WO 01/98889 A2

(19) World Intellectual Property Organization

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

International Bureau

(43) International Publication Date

(10) International Publication Number

27 December 2001 (27.12.2001) PCT WO 01/98889 A2

(51) International Patent Classification’: GOG6F 9/00 (74) Agents: PALERMO, Christopher et al.; Hickman
Palermo Truong & Becker, LLP, 1600 Willow Street, San

(21) International Application Number: PCT/US01/19045 Jose, CA 95125 (US).
(22) International Filing Date: 13 June 2001 (13.06.2001) (81) Designated States (national): AE, AG, AL, AM, AT, AU,
25) Filing L . Enelish AZ,BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
(25) Filing Language: nghs CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
L . GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
(26) Publication Language: English LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
(30) Priority Data: MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, S, SK,
60/212,925 20 June 2000 (20.06.2000) US SL, TJ, T™, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

09/818,424 26 March 2001 (26.03.2001) US

(84) Designated States (regional): ARIPO patent (GH, GM,
(71) Applicant: TERRASPRING, INC. [US/US]J; 48800 Mil- KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
mont Drive, Fremont, CA 94538 (US). patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
(72) Inventor: AZIZ, Ashar; 4180 Tanager Common, Fre- IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,

mont, CA 94555 (US).

CG, CL, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: SYMBOLIC DEFINITION OF A COMPUTER SYSTEM

(57) Abstract: A method and apparatus
for defining and deploying a networked
computer system features creating and
storing a textual representation of a
logical configuration of the networked
computer system according to a structured
markup language. Based on the textual
representation, one or more commands
are generated for configuring an operable
computer system that conforms to the
logical configuration. The commands
may be directed to devices that are
interconnected to one or more computing

elements and storage devices, to instruct the
devices to logically connect the computing

elements and storage devices into the
computer system. As a result, a real-world
virtual server farm or data center may be
created and deployed substantially instantly.

CLIENT 120
BROWSER
122
SERVICE PROVIDER 126
COMPUTING GRID 132
ADMINISTRATION /
SEU;’\EEFLT;F; MANAGEMENT DATA
SERVER 130 CENTER 134
IDC
COMPONENT CONTROL PLANE
DATABASE CUSTOMER DATABASE
INFORMATION
& FML
REPOSITORY

wO 01/98889 A2 I 00O O OO A

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— without international search report and to be republished ance Notes on Codes and Abbreviations" appearing at the begin-
upon receipt of that report

ning of each regular issue of the PCT Gazette.

WO 01/98889 PCT/US01/19045

SYMBOLIC DEFINITION OF A COMPUTER SYSTEM

RELATED APPLICATIONS; PRIORITY CLAIMS

This application is a continuation-in-part of application Ser. No. 09/502,170, filed
Feb. 11, 2000, entitled “Extensible Computing System,” naming Ashar Aziz et al. as
inventors. Domestic priority is claimed under 35 U.S.C. 119 from such application and
from prior Provisional application Ser. No. 60/212,925, filed June 19, 2000, entitled
“Symbolic Definition of a Virtual Computer System,” and naming as inventors Ashar

Aziz, Martin Patterson, Thomas Markson.

FIELD OF THE INVENTION
The present invention generally relates to data processing in the field of
networking. The invention relates more specifically to a method and apparatus for

symbolically creating a definition of a computer system.

BACKGROUND OF THE INVENTION

Data processing users desire to have a flexible, extensible way to rapidly create
and deploy complex computer systems and data centers that include a plurality of servers,
one or more load balancers, firewalls, and other network elements. One method for
creating such a system is described in co-pending U.S. Patent Application Ser. No.
09/502,170, filed Feb. 11, 2000, entitled “Extensible Computing System,” naming Ashar
Aziz et al. as inventors, the entire disclosure of which is hereby incorporated by reference
as if fully set forth herein. Aziz et al. disclose a method and apparatus for selecting, from
within a large, extensible computing framework, elements for configuring a particular
computer system. Accordingly, upon demand, a virtual server farm or other data center
may be created, configured and brought on-line to carry out useful work, all over a global
computer network, virtually instantaneously.

Although the methods and systems disclosed in Aziz et al. are powerful and
flexible, users and administrators of the extensible computing framework, and the virtual
server farms that are created using it, would benefit from improved methods for defining
and deploying virtual server farms. For example, an improvement upon Aziz et al. would
be a way to specify, price, order and deploy virtual server farms using a networked
computer workstation and a standard browser.

Using one known online service, “Rackspace.com,” a user may select a server

platform, configure it with a desired combination of disk storage, tape backup, and certain

-1-

WO 01/98889 PCT/US01/19045

software options, and then purchase use of the configured server on a monthly basis.
However, this service is useful only for configuring a single server computer. Further, the
user interface is rudimentary and relies only on pull-down lists and other elements
defined in Hypertext Markup Language (HTML).

Visual programming is a known method for rapidly defining a computer program
by linking together graphical icons that represent program elements. For example, U.S.
Pat. No. 5,163,130 (Jean-Marie Hullot, NeXT Computer, Inc., 1992) discloses a visual
programming method in which computer program elements are selected from a palette
and moved into a graphical representation of the logical flow of the program.

Microsoft Visio is a well-known tool for creating graphical presentations useful in
business and industry. An end user may create a Visio presentation by dragging and
dropping symbols into a workspace. Complex pictures and diagrams can be created.
Templates or “stencils” may be created and distributed, enabling others to create new
pictures and diagrams that have the same appearance parameters as the stencil that is used
as a basis for the new diagrams.

Based on the foregoing, there is a clear need in this field for a way to visually
create a logical description of a virtual server farm, or other computer system
configurations that are created based on the extensible computing framework described in
Aziz et al., and to instantiate a tangible system substantially instantly.

There is a specific need for a way to create such a description using graphic icons
and other symbols that represent elements of a real server farm or other computer system.

There is also a need for a way to use the visual representation, or a resulting
logical description of a computer system, to prepare a quote for fees and costs involved in
creating, configuring and activating a real computer system that embodies the visual
representation. There is a related need for a way to prepare such quotes on a rapid basis
for use in connection with short-lived server farms and similar computer facilities.

There is also a need for a way to determine whether a particular institution, which
is requested to implement the visual representation, has sufficient resources to create,
configure and activate a real computer system that embodies the visual representation.

There is a further need for a way to save a visual representation so that it can be
retrieved and modified at a later time.

End users also would find it useful to have a way to negotiate fees and costs for a
particular virtual server farm with the service provider that is providing the hardware to
implement the server farm. There is also a need for a way to cause instant creation of a

physical server farm based on creating a graphical representation of the server farm.

2-

WO 01/98889 PCT/US01/19045

There is a need to provide such a tool in a way that is integrated with pre-existing graphic
design tools that are compatible or based upon HTML or other personal computer

software or systems.

SUMMARY OF THE INVENTION

The foregoing needs, and other needs that will become apparent from the
following description, are achieved by the present invention, which comprises, in one
aspect, a method of defining and deploying a networked computer system. A textual
representation that provides a mapping of the physical and a logical configuration of the
networked computer system is created and stored, according to a structured markup
language. Based on the textual representation, one or more commands are generated for
one or more switch devices that are interconnected to one or more computing elements
and storage devices. The commands instruct the switch devices to physically couple the
computing elements and storage devices into an operable physical computer system that
conforms to the logical configuration. As a result, a textual language may be used to
specify one or more instant data centers or virtual server farms, and physical elements to
implement the data centers or virtual server farms are then configured and activated as
specified in the commands.

In another feature, the textual representation comprises at least one server role
definition comprising at least a role name value and a hardware type value, and one or
more definitions of servers of the networked computer system, wherein each definition of
a server uses and references the server role definition. Another feature is that the textual
representation comprises at least one server role definition comprising at least a role name
value and a hardware type value, and a plurality of definitions of servers in a “server tier”
of the networked computer system, wherein each definition of a server uses and
references the server role definition. In this context, the term “server tier” refers to a
group of one or more servers that are identical with respect to hardware and software
configuration, except for network address (e.g., Internet Protocol (“IP”) address).

According to another feature, the textual representation comprises at least one
definition of a load balancing function; at least one server tier definition that defines a
plurality of servers that receive inbound traffic from the load balancing function; and at
least one fixed server definition that defines a fixed server that is associated with one of
the servers in the server tier. A related feature is that the definition of the load balancing
function comprises an indication that inbound traffic directed to the load balancing

function arrives from an outer virtual local area network. The load balancing function can

3-

WO 01/98889 PCT/US01/19045

be associated with a server tier such that when an additional server is added to a tier, a
physical load balancer that carries out the load balancing function is automatically
updated in order to carry out load balancing with respect to the new server.

In another feature, the textual representation comprises at least one server tier
definition that defines a plurality of servers that receive inbound traffic from a load
balancing function; and at least one definition of the load balancing function, comprising
an output interface value, an input interface value, a virtual address value, a load
balancing policy value, and a tier value that identifies the server tier that is managed using
the load balancing function. A related feature involves creating and storing at least one
server tier definition that defines a plurality of servers that receive inbound traffic from
the load balancing function. Each server tier definition comprises one or more input
interface values, a role value, and information specifying a maximum number of physical
servers and a minimum number of physical servers for use in a server tier represented by

~ the server tier definition.

In another feature, the textual representation comprises at least one fixed server
definition that defines a statically addressed server of the networked computer system;
and wherein each server definition comprises one or more input interface values that
identify the interfaces that are on a specific virtual local area network, a role value that
identifies a processing role carried out by the server, and information specifying a
network address of the server.

According to still another feature, the method also includes associating a first
server definition of the textual representation with a graphical icon. The first server
definition comprises at least one external entity declaration that represents a network
address of a server that is represented by the first server definition. In the textual
representation, a copied server definition is created and stored, based on duplicating the
first server definition that is associated with the graphical icon. Each external entity
declaration of the server definition of the textual representation and the copied server
definition of the textual representation is resolved into a different actual network address.
Based on the textual representation, one or more commands are generated for one or more
switch devices and computing devices that are interconnected to one or more computing
elements and storage devices. Such commands may include IP address updates, DNS
updates, etc. The commands instruct the switch devices to logically connect the
computing elements and storage devices into an operable computer system that conforms

to the logical configuration.

WO 01/98889 PCT/US01/19045

In another feature, the textual representation may comprise one or more firewall
definitions, wherein each firewall definition comprises a firewall name value, a plurality
of interface values that define logical connections to a firewall device associated with the
firewall definition, and one or more definitions of services that the firewall is allowed to
permit or deny.

In still another feature, the textual representation comprises at least one server role
definition comprising at least a role name value and a hardware type value; a disk
attribute definition that defines additional local disk storage for the server defined in the
server role definition, comprising a drive name value and a drive size value; and one or
more definitions of servers of the networked computer system. Each definition of a server
uses and references the server role definition. A related feature involves generating one or
more commands that allocate disk space according to the drive size value in a storage
device that is accessible using a storage area network interface. The allocated disk space
is mapped to a server of the networked computer system that implements one of the
definitions of servers. The allocated disk space may be presented as a single logical
volume, or as one or more logical disks that are created from logical volumes that are
located on one or more physical disk drives.

In still another feature, the textual representation comprises an action definition
that defines actions for execution for each server in a first tier of one or more servers
when an additional server is added to the first tier or to the second tier. The action
definition may comprise a tier name value that identifies the tier, and a script name value
that identifies a script of actions for execution with respect to each server in the tier
identified by the name value or another tier. The method also may involve receiving
information indicating that a new server has been added to the tier; executing the script of
actions with respect to each server in the tier.

In yet another feature, the textual representation comprises an action definition
that defines actions for execution for each server in a first tier of one or more servers
when one of the servers is removed from the first tier or another tier. The action definition
may comprise a tier name value that identifies the tier, and a script name value that
identifies a script of actions for execution with respect to each server in the tier identified
by the name value or another tier. Action definitions generally comprise definitions
corresponding to those actions that would be carried out in adding a server to a server
farm manually. A related feature may involve receiving information indicating that one of
the servers has been deleted from the tier and executing the script of actions with respect

to each server in the tier or another tier.

WO 01/98889 PCT/US01/19045

Based on the textual representation, one or more commands are generated for one
or more switch devices or other network that are interconnected to one or more
computing elements and storage devices. The commands instruct the switch devices to
logically connect the computing elements and storage devices into an operable computer
system that conforms to the logical configuration.

In another feature, storage is automatically requested and assigned to a data center
or server farm based on a textual representation of the requested stofage. For example, a
storage definition is provided in the textual representation that specifies a requested
quantity of storage for association with the computer system that is defined in the textual
representation. A stored table maps logical units of storage available for use in the
computer system. An assignment of storage to the computer system is requested and
obtained from a storage subsystem that actually holds the storage. A mapping is
automatically created and stored in a gateway device that correlates the assigned storage
to a port of the gateway device that is associated with a processing unit of the computer
system. As a result, the gateway can properly route information storage and retrieval
requests and responses between the CPU and the storage subsystem, and the amount of
storage assigned to a server farm or data center can change dynamically during operation

of the server farm or data center.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and not by way of
limitation, in the figures of the accompanying drawings and in which like reference
numerals refer to similar elements and in which:

FIG. 1A is a block diagram illustrating a top-level view of a process of defining a
networked computer system;

FIG. 1B is a block diagram illustrating another view of a process of defining a
networked computer system;

FIG. 1C is a flow diagram of a process of deploying a data center based on a
textual representation;

FIG. 1D is a block diagram showing a client and a service provider;

FIG. 1E is a block diagram illustrating stages in the creation and deletion of an
instant data center;

FIG. 2A is a block diagram illustrating a storage area network and related

elements;

WO 01/98889 PCT/US01/19045

FIG. 2B is a block diagram illustrating preparatory steps for the process of FIG.
2C;

FIG. 2C is a block diagram illustrating a process of automatically modifying
storage associated with an instant data center;

FIG. 3A is a block diagram of an object-oriented information model,

FIG. 3B is a block diagram of an instantiated example of an object model;

FIG. 4 is a two-part block diagram of a process of creating a text representation of
a data center based on an object model representation of the data center, and the converse
process;

FIG. 5 is a block diagram of an example two-tier server farm;

FIG. 6 is a block diagram of an example three-tier server farm;

FIG. 7 is a block diagram of an example of a two-tier server farm;

FIG 8 is a block diagram of a computer system that may be used to implement an

embodiment.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

A method and apparatus for defining a networked computer system using a textual
representation is described. In the following description, for the purposes of explanation,
numerous specific details are set forth in order to provide a thorough understanding of the
present invention. It will be apparent, however, to one skilled in the art that the present
invention may be practiced without these specific details. In other instances, well-known
structures and devices are shown in block diagram form in order to avoid unnecessarily
obscuring the present invention.

In this document, the terms “virtual server farm,” “VSF,” “instant data center,”
and “IDC” are used interchangeably to refer to a networked computer system that
comprises the combination of more than one processor, one or more storage devices, and
one or more protective elements or management elements such as a firewall or load
balancer, and that is created on demand from a large logical grid of generic computing
elements and storage elements of the type described in Aziz et al. These terms explicitly
exclude a single workstation, personal computer, or similar computer system consisting
of a single box, one or more processors, storage device, and peripherals.

Embodiments are described in sections of this document that are organized

according to the following outline:

WO 01/98889
1
2
3.
4

5.

PCT/US01/19045

FUNCTIONAL OVERVIEW

BUILDING BLOCKS FOR INSTANT DATA CENTERS
EDITOR FOR CREATING INSTANT DATA CENTERS

. FARM EDITOR MARKUP LANGUAGE OVERVIEW AND
PROCESSING
SYMBOLIC DEFINITION LANGUAGE SPECIFICS

5.1
5.2

53
54

5.5
5.6
5.7

CONCEPTS

LANGUAGE DESCRIPTION

5.2.1 SUBNET DEFINITION

5.2.2 INTERFACE DEFINITION

5.2.3 DISK DEFINITION

5.2.4 SERVER ROLE DEFINITION

5.2.5 FIXED SERVER DEFINITION

5.2.6 SERVER TIER DEFINITION

5.2.7 LOAD BALANCER

5.2.8 FIREWALL DEFINITION

5.2.9 DEVICE DEFINTION

SERVER CLONING

EXAMPLE COMPLETE SERVER FARM DESCRIPTIONS
5.4.1 EXAMPLE TWO-TIER SERVER FARM

5.4.2 THREE-TIER SERVER FARM EXAMPLE
FARM MONITORING

FARM CLONING

EXAMPLE TEXTUAL REPRESENTATIONS OF DATA

CENTERS OR SERVER FARMS

6.

5.7.1 USE OF FIREWALL IN A SERVER FARM
5.7.2 SPECIFYING EXTRA LOCAL DRIVES
5.7.3 THREE-TIER DATA CENTER

DOCUMENT TYPE DEFINITIONS (DTDS)
HARDWARE OVERVIEW

L. FUNCTIONAL OVERVIEW

FIG. 1A is a block diagram illustrating an overview of a method of defining a

networked computer system. A textual representation of a logical configuration of the

-8-

WO 01/98889 PCT/US01/19045

computer system is created and stored, as shown in block 102. In block 104, one or more
commands are genetated, based on the textual representation, for one or more switch
device(s). When the switch devices execute the commands, the networked computer
system is created and activated by logically interconnecting computing elements. In the
preferred embodiment, the computing elements form a computing grid as disclosed in
Aziz et al.

FIG. 1B is a block diagram illustrating a more detailed view of the process of FIG.
1A. Generally, a method of creating a representation of a data center involves a Design
phase, an Implementation phase, a Customization phase, and a Deployment phase, as
shown by blocks 110, 112, 114, 116, respectively.

In the Design phase, a logical description of a data center is created and stored.
Preferably, the logical description is created and stored using a software element that
generates a graphical user interface that can be displayed by, and receive input from, a
standard browser computer program. In this context, “browser” means a computer
program that can display pages that conform to Hypertext Markup Language (HTML) or
the equivalent, and that supports JavaScript and Dynamic HTML, e.g., Microsoft Internet
Explorer, etc. To create a data center configuration, a user executes the graphical user
interface tool. The user selects one or more icons representing data center elements (such
as servers, firewalls, load balancers, etc.) from a palette of available elements. The end
user drags one or more icons from the palette into a workspace, and interconnects the
icons into a desired logical configuration for the data center.

In the Implementation phase of block 112, the user may request and receive cost
information from a service provider who will implement the data center. The cost
information may include, e.g., a setup charge, monthly maintenance fee, etc. The user
may manipulate the icons into other configurations in response to analysis of the cost
information. In this way, the user can test out various configurations to find one that
provides adequate computing power at an acceptable cost.

In Customization phase of block, after a data center is created, a configuration
program is used to add content information, such as Web pages or database information,
to one or more servers in the data center that was created using the graphical user
interface tool. In the Customization phase, the user may save, copy, replicate, and
otherwise edit and manipulate a data center design. Further, the user may apply one or
more software images to servers in the data center. The selection of a software image and
its application to a server may be carried out in accordance with a role that is associated

with the servers. For example, if a first server has the role Web Server, then it is given a

9-

WO 01/98889 PCT/US01/19045

software image of an HTTP server program, a CGI script processor, Web pages, etc. If
the server has the role Database Server, then it is given a software image that includes a
database server program and basic data. Thus, the user has complete control over each
computer that forms an element of a data center. The user is not limited to use of a pre-
determined site or computer.

In the Deployment phase of block 116, the data center that has been created by the
user is instantiated in a computing grid, activated, and initiates processing according to
the server roles.

FIG. 1C is a flow diagram of a process of deploying a data center based on a
textual representation.

In block 140, the process retrieves information identifying one or more devices,
from a physical inventory table. The physical inventory table is a database table of
devices, connectivity, wiring information, and status, and may be stored in, for example,
control plane database 135. In block 142, the process selects all records in the table that
identify a particular device type that is idle. Selection of such records may be done, for
example, in an SQL database server using a star query statement of the type available in
the SQL language.

Database 131 also includes a VL AN table that stores up to 4096 entries. Each
entry represents a VLAN. The limit of 4096 entries reflects the limits of Layer 2
information. In block 144, the process selects one or more VLANS for use in the data
center, and maps the selected VLANS to labels. For example, VLAN value “11” is
mapped to the label Outer VLAN, and VLAN value “12” is mapped to the label
Inner VLAN.

In block 146, the process sends one or more messages to a hardware abstraction
layer that forms part of computing grid 132. Details of the hardware abstraction layer are
set forth in Aziz et al. The messages instruct the hardware abstraction layer how to place
CPUs of the computing grid 132 in particular VLANSs. For example,' a message might
comprise the information, “Device ID = 5,” “Port (or Interface) = eth0,” “vlan = v1.” An
internal mapping is maintained that associates port names (such as “eth0” in this
example) with physical port and blade number values that are meaningful for a particular
switch. In this example, assume that the mapping indicates that port “eth0” is port 1,
blade 6 of switch device 5. Further, a table of VLLANS stores a mapping that indicates that
“v1” refers to actual VLAN “5”. In response, the process would generate messages that
would configure port 1, blade 6 to be on VLAN 5. The particular method of

implementing block 146 is not critical. What is important is that the process sends

-10-

WO 01/98889 PCT/US01/19045

information to computing grid 132 that is sufficient to enable the computing grid to select
and logically interconnect one or more computing elements and associated storage
devices to form a data center that corresponds to a particular textual representation of the
data center.

FIG. 1D is a block diagram showing a client and a service provider in a
configuration that may be used to implement an embodiment. Client 120 executes a
browser 122, which may be any browser software that supports JavaScript and Dynamic
HTML, e.g., Internet Explorer. Client 120 communicates with service provider 126
through a network 124, which may be a local area network, wide area network, one or
more internetworks, etc.

Service provider 126 is associated with a computing grid 132 that has a large
plurality of processor elements and storage elements, as described in Aziz et al. With
appropriate instructions, service provider 126 can create and deploy one or more data
centers 134 using elements of the computing grid 132. Service provider also offers a
graphical user interface editor server 128, and an administration/management server 130,
which interact with browser 122 to provide data center definition, management, re-
configuration, etc. The administration/management server 130 may comprise one or more
autonomous processes that each manage one or more data centers. Such processes are
referred to herein as Farm Managers. Client 120 may be associated with an individual or

business entity that is a customer of service provider 126.

2. BUILDING BLOCKS FOR INSTANT DATA CENTERS

As described in detail in Aziz et al., a data center may be defined in terms of a
number of basic building blocks. By selecting one or more of the basic building blocks
and specifying interconnections among the building blocks, a data center of any desired
logical structure may be defined. The resulting logical structure may be named and
treated as a blueprint (“DNA”) for creating any number of other IDCs that have the same
logical structure. Thus, creating a DNA for a data center facilitates the automation of
many manual tasks involved in constructing server farms using prior technologies.

As defined herein, a data center DNA may specify roles of servers in a data
center, and the relationship of the various servers in the roles. A role may be defined once
and then re-used within a data center definition. For example, a Web Server role may be
defined in terms of the hardware, operating system, and associated applications of the
server, e.g., dual Pentium of a specified minimum clock rate and memory size, NT

version 4.0, Internet Information Server version 3.0 with specified plug-in components.

-11-

WO 01/98889 PCT/US01/19045

This Web Server role then can be cloned many times to create an entire Web server tier.
The role definition also specifies whether a role is for a machine that is statically
assigned, or dynamically added and removed from a data center.

One basic building block of a data center is a load balancing function. The load-
balancing function may appear at more than one logical position in a data center. In one
embodiment, the load-balancing function is implemented using the hardware load-
balancing function of the 1.2-7 switching fabric, as found in ServerIron switches that are
commercially available from Foundry Networks, Inc., San Jose, Calif. A single hardware
load-balancing device, such as the Server Iron product that is commercially available
from Foundry, can provide multiple logical load balancing functions. Accordingly, a
specification of a logical load-balancing function generally comprises a virtual Internet
Protocol (VIP) address value, and a load-balancing policy value (e.g., “least connections”
or “round robin”). A single device, such as Foundry Serverlron, can support multiple
VIPs and different policies associated with each VIP. Therefore, a single Foundry Server
Iron device can be used in multiple logical load balancing positions in a given IDC.

One example use of a load-balancing function is to specify that a Web server tier
is load balanced using a particular load-balancing function. FIG. 7, discussed further
below, presents an example of a two-tier IDC, having a Web server tier with a database
server tier, with load balancing of this type. When a tier is associated with a load
balancer, automatic processes update the load balancer in response to a user adding or
removing a server to or from the server tier. In an alternative embodiment, other devices
are also automatically updated.

Another example use of a load-balancing function is to specify a load-balancing
function for a tier of application servers, which are logically situated behind the load-
balanced Web server tier, in a 3-tier configuration. This permits clustering of the
application server tier to occur using hardware load balancing, instead of application
specific load balancing mechanisms. This approach may be combined with application-
specific clustering mechanisms.

Other building blocks include firewalls, servers, storage, efc.

3. EDITOR FOR CREATING INSTANT DATA CENTERS

In an embodiment, a graphical user interface tool (“editor”) is provided for use in
defining one or more instant data centers (IDCs). In one embodiment, the editor enables a
user to define a data center by selecting icons representing computing elements, firewalls,

load balancers, etc., and connecting them in a desired logical structure. The editor

-12-

WO 01/98889 PCT/US01/19045

preferably forms part of a customer control center application that provides numerous
additional administration and management functions for defining and interacting with
IDCs.

For example, an embodiment of a customer control center may provide creation of
customer accounts; presentation of a customer home page with information specific to a
particular customer; design and creation of instant data centers; configuration
management; an event viewer; monitoring of IDCs that are deployed and executing tasks;
reports on the status and performance of IDCs; management of back-up and restore
operations for IDCs; service and account administration; and customer support. Using
these functions, the customer control center enables a user to visually design one or more
IDCs, and specify associated service parameters, such as backup policy. In conjunction
with a sales process, the customer can request the validation of an IDC design for
implementation. The user may activate approved, validated IDC designs; this results in
creating an operational computing center that is remotely accessible, ready for
customization and test prior to full-scale deployment. Additionally, there may be remote
access to servers for customization (e.g., addition of content or applications), monitoring
and management of operations, scaling through cloning and addition of servers, network
and storage capability, and customer care functions through a service desk facility.

Creation of customer accounts may include: creation and management of
customer accounts; providing a data entry template and fields for customer information;
and creating and storing selected levels of access privileges for users. In one embodiment,
creation of a customer account is a preferred means by which a new customer is
registered in the system. Creation of a customer account can be carried out by an
employee of Service Provider 126 in the presence of a customer, or by telephone, or by a
customer itself. In the registration process, customer identifying information is entered
and stored, e.g., customer name, customer title, company name, company address,
company phone number, customer contact information, customer email address,
marketing information login password, etc. A customer is then designated as possessing
one or more of the roles identified above. Creation of customer accounts may be carried
out using application software from the Clarify eBusiness Applications unit of Nortel
Networks, San Jose, Calif.

Preferably, each user is associated with a role (administrator, manager, service
provider, customer, etc.), and each user role implicitly carries a particular permission
level. In a preferred embodiment, a privilege hierarchy is defined in which a master

administrator is superior to one or more service providers; each service provider is

-13-

WO 01/98889 PCT/US01/19045

superior to one or more customers of the service provider; and each customer is superior
to one or more service level agreements entered into between the customer and its service
provider. In this approach, each user’s scope of authority is limited to subordinate nodes
or users. For example, customers can see and manipulate only their own IDCs and
services, and a particular service provider can see and manipulate only its customers.
Other customer account functions may include integration into a customer database,
addition and deletion of specific individuals or customers over the life of an account, and
password management.

Based on this hierarchy, a plurality of privileges are defined, as illustrated in
Table 1.

TABLE 1 - PRIVILEGE EXAMPLES

1. A view-only privilege for management personnel. This level of access
enables a customer to log into the customer control center and only view
high-level monitoring and report data. Not all reports and monitoring data
can be viewed by this privilege level, which is the lowest level.

2. A view-only privilege for operations personnel. This level of access is for
IT operations team members who have personal responsibility for
infrastructure management, and thus have the need to see detailed reports
and monitoring data.

3. A management/design privilege. At this level, customers have access to all
the tools that are provided for creation and maintenance of the
infrastructure.

4, An approval privilege. Customers at this level are required to approve any
changes to the infrastructure. These customers are likely to be in the
management chain of the employees who hold the management privilege.
Their electronic approval is required for any infrastructure changes.

5. A guest privilege. Used for sales, marketing, and demonstration purposes.

Creation of a customer account may also involve entering a customer service
profile that identifies the services to which the customer is subscribing.

The customer home page is the starting location for each customer upon login. It
serves as a portal to the rest of the customer control center. Further, it serves as a place at
which news, events or activities are highlighted. All classes of users can access the

customer home page. Presentation of a customer home page may include presentation of

-14-

WO 01/98889 PCT/US01/19045

system-wide network status information; system wide alert information; system-wide
maintenance schedule information; CERT advisories, system-wide environmental data;
providing an online bulletin board for notification and availability of software updates;
providing top ievel IDC status information; and providing marketing updates, e.g.,
availability of new services and competition updates.

Design and creation of Instant Data Centers generally involves providing a drag-
and-drop graphical editor with which a user may draw server farm designs. In a preferred
embodiment, the editor includes a palette that features icons representing standard server
farm elements. For example, icons may represent hardware elements such as firewalls
(e.g., Nokia); load-balancers (e.g., Foundry ServerIron XL); servers (e.g., one or more
icons for Dell or Sun servers having various processor combinations, NT/IIS servers
implemented using an HP NetServer LPr 2 x 700Mhz platform); database servers (e.g., an
icon for a server having various processor and RAM configurations); generic or general
purpose servers (e.g., icons for an Intel/Linux server, Intel/NT server, and Solaris/Sun
server having various processor and RAM configurations); and Internet/network
connectivity (e.g., an icon representing the Internet, icons representing simulated network
loads for use in stress testing).

Other functions of the editor may include defining tiers (i.e., a group of identical
systems); automatic configuration and reconfiguration of load balancer(s) as an IDC
scales in size; automatic configuration of firewalls; connect or wire-up discrete elements
into a fully functional multi-tier network; copying or pasting server elements using server
cloning; and deleting elements.

The editor may be implemented, for example, in the form of a software plug-in for
Microsoft Visio such that a Visio drawing may be saved in FML format. Alternatively,
the editor may be implemented as a standalone software application program that can
accept Visio format drawings as input. The editor may provide the ability to display a
graphical representation of a virtual server farm in an alternative view format, e.g., a
spreadsheet view having one row for each element in the virtual server farm. The view
format also may be FML source text format, binary format, etc. Functions for converting
from a view of one format to another may be provided.

The editor may also provide the ability to “submit” a design of a data center for
review and approval by Service Provider 126, and the ability to save and organize designs
in a folder-like structure, including naming different designs or IDCs. Another function
may provide the ability to designate the status of designs, using various status values, e.g.,

IDC in design (under construction), IDC pending validation, Approved IDC — inactive,

-15-

WO 01/98889 PCT/US01/19045

Active IDC, Archived IDC. Yet another function may provide an ability to activate
approved designs, including manual activation by the customer, when needed;
designating a start date and time for activation; and designating a duration of activation
(e.g., by start and end date)

Server farm element configuration is provided so that once a logical server farm
architecture is created and stored, a customer can configure each element of the server
farm with appropriate software, e.g., software other than the operating system or other
basic server software. The customer is given access to each element to configure the
machines with desired software. The server farm element configuration function may
have numerous sub-functions. For example, in one embodiment, a sub-function enables a
user to remotely and secure login into any individual element within an IDC, using
Secure Shell (SSH), a PCAnywhere client, etc.

Another function provides information on the status and location of tapes or other
media that customers have sent to Service Provider 126 for loading on to their IDC(s).
For example, a customer can send in tapes of other media, and Service Provider 126 loads
the media in a device in an online staging location that is accessible and viewable by the
customer. The Service Provider 126 notifies the customer when the media is accessible at
that location, and provides the location. The customer then remotely loads a software
image from the specified location to each machine that needs the image.

Still another function enables configuration of non-standard, customer configured
server farm elements, for example, application servers, NFS servers, FTP servers, mail
servers, etc. Yet another function may provide the ability to download software images
via the Internet to any element of an IDC.

Using another sub-function, a user can view and modify detailed property values
for any element within an IDC, e.g., element type/role, tier identification, element name,
hardware configuration (CPU, Memory, Disk), software configuration (installed software
images, versions for those images, designation of maintenance ownership of each image
(e.g., Service Provider 126 or customer)). Another sub-function provides software patch
and upgrade management, including the ability to upgrade IDC elements with the latest
patches and upgrades for software images. This may include providing a menu of all
patches for all software packages that are supported for various server and platform types,
although such functionality is not required. A customer may request the installation of
patches, and the system can provide notification to customers about the availability of

new patches or upgrades and how they can be installed onto their IDCs.

-16-

WO 01/98889 PCT/US01/19045

The Event Viewer function can be used to track changes in status for each IDC, by
providing time stamping for events, information identifying the originator of an event,
and event detail. Events may include addition or removal of one or more IDC elements,
generation of back-up logs, and generation of downtime logs. Thus, the Event Viewer
provides a way to see a running log of IDC activity.

Monitoring is the real-time observation of an active IDC. Monitoring functions
provide real-time status information about each IDC and its associated elements.
Monitoring may result in creating one or more events in response to monitored
conditions, including alerts or notifications. The Monitoring function may be
implemented, for example, using Hewlett-Packard OpenView. The function may provide
monitoring information for applications (e.g., Oracle database, transaction chains, FTP,
email, URLs and URL transaction monitors), servers (e.g., CPU utilization, disk space,
memory, network, server services, Web server monitors), network monitors (e.g., DNS,
ping, port, and SNMP monitors), etc. Advanced monitors may include a composite
monitor, directory monitor, file monitor, LDAP monitor, link check monitor, log file
monitor, news monitor, NT Performance/Dialup/Event monitor, script mohitor, URL list
and content monitor, etc.

A related sub-function may provide customer configuration of alerts and
notifications that they want to receive when monitored item reaches predefined thresholds
or fails, and how they want to receive them (e.g., email, pager, telephone)

Another function may provide reports on the status and performance of IDCs.
Reports are defined as statistical information that is collected over a specified period of
time, or the ability to view such information for a specified time period. Whereas
monitoring is provided in real time, reports are focused‘on creating logs and archives of
data that interests a customer. For example, the system may generate the following
reports: Reports on any of the monitors described herein; traffic patterns; bandwidth
usage; active IDCs; customer support history. In one embodiment, there is a customer
report request interface that enables a user to view reports using a browser, send reports
via email, export of report data for external processing, and access a menu of reports.

The reporting function may also enable customers to select the reports they want
to access, and may provide the ability to specify dates or ranges of dates for reports to
cover. The reporting functionality may also enable a user to schedule automated

generation of reports, e.g. weekly/monthly traffic reports and weekly/monthly billing

reports.

-17-

WO 01/98889 PCT/US01/19045

In one embodiment, a back-up and restore management function provides a
mechanism for customers to manage backup and restore activities. The back-up and
restore management function may enable a user to schedule back-ups (e.g., daily
incremental backup, weekly full backup, monthly off-line backup). Preferably, there is an
interface to a separate customer care system for management of requests. An example of
a customer care system is the Remedy trouble ticketing system or the Clarify customer
relationship management system.

The service and account administration function deals with the ongoing
administration of a customer’s account. Using this function, customers may determine
which services they wish to purchase and deploy from Service Provider 126. For
example, a customer may have multiple IDC designs in their account, some active, some
inactive. Not every IDC will utilize all of the same services. One IDC may have Instant
Scaling Services turned on while another IDC may simply be a static IDC. Some IDCs
may be utilizing the stress testing service, while others may not.

Accordingly, using the service and account administration function, a customer
can display a menu or matrix of the IDC designs a customer has created/had approved,
the services applied to the IDCs, and the additional services available to the customer for
each of those IDCs. Thus, the service and account administration function acts as an order
form for a customer.

The service and account administration function may enable a user to display an
online matrix of services to which the user subscribes, and how they relate to IDC
versions. It may provide billing reports, online viewing of service level agreements, and
contract administration.

The customer support function may provide an interface to a customer care
system; case management; a communication hierarchy for different kinds of events and
provide multiple media vehicles for customers to be notified of such events; online
documentation; online help; a solutions database and lists of frequently asked questions;
operational procedures documentation; and contact information for customer service
representatives.

FIG. 1E is a block diagram of stages through which an instant data center may
pass using a control center having the foregoing functions. In block 150, a new customer
account is created using the control center. The customer creates a new instant data center
during IDC design phase 152. In IDC validation phase 154, the customer submits the
instant data center design to Service Provider 126 for review and validation. If Service

Provider 126 declines to validate the IDC, control returns to IDC design phase 152 for

-18-

WO 01/98889 PCT/US01/19045

modification of the design. If the IDC is accepted by Service Provider 126, it enters an
Inactive state, as indicated by block 156. The IDC is activated by the customer, entering
an Active state, as represented by block 158.

If the IDC is subsequently de-activated, it returns to the Inactive state of block
156. If the IDC is deleted permanently, IDC destroy phase 160 is carried out, resulting in
logical tear-down or destruction of the IDC. Tear-down or deletion of an IDC makes its
computing elements available for use in one or more other IDCs.

In one embodiment, an editor useful in creating textual representation of IDCs is
implemented in an object-oriented computer programming language, e.g., Java®, C++,
etc. The editor creates and stores information according to a pre-defined object model. As
the user creates a graphical representation of a data center, the editor creates and stores a
representation of the IDC using objects of the object model.

An object broker is responsible for creating, removing and retrieving
programmatic objects that are created according to a specified object model. The object
broker may retrieve the model objects by loading them from a custom database, or by
interacting with the databases of external systems such as billing system, customer care
system, etc. A broker may also create proxies in place of concrete objects to allow lazy
loading of model objects and to reduce the large one-time hit of initially loading an entire
graph of model objects.

FIG. 3A is a block diagram of an exemplary object model that may be used in an
embodiment. The table in APPENDIX 1 herein describes the attributes for each class, the
type, the description and the legal values for each of the attributes, and whether they are

configurable when the IDC is under design or active.

4. FARM EDITOR MARKUP LANGUAGE OVERVIEW AND PROCESSING

In an embodiment, a textual representation of a data center is created and stored
using statements expressed in a language that is based on Extensible Markup Language
(XML). In the preferred embodiment, a Farm Editor Markup Language (FEML) is used
to describe the topology of a data center. The FEML is defined as a plurality of XML
Document Type Definitions (DTDs), as set forth in Table 14 of this document. FEML
provides an intermediate representation that may be used to transfer information from the
editor object model. It is converted into a final representation, Farm Markup Language

(FML), for use in implementing a data center.

-19-

WO 01/98889 PCT/US01/19045

FIG. 3B is a block diagram of objects that may be instantiated to represent a
particular exemplary data center. The data center illustrated in FIG. 3B may be defined in
FEML as set forth in Table 2.

TABLE 2 -- TEXTUAL REPRESENTATION OF DATA CENTER OF FIG. 3B
<?xml] version="1.0"?>
<farm name="farm0">

<!-- Node definitions -->

<internet name="inet" x="20" y="0" vlan="outer-vlan"/>
<firewall name="fw" x="20" y="50" type="Nokia">
<interface name="eth0" network="inet"/>
<interface name="eth1" network="net0"/>
<interface name="eth2"/>
<allow-services>
<service name="http0" protocol="http" port="80">
<who ip-mask="255.0.0.0" mask-length="4"/>
</service>
</allow-services>
<deny-services></deny-services>
<dmz-services></dmz-services>
</firewall>
<subnet name="net0" x="20" y="100" vlan="vlan0" mask="255.255.255.0" mask-
length="8"/>
<loadbalancer name="1b" x="20" y="150" type="Serverlron" vip="255.255.255.4"
policy="Round Robin" balanced-nodes="web0">
<interface name="eth0" network="net0"/>
<interface name="eth1" network="net1"/>
</loadbalancer>
<subnet name="net1" x="20" y="200" vlan="vlan0" mask="255.255.255.0" mask-
length="8"/>
<server name="web0" x="20" y="250" role="IIS/NT" hardware="x86" external="false"
cloneable="true" min-clone="1" max-clone="10" init-clone="5">
<interface name="eth0" network="net1"/>

<interface name="eth1" network="net2"/>

-20-

WO 01/98889 PCT/US01/19045

</server>
<subnet name="net2" x="20" y="300" vlan="vlan0" mask="255.255.255.0" mask-
length="8"/>
<server name="db0" x="0" y="350" role="Oracle/Solaris" hardware="Sparc"
external="false"
cloneable="false" min-clone="1" max-clone="1" init-clone="1">
<interface name="eth0" network="net2"/>
<interface name="eth1"/>
</server>
<server name="db1" x="40" y="350" role="Oracle/Solaris" hardware="Sparc"
external="false"
cloneable="false" min-clone="1" max-clone="1" init-clone="1">
<interface name="eth0" network="net2"/>
<interface name="eth1"/>

</server>

<!-- Edge definitions -->

<edge begin-node="inet" begin-port="0" end-node="fw" end-port="0"/>
<edge begin-node="fw" begin-port="1" end-node="net0" end-port="0"/>
<edge begin-node="net0" begin-port="1" end-node="100" end-port="0"/>
<edge begin-node="1b" begin-port="1" end-node="net1" end-port="0"/>
<edge begin-node="net1" begin-port="1" end-node="web0" end—port—*—"O';/>
<edge begin-node="web0" begin-port="1" end-node="net2" end-port="0"/>
<edge begin-node="net2" begin-port="1" end-node="db0" end-port="0"/>
<edge begin-node="net2" begin-port="2" end-node="db1" end-port="0"/>

</farm>

Based on the FEML text of Table 2, FML text is generated in the form set forth in
Table 3.

TABLE 3 -- FML REPRESENTATION OF TEXT OF TABLE 2
<?xml version="1.0"?>
<farm name="farm0">
<fw name="fw" type="Nokia">

<interface name="eth0" vlan="outer-vlan" subnet="inet"/>

21-

WO 01/98889 PCT/US01/19045

<interface name="eth1" vlan="vlan0" subnet="net0"/>
<interface name="eth2"/>
<allow-services>
<service name="http0" protocol="http" port="80">
<who ipmask="255.0.0.0" masklen="4"/>
</service>

</allow-services>
<deny-services></deny-services>
<dmz-services></dmz-services>
<attribute name="x" value="20"/>
<attribute name="y" value="50"/>

</fw>

<Ib name="1b" type="Serverlron">
<interface name="eth0" vlan="vlan0" subnet="net0"/>
<interface name="eth1" vlan="vlan0" subnet="net1"/>
<vip>255.255.255.4</vip>
<policy>Round Robin</policy>
<tier-name>web0</tier-name>
<attribute name="x" value="20"/>
<attribute name="y" value="150"/>

</Ib>

<tier name="web0">
<interface name="eth0" vlan="vlan0" subnet="net1"/> -
<interface name="eth1" vlan="vlan0" subnet="net2"/>
<role>web0</role>
<min-servers>1</min-servers>
<max-servers>10</max-servers>
<init-servers>5</init-servers>
<attribute name="x" value="20"/>
<attribute name="y" value="250"/>

</tier>

<fixed-server name="db0">
<interface name="eth0" vlan="vlan0" subnet="net2"/>
<interface name="eth1"/>

<role>db0</role>

22.

WO 01/98889 PCT/US01/19045

<attribute name="x" value="0"/>
<attribute name="y" value="350"/>
</fixed-server>
<fixed-server name="db1">
<interface name="eth0" vlan="vlan0" subnet="net2"/>
<interface name="eth1"/>
<role>db1</role>
<attribute name="x" value="40"/>
<attribute name="y" value="350"/>
</fixed-server>
<server-role name="web0">
<diskimage>IIS/NT</diskimage>
<ip>internal</ip>
<hw>x86</hw>
</server-role>
<server-role name="db0">
<diskimage>Oracle/Solaris</diskimage>
<ip>internal</ip>
<hw>Sparc</hw>
<disk drivename="disk0" drivesize="4">
<attribute name="raid-level" value="raid 0/1"/>
<attribute name="remote-mirror" value="false"/>
<attribute name="backup-policy" value="daily"/>
</disk>
</server-role>
<server-role name="db1">
<diskimage>Oracle/Solaris</diskimage>
<ip>internal</ip>
<hw>Sparc</hw>
<disk drivename="disk1" drivesize="6">
<attribute name="raid-level" value="raid 0/1"/>
<attribute name="remote-mirror" value="false"/>
<attribute name="backup-policy" value="daily"/>
</disk>

</server-role>

23-

WO 01/98889 PCT/US01/19045

<subnet name="net0" mask="255.255.255.0" masklen="8" vlan="vlan0">
<attribute name="x" value="20"/>
<attribute name="y" value="100"/>

</subnet>

<subnet name="net1" mask="255.255.255.0" masklen="8" vlan="vlan0">
<attribute name="x" value="20"/>
<attribute name="y" value="200"/>

</subnet>

<subnet name="net2" mask="255.255.255.0" masklen="8" vlan="vlan0">
<attribute name="x" value="20"/>
<attribute name="y" value="300"/>

</subnet>

<attribute name="edge" value="inet 0 fw 0">

<attribute name="edge" value="fw 1 net0 0">

<attribute name="edge" value="net0 1 1b0 0">

<attribute name="edge" value="1b 1 netl 0">

<attribute name="edge" value="netl 1 web0 0">

<attribute name="edge" value="web0 1 net2 0">

<attribute name="edge" value="net2 1 db0 0">

<attribute name="edge" value="net2 2 db1 0">

<attribute name="internet-name" value="inet"/>

<attribute name="internet-x" value="20"/>

<attribute name="internet-y" value="0"/>

<attribute name="internet-vlan" value="outer-vlan"/>

<attribute name="internet-count" value="1"/>

</farm>

FIG. 4 is a two-part block diagram that illustrates processes of generating FEML
text and FML text based on a JavaScript object model, and the converse process of
generating a JavaScript object model based on FML text.

Referring now to FIG. 4(A), a process of generating FML text based on a
JavaScript object model is described. At a client 402, a JavaScript object model 406 is
created and stored. In the preferred embodiment, client 402 is a browser executed at an

end user computer. The JavaScript object model 406 comprises an object representation

4.

WO 01/98889 PCT/US01/19045

of a data center that is created and stored by the graphical user interface tool described
herein.

Using a client process, which may form part of the graphical user interface tool,
text in Farm Editor Markup Language is generated, resulting in creating and storing an
FEML object model 408. A JavaScript XML Generator 409 is applied to the FEML
object model 408, resulting in creating and storing FEML text 410.

A servlet process 412 transfers a copy of FEML text 410’ to server 404. In one
embodiment, server 404 is associated with a service provider that implements a computer
system based on the FML text and using computing grid elements that are owned,
operated, or managed by the service provider. Upon receiving FEML text 410°, server
404 applies a Java XML parser 414 to the text, resulting in creating and storing an FEML
object model 408’. Normally FEML object model 408’ will be a copy of FEML object
model 408.

Server 404 then applies an FEML-to-FML converter 416 to the FEML object
model 408, resulting in creating and storing an FML object model 418. Server 404
applies a Java XML Generator 419 to the FML object model 418, resulting in creating
and storing FML text 420.

In the converse process, shown in FIG. 4(B), the initial input is a set of FML text
420. The Java XML parser 414 is applied to the FML text 420, resulting in creating and
storing FML object model 418. An FML to FEML converter process 422 is applied to the
FML object model 418, resulting in creating and storing FEML object model 408°. The
Java XML Generator 419 is applied to the object model, resulting in creating and storing
FEML text 410°.

Servlet 412 passes FEML text 410° from server 404 to client 402, which stores
FEML text 410. A JavaScript XML Parser process 424 is applied to FEML text 410,
resulting in creating and storing FEML object model 408. Client 402 carries out a
Generate-Farm process on FEML object model 408, resulting in creating and storing
JavaScript object model 406, which may be imported into and manipulated by the client

editor.

5. SYMBOLIC DEFINITION LANGUAGE SPECIFICS

5.1 CONCEPTS

The invention is related to use of a computer system for creating and storing a
definition of a data center in a symbolic definition language. The language expresses the

logical structure of a data center in a syntactically concise and consistent manner. The

25-

WO 01/98889 PCT/US01/19045

language may be used to describe a data center and its internal components such as
servers, load balancers, firewalls, etc. The language provides the ability to describe a data
center at a high level of abstraction, in terms of its basic building blocks and their
interconnectivity via virtual local area networks (VLANS).

In the language, a data center is defined in terms of its devices and their
interconnections. Devices are defined in terms of connectivity to other devices,
configuration of the devices, and (for only for devices that are CPUs) roles of the devices.
Using the language disclosed herein, internal logical structures of a virtual server farm
may be instantiated, modified, and duplicated or “cloned.” In a preferred embodiment, the
symbolic definition language conforms to a grammar of XML and is defined according to
XML DTDs.

Generally, the symbolic definition language presents a farm as a structure
composed of devices or sets of devices that have both connectivity information as well as
configuration related information. The connectivity information describes how the
various devices are interconnected by describing how the device ports are connected to
specific VLANs. Each VLAN is referenced using symbolic references that are mapped to
specific VLANSs when the data center is instantiated in a particular segment of a
computing grid, e.g., the type of computing grid described by Aziz et al.

The symbolic definition language also provides the ability to describe roles that a
server may occupy in a given data center by providing an abstract description of that
server. This enables an administrator or a Farm Manager software application to create
and deploy multiple instances or clones of that server role in a given data center. As a
result, a common recurring task in creating a server farm, e.g., configuring a machine for
a particular role, becomes highly automated. A particular configuration (e.g. a web server

configuration) may be repeatedly performed on many different servers automatically. The

P I IR ISR Y » SR SIS [T DUPISRIS RS 5. | SN DRI, O SN DI VSO, . PR

WO 01/98889 PCT/US01/19045

5.2.1 SUBNET DEFINITION

A subnet is defined using an IP address type with an optional netmask value and a
vlan value. Multiple subnets may be part of the same vlan. Elements inside a subnet
definition include a name value, ip value, mask value, and vlan value. The name value
comprises a mandatory unique identifier of the subnet. The ip value is mandatory and
may have one of two possible {falues. The value “internal” is used for any network
address that is valid only inside a dataplane. The value “external” is used for any valid IP
address visible on the Internet. The mask value is an optional netmask value on the
subnet, and defines the maximum number of devices that can be connected on this subnet.
The vlan value is 2a mandatory name identifier.

As an example, the textual representation

<subnet name="inner” ip="internal” vlan="inner-vlan”>
is defining an internal subnet bind to the inner vlan. Further, the text

<subnet name="outer” ip="external” mask="255.255.255.252" vlan=""outer-
vian’> |
is defining an external subnet bind on the outer vian with 4 reserved IP address.

5.2.2 INTERFACE DEFINITION

Interfaces are required parts of the definition of all devices attached to a subnet. In
an embodiment, there are two ways to provide an interface definition, generic and
specific. A generic definition binds the interface to a subnet, and a specific definition
gives an IP address value, a netmask value, and a vlan value.

If there is only one Ethernet interface declared, it is always named eth0.

Each generic interface definition comprises a name value and a subnet value. The
name value is mandatory and provides a logical identifier of a real hardware interface
associated with the device. Examples of logical identifiers are ‘ethQ’ for the first ethernet
interface, ‘ethl’ for the second Ethernet interface. The subnet value provides the name of
a defined subnet.

As an example, the text <interface name="eth0” subnet="subl” /> defines the
first interface of a device in the sub1 subnet.

A specific definition of a subnet includes a name value, ip value, mask value, and
vlan value. The name value has the same value specified above for the generic definition.
The ip value is the host IP address for the interface. The mask value is the netmask
associated to the IP address. The vlan value is the name of the vlan name where the

interface must belong. For example, the text <interface name="ethl”’

27-

WO 01/98889 PCT/US01/19045

ip="129.157.179.15" mask="255.255.255.0" vian="test-vlan” /> defines the second
interface of a device with IP address and netmask on test-vlan.

When an IDC is instantiated using such a definition, a DNS entry is configured to
map the defined IP address. The rule for DNS name of a device is as follows:

For interface eth0 of the device, the DNS name is <devicename>.<zonename>.
For all other interfaces the DNS name is <devicename>-<interfacename>.<zonename>.
For example, if a device name is myhttpserver and zone name is
Sfarml.cnet.terraspring.com, then for interface e20 DNS name will be
myhttpserver.farmli.cnet.terraspring.com. For interface eth, DNS name will be
myhttpserver-ethl.farml.cnet.terraspring.com, etc.

5.2.3 DISK DEFINITION

A disk definition is part of the server-role definition. A disk definition comprises a
drivename value, drivesize value, and drivetype value. The drivename value is a
mandatory, unique name for the disk. The drivesize value is the size of the disk in
Megabytes. The drivetype value is the mirroring type for the disk. For example, standard
mirroring (specified using the value “std””) may be specified.

As a usage example, the text <disk drivename=""/test” drivesize=200
drivetype="std” /> defines a 200Mb disk map on /test.

Automatic processing of storage requests in response to disk tags is described
further herein in section 5.7.2.

5.2.4 SERVER ROLE DEFINITION

According to an embodiment, a server role is part of the definition of a fixed
server or and server tier. Each server role definition comprises a name value, a diskimage
value, a hardware value, and optionally also may include a disk value. The name value is
a mandatory value provided to uniquely identify the abstract role involved for servers
having the definition. The diskimage value is a mandatory reference to a disk image that
is always loaded on servers associated with the role. The hardware (or “hw”) value is a
mandatory value that provides a hardware type definition associated with the role. The
disk value is optional and provides a disk definition for the role.

Table 4 provides an example of a server role definition expressed in the symbolic
definition language. This server role definition may form one of the basic elements of a

data center.

28-

WO 01/98889 PCT/US01/19045

TABLE 4 -- SERVER ROLE DEFINITION
<server-role name="Solaris2”’>
<diskimage> solaris27 </diskimage>
<hw> cpu-x86 </hw>

</server-role>

The example set forth in Table 4 defines Web server role named “Solaris2” and
specifies that each computer that is instantiated according to the server role shall have
hardware type “cpu-x86” (e.g., a processor from the Intel x86 processor family), and shall
use the disk image named “Solaris27.” The disk image corresponding to “Solaris27”
typically would comprise the Solaris operating system and one or more application
programs. For example, the disk image could include a commerce server application,
Web server, related scripts, etc. Examples of possible server roles include: Netscape
Enterprise Server/Solaris; Microsoft Internet Information Server/NT; Apache/Solaris;
Apache/Red Hat Linux; Oracle 8i/Solaris; and others. Roles may be specified using a
variety of mechanisms. Users or customers of the system can modify and change the
contents of disk images over time, enabling instantiation of different kinds of servers. For
example, an administrative user or customer of Service Provider 126 can allocate a
server, log on to it, customize the server, and invoke a Save Disk Image command using
the Customer Control Center to save the customized disk image as a customer-named
role.

Significantly, a role description is not tied to any particular instantiation of the
role on a particular server in a data center. Various servers or sets of servers (i.e. tiers)
may be instantiated using a single role definition. Use of server roles in duplicating server
configurations (“cloniﬁg” servers) is described further herein in Section 5.3.

5.2.5 FIXED SERVER DEFINITION

A fixed server definition in a Farm Editor Markup Language file defines a unique
CPU device. Each fixed server definition comprises one or more interface values, a role
value, and one or more specific attribute values. One or more interface values are
mandatory and specify interface names for the device. The ole value is a mandatory
definition for the role carried out by fixed servers that correspond to the definition.

Table 5 presents an example of a fixed server definition.

229

WO 01/98889 PCT/US01/19045

TABLE 5 -- FIXED SERVER ROLE DEFINITION
<fixed-server name="bebop”>
<interface name="eth0” subnet="sub1” />.
<role> Solaris2 </role>

</fixed-server>

This definition specifies a fixed server device named “bebop” that has an interface
named “eth0,” that is located on subnet “sub1l,” and that is instantiated based on the
server role Solaris2.

5.2.6 SERVER TIER DEFINITION

A server tier definition is provided to define an extensible CPU device comprising
a logical tier of one or more servers. Each tier definition comprises one or more interface
values, a role value, a min-servers value, a max-servers value, and an init-servers value.
The interface value is mandatory and specifies an interface name for the tier. The role
value is mandatory and provides a definition of the role for the tier. The min-servers value
is a mandatory value indicating the minimum number of actual servers for the tier that
may exist at any given time. The max-servers value is a mandatory value indicating the
maximum number of servers for the tier. The init-servers value is a mandatory value
indicating then number of servers that are initialized when the tier is created.

Table 6 provides an example of a server tier definition.

TABLE 6 — SERVER TIER DEFINITION

<tier name="SolTier>

<interface name="eth0” subnet="sub1” />

<interface name="eth1” subnet="sub2” />

<role> Solaris2 </role>

<min-servers> 5 </min-servers>

<max-servers> 10 </max-servers>

<init-servers> 6 </max-servers>

<ftier>
5.2.7 LOAD BALANCER

A load balancer definition may be provided to define a load balancer device in a

server farm or data center. Each load balancer definition includes a definition of a VIP

-30-

WO 01/98889 PCT/US01/19045

and a list of devices that are to be bound to the VIP. In one embodiment, there is only one
VIP entry, but alternative embodiments may comprise multiple VIP entries.

Each VIP definition comprises a name value, either a subnet value or both an IP
address value and a mask value, a port value, and one or more bind entry values.

The name value is a mandatory, unique identifier of a vip entry. The values for
subnet or IP address and mask provide a mandatory IP definition for the vip entry. The
subnet value refers to an existing subnet definition, and in response, the Farm Manager
allocates a unique IP address bind on the subnet. The port value is an optional port
definition for the load balancer service. In an embodiment, the default port value is 80.

Each bind entry comprises a name value and an optional port value. The name
value is a mandatory reference to a name of a tier, fixed server or device. The optional
port value provides a port definition on the device of the load balancer service. In an
embodiment, the default value is 80.

Table 7A provides an example of a load balancer definition using a subnet
definition, and Table 7B provides an example of a definition using an IP value and a

mask value.

TABLE 7A — VIP ENTRY DEFINITION
<vip name="vip0” subnet="subnet0” port="8081">
<bind name="WebTier” port="88" />
<bind name="1b0.vip0” />

<Wip>

TABLE 7B — VIP ENTRY DEFINITION
<vip name="vip0” ip="203.135.82.141” mask="255.255.255.0" port="21"">
<bind name=""fiptier” port="21" />

<Wip>

In an embodiment, when either of the foregoing definitions are processed and to
instantiate a load balancer, a DNS entry for the vip is added according to the format
<Ibname>-<vipname>.<zone>. For example, if the load balancer name is /50, the vip
name is vip0 and the zone name is farm1.cnet.terraspring.com, then a DNS name for the

vip is Ib0-vip0.farm1.cnet.terraspring.com.

-31-

WO 01/98889 PCT/US01/19045

A load balancer is then defined using a name value, a type value, an interface
value, a policy value, and a vip value. The name value is a mandatory unique device
name identifier. The type value is a mandatory type of load balancer; in an embodiment,
the value “Ib” is used. At least one interface value is provided to define an interface name
of the load balancer. The policy value provides a mandatory definition of the load
balancer policy. Example values include round-robin, least-conn, weighted, etc. The vip
value specifies a virtual IP address for the load balance. In one embodiment, one vip
value is provided; in an alternative embodiment, multiple vip values may be specified.

Table 7C provides an example of a load balancer definition.

TABLE 7C — LOAD BALANCER DEFINITION
<Ib name="1b0" type="1b"">
<interface name="eth0” subnet=""internet” />
<interface name="ethl” subnet=""subl” />
<policy> round-robin </policy>
<vip name="vip0" subnet="internet” port="8081">
<bind name="WebTier” />
<bind name="bebop” port="8081" />
<Wip>
</Ib>

5.2.8 FIREWALL DEFINITION

A FML document may comprise one or more firewall definitions that provide
specifications for firewall devices. Each firewall definition comprises a name value, type
value, out-interface value, in-interface value, and zero or more fw-interface values. The
name value is mandatory and provides a unique device name identifier. The type value is
mandatory and indicates the type of firewall. In one embodiment, “fw” is the type value.
The out-interface value is mandatory and indicates an outside interface of the firewall.
Similarly, the in-interface value specifies an inside interface of the firewall. The optional
fw-interface value provides a reference to a separate firewall interface definition.

Each of the interface definitions within a firewall definition (out-interface, in-
interface, and possibly fw-interface) comprises an interface value, zero or more allow
values, and zero or more deny values. The interface value consists of a name of the
interface. The allow value is a list of services to which access is allowed through the

interface, and can contain zero or more service definitions. The in-interface is a list of

-32-

WO 01/98889 PCT/US01/19045

denied services, and also can contain zero or more service definitions. Access to these
services will be denied from this interface.

A service is defined by a sequence number value, name value, protocol value, port
value, from value, and to value. The sequence number value gives the order in which the
service is applied to the firewall interface, as illustrated by the example below. The name
value provides the name of the service; examples include Attp, fip, myhtip, etc.
Alternatively, the name value “all” may be specified if all services are allowed or denied.
The protocol value specifies the protocol of the service, e.g., fcp, udp, icmp, etc. If the
service name is a standard service as specified in Table 8B herein or is specified as “all,”
then a protocol value need not be provided. The port value specifies the port for the
service, e.g., 80, 21. If a service is not associated with a port value, e.g., ping or “all”,
then the port value may be omitted.

The “from” value provides é list of one or more IP values to which this service
will be allowed or denied. A from element consists of either a name value, or an IP
address and mask value. The name attribute can be used to allow or deny access to hosts
on the in/dmz side. For example,

1. The value <from ip="192.0.0.0" mask="255.0.0.0”"> will allow or deny a
service to hosts coming from the domain 192.0.0.0/255.0.0.0.

2. The definition <from ip="0.0.0.0" mask="0.0.0.0"> will allow or deny a
service request coming from any host.

3. The definition <from name="fipServer:eth0”> will allow/deny a service
request coming from host fipServer’s ip set on interface eth0.

4. The definition <from name="inside /> definition will allow/deny a
service to all hosts coming from the inside of the firewall, where “inside” is the name of
the in-interface of the firewall.

3. The definition <from name="dmz1 /> will allow/deny a service to all
hosts coming from the dmz side of the firewall, where “dmzI” is the name of the fw-
interface of the firewall.

6. The definition <from name="all”’/> definition will allow/deny a service
coming from any host. The definitions <from name="all”’> and <from ip="0.0.0.0”
mask="0.0.0.0""> are equivalent.

The “to” value provides a list of one or more hosts for which a service is allowed
or denied. A “to” element consists of either a name value, or an IP value and mask value.

The to element in combination with an ip value and mask definition can be used to allow

-33-

WO 01/98889 PCT/US01/19045

or deny internal hosts to some external ip domain. Some example definitions are given
below:

1. The definition <to name="mylb:vip0”/> will allow or deny a service to
load balancer mylb’s vip vipO.

2. The definition <to ip="180.10.1.0" mask="255.255.255.0"/> will
allow/deny a service to ip domain 180.10.1.0/255.255.255.0.

3. The definition <to name="ws1:eth0”/> will allow or deny a service to
host ws! ’s ip set on interface eth0.

4. The definition <fo name="inside /> will allow or deny a service to all
hosts on the inside of the firewall, where “inside” is the name of the in-interface of the
firewall.

5. The definition <to name="dmz1”"/> definition allow or deny a service to
all hosts on the dmz side of the firewall, where “dmzI” is the name of the fw-interface of
the firewall.

6. The definition <to name="all”’/> definition will allow or deny a service to
all hosts on all side of the firewall.

Table 8 A provides an example of a complete firewall definition according to the

foregoing language definitions.

TABLE 8A — FIREWALL DEFINITION
<fw name="fwl" type="fw">
<out_interface name="outside">
<interface name="eth0" subnet="Node0" />
<allow>
<service seq="2"" name="http" >
<from ip="192.168.1.0" mask="255.255.255.0"/>
<to name="wsI:eth0"/>
<to name="1b1:vip0"/>
</service>
<service seq="3" name="ping" protocol="icmp'>
<from ip="0.0.0.0" mask="0.0.0.0"/>
<to name="dmz1"/>
<to name="inside"/>

</service>

-34-

WO 01/98889 PCT/US01/19045

</allow>
<deny>
<service seq="1" name="all">
<from ip="all" mask="all"/>
<to name="all"/>
</service>
</deny
</out_interface>
<in_interface name="inside">
<interface name="ethl" subnet="Nodel" />
<allow>
<service seq="1" name="smip" >
<from name=""inside"/>
<to name="mailServer:eth0"/> < --| This
mailServer exists on dmz side -- >

</service>

</allow>
</in_interface>
<fw_interface name="dmz1">

<interface name="eth2" subnet="Node2" />
</fw_interface>

</fw>
In the service definition for a firewall device, the name of the service may be

either a standard service or a user-defined service. According to an example embodiment,

standard services having the names set forth in Table 8B are defined.

-35-

WO 01/98889

PCT/US01/19045

TABLE 8B — STANDARD SERVICE NAMES

Name] Value || Description
bgp 179 Border Gateway Pro%ocol as ;p‘eciﬁed in RFC '1 163 [
biff ‘ 512 | Used by mail system to notify users that new mail is
| | received
bootpc \ 68 Bootstrap Protocol Client
bootps | : 67 Bootstrap Protocol Server {
chargen ; 19 Character Generator
cmd | 514 | Similar to exec, but has ailgogaﬁc authentication *
daytime 13 D%/ ;ime as spéciﬁed in RFC 867
| discard 9 | Discard
domain ’ 53 | DNS (Domain Nam;S’ystem)
dnsix g 195 | DNSIX Sessmn Managénent Module Audi’; ﬁedirectér
| echo ‘ | 7 E;:ho
| exec (512 | Remote process execution ;
finger 79 finger
ftp 21 File Trans;;r frotoc;ol (contr:)i port) - j
ftp-data ’ 20 | File Transfer Protocol (data port) 5

-36-

WO 01/98889 PCT/US01/19045
gopher | 70 ! Gopher =
hostname | 101 | NIC Host Name Server ;
nameserver 4 42 | Host Name Server 1

, |
ident 113 Ident authentication service
irc 194 Internet Relay Chat protocol

| isalmp [500 | ISAKMP :

2 %
Klogin | s43 | kLOGIN
kshell | 544 | Korn Shell |

| Ipd 515 Line Printer Daemon - printer spooler ,
; login 513 | Remote login
| mobile-ip 434 MobileIP-Agent
‘ netbios-ns | 137 | NETBIOS Name Service
| 138 | NETBIOS Datagram Service
netbios-dgm ‘ “
nntp 119 | Network News Transfer Protocol
| ntp | 123 | Network Time Protocol
| : §
g pim-auto-rp 1 496 | Protocol Independent Multicast, reverse path flooding,
! \ ; ;
' § | dense mode !
pop2 { 109 | Post Office Protocol - Version 2 }
|] |

-37-

WO 01/98889 PCT/US01/19045

pop3 | 110 | Post Office Protocol - Version 3
radius || 1645, | Remote Authentication Dial-In User Service
| 1646 |

1ip { 520 Routing Information Protocol
| smtp 25 Simple Mail Transport Protocol
| snmp ‘ 161 : Simple Network Management Protocol
snmptrap I 162 | Simple Network Management Protocol - Trap
sqlnet | 1521 « Structured Query Language Network
sunrpc 1111 ‘ Sun RPC (Remote Procedure Call)
| syslog | 514 System Log

tacacs | 49 TACACS+ (Terminal Access Controller Access Control

System Plus)

talk [517 | Tak

| telnet 23 | Telnet as specified in RFC 854
Tftp 69 I Trivial File Transfer Protocol
| time |37 | Time
uucp it 540 | UNIX-to-UNIX Copy Program
Who | 513 | Who
~ |
whois | 43 | Whos ‘
1 §

-38-

WO 01/98889 PCT/US01/19045

. '
| www | 80 | World Wide Web

xdmcp 177 | X Display Manager Control Protocol, used to
| communicate between X terminals and workstations
| running UNIX

If a service is a standard service, a definition may provide only the name of the
service. For example:
<service seq="1" name="ftp”">

</service>

If a service is a user-defined service, then values for service name, protocol and
port are required. For example:

<service seq="2" name="myhttp” protocol="tcp” port="8080">

...............

</service>

The protocol value may be a literal value as specified in below, or it may be a
valid protocol number from 0-255. Table 8C presents literal names that can be used, in

one example embodiment, instead of a numerical protocol values.

TABLE 8C — LITERAL NAMES AND PROTOCOL VALUES

% :;
Literal | Value || Description

ah 51 Authentication Header for IPv6, as specified in RFC 1826
eigrp || 88 3 Enhanced Interior Gateway Routing Protocol
esp 150 | Encapsulated Security Payload for Ipv6, as specified in RFC 1827

-39-

WO 01/98889

PCT/US01/19045

| gre

47 General Routing Encapsulation
icmp | 1 Internet Control Message Proto;.c>l, as specified in‘RFC 792
igmp 2 Internet Group Manageme;nt Protocol, as specified in RFC 1112
igrp 9 | Interior Gateway Routing Protocol
ipinip 4“ | | P-in-IP encapsulation
| nos 94 Neﬁvork Operating System (Novell's Ne;;Waré) ”
ospf 89 4 Open Shortest Path First routing prolco;ol, as specified inkl%FC 1247 |
pep 108 Payload Compression Protocol
| sop 109 | Sitara Networks Protocol
tcp |16 | Transmission Control Protocol, as specified in RFC 793
udp 17 »»I;s—er Dataga;am Protocol,yas speéi;ieci in RFC 768

Other protocol numbers as specified by the Internet Assigned Numbers Authority,

and corresponding names, can be supported.

5.2.9 DEVICE DEFINITION

A farm definition may include one or more device definitions. Each device

definition is a generic definition for any type of device, and comprises a name value, a

type value, one or more interface values, and one or more attribute values. The name

value provides a unique identifier for the device definition. The type value provides a

value indicating the type of the device. In an embodiment, one of the device type values

defined in Wireless Markup Language (WML) is used. The interface value identifies an

interface name for the device. For example, a device definition may comprise:

<device name="cam0” type="webcam >

</device>

<interface name="eth0” subnet="inner” />

-40-

WO 01/98889 PCT/US01/19045

5.3 SERVER CLONING

A recurring task often encountered in creating a server farm is configuring a
machine for a particular role. For example, a machine may be configured as a Web server,
database server, etc. The configuration then is repeatedly performed on many different
servers manually to build up tiers or arrays of servers. The ability to specify a server role '
once, and then automatically clone it as needed, as disclosed herein, provides a much-
needed level of automation.

Role definitions have several aspects. For example, a role definition may include a
description of the hardware, operating system, any patches for the operating sysfem, and a
set of applications to be loaded on a server. In addition, a role may also describe what
kinds of network resources need to be accessible to a class of servers. Examples of this
include having network file access (e.g. NFS or CIFS) to a set of network file servers, or
database access to a set of database servers. Once a role is specified in these terms, a disk-
to-disk copy, followed by any per-server customization, clones a server with the role.

In one embodiment, for dynamically cloned servers, DHCP is used for IP address
assignment by default, so that no customization is needed for purposes of specifying the
local IP address. Given this, the majority of role cloning can be accomplished simply by a
disk-to-disk copy on the storage area network (SAN) associated with a given server farm.

Certain application-specific clustering mechanisms require the use of statically
assigned IP addresses. These are supported by defining a tier of servers that has a range of
IP addresses associated with it; upon instantiation and at runtime, the Farm Manager
brings servers into and out of the fixed range of IP addresses.

Table 4 provides one example of a server role definition, and Table 9 provides
another example which will be more fully described herein.

TABLE 9 — SERVER ROLE DEFINITION
<server-role name="NTWebServer”>
<diskimage> NT _IIS </diskimage>
<hw> cpu-x86 </hw>

</server-role>

The example in Table 10 defines a server role named “NTWebServer.” Each
server instantiated according to this server role will comprise a processor from the x86

- processor family, with Windows NT as the operating system, and Microsoft Internet

41-

WO 01/98889 PCT/US01/19045

Information Server (IIS) as a Web server application, as indicated by the disk image
specification of “NT _IIS.” The role name value refers to a predefined web server role that
consists of an NT boot disk image, containing IIS 3.0 and an x86 Front End Processor as
the hardware. These roles consist of a union of a predefined set that is present at Segment
Installation time and a customer defined set that can grow over time for each customer.

Server roles may be specified using a variety of mechanisms. The customer can
allocate a server and log on to it. This server can be customized by the customer and that
customized disk image can be saved as a customer named role.

Significantly, a role description is not tied to any particular instantiation of the
role on a particular server in a data center. Various servers or sets of servers (i.e. tiers)
may be instantiated using a single role definition.

54 EXAMPLE COMPLETE SERVER FARM DESCRIPTIONS

A virtual server farm or instant data center may be defined by specifying that
computing elements in the data center conform to one or more of the server roles that are
defined as described above. A typical data center may comprise a load balancing device,
and a tier of one or more web servers, one or more of which have access to a fixed file
server or database server. Generally, a data center description first provides connectivity
information, in terms of port to VLAN mappings for each device in the data center, and
then provides device specific configuration information.

In each data center definition, a special logical VLAN, referred to as the “outer-
vlan,” is defined. The “outer-vlan” is a symbolic reference to a VL AN that is associated
with the outside of the data center for a specific instantiation of the data center at a Grid
Segment. It is used as an anchor point for the data center description. The “outer-vlan”
also is the point of entry vlan for inbound IP traffic for a data center. Other VLANS are
also referred to symbolically in the connectivity information. At a particular Grid
Segment, the Administration/Management Server 130 will map each logical VLAN
(including the “outer-vlan”) to specific VLANS that it allocates from among available
VLANSs of that Grid Segment. The “outer-vlan” can be unique to each customer or end
user.

Each VLAN identifier is always mapped to the same VLAN number of a given
Grid Segment. Where the system of FIG. 1 serves multiple customers, each of whom has
one or more server farms defined, the VLAN numbers are the same on a per customer
basis. In particular, if the same VLAN string identifier is used in a single FML
description, then it is mapped to the same VLAN number. However, if the same VLAN

42

WO 01/98889 . PCT/US01/19045

string identifier is used in multiple descriptions of different data centers, then the same

VLAN string identifier is mapped to different VLAN numbers of the same switch fabric.

5.4.1 EXAMPLE TWO-TIER SERVER FARM
Table 10 illustrates a simplified example of a textual representation of a data
center that defines only one class of Web servers, and the file and database server that is

used by the Web servers.

TABLE 10 -- EXAMPLE DATA CENTER DEFINITION

<farm name="My-2-Tier-Farm”, fmlversion="1.0">

<subnet name="outer” ip="external” vlan="outer-vlan”>

</subnet>

<subnet name="inner” ip="internal” vlan="inner-vlan”>

</subnet>

<l--
! put db on a separate vlan to hide traffic.
>
<subnet name="db” ip="internal” vlan="db-vlan”>

</subnet>

<Ib name="1b1” type="1b">
<interface name="eth0” subnet="outer” />
<interface name="eth1” subnet="inner” />
<policy> round-robin </policy>
<vip name="vip0” subnet="outer” port="8080"">
<bind name="WebTier” port="8080" />
</vip>

</1b>
<server-role name="WebServer’”’>
<diskimage> NT_IIS </diskimage>

<hw> cpu-x86 </hw>

-43-

WO 01/98889 PCT/US01/19045

</server-role>

<server-role name="OracleServer”>
<diskimage> Solaris_Oracle </diskimage>
<hw> cpu-sundu </hw>
<disk drivename="/oracle” drivesize="4048" />

</server-role>

<server-role name="FileServer”>
<diskimage> Solaris </diskimage>
<hw> cpu-sundu </hw>
<disk drivename="/export” drivesize="1024" />

</server-role>

<tier name="WebTier>
<interface name="eth0” subnet="inner” />
<interface name="eth1” subnet="db” />
<role> WebServer </role>
<min-servers> 5 </min-servers>
<max-servers> 20 </max-servers>
<init-servers> 10 </init-servers>

<ftier>

<fixed-server name="OracleServer”>
<interface name="eth0” subnet="db”>
<role> OracleServer </role>

</fixed-server>

<fixed-server name="bebop”>
<interface name="eth(” subnet="db” />
<role> FileServer </role>

</fixed-server>

</farm>

-44-

WO 01/98889 PCT/US01/19045

FIG. 5 is a block diagram of a data center that corresponds to the definition of
Table 10. FIG. 5 and Table 10 present an example of a 2-tier server farm, with a
dynamically scaled web server tier and a round robin load balancing policy that is
implemented by load balancer LB. Block WSi represents a tier of one or more Web
servers, each of which is a Windows NT/IIS machine. The data center contains two
statically assigned servers, a file server called FileServerl and a database server called
OracleServerl. There are two VLANS in this description, the outer-vlan as described
above and the in-vlan. All devices other than the load-balancer are on the in-vlan.
In a manner similar to the way that the web server role is defined above, an
application server role may be defined as follows:
<server-role name="weblogic appserver>
<role> “NT_WL” </role>
<hw> “cpu-x86” </hw>

</server-role>

In this case the application server is a WebLogic 4.5 server running on a x86 NT
4.0 platform. It has access to the same network accessible files and databases as the Web
server role defined earlier herein.
5.4.2 THREE-TIER SERVER FARM EXAMPLE
Using this definition of an application server, a 3-tier server farm may be defined
as set forth in Table 11:

TABLE 11 — EXAMPLE THREE-TIER SERVER FARM
<farm name="My-3-Tier-Farm”, fmlversion="1.0">
<subnet name="outer” ip="external” vlan="outer-vlan”>

</subnet>

<subnet name="inner” ip="internal” vlan="iner-vlan”>

</subnet>

<subnet name="db” ip="internal” vlan="db-vlan”>
</subnet>
<server-role name="WebServer”>

<diskimage> NT IIS </diskimage>

<hw> cpu-x86 </hw>

-45-

WO 01/98889

PCT/US01/19045

</server-role>

<server-role name="WeblogicAppServer”>

<diskimage> NT_WL </diskimage>

<hw> cpu-x86 </hw>

</server-role>

<server-role name="OracleServer’>

<diskimage> Solaris_Oracle </diskimage>
<hw> cpu-sundu </hw>

<disk drivename="/oracle” drivesize="4048" />

</server-role>

<server-role name="FileServer’>

<diskimage> Solaris </diskimage>
<hw> cpu-sundu </hw>

<disk drivename="/export” drivesize="1024" />

</server-role>

<lb name="Ib1” type="1b"">

</1b>

<interface name="eth(0” subnet="outer” />

<interface name="eth1” subnet="inner” />

<policy> round-robin </policy> .

<vip name="vip0” ip="129.157.179.15” mask="255.255.255.0” port="8080
<bind name="WebTier” port="8081” />

</vip>

<tier name="WebTier’>

</tier>

<interface narﬁe=”eth0” subnet="inner” />
<role> WebServer </role>

<min-servers> 5 </min-servers>
<max-servers> 20 </max-servers>

<init-servers> 10 </init-servers>

<Ib name="1b2" type="1b"">

<interface name=""eth(” subnet="inner” />

-46-

WO 01/98889 PCT/US01/19045

<interface name="eth1” subnet="inner” />
<policy> round-robin </policy>
<vip name="vip0” ip="129.157.179.16” mask="255.255.255.0”
port="8080">
<bind name="AppTier” port="8081” />

</Vip>

<tier name="AppTier”>
<interface name="eth0” subnet="inner” />
<interface name="eth1” subnet="db” />
<role> WeblogicAppServer </role>
<min-servers> 8 </min-servers>
<max-servers™> 20 </max-servers>
<init-servers> 10 </init-servers>

</tier>

<fixed-server name="OracleServer’>
<interface name="eth0” subnet="db"’>
<role> OracleServer </role>

</fixed-server>

<fixed-server name="bebop”>
<interface name="eth0” subnet="db” />
<role> FileServer </role>

</fixed-server>

</farm>

In the example of Table 11, in order to configure the web server, the application
tier will need to be created first, so that its VIP can be configured as part of the WebLogic
plug-in configuration on the web server.

FIG. 6 is a block diagram of a data center corresponding to the textual

representation set forth in Table 11.

47-

WO 01/98889 PCT/US01/19045

5.5 FARM MONITORING

In addition to the construction of farms, FML describes any monitoring of the
elements in the farm that automatically take place. In one embodiment, this monitoring
functionality is to provide for the automatic flexing of a farm. Alternatively, monitoring
functions may be used only to alert operations personnel or a user or customer of
conditions in the farm. ‘

5.6 FARM CLONING

Since an entire server farm may be described logically, without any hard-coded
reference to information that is specific to a Grid Segment, e.g., IP addresses, etc., an
entire server farm definition can be cloned, resulting in creation and activation of one or
more duplicate server farms. The ability to reuse the logical structure of a data center, to
create a farm clone or to use as a starting point for another data center, is a powerful and
useful capability.

Since each data center definition implies the use of IP addresses internal to the
data center, cloning a data center requires the ability to abstract out such data center-
specific information. In one approach, this is accomplished by referring to all data center-
specific variables using external entity declarations, or using the “vfstab” approach
described below. Each external entity declaration contains a reference to a file that
contains the data center-specific information. Each Farm Manager that is responsible for a
given IDC creates IDC-specific files containing IP addresses for the File servers and
database servers. This removes any dependencies in the XML notation from specific
variable values, such as the IP addresses of the various fixed servers. Examples of the
external entity references in the data center descriptions above are the references
“&VIP1” and “&VIP2.” In a real FML file, these references would refer to external files
containing the segment specific IP addresses associated with the VIPs.

An alternative approach using “vfstab” files is also contemplated. In this
alternative, relative DNS names are created and stored in the “vfstab” configuration file
for all elements and applications that are defined as part of a virtual server farm. Further,
the DNS server and DHCP server associated with the virtual server farm is provided with
a default domain. As a result, the network addresses of cloned server farms can be
automatically resolved in response to instructions from the Farm Manager to the DNS

server and DHCP server.

Alternatively, IP addresses are left blank in FML files and assigned dynamically
by the Farm Manager.

48

WO 01/98889 PCT/US01/19045

The cloning capability described herein may be used as part of the graphical user
interface tool that is described herein. In particular, the graphical user interface tool may
allow reuse of already defined data centers as input to other data centers that may be
instantiated at different Grid Segments. For example, the graphical user interface tool
may implement duplication of data centers by enable a user to drag an icon representing a
data center from one location in a workspace and drop the icon in another location of the
workspace.

5.7 EXAMPLE TEXTUAL REPRESENTATIONS OF DATA CENTERS OR
SERVER FARMS

5.7.1 USE OF FIREWALL IN A SERVER FARM

FIG. 7 is a block diagram of an example of a visual representation of a server farm
that illustrates how the markup language may be used to establish a two-tier server farm
featuring a firewall.

In addition to servers and load-balancers, server farms often include a firewall
device, which selectively permits or denies access to services within the server farm, and
can control access to VPNs provided through the firewall. In order to describe firewalls as
components of various server farms, the Firewall DTD is provided as part of the FML.
The firewall DTD permits simple specification of the firewall attributes, such as Firewall
type, the services to permit and/or deny, De-Militarized Zone (DMZ) services, and any
VPN associations that the firewall may need to be configured with.

Referring now to FIG. 7, an example of a firewall configured with a set of DMZ
services is shown. A two-tier server farm 700 generally comprises a network connection
701, an outer virtual local area network (VLAN) 710 and an inner VLAN 720. Network
connection 701 is coupled to one or more internetworks such as the global, packet-
switched network of networks known as the Internet. Data arriving at server farm 700
from the network connection 701 is coupled to firewall 702, which provides security
functions. Data from firewall 702 is coupled to a load balancer 704, which distributes
service requests among one or more server nodes 706. In this example, assume that each
of the server nodes 706 is a computer acting as a Web server. Ports P1, P2, P3, and P4 are
on VLAN 710.

In addition, VLAN 720 may include one or more fixed server nodes. For example,
one of the server nodes 706 may be coupled to a database server 708 and associated

storage 709.

Table 12 presents an example of a symbolic representation of server farm 700.

-49-

WO 01/98889 PCT/US01/19045

TABLE 12 — SYMBOLIC REPRESENTATION OF EXAMPLE SERVER
FARM

<farm name="My-2-Tier-Farm”, fmlversion="1.0"">

<subnet name="outer” ip="external” vlan="outer-vlan”>

</subnet>

<subnet name="inner” ip="internal” vlan="iner-vlan>

</subnet>

<subnet name="dmz” ip="internal” vlan="dmz-vlan”>

</subnet>

<l
! put db on a separate vlan to hide traffic.
-
<subnet name="db” ip="internal” vlan="db-vlan>

</subnet>

<fw name="fw1" type="fw">

<out_interface name="outside">

<interface name="eth0" subnet="outer" />

<allow>
<service seq="1" name="http" >

<from ip="192.168.1.0" mask="255.255.255.0"/>
<to name="wsl:eth0"/>
<to name="1b1:vip0"/>

</service>

</out_interface>

<in_interface name="inside">

<interface name="eth1" subnet="inner" />

</in_interface>

<fw_interface name="dmz1”>

<interface name="eth2” subnet="dmz”’ />

-50-

WO 01/98889 PCT/US01/19045

</fw_interface>
</fw>

<lb name="Ib1” type="1b">
<interface name="eth(0” subnet="inner” />
<policy> round-robin </policy>
<vip name="vip0” subnet="inner” port="8080”>
<bind name="WebTier” port="8080" />
</vip>

</1b>

<server-role name="WebServer’>
<diskimage> NT IIS </diskimage>
<hw> cpu-x86 </hw>

</server-role>

<server-role name="OracleServer’>
<diskimage> Solaris_Oracle </diskimage>
<hw> cpu-sundu </hw>
<disk drivename="/oracle” drivesize="4048" />

</server-role>

<server-role name="FileServer”>
<diskimage> Solaris </diskimage>
<hw> cpu-sundu </hw>
<disk drivename="/export” drivesize="1024" />

</server-role>

<tier name="WebTier’>
<interface name="eth(0” subnet="inner” />
<interface name="eth1” subnet="db” />
<role> WebServer </role>
<min-servers> 5 </min-servers>
<max-servers> 20 </max-servers>

<init-servers> 10 </init-servers>

-51-

WO 01/98889 PCT/US01/19045

</tier>

<fixed-server name="0racleServer’>
<interface name="eth0” subnet="db”’>
<role> QracleServer </role>

</fixed-server>

<fixed-server name="bebop”>
<interface name="eth0” subnet="db” />
<role> FileServer </role>

</fixed-server>
</farm>

5.7.2 SPECIFYING EXTRA LOCAL DRIVES
Another use of the language defined herein is to specify an extra local storage
drive (e.g., a D: drive) as part of a Windows or Solaris machine. This is done using the
optional disk attribute of a server definition. For example, the following element in a
server definition specifies a server with a local drive named d: with a capacity of 200MB.
<disk drivename="D:", drivesize="200">

</disk>

Although the drive name “D:” is given in the foregoing definition, for the purpose of
illustrating a specific example, use of such a name format is not required. The drivename
value may specify a SCSI drive name value or a drive name in any other appropriate
format. In a Solaris/Linux environment, the disk attribute can be used to specify, e.g. an
extra locally mounted file system, such as /home, as follows:

<disk drivename="/home”, drivesize="512">

</disk>

In carrying out this definition, the Farm Manager allocates the correct disk space
on a SAN-attached device and maps the space to the right machine using the processes
described herein. Multiple disk attributes can be used to specify additional drives (or

partitions from the point of view of Unix operating environments).

-52-

WO 01/98889 PCT/US01/19045

The disk element may also include one or more optional attributes for specifying
parameters such as RAID levels, and backup policies, using the attribute element.

Examples of the attribute names and values are given below.

<disk drivename="/home”, drivesize="512MB”>
<attribute name="raid-level”, value="0+1">
<attribute name="backup-policy”,value="level=0:nightly”’>
<attribute name="backup-policy”,value="level=1:hourly”>
</disk>

The above specifies that /home should be located on a RAID level 0+1 drive, with
a level 0 backup occurring nightly and a level 1 backup occurring every hour. Over time,
other attributes may be defined for the disk partition.

Embodiments can process disk tags as defined herein and automatically increase
or decrease the amount of storage associated with a data center or server farm. FIG. 2A is
a block diagram of an example server farm that is used to illustrate an example of the
context in which such embodiments may operate. Network 202 is communicatively
coupled to firewall 204, which directs authorized traffic from the network to load
balancer 206. One or more CPU devices 208a, 208b, 208c are coupled to load balancer
206 and receive client requests from network 202 according to an order or priority
determined by the load balancer.

Each CPU in the data center or server farm is associated with storage. For
purposes of illustrating a clear example, FIG. 2A shows certain storage elements in
simplified form. CPU 208a is coupled by a small computer system interface (SCSI) link
to a storage area network gateway 210, which provides an interface for CPUs with SCSI
ports to storage devices or networks that use fibrechannel interfaces. In one embodiment,
gateway 210 is a Pathlight gateway and can connect to 1-6 CPUs. The gateway 210 has
an output port that uses fibrechannel signaling and is coupled to storage area network
212. One or more disk arrays 214a, 214b are coupled to storage area network 212. For
example, EMC disk arrays are used.

Although FIG. 2A illustrates a connection of only CPU 208a to the gateway 210,
in practice all CPUs of the data center or server farm are coupled by SCSI connections to
the gateway, and the gateway thereby manages assignment of storage of storage area
network 212 and disk arrays 214a, 214b for all the CPUs.

-53-

WO 01/98889 PCT/US01/19045

A system in this configuration may have storage automatically assigned and
removed based on an automatic process that maps portions of storage in disk arrays 214a,
214b to one or more of the CPUs. In an embodiment, the process operates in conjunction
with a stored data table that tracks disk volume information. For example, in one
embodiment of a table, each row is associated with a logical unit of storage, and has
columns that store the logical unit number, size of the logical unit, whether the logical
unit is free or in use by a CPU, the disk array on which the logical unit is located, etc.

FIG. 2B is a flow diagram that illustrates steps involved in creating such a table.
As indicated by block 221, these are preparatory steps that are normally carried out before
the process of FIG. 2C. In block 223, information is received from a disk subsystem,
comprising one or more logical unit numbers of meta-volumes or single volumes of
storage in the disk subsystem. Block 223 may involve receiving unit information from
disk arrays 214a, 214b, or a controller that is associated with them. The information may
be retrieved by sending appropriate queries to the controller or arrays. In block 225, the
volume information is stored in a table in a database. For example, an Oracle database
may contain appropriate tables.

The process of FIG. 2B may be carried out upon initialization of an instant data
- center, or continuously as one or more data centers are in operation. As a result, the
process of FIG. 2C continuously has available to it a picture of the size of available
storage in a storage subsystem that serves the CPUs of the server farm.

FIG. 2C is a block diagram illustrating a process of automatically modifying
storage associated with an instant data center. For purposes of illustrating a clear
example, the process of FIG. 2C is described in relation to the context of FIG. 24, -
although the process may be used in any other appropriate context.

In block 220, a <disk> tag in a data center specification that requests increased
storage is processed. Block 220 may involve parsing a file that specifies a data center or
server farm in terms of the markup language described herein, and identifying a statement
that requests a change in storage for a server farm.

In block 222, a database query is issued to retrieve records for free storage volume
of an amount sufficient to satisfy the request for increased storage that is contained in the
data center specification or disk tag. For example, where the disk tag specifies 30 Mb of
disk storage, a SELECT query is issued to the database table described above to select
and retrieve copies of all records of free volumes that add up to 30 Mb or more of storage.
When a result set is received from the database, a command to request that amount of

storage in the specified volumes is created, in a format understood by the disk subsystem,

-54-

WO 01/98889 PCT/US01/19045

as shown by block 224. Where EMC disk storage is used, block 224 may involve
formulating a meta-volume command that a particular amount of storage that can satisfy
what is requested in the disk tag.

In block 226, a request for increased storage is made to the disk subsystem, using
the command that was created in block 224, Thus, block 226 may involve sending a
meta-volume command to disk arrays 214a, 214b. In block 228, the process receives
information from the disk subsystem confirming and identifying the amount of storage
that was allocated and its location in terms of logical unit numbers. Since meta-volumes
may span more than one disk array or disk subsystem, the logical unit numbers may

- represent storage units in multiple hardware units.

In block 230, the received logical unit numbers are provided to storage area
network gateway 210. In response, storage area network gateway 210 creates an internal
mapping of one of its SCSI ports to the logical unit numbers that have been received. As a
result, the gateway 210 can properly direct information storage and retrieval requests
arriving on any of its SCSI ports to the correct disk array and logical unit within a disk
subsystem. Further, allocation or assignment of storage to a particular CPU is
accomplished automatically, and the amount of storage assigned to a CPU can increase or
decrease over time, based on the textual representations that are set forth in a markup
language file.

5.7.3 THREE-TIER DATA CENTER

Using this definition of an application server, a 3-tier data center may be defined
as set forth in Table 13.

The examples above have used hardware load-balancing exclusively for defining
tiers of web or application servers. Application servers such as WebLogic servers can be
assembled into tiers without the use of hardware load-balancers. Instead, these servers
have application plug-ins into the web server tier that manage load balancing. The plug-in
typically consults a configuration file to determine which set of application servers should
be considered a single cluster. To accommodate such application-specific mechanisms
for adding or deleting nodes from a particular tier, the language defined herein provides
the ability to specify custom defined tiers, where there is a provision for farm specific
scripts to be invoked on the set of devices in the farm on server add/delete events. These
custom defined tiers have special elements that describe the actions to take when a server

is added or deleted from that tier.

-55-

WO 01/98889 PCT/US01/19045

TABLE 13 -- THREE-TIER DATA CENTER DEFINITION

<farm name="My-3-Tier-Farm”, fmlversion="1.0">

<subnet name="outer” ip="external” vlan="outer-vlan”> </subnet>

<subnet name="inner” ip="internal” vlan="iner-vlan’> </subnet>

<subnet name="data” ip="internal” vlan="inner-vlan> </subnet>

<lb name="1b1">
<interface name="cth0” subnet="outer” />
<interface name="eth1” subnet="inner” />
<policy> round-robin </policy>
<vip name="vip0” subnet="outer” port="8081">

<bind name="WebTier” port="8080" />

</vip>

</1b>

<server-role name="WebServer”>
<diskimage> Solaris_Apache </diskimage>
<hw> cpu-sundu </hw>

</server-role>

<server-role name="OracleServer’>
<diskimage> Solaris Oracle </diskimage>
<hw> cpu-sundu </hw>

</server-role>

<server-role name="FileServer’>
<diskimage> Solaris </diskimage>
<hw> cpu-sundu </hw>
<disk drivename="/export” drivesize="1024" />

</server-role>

-56-

WO 01/98889 PCT/US01/19045

<tier name="WebTier’>
<interface name="eth0” subnet="inner” />
<interface name="eth1” subnet="data” />
<role> WebServer </role>
<min-servers> 4 </min-servers>
<max-servers> 20 </max-servers>
<init-servers> 10 </init-servers>

</tier>

<tier name="AppTier”>
<interface name="eth(” subnet="inner” />
<interface name="eth1” subnet="data” />
<add-action>
<for-all-in> WebTier </for-all-in>
<run>
<name> add-wlserver </name>
<dir> /Windows/System/IIS </dir>
</run>
</add-action>
<del-action>
<for-all-in> WebTier </for-all-in>
<run>
<name> del-wlserver </name>
<dir> /Windows/System/IIS </dir>
</run>
</del-action>
<min-servers> 4 </min-servers>
<max-servers> 20 </max-servers>
<init-servers> 10 </init-servers>

<ftier>

<fixed-server name="QracleServer’>
<interface name="eth(” subnet=""inner’’>
<interface name="eth1” subnet="db’’>

<role> OracleServer </role>

-57-

WO 01/98889 PCT/US01/19045

MISSING AT THE TIME OF PUBLICATION

58

WO 01/98889 PCT/US01/19045

6. DOCUMENT TYPE DEFINITIONS (DTDS)

Table 14 presents XML Document Type Definitions for an embodiment of a
symbolic mérkup language that may be used to create and store one or more textual
representations of networked computer systems such as the virtual server farms and data

centers described herein.

TABLE 14 - MARKUP LANGUAGE DEFINITION
<IELEMENT farm (fw*, Ib*, tier*, fixed-server*, server-role*, device*, subnet*,

attribute®)>

<IATTLIST farm name CDATA #IMPLIED>
<IATTLIST farm fmlversion CDATA "1.0">

<IELEMENT fw (out_interface, in_interface, fw_interface™, attribute*)>
<IATTLIST fw name CDATA #REQUIRED>
<IATTLIST fw type CDATA #REQUIRED>

<!IELEMENT out_interface (interface, allow?, deny?)>
<!ATTLIST out_interface name CDATA #REQUIRED>

<IELEMENT in_interface (interface, allow?, deny?)>
<!ATTLIST in_interface name CDATA #REQUIRED>

<!ELEMENT fw_interface (interface, allow?, deny?)>
<IATTLIST fw_interface name CDATA #REQUIRED>

<!IELEMENT allow (service*))>
<IELEMENT deny (service*)>

<!ELEMENT service (from+, to+)>

<IATTLIST service seq CDATA #REQUIRED>
<!ATTLIST service name CDATA #REQUIRED>
<IATTLIST service protocol CDATA #IMPLIED>
<!ATTLIST service port CDATA #IMPLIED>

-59-

WO 01/98889) PCT/US01/19045 ‘

<!ELEMENT from EMPTY>

<!ATTLIST from name CDATA (PCDATA)*>
<IATTLIST fromip CDATA (PCDATA)*>
<IATTLIST from mask CDATA (PCDATA)*>

<!ELEMENT to EMPTY>

<!ATTLIST to name CDATA (PCDATA)*>
<IATTLIST toip CDATA (PCDATA)*>
<IATTLIST to mask CDATA (PCDATA)*>

<IELEMENT Ib (interface, interface+, policy, vip, attribute*)>
<!ATTLIST lb name CDATA #REQUIRED>
<!ATTLIST Ib type CDATA #REQUIRED>

<!ELEMENT policy (PCDATA)*>

<IELEMENT vip (bind+)>
<IATTLIST vip name CDATA #REQUIRED>
<!ATTLIST vip subnet CDATA (PCDATA)*>
<IATTLIST vip ip CDATA (PCDATA)*>
<IATTLIST vip mask CDATA (PCDATA)*>
<IATTLIST vip port CDATA (PCDATA)*>

<IELEMENT bind EMPTY>
<IATTLIST bind name CDATA #REQUIRED>
<!ATTLIST bind port CDATA (PCDATA)*>

<IELEMENT tier (interface+, role, add-action?, del-action?, min-servers, max-
servers, init-servers, attribute®)>

<!ATTLIST tier name CDATA #REQUIRED>

<!IELEMENT role (PCDATA)*>
<!ELEMENT add-action (for-all-in, run)>
<!IELEMENT del-action (for-all-in, run)>
<IELEMENT min-servers (PCDATA)*>

-60-

WO 01/98889 PCT/US01/19045

<IELEMENT max-servers (PCDATA)*>
<IELEMENT init-servers (PCDATA)*>

<IELEMENT for-all-in (PCDATA)*>
<!ELEMENT run (name, dir)>
<!IELEMENT name (PCDATA)*>
<IELEMENT dir (PCDATA)*>

<IELEMENT fixed-server (interface+, role, attribute™)>
<IATTLIST fixed-server name CDATA #REQUIRED>

<IELEMENT device (interface+, attribute*)>
<IATTLIST device name CDATA #REQUIRED>
<!ATTLIST device type CDATA #REQUIRED>

<IELEMENT subnet (attribute®)>

<!ATTLIST subnet name CDATA #REQUIRED>

<!ATTLIST subnet mask CDATA #REQUIRED>

<IATTLIST subnetip (internal | external | CDATA) #REQUIRED>
<IATTLIST subnet vlan CDATA #REQUIRED>

<l--

! The vlan is a duplicate with the subnet definition

! in order to define an interface not associated with

! a particular defined subnet.

>
<IELEMENT interface (attribute®)>
<IATTLIST interface name CDATA #REQUIRED>
<!ATTLIST interface vlan CDATA #IMPLIED>
<!ATTLIST interface ip CDATA #IMPLIED>
<IATTLIST interface subnet CDATA #IMPLIED>

<IELEMENT server-role (diskimage, hw, disk*, attribute™)>

<IATTLIST server-role name CDATA #REQUIRED>
<IELEMENT diskimage (PCDATA)*>

-61-

WO 01/98889 PCT/US01/19045

<IELEMENT hw (PCDATA)*>

<IELEMENT disk (attribute)*>

<!ATTLIST disk drivename CDATA #REQUIRED>
<IATTLIST disk drivesize CDATA #REQUIRED>
<!ATTLIST disk drivetype CDATA #REQUIRED>

7. HARDWARE OVERVIEW

FIG. 8 is a block diagram that illustrates a computer system 800 upon which an
embodiment of the invention may be implemented. Computer system 800 includes a bus
802 or other communication mechanism for communicating information, and a processor
804 coupled with bus 802 for processing information. Computer system 800 also
includes a main memory 806, such as a random access memory (RAM) or other dynamic
storage device, coupled to bus 802 for storing information and instructions to be executed
by processor 804. Main memory 806 also may be used for storing temporary variables or
other intermediate information during execution of instructions to be executed by
processor 804. Computer system 800 further includes a read only memory (ROM) 808 or
other static storage device coupled to bus 802 for storing static information and
instructions for processor 804. A storage device 810, such as a magnetic disk or optical
disk, is provided and coupled to bus 802 for storing information and instructions.

Computer system 800 may be coupled via bus 802 to a display 812, such as a
cathode ray tube (CRT), for displaying information to a computer user. An input device
814, including alphanumeric and other keys, is coupled to bus 802 for communicating
information and command selections to processor 804. Another type of user input device
is cursor control 816, such as a mouse, a trackball, or cursor direction keys for
communicating direction information and command selections to processor 804 and for
controlling cursor movement on display 812. This input device may have two degrees of
freedom in a first axis (e.g., x) and a second axis (e.g., y), that allows the device to
specify positions in a plane.

The invention is related to the use of computer system 800 for symbolic definition
of a computer system. According to one embodiment of the invention, symbolic
definition of a computer system is provided by computer system 800 in response to
processor 804 executing one or more sequences of one or more instructions contained in

main memory 806. Such instructions may be read into main memory 806 from another

-62-

WO 01/98889 PCT/US01/19045

computer-readable medium, such as storage device 810. Execution of the sequences of
instructions contained in main memory 806 causes processor 804 to perform the process
steps described herein. In alternative embodiments, hard-wired circuitry may be used in
place of or in combination with software instructions to implement the invention. Thus,
embodiments of the invention are not limited to any specific combination of hardware
circuitry and software.

The term “computer-readable medium” as used herein refers to any medium that
participates in providing instructions to processor 804 for execution. Such a medium may
take many forms, including but not limited to, non-volatile media, volatile media, and
transmission media. Non-volatile media includes, for example, optical or magnetic disks,
such as storage device 810. Volatile media includes dynamic memory, such as main
memory 806. Transmission media includes coaxial cables, copper wire and fiber optics,
including the wires that comprise bus 802. Transmission media can also take the form of
acoustic or light waves, such as those generated during radio-wave and infra-red data
communications.

Common forms of computer-readable media include, for example, a floppy disk, a
flexible disk, hard disk, magnetic tape, or any other magnetic medium, a CD-ROM, any
other optical medium, punch cards, paper tape, any other physical medium with patterns
of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, any other memory chip or
cartridge, a carrier wave as described hereinafter, or any other medium from which a
computer can read.

Various forms of computer readable media may be involved in carrying one or
more sequences of one or more instructions to processor 804 for execution. For example,
the instructions may initially be carried on a magnetic disk of a remote computer. The
remote computer can load the instructions into its dynamic memory and send the
instructions over a telephone line using a modem. A modem local to computer system
800 can receive the data on the telephone line and use an infrared transmitter to convert
the data to an infrared signal. An infrared detector can receive the data carried in the
infrared signal and appropriate circuitry can place the data on bus 802. Bus 802 carries
the data to main memory 806, from which processor 804 retrieves and executes the
instructions. The instructions received by main memory 806 may be stored on storage
device 810.

Computer system 800 also includes a communication interface 818 coupled to bus
802. Communication interface 818 provides a two-way data communication coupling to

a network link 820 that is connected to a local network 822. For example,

-63-

WO 01/98889 PCT/US01/19045

communication interface 818 is an ISDN card or a modem to provide a data
communication connection to a corresponding type of telephone line. As another
example, communication interface 818 may be a local area network (LAN) card to
provide a data communication connection to a compatible LAN, Wireless links may also
be implemented. In any such implementation, communication interface 818 sends and
receives electrical, electromagnetic or optical signals that carry digital data streams
representing various types of information.

Network link 820 typically provides data communication through one or more
networks to other data devices. For example, network link 820 may provide a connection
through local network 822 to a host computer 824 or to data equipment operated by an
Internet Service Provider (ISP) 826. ISP 826 in turn provides data communication
services through the world wide packet data communication network now commonly
referred to as the “Internet” 828. Local network 822 and Internet 828 both use electrical,
electromagnetic or optical signals that carry digital data streams. The signals through the
various networks and the signals on network link 820 and through communication
interface 818 are example forms of carrier waves transporting the information.

Computer system 800 can send messages and receive data, including program
code, through the network(s), network link 820 and communication interface 818. In the
Internet example, a server 830 might transmit a requested code for an application program
through Internet 828, ISP 826, local network 822 and communication interface 818. In
accordance with the invention, one such downloaded application provides for symbolic
definition of a computer system as described herein. Processor 804 may executed
received code as it is received, or stored in storage device 810, or other non-volatile
storage for later execution. In this manner, computer system 800 may obtain application
code in the form of a carrier wave.

In the foregoing specification, the invention has been described with reference to
specific embodiments thereof. It will, however, be evident that various modifications and
changes may be made thereto without departing from the broader spirit and scope of the
invention. The specification and drawings are, accordingly, to be regarded in an

illustrative rather than a restrictive sense.

-64-

PCT/US01/19045

WO 01/98889

ON SoX 1NO Aq paumui=ia Spus 53ps SIy} 9pou 3} JO 1o J FEEET 1I0Jpu
ON S9X 1ND Aq paunwag Spu2 a8pa SIY} 9pON 9poN. SpONpUa
suigaq
ON S9X IND Aq paunuaiag 93pa smy3 apou a1y Jo 1o 10891u] poJuigaq
ON S9X 1ND AQ paumILIe suigaq 23pa Sfy} 9poN 9PON opoNuIgoq a3pg
010 ‘syrod
© ¢ sey eouefegpeoT, ‘suiod g
SBY ,[[BM3IL],, 9°] ‘SSB[O S, 9poU
ONl oN UO P3aseq PIUIULIAOP WSISAS apou sy Jo syod Jo 10§ [Juog suod
SSe[d S ,apou
oN oN U0 pPaseq PaUILLIa}OP WoIsAS apou sy} Jo uodf isl) uoor
ON OoN 0 < Ia83jur Auy 3pou SI) JO JYSIvY ToZau] 14819y
ON. ON. 0 < Je8aqul Auy POU STU} JO YIPIM 1080yu] WP
nos
ON saf | AQ paumuislep ¢ Z 1o8ajur Auy SpOU SIU} JO 3}BUIPIOOI-X 10893uf £
N5
oN sox | Aq paunuieep (g < 1e8s1ur Auy 9poU SI} JO 2)eUIPIO0I-X peviisitng X
ON SOX alweU 9pou onbiun Auy (swe)N) apou suy} Jo ateN Jumg sweu 9PON
——Hucn:m: o:& OH
9pOU 3[(BIUO[O-UOL J}
$)09UU0D 1 JI A[UO SO 5 S9X 1NO Aq pauluLsieq uLey suyz Jo sagps Jo 198 [1o8pH sa8pa
9SIMISYI0 OU (9[qBaUO]O
~UOU St 9pOU 3 JI 59X SOX 1ND Aq paurueeq ey SIy3 JO Sapou Jo 19§ [JepoN sapou
ON S9X 3uws Auy (suwreN) uLiey SIy} JO SWeN Suing ouwIeu uLeg
aiqurBuD T ER—
Ay 11 ! (12qe7) uondussag odAL Anqupy sse[D

"OAT}OR JO USISOp Iopun ST ULI] 91} UoyM 9[qeInSIjuod aie Aot

ISYJOUM PUR ‘S9InqLIje oY} JO Yoes J0J sanjea [eSe oy} pue uondriosep oy ‘adA) oy “SSe[o [ors J0J SoInquie oY) SOqLIOSOp MO[oq 9[qel ST,

I XIANHddY

65

PCT/US01/19045

WO 01/98889

3[01 U0 paseq
(skemye) oN PAUIULIISP ‘ON € UOLO3G Ul 9[qe) 99§ ‘oS[BJ .10 any | S[qeauo[d SI JOAIDS SIY) JOYIM ueajoog 9[qeauoDst
(8521ppV dJ UBISSY
AJ[eoneWIoNY) [BUIXS I0
ON SOX 9s[e} .10 any} BUISIUI ST JOATSS SIY} IOUIOUM uesjoog [eUIdIXHST
a[o1 .
£q paurensuod (arempirery)
oN g sox € UO109S Ul 9]qE) 995 JOAISS SIY} UI Pasn aIempIerf Sumg aIBMpIEY
[EEEN]
OoN SO X € UO10ag Ul 3]qE) 39§ 21BM1JOS) 101} SIU} JO 9[0Y sumg ajox
9pON JO S9InqLye Jje IoA108
(s19A158
paduejeg peo]) Jeoue[eq
(61/9 103) ON SaX 12UqNg SWILS 3} 0} P3IUUOD IPOU AUy peo] siy) Aq pasue[eq SOPON [lapoN SOpONPaduB(eq
(Aonod)
ON S9X & Jaoue[eq peoJ SIy} JO Ao1j0d Jumg Kotjod
(dT remip)
ON AJuo peas ‘oN JIaduejeq peo] S1y) JO JI [BnIIA Sumg dia
(A1)
OoN S9A (61/9 10}) ,,UOJ[ISAIOS AIPUNO,,, 130uB[Rq pBO] SIY} JO odAT, 3ung adky
9PON JO sajnqLye {[2 I90uB[Bgpeo]
[Tema1g
ON SOX SIY) AQ Pamoj[e SadIAISS ZINC [Joo1a1eg SIVIAIOSZIUD
ON S9X [Temaar] Siy} AQ pSTusp SIOIAIRS [Jeo1alag S301AIaGAUDD
[Temalry
ON Sax 1) £q pamojfe S9oIAIg [Jeorazeg S90IAIOSMO][B
(61/9
ON Sax | Jop) ,utodyosyn ﬁov\r (edAL) Jreamauy sty Jo adAT, i} Suing adky
9PON Jo sainqgLye e [[BMIL]
ON AJuo peal ‘ON 19UqnNS SIY] JO Y3FU9] JSBA Jo8a1u] JiSuapysewt
(Ise
oN £juo peat ‘oN. 19UqNS) J9UqNS SIYI JO YSEA Suwg ysewt
JI0MION] JO SeINqLIE [[B jeuqns
JI0MIDN] JO SAINQLBIE [[B FEfRE |
wiauuy, (NVTA) 3H0Mm15U
ON (61/9 105) oN 10y ,UejA-IaIno,, pue Jjauqng,, 101 ,Quela, SIU3 JO NVTA 3y3 JO SweN suls uejA
9PON JO S9INqLIIE [[B JI0MION
9qerizguo) a
APy PIQRINE0) I !_ (1oqeT) vonduoseq 9dA], aNguRY)

66

PCT/US01/19045

WO 01/98889

adl JOJUON
slasn
ON [1e 10J QUIBS ‘ON 0 < 1o8ajut Auy U091l S1y} Jo JyS1eH 198Uy yS1ay
sIosn
ONl [[® 10} auues ‘oN 0 < 198ayu1 AUy uool SIY) JO YIPIM ooy yIpm
siosn uooI
ON [[e JOJ uIes ‘ON 9J a8z ue o yyed pijeA STy} Surureuod o[y oy} 03 Yleg Fumg UuoneIo] uoo[
ON 9K R JI0MIaU SIU) JO (PSUS] JSBIAL REEETN yiSuapseur
ON Sox 9nJeA JSEW pIjeA AUy SHIOMIQU STU] JO SBW J] Sung JsejdL oum
(ssaappy
ON. AJuo peat SoN dX) 20BLI01HI SIY) JO SS9IPPE JI Sug di
ON Sox sueu SN PUEA 90BLISIUL STY) JO Swred SN 3umg AweN][eo50]
opou
ON S9X oy Jo sweu yod anbyun Auy 99BJISUL SIY] JO SWEN Sums sweu
110 o sainqrim jjo 90BJI93Uf
OoN ON. ,Ino,, 1o Ui, 110d siy Jo uonoang 3umg UOIIIIP
Ino
ON | wox paaLdp Sax 0 T Jo8aum Auy 110d s1) JO 91BUIPIOOO- X 1o80uf K
Jigts)
ON | wWox paausp sox 0 < 103a1ur AUy 110d SIy) JO 91RUIPIO00-X RE-2V be 10g
ON S 901AI3S ST} JO ST floym soym
ON Sa K 0 < 1039t Auy 901AIIS SIY} JO 10 Sug yod
ON S9X 3 901AISS SIU} JO [090)0d ulng 10%0101d
ON S9 X SWEU 901AI3S anbun Auy 901AI9S SIU} JO SUIBN Sumg swren 901AIRS
LSAR S9X ;3 JSIp S1y} Jo Aorjod dnyjorg sung Aotjogdmjoeq
(pa10111AD)
LSAK S X as[ey 10 ann JOLIRU © SBY YSIP SIY} IOUIoYM ueajoog JOLILJA[SBY
(PAo]
SRA SOX 4 PIBY) JSIP SIU JO [243] pIey Sumg joAYTprel
S S9X 0 < 139Ul AUy (9z18) (gD u1) JSIP SIY} JO 9ZIS RERES 9ZIS
ON ON ouueu YSIp anbrun Auy | (9ALIQ) YSIp SIY} JO Swel SAL(J Sumg aweu ASIT
ON SoX 9AI3S SI] JO SYSIP JO 19§ st Systp
9]qeauo[d auo[DHxeW (¢) 1osn 2y
9[qeauo[d J1 ATUO Sa x JUAJuo Sax. S pUB SUO[DUI T 1930jut AUV | Aq pay1oads sauo[o Jo -ou [en] Ja80juy suojDIuI
aqeauo]d () 1ony sy
2]qBaUO[D JI AJUO S9 % T1Ajuo sax suofDuI T J193a)ul AUy £Q pamojJe Sauo|o JO "ou "UL] 1080001 SUO[DXEW
9[qBauUO[d (¢) 1o supy (yu09)
9]qeauoIo J1 AJUO S % JLAjuO Sa 0 < 1o8a1ur Auy AQ PaMO[[B SIUOJO JO *OU "XeJA Io3o3uy Elit gl 13A198
&pmn&% €1 SlqeinSgu0) USisa(SINEA 13T (jaquT) uondriosaq adA] amquyy ssvpD

67

WO 01/98889 PCT/US01/19045

CLAIMS
What is claimed is:

1. A method of defining and deploying a networked computer system, comprising

the steps of:

creating and storing a textual representation of a logical configuration of the
networked computer system according to a structured markup language;

based on the textual representation, generating one or more commands for one or
more switch devices that are interconnected to one or more computing
elements and storage devices, wherein the commands instruct the switch
devices to logically connect the computing elements and storage devices
into an operable computer system that conforms to the logical

configuration.

2. A method as recited in Claim 1, wherein creating and storing a textual
representation comprises the steps of creating and storing a textual representation
of a logical configuration of the networked computer system according to a
structured markup language, wherein the textual representation includes at least
one element defining an automatically created monitor process for monitoring one

or more parameters of one or more of the computing elements.

3. A method as recited in Claim 1, wherein creating and storing a textual
representation comprises the steps of creating and storing a textual representation
of a logical configuration of the networked computer system according to a
structured markup language, wherein the textual representation includes at least
one element defining a load balancing function for one or more of the computing

elements.

4. A method as recited in Claim 1, wherein the textual representation comprises:
at least one server role definition comprising at least a role name value and a
hardware type value; and
one or more definitions of servers of the networked computer system, wherein

each definition of a server uses and references the server role definition.

-68-

WO 01/98889 PCT/US01/19045

10.

A method as recited in Claim 1, wherein the textual representation comprises:

at least one server role definition comprising at least a role name value and a
hardware type value; and

a plurality of definitions of servers in a server tier of the networked computer
system, wherein each definition of a server uses and references the server

role definition.

A method as recited in Claim 1, wherein the textual representation comprises:

at least one definition of a load balancing function;

at least one server tier definition that defines a plurality of servers that receive
inbound traffic from the load balancing function; and

at least one fixed server definition that defines a fixed server that is associated

with a server role definition.

A method as recited in Claim 6, wherein the definition of the load balancing
function comprises an indication that inbound traffic directed to the load

balancing function arrives from an outer virtual local area network.

A method as recited in Claim 6, further comprising the steps of:

receiving server selection information representing addition of a new server to the
logical configuration of the networked computer system;

in response thereto, automatically generating and sending to a load balancer that
carries out the load balancing function, configuration information that
identifies the new server and that instructs the load balancer to begin

carrying out load balancing for the new server.

A method as recited in Claim 8, wherein the configuration information comprises

an IP address of a subnet that contains the new server.

A method as recited in Claim 1, wherein the textual representation comprises:

at least one server tier definition that defines a plurality of servers that receive
inbound traffic from a load balancing function; and

at least one definition of the load balancing function, comprising an output

interface value, an input interface value, a virtual address value, a load

-69-

WO 01/98889 PCT/US01/19045

11.

12.

13.

14.

balancing policy value, and a tier value that identifies the server tier to

which traffic is directed using the load balancing function.

A method as recited in Claim 6, further comprising the steps of:

receiving server selection information representing addition of a new server to the
logical configuration of the networked computer system;

in response thereto, automatically generating and sending to a DNS server and a
DHCP server of a subnet that contains the new server, address information
that identifies the new server and that instructs the DNS server and DHCP

server to begin providing services to the new server.

A method as recited in Claim 1, wherein the textual representation comprises at
least one server tier definition that defines a plurality of servers that receive
inbound traffic from the load balancing function; and wherein each server tier
definition comprises one or more input interface values, a role value, and
information specifying a maximum number of physical servers and a minimum
number of physical servers for use in a server tier represented by the server tier

definition.

A method as recited in Claim 1, wherein the textual representation comprises at
least one fixed server definition that defines a statically addressed server of the
networked computer system; and wherein each server definition comprises one or
more input interface values that identify a virtual local area network, a role value
that identifies a processing role carried out by the server, and information

specifying a network address of the server.

A method as recited in Claim 1, further comprising the steps of:

associating a first server definition of the textual representation with at least one
external entity declaration that represents a network address of a server
that is represented by the first server definition;

creating and storing, in the textual representation, a copied server definition based
on duplicating the first server definition;

resolving each external entity declaration of the server definition of the textual
representation and the copied server definition of the textual representation

into a different actual network address;

-70-

WO 01/98889 PCT/US01/19045

15.

16.

17.

based on the textual representation, generating one or more commands for one or
more switch devices that are interconnected to one or more computing
elements and storage devices, wherein the commands instruct the switch
devices to logically connect the computing elements and storage devices
into an operable computer system that conforms to the logical

configuration.

A method as recited in Claim 1, further comprising the steps of:

receiving a first server definition that omits a network address of a server that is
represented by the first server definition;

creating and storing, in the textual representation, a copied server definition based
on duplicating the first server definition that is associated with the

graphical icon;

.determining a dynamic network address value for use with the server that is

represented by the first server definition;

based on the textual representation, generating one or more commands for one or
more switch devices that are interconnected to one or more computing
elements and storage devices, wherein the commands instruct the switch
devices to logically connect the computing elements and storage devices
into an operable computer system that conforms to the logical

configuration.

A method as recited in Claim 1, wherein the textual representation comprises at
least one firewall definition that comprises a firewall name value, a plurality of
interface values that define logical connections to a firewall device associated
with the firewall definition, and one or more definitions of services that the

firewall is allowed to permit or deny.

A method as recited in Claim 1, wherein the textual representation comprises:

at least one server role definition comprising at least a role name value and a
hardware type value;

a disk attribute definition that defines additional local disk storage for the server
defined in the server role definition, comprising a drive name value and a

drive size value; and

71-

WO 01/98889 PCT/US01/19045

18.

19.

20.

21.

22.

one or more definitions of servers of the networked computer system, wherein

each definition of a server uses and references the server role definition.

A method as recited in Claim 15, wherein the step of generating one or more

commands comprises the steps of:

generating one or more commands that allocate disk space according to the drive
size value in a storage device that is accessible using a storage area
network interface;

mapping the allocated disk space to a server of the networked computer system

that implements one of the definitions of servers.

A method as recited in Claim 15, wherein the step of generating one or more

commands comprises the steps of:

providing in the textual representation, one or more disk tags that specify one or
more changes in storage volume for the logical configuration,;

generating one or more commands that create one or more logical volumes of disk
space according to the drive size value in a storage device that is
accessible using a storage area network interface;

mapping the allocated disk space to a server of the networked computer system

that implements one of the definitions of servers.

A method as recited in Claim 1, wherein the textual representation comprises an
action definition that defines actions for execution for each server in a tier of one

or more servers when an additional server is added to the tier.

A method as recited in Claim 20, wherein the action definition comprises one or
more tier name values, wherein each tier name value identifies the tier and has an
associated script name value that identifies a script of actions for execution with

respect to each server in the tier identified by the name value.
A method as recited in Claim 21, further comprising the steps of:

receiving information indicating that a new server has been added to the tier;

executing the script of actions with respect to each server in the tier.

72-

WO 01/98889 PCT/US01/19045

23.

24,

25.

26.

217.

28.

29.

A method as recited in Claim 1, wherein the textual representation comprises one
or more definitions of repeatable actions, wherein each definition of a repeatable
action defines one or more actions for execution with respect to each server in a

tier of one or more servers when an additional server is added to the tier.

A method as recited in Claim 20, wherein the action definition comprises a tier
name value that identifies the tier, and a script name value that identifies a script
of actions for execution with respect to each server in the tier identified by the
name value, and further comprising the steps of receiving a network address of a
new server that is newly added to the tier and invoking the script on the new

server based on the network address of the new server.

A method as recited in Claim 20, wherein the textual representation comprises a
second action definition that defines second actions for execution for each server

in a tier of one or more servers when one of the servers is removed from the tier.

A method as recited in Claim 25, wherein the action definition comprises a tier
name value that identifies the tier, and a script name value that identifies a script
of actions for execution with respect to each server in the tier identified by the

name value.

A method as recited in Claim 25, further comprising the steps of:
receiving information indicating that one of the servers has been deleted from the
tier;

executing the script of actions with respect to each server in the tier.

A method as recited in Claim 1, wherein the textual representation comprises an
action definition that defines actions for execution for each server in a first tier of
one or more servers when an additional server is added to a second tier of one or

more servers.

A method as recited in Claim 28, wherein the action definition comprises one or
more tier name values, wherein each tier name value identifies the first tier and
has an associated script name value that identifies a script of actions for execution

with respect to each server in the first tier.

-73-

WO 01/98889 PCT/US01/19045

30.

31.

32.

33.

34.

35.

A method as recited in Claim 29, further comprising the steps of:
receiving information indicating that a new server has been added to the second
tier;

executing the script of actions with respect to each server in the first tier.

A method as recited in Claim 1, wherein the textual representation comprises one
or more definitions of repeatable actions, wherein each definition of a repeatable
action defines one or more actions for execution with respect to each server in a
first tier of one or more servers when an additional server is added to a second tier

of one or more servers.

A method as recited in Claim 31, wherein the action definition comprises a tier
name value that identifies the first tier, and a script name value that identifies a
script of actions for execution with respect to each server in the first tier, and
further comprising the steps of receiving a network address of a new server that is
newly added to the second tier and invoking the script on the new server based on

the network address of the new server.

A method as recited in Claim 1, wherein the textual representation comprises an
action definition that defines actions for execution for each server in a first tier of
one or more servers when one of the servers is removed from a second tier of one

Or more Servers.

A method as recited in Claim 33, wherein the action definition comprises a tier
name value that identifies the first tier, and a script name value that identifies a

script of actions for execution with respect to each server in the first tier.

A method as recited in Claim 34, further comprising the steps of:
receiving information indicating that one of the servers has been deleted from the
first tier;

executing the script of actions with respect to each server in the second tier.

T4

WO 01/98889 PCT/US01/19045

36.

37.

38.

A method as recited in Claim 1, further comprising the steps of:

receiving a storage definition in the textual representation that specifies a
requested quantity of storage for association with the computer system that
is defined in the textual representation;

based on a stored table that maps logical units of storage available for use in the
computer system, requesting and obtaining an assignment of the storage to
the computer system;

automatically creating and storing a mapping that correlates the assigned storage

to a processing unit of the computer system.

A method as recited in Claim 1, further comprising the steps of:

receiving a storage definition in the textual representation that specifies a
requested quantity of storage for association with the computer system that
is defined in the textual representation;

based on a stored table that maps logical units of storage available for use in the
computer system, requesting and obtaining an assignment of the storage to
the computer system;

providing to a gateway that interfaces the assigned storage to a processing unit of
the computer system, a mapping of the assigned storage to a port of the

gateway.

A computer-readable medium carrying one or more sequences of instructions for

defining and deploying a networked computer system, wherein execution of the

one or more sequences of instructions by one or more processors causes the one or

more processors to perform the steps of:

creating and storing a textual representation of a logical configuration of the
networked computer system according to a structured markup language;

based on the textual representation, generating one or more commands for one or
more switch devices that are interconnected to one or more computing
elements and storage devices, wherein the commands instruct the switch
devices to logically connect the computing elements and storage devices
into an operable computer system that conforms to the logical

configuration.

-75-

WO 01/98889 PCT/US01/19045

39. An apparatus for defining and deploying a networked computer system,

comprising:

means for creating and storing a textual representation of a logical configuration
of the networked computer system according to a structured markup
language;

means for based on the textual representation, generating one or more commands
for one or more switch devices that are interconnected to one or more
computing elements and storage devices, wherein the commands instruct
the switch devices to logically connect the computing elements and storage
devices into an operable computer system that conforms to the logical

configuration.

40. An apparatus for defining and deploying a networked computer system,
comprising:

a processor;

a computer-readable medium accessible to the processor and storing a textual
representation of a logical configuration of the networked computer
system according to a structured markup language;

one or more sequences of instructions stored in the computer-readable medium
and which, when executed by the processor, cause the processor to
generate one or more commands for one or more switch devices that are
interconnected to one or more computing elements and storage devices,
based on the textual representation, wherein the commands instruct the
switch devices to logically connect the computing elements and storage
devices into an operable computer system that conforms to the logical

configuration.

-76-

WO 01/98889 PCT/US01/19045

114
FIG.1A
102
CREATE AND STORE TEXTUAL

REPRESENTATION OF LOGICAL
CONFIGURATION OF COMPUTER SYSTEM

104
GENERATE COMMAND(S) FOR DEVICE(S)

TO CREATE PHYSICAL OPERABLE
COMPUTER SYSTEM

FIG. 1B

110
DESIGN

-

112
IMPLEMENTATION

-

114
CUSTOMIZATION

v

10
DEPLOYMENT

WO 01/98889

2/14

FIG.1C

140
Retrieve information identifying
one or more devices, from a
physical inventory table

142

| Select all records in the table
that identify a particular
device type that is idle

144

Select one or more VLANSs for |

use in the data center, and map
the selected VLANS to labels

146
Send one or more messages to
a hardware abstraction layer that
forms part of computing grid

PCT/US01/19045

WO 01/98889

PCT/US01/19045
3/14
FIG.1D
CLIENT 120
BROWSER
122
SERVICE PROVIDER 126
COMPUTING GRID 132
ADMINISTRATION /
SEUF'{/\EE;T&F; MANAGEMENT DATA
SERVER 130 CENTER 134
KB
IDC
COMPONENT CONTROL PLANE
DATABASE CUSTOMER DATABASE
INFORMATION

& FML
REPOSITORY

WO 01/98889

4/14

PCT/US01/19045

150
\

NEW CUSTOMER

CREATE NEW

DATA CENTER

)
)

> ACCEPTED

ACTIVATE

DELETE

ACCOUNT
152~
IDC DESIGN
PHASE
DELINED
IDC VALIDATION
154 PHASE
156\ |
IDC INACTIVE
PHASE
DEACTIVATE
IDC ACTIVE
158 —1 PHASE
160
\\1

IDC DESTROY
PHASE

)
)

FIG. 1E

WO 01/98889 PCT/US01/19045

5/14
FIG. 2A
204
FIREWALL
206
LOAD BALANCER
I I I
208a 208b 208¢c
CPU cPU_ | CPU
scsl
e
210
STORAGE AREA
NETWORK GATEWAY
(SCS! TO FIBRECHANNEL)

CHANNEL %
212
STORAGE AREA
NETWORK

WO 01/98889 PCT/US01/19045

6/14

FIG. 2B

221
PREPARATORY STEPS

223
RECEIVE INFORMATION FROM DISK
SUBSYSTEM COMPRISING LOGICAL
UNIT NUMBERS OF META-VOLUMES
OR SINGLE VOLUMES

225
STORE VOLUME
INFORMATION IN

DATABASE TABLE

WO 01/98889 PCT/US01/19045

714

FIG. 2C

220
PROCESS <DISK> TAG IN DATA CENTER SPECIFICATION
THAT REQUESTS INCREASED STORAGE

222
ISSUE DATABASE QUERY TO RETRIEVE RECORDS
FOR VOLUMES SUFFICIENT TO SATISFY THE
REQUEST FOR INCREASED STORAGE

224
CREATE A COMMAND TO REQUEST STORAGE IN A
FORMAT UNDERSTOOD BY THE DISK SUBSYSTEM

226
REQUEST INCREASED STORAGE FROM DISK
SUBSYSTEM USING COMMAND (E.G., EMC
META-VOLUME COMMAND)

I
: 228
RECEIVE INFORMATION FROM DISK SUBSYSTEM
DEFINING STORAGE THAT WAS CREATED, E.G,,
META-VOLUME INFO AND NEW LOGICAL UNIT
NUMBER(S)

230
PROVIDE LOGICAL UNIT NUMBER(S) TO STORAGE AREA
NETWORK GATEWAY

232
CREATE MAPPING IN SAN GATEWAY OF
SCSI PORT TO LOGICAL UNIT NUMBER(S)

WO 01/98889

PCT/US01/19045

8/14
FIG. 3A
* 1 \
Edge 1 Farm |——<> Monitor
1 *
Connects l ?
* 1
fabstract} P—%
Icon 1 Node |« Port k——Interface
>
T Balances
1
Network Firewall Bq%gﬁger Server
? T T 1] Allows 1
_——Denies
~DMZ *
% % £ S
Internet Subnet Service 1 & Who Disk

PCT/US01/19045

WO 01/98889

9/14

g=U1busPIsDW {0 'C6Z 'G6Z GG =Ysbul
LQUDIN=UDIN!gOZ =K\0Z =X'[]oU =8WDU

augn
0 8uqgng

1418

L
ugoy punoy =Aaljod ' 66766z GGz =diA
fuourtantas =adhl {pg | =Kt 0z =x‘g/=swpU
0 1aoup|pgpPDOT

S9PONPa2UD|DQ

o4

|
g =UibuspIsDW {0 'G67 'GGZ 'GGZ =P
{QUDA=UD|A ‘00| =K' 0Z =X{p}9u=3uUiDU

 =UbuePsDW!p 00 66z =4sodi

oum

SOuM

auqgng
0 Buq
Ly3e
|
oo =odhy {06 =K{ pZ=x‘M; =aWDU
|Ioma.
0
041e
0
UDJA—43)N0 =UD[A‘Q) =K (7 =X }aU/=9WDU
JoulsiuT

08 =pod:d}1y =j0203101dpd)} y=awpU

S80IAJaSMO||D 90IAI8S
¢-d8¢€
Oid
1-8¢

L-g¢ DI oid| g¢ "D

PCT/US01/19045

WO 01/98889

10/14

Aop =A21j104dn¥onq 8s/Df =J0LNSDY
1/0 Pibl =|9A9TpIDIig =8ZIS !/YS/p=8wWDU
Asid

SYsip

¢-49¢€ OlId

AJop =A31j04dnXoDpq ¢ 85/D4 =J0LINSDY
‘1/0 pIp1 =[oASTPIDI {5 =3ZIS {()¥SIp =aWDU
1s1d

SHsIp

/ =_duo|pjiul

t/ =9UO|QXDW { / =8UO|QUIW:8S/Df =9|qDaUO[)S!
{950/ =|DUIRIX TS| {0JDJS=01DMPIDY {SLIDJOS

\m\oEQ =3|01iQUDIA =UDIOGE =K0F =X/ gp =ouWbU
o Jenes

J/ =duo[QHul

i/ =9UO[DXDW I/ =8UO|JUIW 8s/DJ =3|gDaUO|DSI
{9s/DJ =|DUIS}XTS! ¢ 24DdS =2IDMPIDY ¢SLIDJOS
\m\oEQ =9|0J {QUDIA =UDIA0GE =A‘) =X‘0qp =dwbu
0 DETVEIS

o4

o412

[4

0

L

8 =U}busPisDW 10 'GGZ'G6Z 'GGZ =4spw
‘puDiA =UDA:QOS =Kz =X Z}ou=auDU

duqng

[41e

b

G =9UO|J}IUl {(g/=d9UOo|JXDW {J =8uo[QuIW
an.) =d9|qpauUo|)S| (8S/DJ =[DUIS}XTS] {gQX =9IDMPIDY
Kz\mﬁum_e {QUDIA =UDIN0GZ =K {07 =X‘{0gom =dwbu

ETVEIS

PCT/US01/19045

WO 01/98889

11/14

 mawes T yew _soy i
_ | -~ |
| T4 nod NOa SERIEE | T34 Hoa ora |
! N i R N T3S ﬂ | A‘ W3S \ Ty diiosorop| |
| | |
! ~ = 3 _ ULID _
“ 0z JosIDg gy N34 g0y JoIpdeusy J _ ETINELS Jesind BSmm._om N “
DAD ol DAD r TNX 0¥
| TR PR Iy L AN JAUOSOADP — 7y, |
i vy 440 iy — Ol icl gy T vy "9ty |
|||||||||||||||||||| T
vov av Dld oY
T eanes T e _soy i
| !
! _ il |
| noa Noa | Noa PPON ||
- - - - - : - o0
™ L L ﬁ b “/ S RER hogamor| |
[| I
_ | J
“ oﬁﬁ\ 10}D13U9 Jmtq W .w@ 151D | lowieg) OwRWY e N |
DAD oL DAD r TAX 0%
| Ex\ " N34 TAXphor 'z 1d1UOSDADP — !
i 6Ly 9y yly — O Cv gy 60 |
|||||||||||||||||||| A
707 V¥ Oid 20

WO 01/98889

12/14

PCT/US01/19045

ORACLE SERVER 1

'i/ VIP1

LB

VIPy

LB

FILESERVER 1

T ——

IN-VLAN

ORACLE SERVER 1

FIG. 6

FILESERVER 1

WO 01/98889 PCT/US01/19045

13/14

700
701
— P1 T 710
\ [

\ l

702
FIREWALL
P3 ———~_I\\\-—-p2

104
LOAD BALANCER

720 P4
N S S

706

708
DATABASE
SERVER

709
STORAGE

PCT/US01/19045

WO 01/98889

14/14

928

028

\xz_._

AHOMLAN

18

=\

8¢8

LANSELNI

0¢g8
d3Ad3S

918
TO04INOD

d0S¥Nd

)

JOV4Y3LNI 08
NOILVIINNWNOD H0SS3ID0¥d
208
Sng
018 808 908
J0IAEd AYOWIN
J9VHO0LS WOY NIVIN

718
30IA3A LNdNI

/8
AY1dSId

8 "Old

	Abstract
	Bibliographic
	Claims
	Drawings

