thereof. The mint may be chosen from the following mint varieties: *Mentha arvensis*, *Mentha c.v.*, *Mentha niliaca*, *Mentha piperita*, *Mentha piperita citrata c.v.*, *Mentha piperita c.v.*, *Mentha spicata crispa*, *Mentha cordifolia*, *Mentha longifolia*, *Mentha suaveolens variegata*, *Mentha pulegium*, *Mentha spicata c.v.* and 25 *Mentha suaveolens*.

In some embodiments, the botanical is selected from eucalyptus, star anise, cocoa and hemp.

30 In some embodiments, the botanical is selected from rooibos and fennel.

As used herein, the terms "flavour" and "flavourant" refer to materials which, where local regulations permit, may be used to create a desired taste, aroma or other somatosensorial sensation in a product for adult consumers. They may include naturally occurring flavour materials, botanicals, extracts of botanicals, synthetically obtained materials, or combinations thereof (e.g., tobacco, cannabis, licorice (liquorice), hydrangea, eugenol, Japanese white bark magnolia leaf, chamomile, fenugreek, clove, maple, matcha, menthol, Japanese mint, aniseed (anise), cinnamon, turmeric, Indian spices, Asian spices, herb, wintergreen, cherry, berry, red berry, cranberry, peach, apple, orange, mango, clementine, lemon, lime, tropical fruit, papaya, rhubarb, grape, 10 durian, dragon fruit, cucumber, blueberry, mulberry, citrus fruits, Drambuie, bourbon, scotch, whiskey, gin, tequila, rum, spearmint, peppermint, lavender, aloe vera, cardamom, celery, cascarilla, nutmeg, sandalwood, bergamot, geranium, khat, naswar, betel, shisha, pine, honey essence, rose oil, vanilla, lemon oil, orange oil, orange 15 blossom, cherry blossom, cassia, caraway, cognac, jasmine, ylang-ylang, sage, fennel, wasabi, piment, ginger, coriander, coffee, hemp, a mint oil from any species of the genus *Mentha*, eucalyptus, star anise, cocoa, lemongrass, rooibos, flax, ginkgo biloba, hazel, hibiscus, laurel, mate, orange skin, rose, tea such as green tea or black tea, thyme, juniper, elderflower, basil, bay leaves, cumin, oregano, paprika, rosemary, saffron, 20 lemon peel, mint, beefsteak plant, curcuma, cilantro, myrtle, cassis, valerian, pimento, mace, damien, marjoram, olive, lemon balm, lemon basil, chive, carvi, verbena, tarragon, limonene, thymol, camphene), flavour enhancers, bitterness receptor site blockers, sensorial receptor site activators or stimulators, sugars and/or sugar substitutes (e.g., sucralose, acesulfame potassium, aspartame, saccharine, cyclamates, lactose, sucrose, glucose, fructose, sorbitol, or mannitol), and other additives such as 25 charcoal, chlorophyll, minerals, botanicals, or breath freshening agents. They may be imitation, synthetic or natural ingredients or blends thereof. They may be in any suitable form, for example, liquid such as an oil, solid such as a powder, or gas.

The flavour may suitably comprise one or more mint-flavours suitably a mint 30 oil from any species of the genus *Mentha*. The flavour may suitably comprise, consist essentially of or consist of menthol.

In some embodiments, the flavour comprises menthol, spearmint and/or peppermint.

In some embodiments, the flavour comprises flavour components of cucumber, blueberry, citrus fruits and/or redberry.

5 In some embodiments, the flavour comprises eugenol.

In some embodiments, the flavour comprises flavour components extracted from tobacco.

In some embodiments, the flavour comprises flavour components extracted from cannabis.

10

In some embodiments, the flavour may comprise a sensate, which is intended to achieve a somatosensorial sensation which are usually chemically induced and perceived by the stimulation of the fifth cranial nerve (trigeminal nerve), in addition to or in place of aroma or taste nerves, and these may include agents providing heating, 15 cooling, tingling, numbing effect. A suitable heat effect agent may be, but is not limited to, vanillyl ethyl ether and a suitable cooling agent may be, but not limited to eucalyptol, WS-3.

20

As used herein, the term “aerosol generating agent” refers to an agent that promotes the generation of an aerosol. An aerosol generating agent may promote the generation of an aerosol by promoting an initial vaporisation and/or the condensation of a gas to an inhalable solid and/or liquid aerosol.

25

Suitable aerosol generating agents include, but are not limited to: a polyol such as erythritol, sorbitol, glycerol, and glycols like propylene glycol or triethylene glycol; a non-polyol such as monohydric alcohols, high boiling point hydrocarbons, acids such as lactic acid, glycerol derivatives, esters such as diacetin, triacetin, triethylene glycol diacetate, triethyl citrate or myristates including ethyl myristate and isopropyl myristate and aliphatic carboxylic acid esters such as methyl stearate, dimethyl dodecanedioate 30 and dimethyl tetradecanedioate. The aerosol generating agent may suitably have a composition that does not dissolve menthol. The aerosol generating agent may suitably comprise, consist essentially of or consist of glycerol.

As used herein, the term “tobacco material” refers to any material comprising tobacco or derivatives therefore. The term “tobacco material” may include one or more of tobacco, tobacco derivatives, expanded tobacco, reconstituted tobacco or tobacco 5 substitutes. The tobacco material may comprise one or more of ground tobacco, tobacco fibre, cut tobacco, extruded tobacco, tobacco stem, reconstituted tobacco and/or tobacco extract.

The tobacco used to produce tobacco material may be any suitable tobacco, such 10 as single grades or blends, cut rag or whole leaf, including Virginia and/or Burley and/or Oriental. It may also be tobacco particle ‘fines’ or dust, expanded tobacco, stems, expanded stems, and other processed stem materials, such as cut rolled stems. The tobacco material may be a ground tobacco or a reconstituted tobacco material. The reconstituted tobacco material may comprise tobacco fibres, and may be formed by 15 casting, a Fourdrinier-based paper making-type approach with back addition of tobacco extract, or by extrusion.

As used herein, the term “volatiles” may refer to any components of the inhaled aerosol including, but not limited to aerosol generating agents, flavourants, tobacco 20 flavours and aromas, and nicotine. The terms “amorphous solid-derived volatiles” and “tobacco-volatiles” indicates in which component of the aerosol generating article the volatiles are arranged or derived from.

As used herein, the term “rod” generally refers to an elongate body which may 25 be any suitable shape for use in an aerosol generating assembly. In some cases, the rod is substantially cylindrical.

All percentages by weight described herein (denoted wt%) are calculated on a dry weight basis, unless explicitly stated otherwise. All weight ratios are also calculated 30 on a dry weight basis. A weight quoted on a dry weight basis refers to the whole of the extract or slurry or material, other than the water, and may include components which by themselves are liquid at room temperature and pressure, such as glycerol.

Conversely, a weight percentage quoted on a wet weight basis refers to all components, including water.

For the avoidance of doubt, where in this specification the term “comprises” is
5 used in defining the invention or features of the invention, embodiments are also disclosed in which the invention or feature can be defined using the terms “consists essentially of” or “consists of” in place of “comprises”. Reference to a material “comprising” certain features means that those features are included in, contained in, or held within the material.

10

The above embodiments are to be understood as illustrative examples of the invention. It is to be understood that any feature described in relation to any one embodiment may be used alone, or in combination with other features described, and may also be used in combination with one or more features of any other of the
15 embodiments, or any combination of any other of the embodiments. Furthermore, equivalents and modifications not described above may also be employed without departing from the scope of the invention, which is defined in the accompanying claims.

CLAIMS

1. An aerosol generating article for use in an aerosol generating assembly, the aerosol generating article comprising a rod of aerosolisable material circumscribed by a wrapper, wherein the wrapper comprises an aerosol-forming amorphous solid.
5
2. An aerosol generating article according to claim 1, wherein the wrapper comprises a carrier, and wherein the aerosol-forming amorphous solid is disposed on the carrier.
10
3. An aerosol generating article according to claim 2, wherein the carrier comprises a paper layer.
15
4. An aerosol generating article according to claim 3, wherein the amorphous solid is in direct contact with the paper layer.
15
5. An aerosol generating article according to any preceding claim, wherein the aerosol generating article comprises two sections, and wherein the amount of volatiles in the amorphous solid in the wrapper portion circumscribing a first section is greater than the amount of volatiles in the amorphous solid in the wrapper portion circumscribing a second section.
20
6. An aerosol generating article according to claim 2, or any one of claims 3 to 5 when dependent on claim 2,
25 wherein the aerosol generating article comprises two sections, and wherein the amount of amorphous solid per unit area of carrier in the wrapper portion circumscribing a first section is greater than the amount of amorphous solid per unit area of carrier in the wrapper portion circumscribing a second section.
30
7. An aerosol generating article according to claim 6, wherein the amorphous solid is disposed on the carrier in a substantially triangular shape.

8. An aerosol generating article according to any preceding claim, wherein the amorphous solid comprises one or more active substances and flavourants.
9. An aerosol generating article according to any preceding claim, wherein the aerosolisable material comprises a tobacco material.
10. An aerosol generating assembly comprising an aerosol generating article according to any of claims 1 to 9 and a heater configured to heat but not burn the aerosolisable material and/or the aerosol-forming amorphous solid.
11. An aerosol generating assembly according to claim 10, wherein the amount of volatiles in the amorphous solid in the wrapper portion circumscribing a first section is greater than the amount of volatiles in the amorphous solid in the wrapper portion circumscribing a second section; and wherein device is configured to provide a different heat profile to each of the different sections.
12. An aerosol generating assembly according to claim 11, configured such that heating of the first section of the aerosol generating article is initiated after heating of the second section.
13. An aerosol generating assembly according claim 11 or claim 12, comprising at least two heaters, wherein the heaters are arranged to respectively heat different sections of the aerosol generating article.
14. A method of making an aerosol generating article according to any one of claims 1 to 9, comprising (a) forming of a slurry comprising components of the amorphous solid or precursors thereof, (b) applying the slurry to a carrier, (c) setting the slurry to form a gel, (d) drying the gel to form an amorphous solid, and (e) arranging the wrapper such that it circumscribes the aerosolisable material.

15. A method according to claim 14, where step (c) comprises the addition of a setting agent to the slurry.

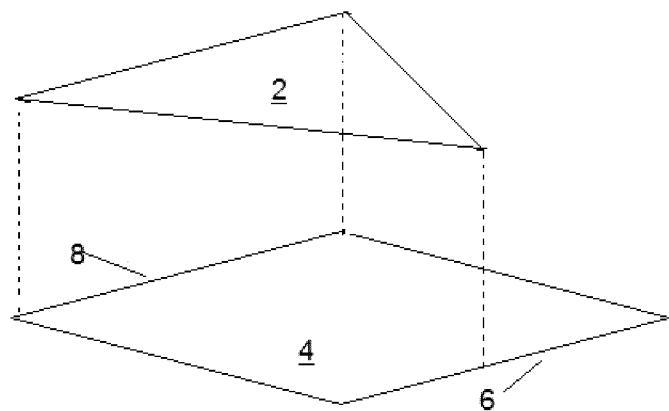


Figure 1

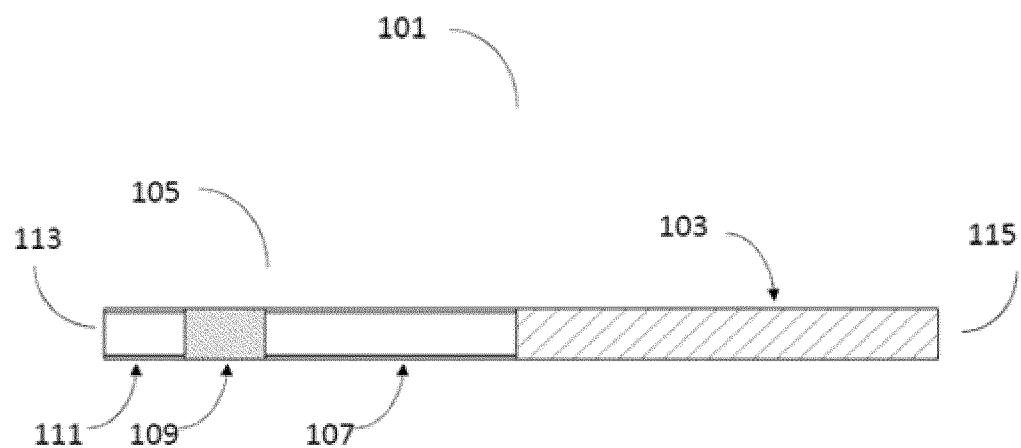


Figure 2

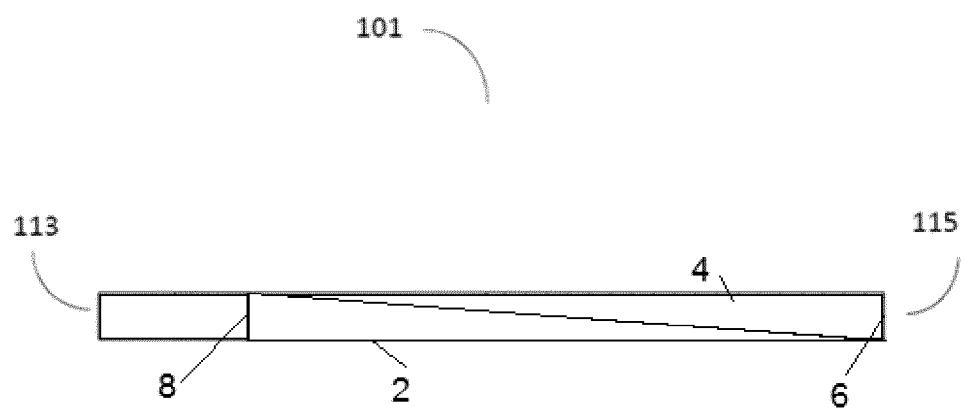


Figure 2a

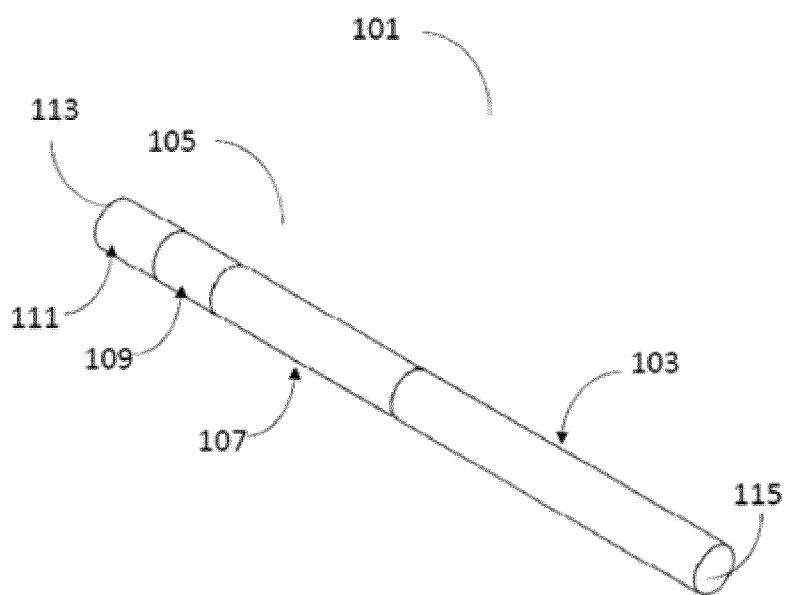


Figure 3

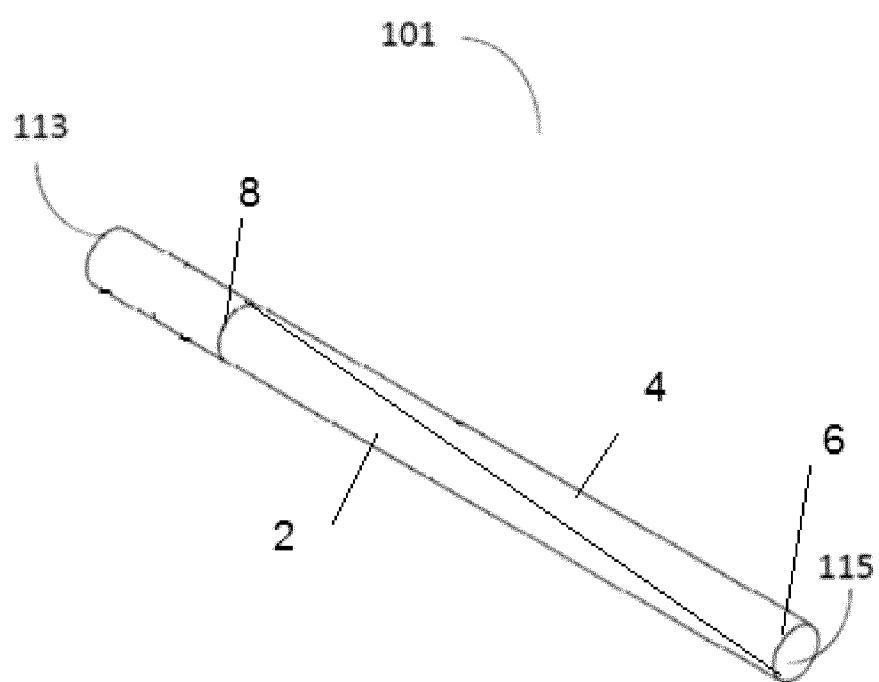


Figure 3a

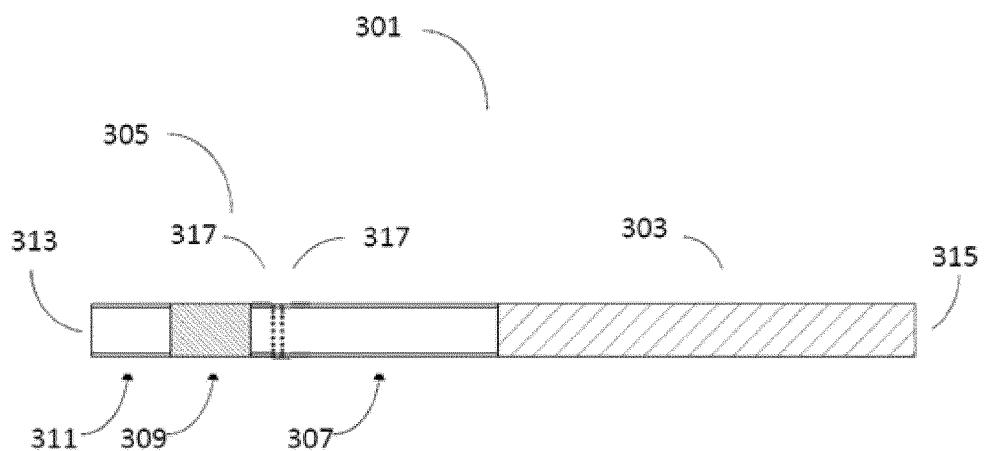


Figure 4

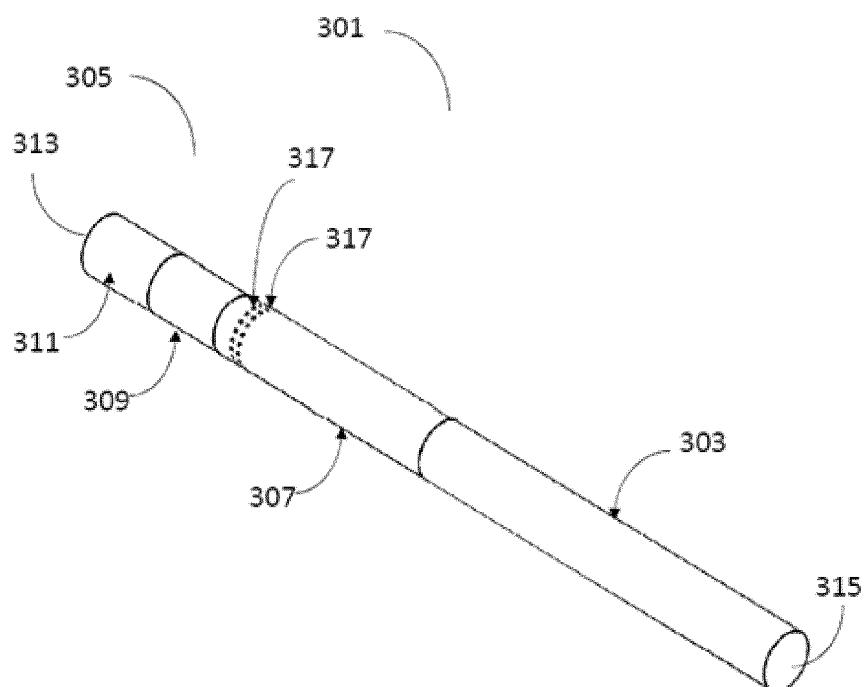


Figure 5

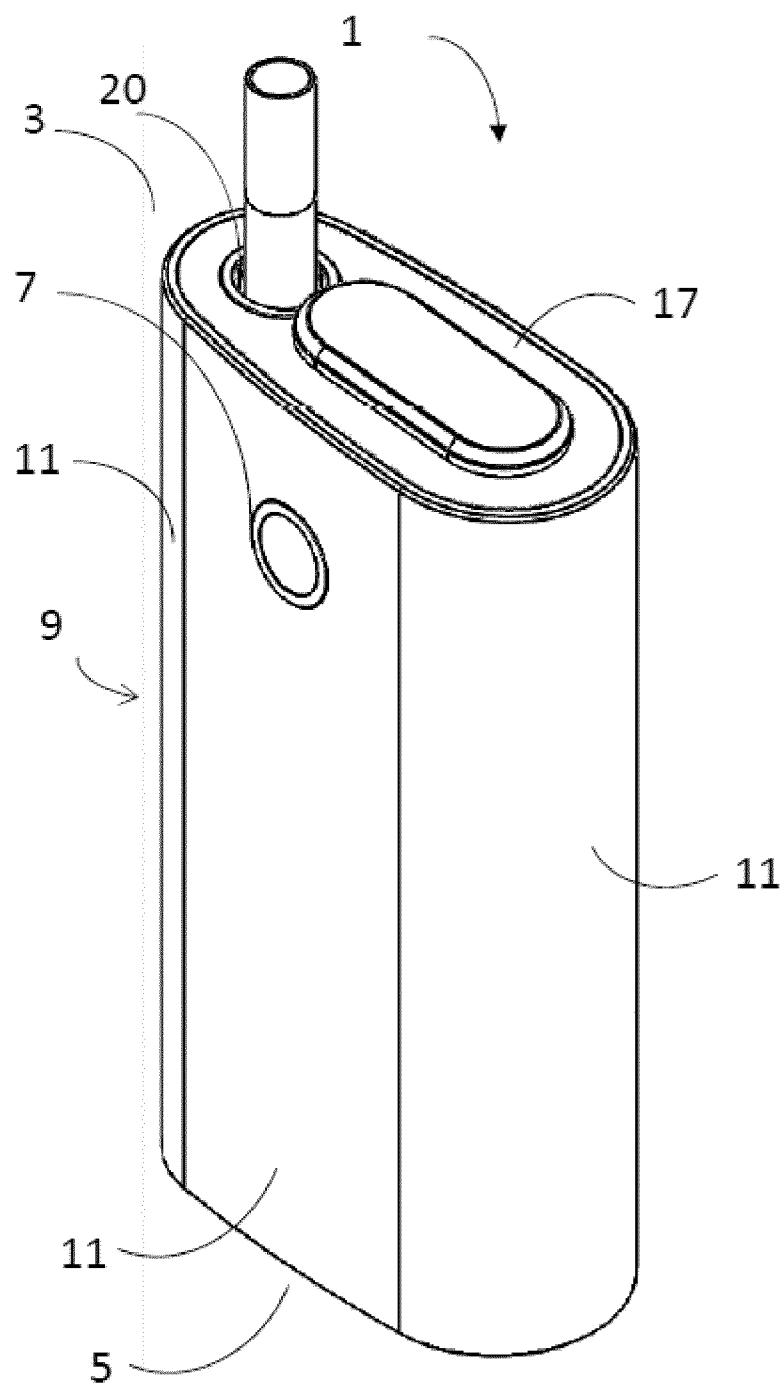


Figure 6

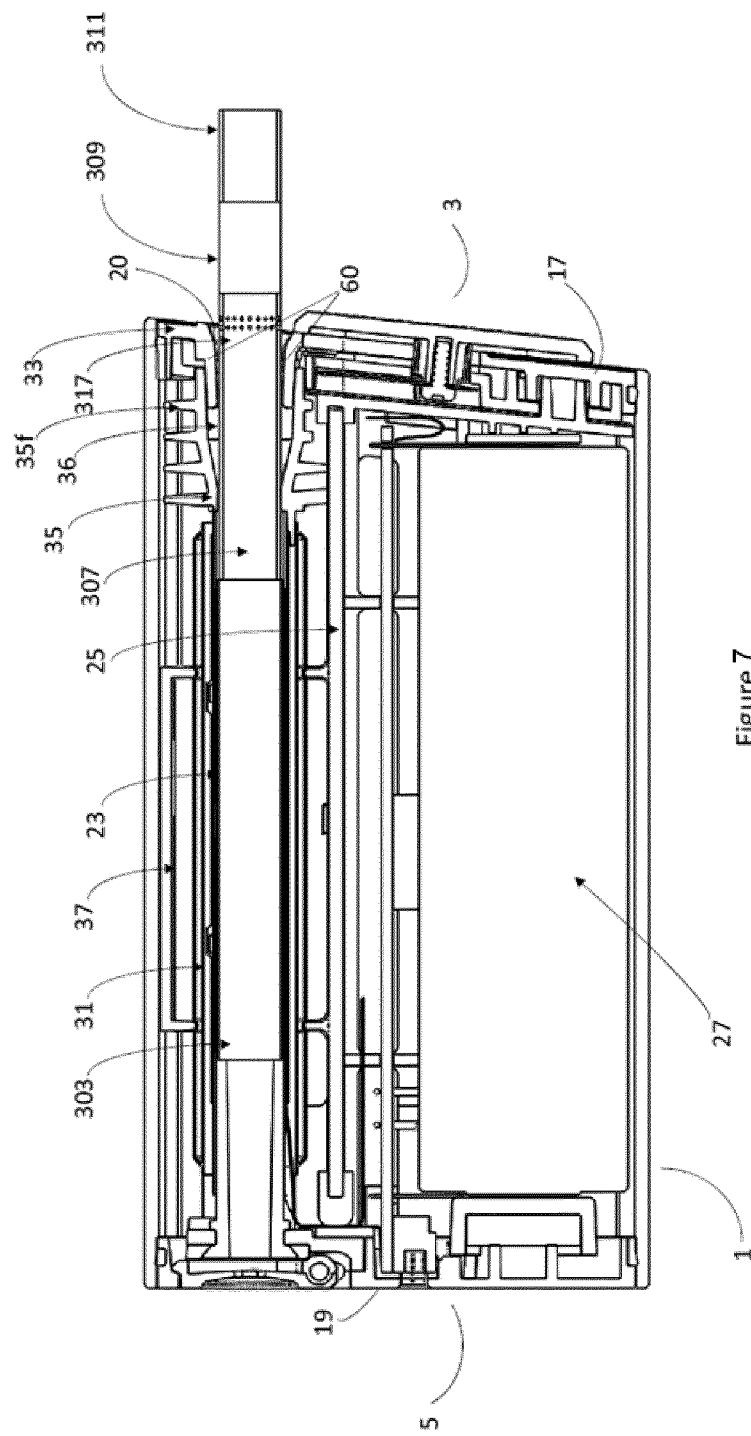


Figure 7

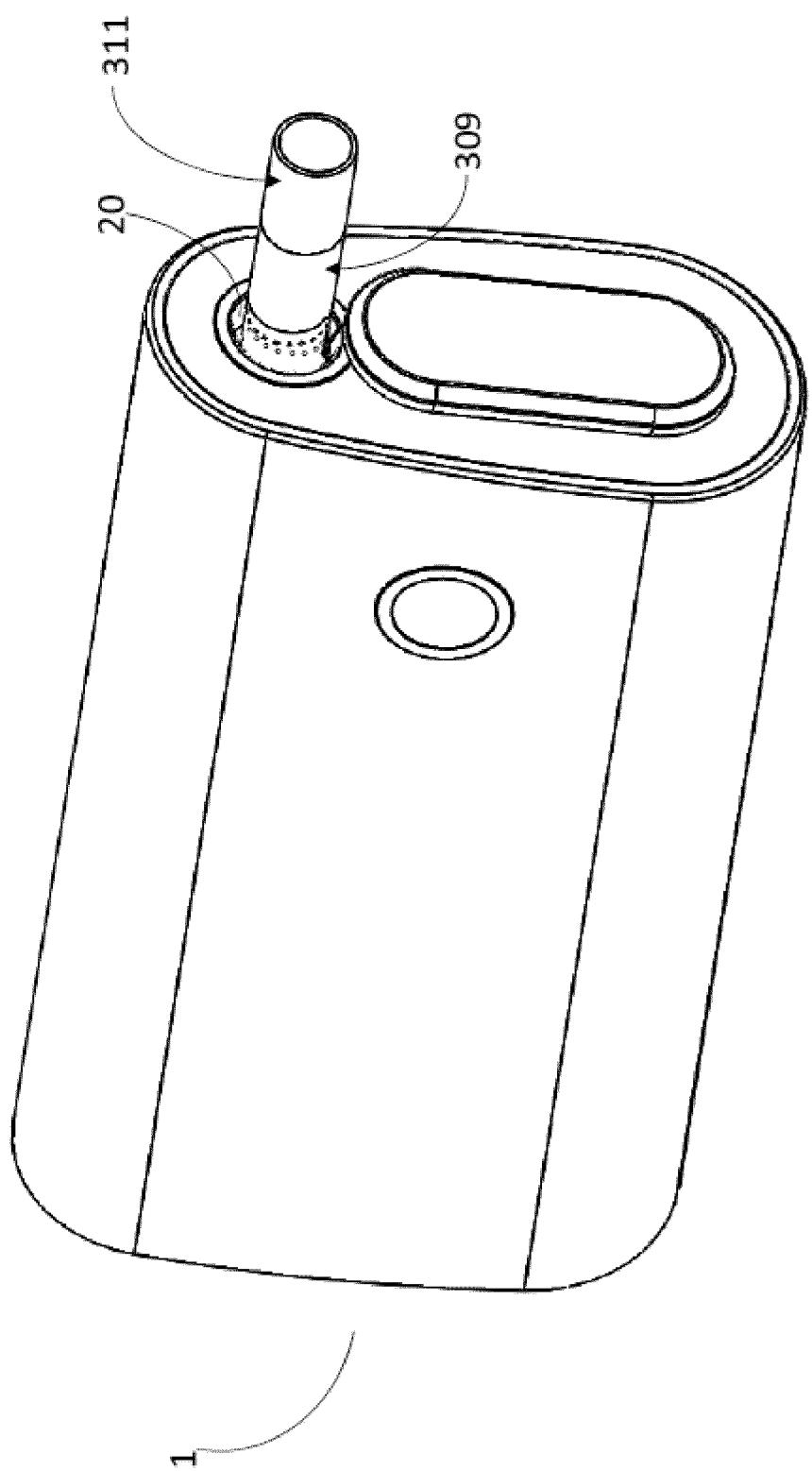


Figure 8

INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2019/070726

A. CLASSIFICATION OF SUBJECT MATTER
INV. A24D1/02 A24F47/00
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
A24D A24F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 2011/168195 A1 (OLIVEIRA PAULO [GB]) 14 July 2011 (2011-07-14)	1-4,9, 14,15
A	paragraphs [0010], [0018] -----	5-7
X	GB 2 495 925 A (BRITISH AMERICAN TOBACCO CO [GB]) 1 May 2013 (2013-05-01)	1-4,8,9, 14
A	page 6, line 7 - line 11; claims 1,5 page 6, line 25 - page 7, line 16 -----	5-7
X	WO 2007/036814 A2 (PHILIP MORRIS PROD [CH]) 5 April 2007 (2007-04-05)	1-4,8,9, 14
A	page 13, line 16 - line 23 page 14, line 3 - line 21 -----	5-7
X	US 2003/178039 A1 (WHITE JACKIE LEE [US]) ET AL) 25 September 2003 (2003-09-25)	1,9
A	examples 1-8 ----- -/-	5-7

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
19 November 2019	27/11/2019
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016	Authorized officer Villányi Kelemen, K

INTERNATIONAL SEARCH REPORTInternational application No
PCT/EP2019/070726

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 2010/200006 A1 (ROBINSON JOHN HOWARD [US] ET AL) 12 August 2010 (2010-08-12) paragraph [0057]; claim 1 -----	1,10
A		11-13

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2019/070726

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
US 2011168195	A1	14-07-2011	AR 074157 A1		29-12-2010
			AU 2009262418 A1		30-12-2009
			BR PI0914144 A2		20-10-2015
			CA 2726933 A1		30-12-2009
			CN 102076231 A		25-05-2011
			EP 2326189 A1		01-06-2011
			JP 2011525368 A		22-09-2011
			KR 20110031478 A		28-03-2011
			RU 2011101773 A		27-07-2012
			US 2011168195 A1		14-07-2011
			WO 2009156269 A1		30-12-2009
			ZA 201008889 B		29-05-2013
<hr/>					
GB 2495925	A	01-05-2013	NONE		
<hr/>					
WO 2007036814	A2	05-04-2007	AU 2006296290 A1		05-04-2007
			BR PI0616634 A2		28-06-2011
			CN 101296627 A		29-10-2008
			CO 6160280 A2		20-05-2010
			EA 200800998 A1		29-08-2008
			EP 1931224 A2		18-06-2008
			JP 2009509524 A		12-03-2009
			KR 20080059168 A		26-06-2008
			WO 2007036814 A2		05-04-2007
			ZA 200802486 B		25-03-2009
<hr/>					
US 2003178039	A1	25-09-2003	NONE		
<hr/>					
US 2010200006	A1	12-08-2010	CN 101557728 A		14-10-2009
			DK 3398460 T3		22-07-2019
			EP 2083643 A1		05-08-2009
			EP 3260002 A1		27-12-2017
			EP 3266322 A1		10-01-2018
			EP 3345496 A1		11-07-2018
			EP 3398460 A1		07-11-2018
			EP 3491944 A1		05-06-2019
			EP 3494819 A1		12-06-2019
			EP 3508076 A1		10-07-2019
			ES 2646180 T3		12-12-2017
			JP 5247711 B2		24-07-2013
			JP 2010506594 A		04-03-2010
			LT 3398460 T		10-09-2019
			PL 3398460 T3		30-09-2019
			SI 3398460 T1		30-10-2019
			TR 201910343 T4		22-07-2019
			US 2008092912 A1		24-04-2008
			US 2010200006 A1		12-08-2010
			US 2012060853 A1		15-03-2012
			US 2015040930 A1		12-02-2015
			US 2015047656 A1		19-02-2015
			US 2017020200 A1		26-01-2017
			US 2018146713 A1		31-05-2018
			US 2018235285 A1		23-08-2018
			US 2018235286 A1		23-08-2018
			US 2019142070 A1		16-05-2019
			US 2019166916 A1		06-06-2019
			US 2019166917 A1		06-06-2019
			WO 2008108889 A1		12-09-2008

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No
PCT/EP2019/070726

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
<hr/>			