发明名称 一种含有活性益生菌的食用组合物及其制备方法

摘要

本发明涉及一种食用组合物，特别是一种含有活性益生菌、适合所有人群的食用组合物及其制备方法。制备过程是：①益生菌菌株筛选；②益生菌培养；③活菌粉制备；主要分为三步：a. 益生菌培养结束后，离心收集菌泥，添加保护剂；b. 将菌泥与保护剂均质混合，冷冻干燥；c. 以上述冷冻干燥物为囊心，选用水溶性的包衣材料进行颗粒包衣；④食用组合物配制：选用益生元与食品添加剂中的一种或多种按活菌粉 0.5 - 50%、益生元 4.5 - 99.5%和食品添加剂 0 - 95%混匀后直接制成散剂或片剂。解决现有益生菌类食品，不易在常温下维持益生菌的稳定性和在酸性条件下的不稳定性的问题，提供一种常温稳定贮存、适合所有人群、含活性益生菌的食用组合物。
1. 一种含有活性益生菌的食用组合物，其特征是它包括（按照重量百分比）经微胶囊保护处理的活菌粉 0.5—50%、益生元 4.5—99.5% 和食品添加剂 0—95%。

2. 根据权利要求 1 所述的含有活性益生菌的食用组合物，其特征是该活菌粉的原料采用乳杆菌和/或双歧杆菌。

3. 根据权利要求 1 所述的含有活性益生菌的食用组合物，其特征是该益生元是低聚糖或水溶性膳食纤维。

4. 根据权利要求 1 所述的含有活性益生菌的食用组合物，其特征是该食品添加剂是大豆蛋白粉、乳清粉、脱脂奶粉、蔗糖、葡萄糖、淀粉、乳糖、麦芽糊精、天然果味粉、天然香精、酸味剂中的一种或多种。

5. 一种如权利要求 1 或 2 或 3 或 4 所述含有活性益生菌的食用组合物的制备方法，其特征是，按照如下步骤制备：
 ① 益生菌菌株筛选；
 ② 益生菌培养；
 ③ 活菌粉制备：主要分为三步：
 a 益生菌培养结束后，离心收集菌泥，添加保护剂；
 b 将菌泥与保护剂均质混合，冷冻干燥；
 c 以上述冷冻干燥物为囊心，选用水溶性的包衣材料进行颗粒包衣；
 ④ 食用组合物制备：选用益生元与食品添加剂中的一种或多种按一定比例混合，造粒，过 20~80 目筛，再与一定量的一种或多种经微胶囊保护的活菌粉混合。

6. 根据权利要求 5 所述的含有活性益生菌的食用组合物的制备方法，其特征是该益生菌菌株筛选是从健康成人和婴儿粪便中分离益生菌，经生理生化和分子生物学技术，如 PCR 扩增、测序和序列分
析技术鉴定分离菌株，通过菌株发酵性能、肠上皮细胞粘附性能、耐酸性能及活菌和代谢产物对肠道致病菌和食品腐败微生物的抑菌活性分析筛选，获得性能优良菌株。

7. 根据权利要求 5 所述的含有活性益生菌的食用组合物的制备方法，其特征是该益生菌培养方式采用高密度液体培养，培养基起始 pH 控制在 5~9，培养温度为 35~42℃，培养时间以发酵终点 pH3~5 为准。

8. 根据权利要求 5 所述的含有活性益生菌的食用组合物的制备方法，其特征是该活菌粉制备中加入的保护剂是淀粉、糊精、乳糖、蔗糖、低聚糖、糖醇、海藻糖、大豆蛋白、乳清蛋白、谷氨酸钠、维生素 C、维生素 C 钠盐中的一种或多种。
一种含有活性益生菌的食用组合物及其制备方法

技术领域:
本发明涉及一种食用组合物，特别是一种含有活性益生菌、适合所有人群的食用组合物及其制备方法。

背景技术:
目前，市场上的益生菌类食品是以乳制品为主。从全球来看，酸奶仍为益生菌类产品的最主要形式，约占益生菌功能性食品的30-40%，但其中约75%的市场为一类含有高浓度活菌的小瓶装益生菌饮料，并且还会持续增长。第一个小瓶装益生菌饮料为日本于1955年投放市场的产晶“Yakult，养乐多”，其生理活性成分主要为干酪乳杆菌活菌。

由于益生菌独特的生物活性和在乳制品中的广泛应用，益生菌类产品在加工、贮存过程中活菌稳定性问题越来越引起技术开发、生产、市场开拓人员以及消费者的关注。许多国家都有相关的益生菌产品的活菌数标准，如日本发酵乳制品和乳酸菌饮料协会（The Fermented Milks and Lactic Acid Bacteria Beverages Association）规定，新鲜乳制品中的活菌数必须至少达到10^7 CFU/ml、益生菌含量至少应为10^6 CFU/ml或每天摄入的活菌数至少为10^8 CFU（Robinson, R.K. Survival of Lactobacillus acidophilus in fermented products. Suid Afrikaanse Tydskrif Vir Suiwelkunde, 1987, 19(1):25-10727）; 2001年我国卫生部规定，活菌类益生菌保健食品在其保存期内活菌数目不得少于10^8 CFU/ml（g）（真菌类和益生菌类保健食品评审规定，卫法监发（2001）84号）。尽管如此，常温下维持益生菌的稳定性仍是一个难以解决的问题，许多益生菌乳饮料（如Yakult）、益生菌胶囊类药晶（如培菲康等）需冷藏贮存及运输，保质期短、成本高。可见，虽然有些益生菌菌株具有独特的生物活性，
常常由于生产技术的限制，妨碍了这些益生菌的应用。

成功的益生菌产品中的益生菌菌株主要指乳杆菌和双歧杆菌，首先
必须筛选自人体肠道正常菌群，具有独特的肠上皮细胞粘附性能、耐酸
性能和对肠道致病菌的拮抗作用，还必须满足一些技术性能，如传代稳
定性、发酵性能、与其它食品成分组合不会影响产品风味，并具有稳定的活
性和生理功能(Mattila-Sandholm T., et al. Technological challenges for
如此，益生菌的实际应用仍有许多限制，如其在酸性条件下的不稳定性
能，特别在 pH<4 时极不稳定，几乎所有的益生菌在胃酸(pH2)条件下
活菌数均会下降，因此，只有微量的益生菌到达肠道并发挥生理活性。
为了解决这一问题，在食品和制药工业主要通过活菌胶囊肠溶包衣技术
保护活菌直达肠道释放，但这不是根本的解决技术，限制了活菌制剂在
其它剂型中的应用。可见，开拓肠溶包衣微胶囊保护活菌技术和产品配
方技术将使得益生菌不仅仅应用于乳制品、饮料、胶囊中，还可进一步
地扩大至非乳制品应用领域，如常温贮存稳定、服用后直达肠道的益生
菌直接口服剂、片剂等，而为消费者带来性能更优越、贮存、运输、
携带更为方便的益生菌产品。

发明内容

本发明主要解决现有益生菌类食品，不易在常温下维持益生菌的稳
定性和在酸性条件下的不稳定的工艺问题，提供一种常温稳定贮存、适
合所有人群、含活性益生菌的食用组合物和其制备方法，该组合物实质
为益生菌和益生元复配的合生元制剂，不含有任何防腐剂、天然果味型
的散剂或片剂，携带方便，直接服用、活菌受胃酸影响很小，可直达肠
道并发挥生理活性，具有调节肠道菌群平衡、防治由于胃肠功能紊乱引
起的肠道感染和炎症性疾病、改善便秘和腹泻症状、缓解乳糖不耐症、
提高机体非特异性免疫力等。

为解决上述技术问题，本发明是这样实现的：

一种含有活性益生菌的食用组合物，其特征是它包括（按照重量百
分比）经微胶囊保护处理的活菌粉 0.5－50%、益生元 4.5－99.5%和食
品添加剂 0—95%。

该活菌粉的原料采用乳杆菌和/或双歧杆菌。

该益生元是低聚糖或水溶性膳食纤维。

该食品添加剂是大豆蛋白粉、乳清粉、脱脂奶粉、蔗糖、葡萄糖、淀粉、乳糖、麦芽糊精、天然果味粉、天然香精、酸味剂中的一种或多种。

一种上述含有活性益生菌的食用组合物的制备方法，其特征是，按照如下步骤制备：

①益生菌菌株筛选；
②益生菌培养；
③活菌粉制备：主要分为三步：
a 益生菌培养结束后，离心收集菌泥，添加保护剂；
b 将菌泥与保护剂均质混合，冷冻干燥；
c 以上述冷冻干燥物为囊心，选用水溶性的包衣材料进行颗粒包衣；
④食用组合物配制：选用益生元与食品添加剂中的一种或多种按一定比例混匀，造粒，过 20~80 目筛，再与一定量的一种或多种变构胶囊保护的活菌粉混匀。

该益生菌菌株筛选是从健康成人和婴儿粪便中分离益生菌，经生理生化结合分子生物学技术，如 PCR 扩增、测序和序列分析技术鉴定分离菌株，通过菌株发酵性能、肠上皮细胞粘附性能、耐酸性能及活菌和代谢产物对肠道致病菌和食品腐败微生物的抑菌活性分析筛选，获得性能优良菌株。

该益生菌培养方式采用高密度液体培养，培养基起始 pH 控制在 5~9，培养温度为 35~42℃，培养时间以发酵终点 pH3~5 为准。

该活菌粉制备中加入的保护剂是淀粉、糊精、乳糖、蔗糖、低聚糖、糖醇、海藻糖、大豆蛋白、乳清蛋白、谷氨酸钠、维生素 C、维生素 C 钠盐中的一种或多种。

该活菌粉微胶囊保护中采用的水溶性包衣材料有德国尤特奇（Eudragit）丙烯酸树脂系列水溶性包衣产品；各种改性纤维素类材料，
如羟丙基甲基纤维素、琥珀酸醋酸酯、甲基纤维素、羟丙基甲基纤维素等；
以及多糖类物质，如黄原胶、海藻糖、果胶、海藻酸、海藻酸钠等。可
采用沸腾床、流化床等颗粒包衣装置进行微胶囊包衣成型。
2. 本发明的研究过程：
益生菌菌株筛选：从健康成人和婴儿粪便中分离益生菌，主要为乳杆菌
和双歧杆菌，经生理生化结合分子生物学技术，如通过基因组 DNA 提
取、16S rDNA PCR 扩增、测序和序列分析技术鉴定分离菌株。通过菌
株发酵性能、肠上皮细胞粘附性能、耐酸性能及活菌和代谢产物对肠道
致病菌，如大肠杆菌、金黄色葡萄球菌、产气荚膜梭菌、志贺氏菌等和
食品腐败微生物如蜡样芽孢杆菌、枯草芽孢杆菌、李斯特菌等的抑菌活
性分析筛选，获得性能优良菌株，如嗜酸乳杆菌（L.acidophilus）、植物
乳杆菌（L.plantarum）、唾液乳杆菌（L.salivarius）、发酵乳杆菌
（L.fermentum）、鼠李糖乳杆菌（L.rhamnosus）、长双歧杆菌(B.longum)、
短双歧杆菌（B.breve）、婴儿双歧杆菌（B.infantis）、青春双歧杆菌
（B.adolescentis）、两歧双歧杆菌（B.bifidum）等。
益生菌培养：益生菌的培养方式可采用高密度液体培养，菌体的培养对
培养基中的营养源并无特殊的规定，可使用常用于微生物培养的碳源、
氮源及其它营养素，其中碳源可为葡萄糖、蔗糖、乳糖，特别地可采用
益生元作为辅助碳源如低聚果糖、低聚半乳糖、菊粉、抗性糊精及其它
水溶性膳食纤维等；氮源可为胨、大豆粉、肉膏、玉米浆以及其它有机
或无机含氮化合物，至于其它营养源则可适当添加豆芽汁、番茄汁、胡
萝卜汁、麦芽汁、蔬菜汁以及无机盐等。培养基起始 pH 控制在 5~9，
以接近中性为好。培养温度以 35~38℃为佳，培养时间以发酵终点 pH3~5
为准。
本发明与现有技术相比，具有以下优势：
① 微胶囊保护活菌，常温稳定，与现有乳制品类益生菌和益生菌胶
囊药品相比，无需冷藏，产品贮存、运输及销售成本低，且保质期长达
两年。
② 微胶囊保护活菌，耐酸、口服后结肠靶向释放，与现有益生菌类
胶囊药品相比，无需添加任何防腐剂或其它任何化学合成物质，可制成散剂或片剂，给消费者以全天然绿色产品。

③益生菌与益生元的复配组合物，既可发挥益生菌的生理活性，又可激活体外补充益生菌、选择性地增加肠道益生菌的数量使益生菌的作用更显著持久。

具体实施方式：

实施例 1：通过筛选获得性能优良的一株嗜酸乳杆菌，经培养、活菌粉保护等过程获得可供本发明食用组合物的嗜酸乳杆菌活菌粉原料，活菌数大于 2×10^{11} CFU/g。按下列配方制成食用组合物：

- 活菌粉（2×10^{11} CFU/g） 0.5%
- 低聚果糖 40.5%
- 低聚木糖 9%
- 菊粉 20%
- 抗性糊精 30%

实施例 2：与以上过程相同，获得植物乳杆菌、嗜酸乳杆菌、两歧双歧杆菌活菌粉，活菌数大于 5×10^{10} CFU/g。按下列配方制成食用组合物：

- 植物乳菌活菌粉（5×10^{10} CFU/g） 1.5%
- 嗜酸乳杆菌活菌粉（5×10^{10} CFU/g） 1.5%
- 两歧双歧杆菌活菌粉（5×10^{10} CFU/g） 1.5%
- 抗性糊精 60%
- 低聚木糖 35%
- 苹果酸 0.5%
- 青苹果味香精 1%

实施例 3：与以上过程相同，获得嗜酸乳杆菌、婴儿双歧杆菌、长双歧杆菌活菌粉，活菌数大于 1×10^{11} CFU/g。按下列配方制成食用组合物：

- 嗜酸乳杆菌活菌粉（1×10^{11} CFU/g） 20%
婴儿双歧杆菌活菌粉（1×10^{11} CFU/g） 15%
长双歧杆菌活菌粉（1×10^{11} CFU/g） 15%
低聚半乳糖 4.5%
乳清粉 45.5%

实施例 4：与以上过程相同，获得唾液乳杆菌、发酵乳杆菌、鼠李糖乳杆菌、长双歧杆菌、两歧双歧杆菌、短双歧杆菌活菌粉，活菌数大于 1×10^{10} CFU/g。按下列配方制成食用组合物：
唾液乳杆菌（1×10^{10} CFU/g） 5%
发酵乳杆菌（1×10^{10} CFU/g） 5%
鼠李糖乳杆菌（1×10^{10} CFU/g） 5%
长双歧杆菌（1×10^{10} CFU/g） 5%
两歧双歧杆菌（1×10^{10} CFU/g） 5%
短双歧杆菌（1×10^{10} CFU/g） 5%
刺槐胶水解物（膳食纤维含量 80%） 30%
低聚木糖 20%
脱脂奶粉 10%
麦芽糊精 10%

实施例 5：与以上过程相同，获得植物乳杆菌、长双歧杆菌活菌粉，活菌数大于 2×10^{10} CFU/g。按下列配方制成食用组合物：
植物乳杆菌（2×10^{10} CFU/g） 15%
长双歧杆菌（2×10^{10} CFU/g） 10%
水溶性膳食纤维 30%
低聚果糖 22%
麦芽糊精 23%

实施例 6：与以上过程相同，获得发酵乳杆菌、青春双歧杆菌、两歧双歧杆菌活菌粉，活菌数大于 1×10^{11} CFU/g。按下列配方制成食用组合物：
发酵乳杆菌（1×10^{11} CFU/g） 4%
青春双歧杆菌（1×10^{11} CFU/g） 3%
两歧双歧杆菌（1×10^{11} CFU/g） 3%
菊粉 75%
淀粉 10%
橙汁粉 5%

实施例 7：与以上过程相同，获得唾液乳杆菌、发酵乳杆菌、短双歧杆菌、两歧双歧杆菌活菌粉，活菌数大于 1×10^{10} CFU/g。按下列配方制成食用组合物：
唾液乳杆菌（1×10^{10} CFU/g） 3%
发酵乳杆菌（1×10^{10} CFU/g） 3%
短双歧杆菌（1×10^{10} CFU/g） 5%
两歧双歧杆菌（1×10^{10} CFU/g） 4%
低聚木糖 30%
抗性糊精 40%
乳糖 15%

实施例 8：与以上过程相同，获得唾液乳杆菌、青春双歧杆菌、长双歧杆菌活菌粉，活菌数大于 3×10^{10} CFU/g。按下列配方制成食用组合物：
唾液乳杆菌（3×10^{10} CFU/g） 13%
青春双歧杆菌（3×10^{10} CFU/g） 12%
长双歧杆菌（3×10^{10} CFU/g） 10%
低聚果糖 30%
水溶性膳食纤维 15%
葡萄糖 10%
苹果汁粉 10%

实施例 9：与以上过程相同，获得植物乳杆菌、嗜酸乳杆菌、发酵乳杆菌、鼠李糖乳杆菌活菌粉，活菌数大于 1×10^{10} CFU/g。按下列配方制成食用组合物：
植物乳杆菌（1×10^{10} CFU/g） 10%
嗜酸乳杆菌（1×10^{10} CFU/g） 10%
<table>
<thead>
<tr>
<th>成分</th>
<th>浓度（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>发酵乳杆菌（1×10^{10}CFU/g）</td>
<td>10%</td>
</tr>
<tr>
<td>鼠李糖乳杆菌（1×10^{10}CFU/g）</td>
<td>10%</td>
</tr>
<tr>
<td>抗性糊精</td>
<td>30%</td>
</tr>
<tr>
<td>菊粉</td>
<td>10%</td>
</tr>
<tr>
<td>蔗糖</td>
<td>10%</td>
</tr>
<tr>
<td>蓝莓汁粉</td>
<td>10%</td>
</tr>
</tbody>
</table>

实施例 10：与以上过程相同，获得长双歧杆菌，活菌数大于 1×10^{11}CFU/g。按下列配方制成食用组合物：

<table>
<thead>
<tr>
<th>成分</th>
<th>浓度（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>长双歧杆菌（1×10^{11}CFU/g）</td>
<td>10%</td>
</tr>
<tr>
<td>水溶性膳食纤维</td>
<td>40%</td>
</tr>
<tr>
<td>低聚木糖</td>
<td>30%</td>
</tr>
<tr>
<td>麦芽糊精</td>
<td>10%</td>
</tr>
<tr>
<td>橙汁粉</td>
<td>10%</td>
</tr>
</tbody>
</table>