EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent: 23.01.2013 Bulletin 2013/04

Application number: 06820490.8

Date of filing: 12.12.2006

Int Cl.: C07D 249/08 (2006.01) C07D 405/10 (2006.01) A61K 31/4196 (2006.01) A61P 35/00 (2006.01)

International application number: PCT/GB2006/004630


Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR


Date of publication of application: 10.09.2008 Bulletin 2008/37

Proprietor: Sterix Limited
Slough, Berkshire SL1 3XE (GB)

Inventors:
• WOO, Lok, Wai, Lawrence
Berkshire SL1 3XE (GB)
• JACKSON, Toby
Berkshire SL1 3XE (GB)
• PUROHIT, Atul
Berkshire SL1 3XE (GB)

Representative: Alcock, David
D Young & Co LLP
120 Holborn
London EC1N 2DY (GB)

References cited:


Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
EP 1 966 166 B1

Description

FIELD OF INVENTION

[0001] The present invention relates to a compound.

[0002] In particular the present invention relates to a compound and to a pharmaceutical composition comprising the compound. The present invention also relates to the use of the compound or composition in therapy applications.

BACKGROUND TO THE INVENTION

[0003] Evidence suggests that oestrogens are the major mitogens involved in promoting the growth of tumours in endocrine-dependent tissues, such as the breast and endometrium. Although plasma oestrogen concentrations are similar in women with or without breast cancer, breast tumour oestrone and oestradiol levels are significantly higher than in normal breast tissue or blood. In situ synthesis of oestrogen is thought to make an important contribution to the high levels of oestrogens in tumours and therefore inhibitors, in particular specific inhibitors, of oestrogen biosynthesis are of potential value for the treatment of endocrine-dependent tumours.

[0004] Over the past two decades, there has been considerable interest in the development of inhibitors of the aromatase pathway - which converts the androgen precursor androstenedione to oestrone. However, there is now evidence that the oestrone sulphatase (E1-STS) pathway, i.e. the hydrolysis of oestrone sulphate to oestrone (E1S to E1), and aromatase (i.e. conversion of androstenedione to oestrone) account for the production of oestrogens in breast tumours.

[0005] Figures 1 and 2 are schematic diagrams showing some of the enzymes involved in the in situ synthesis of oestrone from oestrone sulphate, oestradiol and androstenedione.

[0006] In Figure 2, which schematically shows the origin of oestrogenic steroids in postmenopausal women, "ER" denotes Oestrogen Receptor, "DHEA-S" denotes Dehydroepiandrosterone-Sulphate, "Adiol" denotes Androstenediol, "E1-STS" denotes Oestrone Sulphatase, "DHEA-STS" denotes DHEA-sulphatase, "Adiol-STS" denotes Adiol Sulphatase, and "17B-HSD" denotes Oestradiol 17B-hydroxysteroid dehydrogenase.

[0007] As can be seen, the main two enzymes that are involved in the peripheral synthesis of oestrogens are the aromatase enzyme and the enzyme oestrone sulphatase.

[0008] In short, the aromatase enzyme converts androstenedione, which is secreted in large amounts by the adrenal cortex, to oestrone. Recent reports have suggested that some flavones could inhibit aromatase activity.

[0009] Much of the oestrone so formed, however, is converted to oestrone sulphate (E1S) and there is now a considerable body of evidence showing that E1S in plasma and tissue acts as a reservoir for the formation of oestrone by the action of oestrone sulphatase.

[0010] In this regard, it is now believed that the oestrone sulphatase (E1-STS) pathway - i.e. the hydrolysis of oestrone sulphate to oestrone (E1S to E1) is a major source of oestrogen in breast tumours. This theory is supported by a modest reduction of plasma oestrogen concentration in postmenopausal women with breast cancer treated by aromatase inhibitors, such as aminogluthimide and 4-hydroxyandrostenedione and also by the fact that plasma E1S concentration in these aromatase inhibitor-treated patients remains relatively high. The long half-life of E1S in blood (10-12 h) compared with the unconjugated oestrogens (20 min) and high levels of steroid sulphatase activity in liver and, normal and malignant breast tissues, also lend support to this theory.

[0011] Thus, oestrogen formation in malignant breast and endometrial tissues via the sulphatase pathway makes a major contribution to the high concentration of oestrogens which are present in these tumours. However, inhibition of both the aromatase and sulphatase pathways could offer considerable therapeutic benefit.

[0012] PCT/GB92/01587 teaches novel steroid sulphatase inhibitors and pharmaceutical compositions containing them for use in the treatment of oestrone dependent tumours, especially breast cancer. These steroid sulphatase inhibitors are sulphamate esters, such as N,N-dimethyl oestrone-3-sulphamate and, preferably, oestrone-3-sulphamate (otherwise known as “EMATE”). EMATE has the following structure:
It is known that EMATE is a potent E1-STS inhibitor as it displays more than 99% inhibition of E1-STS activity in intact MCF-7 cells at 0.1 nM. EMATE also inhibits the E1-STS enzyme in a time- and concentration-dependent manner, indicating that it acts as an active site-directed inactivator. Although EMATE was originally designed for the inhibition of E1-STS, it also inhibits dehydroepiandrosterone sulphatase (DHEA-STS), which is an enzyme that is believed to have a pivotal role in regulating the biosynthesis of the oestrogenic steroid androstenediol. Also, there is now evidence to suggest that androstenediol may be of even greater importance as a promoter of breast tumour growth. EMATE is also active in vivo as almost complete inhibition of rat liver E1-STS (99%) and DHEA-STS (99%) activities resulted when it is administered either orally or subcutaneously. In addition, EMATE has been shown to have a memory enhancing effect in rats. Studies in mice have suggested an association between DHEA-STS activity and the regulation of part of the immune response. It is thought that this may also occur in humans. The bridging O-atom of the sulphamate moiety in EMATE is important for inhibitory activity. Thus, when the 3-O-atom is replaced by other heteroatoms as in oestrone-3-N-sulphamate and oestrone-3-S-sulphamate, these analogues are weaker non-time-dependent inactivators.

In addition to oestrone, the other major steroid with oestrogenic properties which is produced by postmenopausal women is androstenediol (see Figure 2). Androstenediol, although an androgen, can bind to the oestrogen receptor (ER) and can stimulate the growth of ER positive breast cancer cells and the growth of carcinogen-induced mammary tumours in the rat. Importantly, in postmenopausal women 90% of the androstenediol produced originates from the androgen dehydroepiandrosterone sulphate (DHEA-S) which is secreted in large amounts by the adrenal cortex. DHEA-S is converted to DHEA by DHEA sulphatase, which may be the same as, or different from, the enzyme, oestrone sulphatase, which is responsible for the hydrolysis of E1S.

During the last 10-15 years considerable research has also been carried out to develop potent aromatase inhibitors, some of which are now marketed. However, in three recent reports of postmenopausal women with breast cancer who received aromatase inhibitor therapy, plasma E1S concentrations remained between 400-1000 pg/ml. In summation therefore in situ synthesis of oestrogen is thought to make an important contribution to the high levels of oestrogens in tumours and therefore specific inhibitors of oestrogen biosynthesis are of potential value for the treatment of endocrine-dependent tumours.

Moreover, even though oestrogen formation in malignant breast and endometrial tissues via the sulphatase pathway makes a major contribution to the high concentration of oestrogens, there are still other enzymatic pathways that contribute to in vivo synthesis of oestrogen.

Our earlier application WO03/045925 teaches compounds which may act as inhibitors of both aromatase and sulphatase. Many of the compounds of the disclosure are found to be extremely potent inhibitors of both of these enzymes. However, there is a desire to provide alternative compounds or improved compounds.

The present invention seeks to provide novel compounds suitable for the inhibition of steroid sulphatase activity and aromatase activity.

SUMMARY ASPECTS OF THE PRESENT INVENTION

The present invention is based on the surprising finding that certain polycyclic compounds could be used as effective steroid sulphatase inhibitors and/or aromatase inhibitors and/or as agents that can influence cell cycling and/or as agents that can influence apoptosis.

DETAILED ASPECTS OF THE PRESENT INVENTION

According to one aspect of the present invention, there is provided
wherein at least one of \(R_3, R_4, R_5, R_6\) and \(R_7\) is \(-\text{CH}_2\text{-1H-1,2,4-triazole}\), and at least one of \(R_3, R_4, R_5, R_6\) and \(R_7\) is \(-Y-R_8\), wherein \(R_8\) is selected from cyano (-CN), nitro (-NO_2), H-bond acceptors, and halogens;

wherein \(Y\) is an optional linker group;

wherein ring A is optionally further substituted; and

wherein \(R_9\) is selected from \(\text{H}, \text{-OH}\) and \(-\text{OSO}_2\text{NR}_1\text{R}_2\), wherein \(R_1\) and \(R_2\) are independently selected from \(\text{H}\) and hydrocarbyl.

According to one aspect of the present invention, there is provided

wherein \(R_3, R_4, R_5, R_6\) and \(R_7\) are independently selected from \(\text{H}\) and \(-Y-R_8\), wherein each \(R_8\) is independently selected from \(-\text{OH}\), hydrocarbyl groups, oxyhydrocarbyl groups, cyano (-CN), nitro (-NO_2), H-bond acceptors, and halogens;

wherein at least one of \(R_3, R_4, R_5, R_6\) and \(R_7\) is \(\text{CH}_2\text{-1H-1,2,4-triazole}\);

wherein \(X\) is a bond or a linker group

wherein \(Y\) is an optional linker group; and

wherein \(R_9\) is selected from \(\text{H}, \text{-OH}\) and \(-\text{OSO}_2\text{NR}_1\text{R}_2\);

wherein in addition to \(R_9\) ring A is substituted by one or more groups selected from \(-\text{Cl}, -\text{OH}, \text{fused phenyl}, \text{phenyl}, -\text{OMe}, -\text{OCH}_2\text{Ph}, -\text{CN}, -\text{C(O)-Ph}, -\text{F}, -\text{O-Ph}, -\text{C(O)-Me}, \text{fused phenyl optionally substituted with one of -OMe or -OH}, \text{and a fused heterocyclic group such that ring A forms a benzofuran};

wherein \(R_1\) and \(R_2\) are independently selected from \(\text{H}\) and hydrocarbyl;

wherein

\[(a) \ X\text{ is a bond and at least one of } R_3, R_4, R_5, R_6 \text{ and } R_7 \text{ is } -Y-R_8; \text{ OR}\]

\[(b) \ R_9 \text{ is } -\text{OSO}_2\text{NR}_1\text{R}_2 \text{ or } -\text{OH} \text{ and four of } R_3, R_4, R_5, R_6 \text{ and } R_7 \text{ are } \text{H} \text{ and one of } R_3, R_4, R_5, R_6 \text{ and } R_7 \text{ is } -Y-R_8.\]

According to one aspect of the present invention, there is provided a compound according to the present invention for use in medicine.

According to one aspect of the present invention, there is provided a pharmaceutical composition comprising the compound according to the present invention optionally admixed with a pharmaceutically acceptable carrier, diluent, excipient or adjuvant

According to one aspect of the present invention, there is provided the use of a compound according to the present invention in the manufacture of a medicament for use in the therapy of a condition or disease associated with STS and/or aromatase and/or cell cycling and/or apoptosis and/or cell growth.
According to one aspect of the present invention, there is provided the use of a compound according to the present invention in the manufacture of a medicament for use in the therapy of a condition or disease associated with adverse STS levels and/or adverse aromatase levels and/or cell cycling and/or apoptosis and/or cell growth.

For ease of reference, these and further aspects of the present invention are now discussed under appropriate section headings. However, the teachings under each section are not necessarily limited to each particular section.

SOME ADVANTAGES

One key advantage of the present invention is that the compounds of the present invention can act as aromatase inhibitors.

One key advantage of the present invention is that the compounds of the present invention can act as STS inhibitors.

One key advantage of the present invention is that the compounds of the present invention can act as STS inhibitors and aromatase inhibitors.

Another advantage of the present invention is that they may be potent in vivo.

Some of the compounds of the present invention may be non-oestrogenic compounds. Here, the term "non-oestrogenic" means exhibiting no or substantially no oestrogenic activity. Here, by the term "non-oestrogenic" means exhibiting no or substantially no systemic oestrogenic activity, such as that determined by Protocol 4.

Another advantage is that some of the compounds may not be capable of being metabolised to compounds which display or induce hormonal activity.

Some of the compounds of the present invention are also advantageous in that they may be orally active.

Some of the compounds of the present invention may useful for the prevention and/or treatment of cancer, such as breast cancer, as well as (or in the alternative) non-malignant conditions, such as the prevention and/or treatment of inflammatory conditions- such as conditions associated with any one or more of: autoimmunity, including for example, rheumatoid arthritis, type I and II diabetes, systemic lupus erythematosus, multiple sclerosis, myasthenia gravis, thyroiditis, vasculitis, ulcerative colitis and Crohn’s disease, skin disorders e.g. acne, psoriasis and contact dermatitis; graft versus host disease; eczema; asthma and organ rejection following transplantation. The compounds of the present invention are useful particularly when pharmaceuticals may need to be administered from an early age.

Thus, some of the compounds of the present invention are also believed to have therapeutic uses other than for the treatment of endocrine-dependent cancers, such as the treatment of autoimmune diseases.

The compounds of the present invention may also be useful as an inducer of apoptosis.

The compounds of the present invention may also be useful as a cell growth inhibitors.

PREFERABLE ASPECTS

HYDROCARBYL GROUP

A typical hydrocarbyl group is a hydrocarbon group. Here the term "hydrocarbon" means any one of an alkyl group, an alkenyl group, an alkynyl group, which groups may be linear, branched or cyclic, or an aryl group. The term hydrocarbon also includes those groups but wherein they have been optionally substituted. If the hydrocarbon is a branched structure having substituent(s) thereon, then the substitution may be on either the hydrocarbon backbone or on the branch; alternatively the substitutions may be on the hydrocarbon backbone and on the branch.

The hydrocarbyl/hydrocarbon/alkyl may be straight chain or branched and/or may be saturated or unsaturated.

In one preferred aspect the hydrocarbyl/ hydrocarbon/alkyl may be selected from hydrocarbyl groups containing at least one hetero atom in the group. Preferably the hetero atom is selected from sulphur, nitrogen and oxygen.

In one preferred aspect the hydrocarbyl/hydrocarbon/alkyl may be selected from straight or branched hydrocarbon groups containing at least one hetero atom in the group.

In one preferred aspect the hydrocarbyl/hydrocarbon/alkyl may be a hydrocarbyl group comprising at least two carbons or wherein the total number of carbons and hetero atoms is at least two.

In one preferred aspect the hydrocarbyl/hydrocarbon/alkyl may be selected from hydrocarbyl groups containing at least one hetero atom in the group. Preferably the hetero atom is selected from sulphur, nitrogen and oxygen.

In one preferred aspect the hydrocarbyl/hydrocarbon/alkyl may be selected from straight or branched hydrocarbon groups containing at least one hetero atom in the group. Preferably the hetero atom is selected from sulphur, nitrogen and oxygen.

In one preferred aspect the hydrocarbyl/hydrocarbon/alkyl may be selected from straight chain alkyl groups, preferably C_{1-10} alkyl, more preferably C_{1-5} alkyl, containing at least one hetero atom in the group. Preferably the hetero atom is selected from sulphur, nitrogen and oxygen.

In one preferred aspect the hydrocarbyl/hydrocarbon/alkyl may be selected from straight chain alkyl groups, preferably C_{1-10} alkyl, more preferably C_{1-5} alkyl, containing at least one hetero atom in the group. Preferably the hetero atom is selected from sulphur, nitrogen and oxygen.
The hydrocarbyl/hydrocarbon/alkyl may be selected from:

- C₁⁻C₁₀ hydrocarbyl,
- C₁⁻C₅ hydrocarbyl
- C₁⁻C₃ hydrocarbyl.
- hydrocarbon groups
- C₁⁻C₁₀ hydrocarbon
- C₁⁻C₅ hydrocarbon
- C₁⁻C₃ hydrocarbon.
- alkyl groups
- C₁⁻C₁₀ alkyl
- C₁⁻C₅ alkyl
- C₁⁻C₃ alkyl.

The hydrocarbyl/hydrocarbon/alkyl may be straight chain or branched and/or may be saturated or unsaturated.

The hydrocarbyl/hydrocarbon/alkyl may be straight or branched hydrocarbon groups containing at least one hetero atom in the group.

OXYHYDROCARBYL GROUP

In one embodiment of the present invention, the oxyhydrocarbyl group is a oxyhydrocarbon group.

Here the term “oxyhydrocarbon” means any one of an alkoxy group, an oxyalkenyl group, an oxyalkynyl group, which groups may be linear, branched or cyclic, or an oxyaryl group. The term oxyhydrocarbon also includes those groups but wherein they have been optionally substituted. If the oxyhydrocarbon is a branched structure having substituent(s) thereon, then the substitution may be on either the hydrocarbon backbone or on the branch; alternatively the substitutions may be on the hydrocarbon backbone and on the branch.

Each of the above teachings in respect of hydrocarbyl groups equally applies to the analogous oxyhydrocarbyl groups, that is the corresponding oxyhydrocarbyl group which comprises an oxygen in addition to the hydrocarbyl.

Typically, the oxyhydrocarbyl group is of the formula C₁⁻₆O (such as a C₁⁻₃O).

COMPOUND

According to one aspect of the present invention, there is provided

![Chemical structure](image)

wherein at least one of \(R_3, R_4, R_5, R_6\) and \(R_7\) is \(-\text{CH}_2\text{H}-1,2,4\text{-triazole, and at least one of } R_3, R_4, R_5, R_6\) and \(R_7\) is \(-\text{Y-R}_8\) wherein \(R_8\) is selected from cyano (\(-\text{CN}\)), nitro (\(-\text{NO}_2\)), H-bond acceptors, and halogens;

wherein \(Y\) is an optional linker group;

wherein ring \(A\) is optionally further substituted; and

wherein \(R_9\) is selected from H, -OH and -\(\text{OSO}_2\text{NR}_1\text{R}_2\), wherein \(R_1\) and \(R_2\) are independently selected from H and hydrocarbyl.

In a further aspect the present invention provides
wherein R3, R4, R5, R6 and R7 are independently selected from H and -Y-R8
wherein each R8 is independently selected from -OH, hydrocarbyl groups, oxyhydrocarbyl groups, cyano (-CN), nitro (-NO2), H-bond acceptors, and halogens;
wherein at least one of R3, R4, R5, R6 and R7 is CH2-1H-1,2,4-triazole;
wherein X is a bond or a linker group
wherein Y is an optional linker group; and
wherein R9 is selected from H, -OH and -OSO2NR1R2;
wherein in addition to R9 ring A is substituted by one or more groups selected from-Cl, - OH, fused phenyl, phenyl, -OMe, -OCH2Ph, -CN, -C(O)-Ph, -F, -O-Ph, -C(O)-Me, fused phenyl optionally substituted with one of -OMe or -OH, and a fused heterocyclic group such that ring A forms a benzo[9]
wherein R1 and R2 are independently selected from H and hydrocarbyl;
wherein

(a) X is a bond and at least one of R3, R4, R5, R6 and R7 is -Y-R8; OR
(b) R9 is -OSO2NR1R2 or -OH and four of R3, R4, R5, R6 and R7 are H and one of R3, R4, R5, R6 and R7 is -Y-R8.

X

[0059] As discussed herein linker X is a linker group or is a bond. In one aspect X is a linker group. In one aspect X is a bond.

[0060] Preferably X is selected from, or when X is a linker it is selected from, a bond, hydrocarbyl, oxyhydrocarbyl, thiohydrocarbyl, COO, CO, S, O, SO, SO2, NR, and SO2NR, wherein R is selected from H and hydrocarbyl groups.

[0061] Preferably X is selected from hydrocarbyl, oxyhydrocarbyl, thiohydrocarbyl, COO, CO, S, O, SO, SO2, NR, and SO2NR, wherein R is selected from H and hydrocarbyl groups.

[0062] Preferably X is selected from -CH2-S-, -C≡C-, -CH2-O-, -O-, and -CH2CH2-.

[0063] The term "thiohydrocarbyl group" as used herein means a group comprising at least S, C and H and may optionally comprise one or more other suitable substituents. Examples of such substituents may include halo, alkoxy, nitro, an alkyl group, a cyclic group etc. In addition to the possibility of the substituents being a cyclic group, a combination of substituents may form a cyclic group. If the hydrocarbyl group comprises more than one C then those carbons need not necessarily be linked to each other. For example, at least two of the carbons may be linked via a suitable element or group. Thus, the thiohydrocarbyl group may contain hetero atoms. Suitable hetero atoms will be apparent to those skilled in the art and include, for instance, nitrogen and oxygen.

[0064] When X is a hydrocarbyl group or in the option that X may be a hydrocarbyl group, preferably the hydrocarbyl group is a straight of branched alkyl group.

[0065] When X is a hydrocarbyl group or in the option that X may be a hydrocarbyl group, preferably the hydrocarbyl group is a straight chain alkyl group.

[0066] When X is a oxyhydrocarbyl group or in the option that X may be a oxyhydrocarbyl group, preferably the oxyhydrocarbyl group is -O-alkyl-, wherein alkyl is a straight of branched alkyl group.

[0067] When X is a oxyhydrocarbyl group or in the option that X may be a oxyhydrocarbyl group, preferably the oxyhydrocarbyl group is -O-alkyl-, wherein alkyl is a straight chain alkyl group

[0068] In one preferred aspect X is selected from groups selected from -O-, -C=C-, (CH2)n, CH=CH (preferably trans configuration), O(CH2)n, (CH2)nO, S(CH2)n, (CH2)nS, CO(CH2)n, (CH2)nCO, CONH(CH2)n, (CH2)nCONH, COO(CH2)n, (CH2)nCOO, SO(CH2)n, (CH2)nSO, SO2(CH2)n, (CH2)nSO2, SO2NC1-6alkyl/(CH2)n (such as SO2NMe(CH2)n) (CH2)nSO2NC1-6alkyl (such as (CH2)nSO2NMe); SO2NH(CH2)n and (CH2)nSO2NH; wherein n is independently an integer from 0 to 6. Preferably n is independently an integer from 1 to 6, more preferably from 1 to 3, such as 1, 2 or 3.

[0069] In one preferred aspect X is selected from groups selected from -O-, -C=C-, (CH2)n, O(CH2)n, (CH2)nO, S (CH2)n, (CH2)nS, CO(CH2)n, (CH2)nCO, CONH(CH2)n, (CH2)nCONH, COO(CH2)n, (CH2)nCOO, SO(CH2)n, (CH2)
nSO, SO₂(CH₂)n, (CH₂)nSO₂, SO₂NH(CH₂)n, and (CH₂)nSO₂NH; wherein n is independently an integer from 0 to 6.

[0070] Preferably n is independently an integer from 1 to 6, more preferably from 1 to 3, such as 1, 2 or 3.

[0071] In one preferred aspect X is selected from groups selected from -O-, -C≡C-, OCH₂, and SCH₂.

Y

[0072] In one preferred aspect Y is selected from hydrocarbyl, oxyhydrocarbyl, COO, CO, S, O, SO, SO₂, NR, and SO₂NR, wherein R is selected from H and hydrocarbyl groups.

[0073] In one preferred aspect Y is selected from hydrocarbyl, CO, and SO₂.

[0074] When Y is a hydrocarbyl group or in the option that Y may be a hydrocarbyl group, preferably the hydrocarbyl group is a straight of branched alkyl group.

[0075] When Y is a hydrocarbyl group or in the option that Y may be a hydrocarbyl group, preferably the hydrocarbyl group is a straight chain alkyl group.

[0076] In one preferred aspect Y is selected from groups selected from CₙH₂ₙ such as (CH₂)ₙ, CO(CH₂)ₙ, (CH₂)ₙCO, SO₂(CH₂)ₙ and wherein n is independently an integer from 0 to 6. Preferably n is independently an integer from 1 to 6, more preferably from 1 to 3, such as 1, 2 or 3.

[0077] In a highly preferred aspect Y is CₙH₂ₙ such as (CH₂)ₙ, wherein n is an integer from 0 to 6, preferably an integer from 1 to 6, more preferably an integer from 1 to 3, such as 1, 2 or 3. In a highly preferred aspect Y is -CH₂- or -C(CH₃)₂-.

R₈

[0078] In respect of R₈ of compounds of Formula I, preferred hydrocarbyl and oxyhydrocarbyl are cyclic groups.

[0079] R₈ need not be a cyclic structure. In this regard, R₈ may be a linear structure that may have the ability to conform to a ring like structure when in vivo. However in preferred aspects R₈ is a cyclic structure.

[0080] R₈ may be a heterocyclic group (a heterocycle) or a non-heterocyclic group. Suitable hetero atoms of a heterocyclic group include N, S and O. Preferably R₈ is a heterocyclic group wherein the ring comprises carbon and nitrogen.

[0081] When hetero atoms are present in a ring system to provide a heterocyclic group, the hetero atoms may be present in any amount. In one preferred aspect R₈ is a ring system comprising carbon and one or more hetero atoms selected from N, S and O.

[0082] R₈ may be an saturated ring structure or an unsaturated ring structure (such as an aryl group).

[0083] Preferably, R₈ is an aryl ring.

[0084] In one aspect of the Invention at least one R₈ is selected from or each R₈ is selected from substituted or unsubstituted aromatic rings.

[0085] In one aspect at least one R₈ is selected from or each R₈ is selected from polycyclic groups, which need not be a fused polycycle. The term "polycyclic" includes fused and non-fused ring structures including combinations thereof. If the ring system of R₈ is polycyclic some or all of the ring components of the ring system may be fused together or joined via one or more suitable spacer groups.

[0086] The ring size of R₈ may be chosen by one skilled in the art to achieve compounds having desired activity. Typically R₈ is a ring system comprising from 3 to 10 members, such as ring systems comprising from 5, 6 or 7 members.

[0087] Heterocyclic ring systems for use in the present invention include imidazole, tetrazole, pyrazole, triazole, such as 1H-1,2,3-triazole, 1H-1,2,4-triazole, 4H-1,2,4-triazole; optionally substituted 5- or 6- membered heterocyclic group containing 1 to 3 hetero atoms each selected from N, O and S, optionally substituted aryl (monocyclic or polycyclic aromatic), pyridazine, pyrimidine, pyridine, triazine such as 1,3,5 triazine, and optionally substituted bicyclic condensed heterocyclic group consisting of the above heterocyclic group condensed with benzene.

[0088] In one preferred aspect at least one R₈ is selected from or each R₈ is selected from ring systems described herein, halogens, and -CN.

[0089] In one preferred aspect at least one R₈ is selected from or each R₈ is selected from -CN, halogens and ring systems comprising carbon and one, two or three hetero atoms.

[0090] In one preferred aspect at least one R₈ is selected from or each R₈ is selected from -CN, halogens and ring systems comprising carbon and one or more hetero atoms selected from Nitrogen, Sulphur and Oxygen.

[0091] In one preferred aspect at least one R₈ is selected from or each R₈ is selected from -CN, halogens and heterocyclic ring systems, wherein the ring comprises carbon and nitrogen.

[0092] In one preferred aspect at least one R₈ is selected from or each R₈ is selected from cyano (-CN), halogens and 4H-1,2,4-triazole, 1H-1,2,4-triazole and 1H-1,2,3-triazole.

[0093] In one preferred aspect at least one R₈ is selected from or each R₈ is selected from 4H-1,2,4-triazole, 1H-1,2,4-triazole and 1H-1,2,3-triazole.

[0094] In one preferred aspect at least one R₈ is or each R₈ is 1H-1,2,4-triazole.

[0095] In a highly preferred aspect at least one R₈ is or each R₈ is
In one preferred aspect at least one of $R_3$, $R_4$, $R_5$, $R_6$ and $R_7$ is -$Y$-$R_8$ wherein $R_8$ is selected from substituted and unsubstituted heterocyclic rings.

In one preferred aspect at least one of $R_3$, $R_4$, $R_5$, $R_6$ and $R_7$ is -$Y$-$R_8$ wherein $R_8$ is selected from substituted and unsubstituted ring systems comprising carbon and one, two or three hetero atoms.

In one preferred aspect at least one of $R_3$, $R_4$, $R_5$, $R_6$ and $R_7$ is -$Y$-$R_8$ wherein $R_8$ is selected from substituted and unsubstituted ring systems comprising carbon and one or more hetero atoms selected from Nitrogen, Sulphur and Oxygen.

In one preferred aspect at least one of $R_3$, $R_4$, $R_5$, $R_6$ and $R_7$ is -$Y$-$R_8$ wherein $R_8$ is selected from substituted and unsubstituted ring systems, wherein the ring comprises carbon and nitrogen.

In one preferred aspect at least one of $R_3$, $R_4$, $R_5$, $R_6$ and $R_7$ is -$Y$-$R_8$ wherein $R_8$ is selected from substituted and unsubstituted heterocyclic ring systems comprising from 3 to 10 members.

In one preferred aspect at least one of $R_3$, $R_4$, $R_5$, $R_6$ and $R_7$ is -$Y$-$R_8$ wherein $R_8$ is selected from substituted and unsubstituted heterocyclic ring systems comprising from 5, 6 or 7 members.

In one preferred aspect at least one of $R_3$, $R_4$, $R_5$, $R_6$ and $R_7$ is -$Y$-$R_8$ wherein $R_8$ is 4H-1,2,4-triazole, 1H-1,2,4-triazole and 1H-1,2,3-triazole.

In one preferred aspect at least one of $R_3$, $R_4$, $R_5$, $R_6$ and $R_7$ is -$Y$-$R_8$ wherein $R_8$ is 1H-1,2,4-triazole.

As discussed herein, at least one of $R_3$, $R_4$, $R_5$, $R_6$ and $R_7$ is -$Y$-$R_8$ wherein -$Y$-$R_8$ is -CH$_2$-1H-1,2,4-triazole.

Thus according to one aspect of the present invention, there is provided a compound of Formula I
wherein R₁₀ and R₁₁ are independently selected from H and hydrocarbyl.

**0107** A preferred amino substituted phenyl group is of the formula

![Aromatic Ring with NR₁₀R₁₁ Substitution](image)

wherein R₁₀ and R₁₁ are independently selected from H and hydrocarbyl.

**0108** In one preferred aspect R₁₀ and R₁₁ are independently selected from H, alkyl, cycloalkyl, alkenyl, acyl and aryl, or combinations thereof, or together represent alkylene, wherein the or each alkyl or cycloalkyl or alkenyl or optionally contain one or more hetero atoms or groups. When substituted, the amino phenyl groups may contain one or two N-alkyl, N-alkenyl, N-cycloalkyl or N-aryl substituents, preferably containing or each containing a maximum of 10 carbon atoms.

**0109** When R₁₀ and/or R₁₁ is hydrocarbyl, the preferred values are those where R₁ and R₂ are each independently selected C₁-C₁₀ hydrocarbyl, C₁-C₅ hydrocarbyl, C₁-C₃ hydrocarbyl, C₁-C₁₀ hydrocarbon, C₁-C₅ hydrocarbon, C₁-C₃ hydrocarbon, C₁-C₁₀ alkyl, C₁-C₅ alkyl and C₁-C₃ alkyl.

**0110** When R₁₀ and/or R₁₁ is alkyl, the preferred values are those where R₁₀ and R₁₁ are each independently selected from lower alkyl groups containing from 1 to 6 carbon atoms, that is to say methyl, ethyl, propyl etc. R₁₀ and R₁₁ may both be methyl.

**0111** When R₁₀ and/or R₁₁ is aryl, typical values are phenyl and tolyl (PhCH₃).

**0112** Where R₁₀ and/or R₁₁ represent cycloalkyl, typical values are cyclopropyl, cyclopentyl, cyclohexyl etc.

**0113** When joined together R₁₀ and R₁₁ typically represent an alkylene group providing a chain of 4 to 6 carbon atoms, optionally interrupted by one or more hetero atoms or groups, e.g. to provide a 5 membered heterocycle, e.g. morpholino, pyrrolidino or piperidino.

**0114** In some preferred embodiments, at least one of R₁₀ and R₁₁ is H.

**0115** In some further preferred embodiments, each of R₁₀ and R₁₁ is H.

**0116** R₈ may be substituted by one or more substituents. Typical substituents include hydrocarbyl, oxyhydrocarbyl, halo and cyano (-C≡N) groups. R₈ may also be substituted by one or more substituents selected from phosphonate groups, thio phosphonate groups, sulphonate groups and sulphonamide groups.

**0117** In one preferred aspect R₈ is unsubstituted.

**-Y-R₈**

**0118** In one preferred aspect at least one or each -Y-R₈ is selected -CH₂-1H-1,2,4-triazole, -CN, -C(CH₃)₂-CN, and -F.

**0119** In a highly preferred for at least one or each -Y-R₈, Y is -CH₂- and R₈ is

![1,2,4-Triazole](image)

**0120** Thus in this aspect for at least one or each -Y-R₈, -Y-R₈ together are the group

![1,2,4-Triazole Combination](image)

**0121** In a highly preferred aspect for at least one or each -Y-R₈, Y is not present and R₈ is -CN. Thus in this aspect for at least one or each -Y-R₈, -Y-R₈ together are the group -CN.

**0122** In a highly preferred aspect for at least one or each -Y-R₈, Y is -C(CH₃)₂- and R₈ is -CN. Thus in this aspect -Y-R₈ together are the group -C(CH₃)₂-CN.
In a highly preferred aspect for at least one or each \(-Y-R_8\), Y is not present and R8 is \(-F\). Thus in this aspect for at least one or each \(-Y-R_8\), \(-Y-R_8\) together are the group \(-F\).

In a highly preferred at least one of \(R_3, R_4, R_5, R_6\) and \(R_7\) is \(-Y-R_8\) wherein Y is \(-CH_2-\) and R8 is \(-F\).

Thus in this aspect at least one of \(R_3, R_4, R_5, R_6\) and \(R_7\) is the group \(R_9\).

As discussed herein \(R_9\) is selected from H, \(-OH\) and \(-OSO_2NR_1R_2\).

In a preferred aspect \(R_9\) is selected from \(-OH\) and \(-OSO_2NR_1R_2\).

In one aspect \(R_9\) is H.

In a preferred aspect \(R_9\) is \(-OH\). We have found that the presence of the \(-OH\) may enhance the aromatase inhibitory activity of compounds of the present invention. In this respect the presence of this group is advantageous.

In a preferred aspect \(R_9\) is \(-OSO_2NR_1R_2\). We have found that the presence of the \(-OSO_2NR_1R_2\) group provide steroid sulphatase inhibitory activity. In this respect the presence of this group is advantageous.

As noted herein the compounds of the present invention may comprise other substituents. These other substituents may, for example, further increase the activity of the compounds of the present invention and/or increase stability (ex vivo and/or in vivo). For example the ring denoted A and B in the general formulae may comprise other substituents. However in one preferred aspect rings A and B are independently not further substituted.

In one aspect ring A is further substituted.

If ring A is further substituted, the further substitution may be by groups selected from

• \(-OH\), hydrocarbyl groups, oxyhydrocarbyl groups, cyano \((-CN)\), nitro \((-NO_2)\), H-bond acceptors, and halogens.

• C1-6 alkyl groups, C1-6 alkoxy groups, cyano \((-CN)\), nitro \((-NO_2)\) and halogens.

• \(-CH_3\), \(-CH_2CH_3\), \(-OCH_3\), cyano \((-CN)\), nitro \((-NO_2)\) and halogens.

If ring A is further substituted the substituent may be attached to ring A at more than one point such that ring A and the substituent provide fused rings which form a polycyclic structure. For example ring A together with the optional further substituents may form a substituted or unsubstituted naphthalene ring or may form a substituted or unsubstituted dibenzofuranyl ring. Preferred substituents of the fused systems and in particular the naphthalene ring are \(-O-alkyl\) such as \(-OMe\) and \(-OH\).

If ring A is further substituted, the further substitution is preferably a halogen and in particular, Cl, Br and/or F.

If ring A is further substituted, preferably ring A is substitution by only one further substituent, that is preferably a halogen and in particular, Cl, Br and/or F.
If ring A is substituted, preferably ring A is substituted by only one or two groups.

In a preferred aspect ring A is optionally further substituted by groups selected -Cl, -OH, fused phenyl, phenyl, -OME, -OCH2Ph, -CN, -C(O)-Ph, -F, -O-Ph, -C(O)-Me, fused phenyl optional substituted with one of -OMe or -OH, and a fused heterocyclic group such that ring A forms a dibenzo[5]

In a preferred aspect ring A together with any optional substituents is selected from:
<table>
<thead>
<tr>
<th>5</th>
<th>[\text{structure 1}]</th>
<th>[\text{structure 2}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>[\text{structure 3}]</td>
<td>[\text{structure 4}]</td>
</tr>
<tr>
<td>15</td>
<td>[\text{structure 5}]</td>
<td>[\text{structure 6}]</td>
</tr>
<tr>
<td>20</td>
<td>[\text{structure 7}]</td>
<td>[\text{structure 8}]</td>
</tr>
<tr>
<td>25</td>
<td>[\text{structure 9}]</td>
<td>[\text{structure 10}]</td>
</tr>
<tr>
<td>30</td>
<td>[\text{structure 11}]</td>
<td>[\text{structure 12}]</td>
</tr>
<tr>
<td>35</td>
<td>[\text{structure 13}]</td>
<td>[\text{structure 14}]</td>
</tr>
<tr>
<td>40</td>
<td>[\text{structure 15}]</td>
<td>[\text{structure 16}]</td>
</tr>
<tr>
<td>45</td>
<td>[\text{structure 17}]</td>
<td>[\text{structure 18}]</td>
</tr>
<tr>
<td>50</td>
<td>[\text{structure 19}]</td>
<td>[\text{structure 20}]</td>
</tr>
<tr>
<td>55</td>
<td>[\text{structure 21}]</td>
<td>[\text{structure 22}]</td>
</tr>
</tbody>
</table>
If $R_9$ is a sulphamate group and ring A is further substituted, preferably the further substituent is at a position on the ring ortho to the sulphamate group.

As discussed herein in compounds of Formula I $R_3$, $R_4$, $R_5$, $R_6$ and $R_7$ are independently selected from H and -Y-$R_8$, wherein each $R_8$ is independently selected from -OH, hydrocarbyl groups, oxyhydrocarbyl groups, cyano (-CN), nitro (-NO$_2$), H-bond acceptors, and halogens.

In one aspect $X$ is a bond and at least $R_3$, $R_4$, $R_6$ and $R_7$ is -Y-$R_8$ (wherein $R_8$ is selected from substituted and unsubstituted heterocyclic rings and amino substituted phenyl groups).

In this aspect preferably at least one of $R_3$, $R_4$, $R_6$, $R_8$ and $R_7$ is -Y-$R_8$ wherein $R_8$ is selected from substituted and unsubstituted heterocyclic rings and amino substituted phenyl groups, and at least one of $R_3$, $R_4$, $R_5$, $R_6$ and $R_7$ is a -CN group.

In one aspect $R_9$ is -OSO$_2$NR$_1$R$_2$ and four of $R_3$, $R_4$, $R_5$, $R_8$ and $R_7$ are H and one of $R_3$, $R_4$, $R_5$, $R_6$ and $R_7$ is -Y-$R_8$. In this aspect it is possible that

- $R_3$, $R_4$, $R_8$ and $R_7$ are H and $R_5$ is -Y-$R_8$ (wherein $R_8$ is selected from substituted and unsubstituted heterocyclic rings and amino substituted phenyl groups),
- $R_3$, $R_5$, $R_6$ and $R_7$ are H and $R_4$ is -Y-$R_8$ (or $R_3$, $R_6$, $R_7$ and $R_8$ are H and $R_6$ is -Y-$R_8$) (wherein $R_8$ is selected from substituted and unsubstituted heterocyclic rings and amino substituted phenyl groups),
- $R_4$, $R_5$, $R_6$ and $R_7$ are H and $R_3$ is -Y-$R_8$ (or $R_3$, $R_4$, $R_5$ and $R_7$ are H and $R_7$ is -Y-$R_8$) (wherein $R_8$ is selected from substituted and unsubstituted heterocyclic rings and amino substituted phenyl groups),

Further Preferred Compounds

A preferred compound of the present invention is a compound selected from compounds of the formulae
<table>
<thead>
<tr>
<th></th>
<th>Molecular Structure 1</th>
<th>Molecular Structure 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td><img src="image1.png" alt="Molecular Structure 1" /></td>
<td><img src="image2.png" alt="Molecular Structure 2" /></td>
</tr>
<tr>
<td>10</td>
<td><img src="image1.png" alt="Molecular Structure 1" /></td>
<td><img src="image2.png" alt="Molecular Structure 2" /></td>
</tr>
<tr>
<td>15</td>
<td><img src="image1.png" alt="Molecular Structure 1" /></td>
<td><img src="image2.png" alt="Molecular Structure 2" /></td>
</tr>
<tr>
<td>20</td>
<td><img src="image1.png" alt="Molecular Structure 1" /></td>
<td><img src="image2.png" alt="Molecular Structure 2" /></td>
</tr>
<tr>
<td>25</td>
<td><img src="image1.png" alt="Molecular Structure 1" /></td>
<td><img src="image2.png" alt="Molecular Structure 2" /></td>
</tr>
<tr>
<td>30</td>
<td><img src="image1.png" alt="Molecular Structure 1" /></td>
<td><img src="image2.png" alt="Molecular Structure 2" /></td>
</tr>
<tr>
<td>35</td>
<td><img src="image1.png" alt="Molecular Structure 1" /></td>
<td><img src="image2.png" alt="Molecular Structure 2" /></td>
</tr>
<tr>
<td>40</td>
<td><img src="image1.png" alt="Molecular Structure 1" /></td>
<td><img src="image2.png" alt="Molecular Structure 2" /></td>
</tr>
<tr>
<td>45</td>
<td><img src="image1.png" alt="Molecular Structure 1" /></td>
<td><img src="image2.png" alt="Molecular Structure 2" /></td>
</tr>
<tr>
<td>50</td>
<td><img src="image1.png" alt="Molecular Structure 1" /></td>
<td><img src="image2.png" alt="Molecular Structure 2" /></td>
</tr>
<tr>
<td>55</td>
<td><img src="image1.png" alt="Molecular Structure 1" /></td>
<td><img src="image2.png" alt="Molecular Structure 2" /></td>
</tr>
</tbody>
</table>
The present invention further provides a compound selected from compounds of the formulae

For some applications, preferably the compounds have no, or a minimal, oestrogenic effect.

For some applications, preferably the compounds have an oestrogenic effect.

For some applications, preferably the compounds have a reversible action.

For some applications, preferably the compounds have an irreversible action.

In one embodiment, the compounds of the present invention are useful for the treatment of breast cancer.

In one embodiment, the compounds of the present invention are useful for the inhibition of a Cyp450 enzyme.

In one embodiment, the compounds of the present invention are useful for the inhibition of a Cyp17 enzyme.
In one embodiment, the compounds of the present invention are useful for the treatment of prostate cancer.

In one embodiment, the compounds of the present invention are useful for the inhibition of a Cyp11 B2 enzyme.

In one embodiment, the compounds of the present invention are useful for the treatment of congestive heart failure.

In one embodiment, the compounds of the present invention are useful for the treatment of myocardial fibrosis.

STEROID SULPHATASE

Steroid sulphatase - which is sometimes referred to as steroid sulphatase or steryl sulphatase or "STS" for short - hydrolyses several sulphated steroids, such as oestrone sulphate, dehydroepiandrosterone sulphate and cholesterol sulphate. STS has been allocated the enzyme number EC 3.1.6.2.

STS has been cloned and expressed. For example see Stein et al (J. Biol. Chem. 264:13865-13872 (1989)) and Yen et al (Cell 49:443-454(1987)).

STS is an enzyme that has been implicated in a number of disease conditions.

By way of example, workers have found that a total deficiency in STS produces ichthyosis. According to some workers, STS deficiency is fairly prevalent in Japan. The same workers (Sakura et al, J Inherit Metab Dis 1997 Nov;20 (6):807-10) have also reported that allergic diseases - such as bronchial asthma, allergic rhinitis, or atopic dermatitis - may be associated with a steroid sulphatase deficiency.

In addition to disease states being brought on through a total lack of STS activity, an increased level of STS activity may also bring about disease conditions. By way of example, and as indicated above, there is strong evidence to support a role of STS in breast cancer growth and metastasis.

STS has also been implicated in other disease conditions. By way of example, Le Roy et al (Behav Genet 1999 Mar;29(2):131-6) have determined that there may be a genetic correlation between steroid sulphatase concentration and initiation of attack behaviour in mice. The authors conclude that sulphatation of steroids may be the prime mover of a complex network, including genes shown to be implicated in aggression by mutagenesis.

STS INHIBITION

It is believed that some disease conditions associated with STS activity are due to conversion of a nonactive, sulphated oestrone to an active, nonsulphated oestrone. In disease conditions associated with STS activity, it would be desirable to inhibit STS activity.

Here, the term "inhibit" includes reduce and/or eliminate and/or mask and/or prevent the detrimental action of STS.

STS INHIBITOR

In accordance with the present invention, the compound of the present invention is capable of acting as an STS inhibitor.

Here, the term "inhibitor" as used herein with respect to the compound of the present invention means a compound that can inhibit STS activity - such as reduce and/or eliminate and/or mask and/or prevent the detrimental action of STS. The STS inhibitor may act as an antagonist.

The ability of compounds to inhibit oestrone sulphatase activity can be assessed using either intact JEG3 choriocarcinoma cells or placental microsomes. In addition, an animal model may be used. Details on suitable Assay Protocols are presented in following sections. It is to be noted that other assays could be used to determine STS activity and thus STS inhibition. For example, reference may also be made to the teachings of WO-A-99/50453.

In one aspect, for some applications, the compound is further characterised by the feature that if the sulphamate group were to be substituted by a sulphate group to form a sulphate derivative, then the sulphate derivative would be hydrolysable by an enzyme having steroid sulphatase (E.C. 3.1.6.2) activity i.e. when incubated with steroid sulphatase EC 3.1.6.2 at pH 7.4 and 37°C.

In one preferred embodiment, if the sulphamate group of the compound were to be replaced with a sulphate group to form a sulphate compound then that sulphate compound would be hydrolysable by an enzyme having steroid sulphatase (E.C. 3.1.6.2) activity and would yield a Km value of less than 200 mmolar, preferably less than 150 mmolar, preferably less than 100 mmolar, preferably less than 75 mmolar, preferably less than 50 mmolar, when incubated with steroid sulphatase EC 3.1.6.2. at pH 7.4 and 37°C.

For some applications, preferably the compound of the present invention has at least about a 100 fold selectivity to a desired target (e.g. STS and/or aromatase), preferably at least about a 150 fold selectivity to the desired target, preferably at least about a 200 fold selectivity to the desired target, preferably at least about a 250 fold selectivity to the desired target, preferably at least about a 300 fold selectivity to the desired target, preferably at least about a 350 fold
selectivity to the desired target.

[0175] It is to be noted that the compound of the present invention may have other beneficial properties in addition to or in the alternative to its ability to inhibit STS and/or aromatase activity.

**SULPHAMATE GROUP**

[0176] The term "sulphamate" as used herein includes an ester of sulphamic-acid, or an ester of an N-substituted derivative of sulphamic acid, or a salt thereof.

[0177] If R9 is a sulphamate group then the compound of the present invention is referred to as a sulphamate compound.

[0178] Typically, the sulphamate group has the formula:

\[(R_1)(R_2)N-S(O)(O)-O-\]

wherein preferably R1 and R2 are independently selected from H, alkyl, cycloalkyl, alkenyl, acyl and aryl, or combinations thereof, or together represent alkylene, wherein the or each alkyl or cycloalkyl or alkenyl or optionally contain one or more hetero atoms or groups.

[0179] When substituted, the N-substituted compounds of this invention may contain one or two N-alkyl, N-alkenyl, N-cycloalkyl or N-aryl substituents, preferably containing or each containing a maximum of 10 carbon atoms.

[0180] When R1 and/or R2 is hydrocarbyl, the preferred values are those where R1 and R2 are each independently selected C1-C10 hydrocarbyl, C1-C5 hydrocarbyl, C1-C3 hydrocarbyl, C1-C10 hydrocarbon, C1-C5 hydrocarbon, C1-C3 hydrocarbon, C1-C10 alkyl, C1-C5 alkyl and C1-C3 alkyl.

[0181] When R1 and/or R2 is alkyl, the preferred values are those where R1 and R2 are each independently selected from lower alkyl groups containing from 1 to 6 carbon atoms, that is to say methyl, ethyl, propyl etc. R1 and R2 may both be methyl.

[0182] When R1 and/or R2 is aryl, typical values are phenyl and tolyl (PhCH3; o).

[0183] Where R1 and/or R2 represent cycloalkyl, typical values are cyclopropyl, cyclopentyl, cyclohexyl etc.

[0184] When joined together R1 and R2 typically represent an alkylene group providing a chain of 4 to 6 carbon atoms, optionally interrupted by one or more hetero atoms or groups, e.g. to provide a 5 membered heterocycle, e.g. morpholino, pyrrolidino or piperidino.

[0185] Within the values alkyl, cycloalkyl, alkenyl, acyl and aryl substituted groups are included containing as substituents therein one or more groups which do not interfere with the sulphatase inhibitory activity of the compound in question. Exemplary non-interfering substituents include hydroxy, amino, halo, alkoxy, alkyl and aryl.

[0186] In some embodiments, the sulphamate group may form a ring structure by being fused to (or associated with) one or more atoms in or on ring A.

[0187] In some embodiments, there may be more than one sulphamate group. By way of example, there may be two sulphamates (i.e. bis-sulphamate compounds).

[0188] In some preferred embodiments, at least one of R1 and R2 is H.

[0189] In some further preferred embodiments, each of R1 and R2 is H.

**ASSAY FOR DETERMINING STS ACTIVITY USING CANCER CELLS**

(PROTOCOL 1)

Inhibition of Steroid Sulphatase Activity in JEG3 cells

[0190] Steroid sulphatase activity is measured in vitro using intact JEG3 choriocarcinoma cells. This cell line may be used to study the control of human breast cancer cell growth. It possesses significant steroid sulphatase activity (Boivin et al., J. Med. Chem., 2000, 43: 4465 - 4478) and is available in from the American Type Culture Collection (ATCC).

[0191] Cells are maintained in Minimal Essential Medium (MEM) (Flow Laboratories, Irvine, Scotland) containing 20 mM HEPES, 5% foetal bovine serum, 2 mM glutamine, non-essential amino acids and 0.075% sodium bicarbonate. Up to 30 replicate 25 cm² tissue culture flasks are seeded with approximately 1 x 10⁵ cells/flask using the above medium. Cells are grown to 80% confluency and the medium is changed every third day.

[0192] Intact monolayers of JEG3 cells in triplicate 25 cm² tissue culture flasks are washed with Earle's Balanced Salt Solution (EBSS from IGM Flow, High Wycombe, U.K.) and incubated for 3-4 hours at 37°C with 5 pmol (7 x 10⁵ dpm) [6,7-3H]oestrone-3-sulphate (specific activity 60 Ci/mmol from New England Nuclear, Boston, Mass., U.S.A.) in serum-free MEM (2.5 ml) together with oestrone-3-sulphamate (11 concentrations: 0; 1fM; 0.01pM; 0.1pM; 1pM; 0.01nM; 0.1nM; 1nM; 0.01mM; 0.1mM; 1mM). After incubation each flask is cooled and the medium (1 ml) is pipetted into separate tubes containing [14C]oestrone (7 x 10³ dpm) (specific activity 97 Ci/mmol from Amersham International Radiochemical Centre,
Amersham, U.K.). The mixture is shaken thoroughly for 30 seconds with toluene (5 ml). Experiments have shown that 

>90% [14C] oestrone and <0.1% [3H] oestrone-3-sulphate is removed from the aqueous phase by this treatment. A 

portion (2 ml) of the organic phase is removed, evaporated and the 3H and 14C content of the residue determined by 

scintillation spectrometry. The mass of oestrone-3-sulphate hydrolysed was calculated from the 3H counts obtained 

corrected for the volumes of the medium and organic phase used, and for recovery of [14C] oestrone added) and the 

specific activity of the substrate. Each batch of experiments includes incubations of microsomes prepared from a sul-

phatase-positive human placenta (positive control) and flasks without cells (to assess apparent non-enzymatic hydrolysis 

of the substrate). The number of cell nuclei per flask is determined using a Coulter Counter after treating the cell 

monolayers with Zaponin. One flask in each batch is used to assess cell membrane status and viability using the Trypan 


[0193] Results for steroid sulphatase activity are expressed as the mean ± 1 S.D. of the total product (oestrone + 

oestradiol) formed during the incubation period (3-4 hours) calculated for 106 cells and, for values showing statistical 

significance, as a percentage reduction (inhibition) over incubations containing no oestrone-3-sulphamate. Unpaired 

Student’s t-test was used to test the statistical significance of results.

ASSAY FOR DETERMINING STS ACTIVITY USING PLACENTAL MICROSONES

(PROTOCOL 2)

Inhibition of Steroid Sulphatase Activity in Placental Microsomes

[0194] Sulphatase-positive human placenta from normal term pregnancies are thoroughly minced with scissors and 

washed once with cold phosphate buffer (pH 7.4, 50 mM) then re-suspended in cold phosphate buffer (5 ml/g tissue). 

Homogenisation is accomplished with an Ultra-Turrax homogeniser, using three 10 second bursts separated by 2 minute 

cooling periods in ice. Nuclei and cell debris are removed by centrifuging (4°C) at 2000g for 30 minutes and portions (2 

ml) of the supernatant are stored at 20°C. The protein concentration of the supernatants is determined by the method 

of Bradford (Anal. Biochem., 72, 248-254 (1976)).

[0195] Incubations (1 ml) are carried out using a protein concentration of 100 mg/ml, substrate concentration of 20 

mM [6,7-3H] oestrone-3-sulphate (specific activity 60 Ci/mmol from New England Nuclear, Boston, Mass., U.S.A.) and 

an incubation time of 20 minutes at 37°C. If necessary eight concentrations of compounds are employed: 0 (i.e. control); 

0.05mM; 0.1mM; 0.2mM; 0.4mM; 0.6mM; 0.8mM; 1.0mM. After incubation each sample is cooled and the medium (1 

ml) was pipetted into separate tubes containing [14C] oestrone (7 x 103 dpm) (specific activity 97 Ci/mmol from Amersham 

International Radiochemical Centre, Amersham, U.K.). The mixture is shaken thoroughly for 30 seconds with toluene 

(5 ml). Experiments have shown that >90% [14C] oestrone and <0.1% [3H] oestrone-3-sulphate is removed from the 

aqueous phase by this treatment. A portion (2 ml) of the organic phase is removed, evaporated and the 3H and 14C 

content of the residue determined by scintillation spectrometry. The mass of oestrone-3-sulphate hydrolysed is calculated 

from the 3H counts obtained (corrected for the volumes of the medium and organic phase used, and for recovery of 

[14C] oestrone added) and the specific activity of the substrate.

ANIMAL ASSAY MODEL FOR DETERMINING STS ACTIVITY

(PROTOCOL 3)

Inhibition of oestrone sulphatase activity in vivo

[0196] The compounds of the present invention may be studied using an animal model, in particular in ovariectomised 

rats. In this model compounds which are oestrogenic stimulate uterine growth.

[0197] The compound (0.1 mg/Kg/day for five days) is administered orally to rats with another group of animals receiving 

vehicle only (propylene glycol). At the end of the study samples of liver tissue were obtained and oestrone sulphatase 

activity assayed using 3H oestrone sulphate as the substrate as previously described (see PCT/GB95/02638).

ANIMAL ASSAY MODEL FOR DETERMINING OESTROGENIC ACTIVITY

(PROTOCOL 4)

[0198] The compounds of the present invention may be studied using an animal model, in particular in ovariectomised 

rats. In this model, compounds which are oestrogenic stimulate uterine growth.
The compound (0.1 mg/Kg/day for five days) was administered orally to rats with another group of animals receiving vehicle only (propylene glycol). At the end of the study uteri were obtained and weighed with the results being expressed as uterine weight/whole body weight x 100.

**BIOTECHNOLOGICAL ASSAYS FOR DETERMINING STS ACTIVITY**

**(PROTOCOL 5)**

The ability of compounds to inhibit oestrone sulphatase activity can also be assessed using amino acid sequences or nucleotide sequences encoding STS, or active fragments, derivatives, homologues or variants thereof in, for example, high-through put screens. Such assays and methods for their pratice are taught in WO 03/045925 which is incorporated herein by reference.

In one preferred aspect, the present invention relates to a method of identifying agents that selectively modulate STS, which compounds have the formula (I).

**ASSAY FOR DETERMINING AROMATASE ACTIVITY USING JEG3 CELLS**

**(PROTOCOL 6)**

Aromatase activity is measured in JEG3 choriocarcinoma cells, obtained from the ATCC. This cell line possesses significant aromatase activity and is widely used to study the control of human aromatase activity (Bhatnager et al., J.Steroid Biochem.Molec. Biol. 2001, 76: 199 - 202). Cells are maintained in Minimal Essential Medium (MEM, Flow Laboratories, Irvine, Scotland) containing 20mM HEPES, 10 % foetal bovine serum, 2mM glutamine, non-essential amino acids and 0.075% sodium bicarbonate. Intact monolayers of JEG3 cells (2.5 x 10^6 cells) in triplicate 25cm² tissue culture flasks are washed with Earle's Balanced salt solution (EBSS, from ICN Flow, High Wycombe, UK) and incubated with [1β-3H] androstenedione (2-5nM, 26 Ci/mmol, New England Nuclear, Boston, MA, USA) for 30min with inhibitors over the range of 10pm-10^-6M. During the aromatase reaction, 3H2O is liberated which can he quantified using a liquid scintillation spectrometer (Beckman-Coulter, High Wycombe, Bucks. UK). This 3H₂O-release method has been widely used to measure aromatase activity (Newton et al., J.Steroid Biochem. 1986,24: 1033 - 1039). The number of cell nuclei per flask is determined using a Coulter Counter after treating the cell monolayers with Z aponin.

Results for aromatase activity are expressed as the mean ± 1 S.D. of the product formed during the incubation period (30min) calculated for 10^6 cells and, for values showing a statistical significance, as a percentage reduction (inhibition) over incubations containing no aromatase inhibitor. Unpaired Student’s t test was used to test the statistical significance of results. IC₅₀ values were calculated as the concentration of inhibitor required to obtain a 50% inhibition of aromatase activity.

**ANIMAL ASSAYS FOR DETERMINING AROMATASE ACTIVITY**

**(PROTOCOL 7)**

(i) Inhibition of PMSG-induced oestrogen synthesis

The ability of compounds to inhibit aromatase activity in vivo was tested using a pregnant mare serum gonadotrophin (PMSG)-induced oestrogen synthesis assay. For this, female rats (250g) were injected with PMSG (200 IU, s.c.). After 72h rats were administered vehicle (propylene glycol) or various doses of test compounds orally. At 2h after dosing blood samples were obtained by cardiac puncture (under anaesthesia). Plasma oestradiol levels were measured in control groups and groups receiving drugs. The efficacy of aromatase inhibition was determined by measurement of plasma oestradiol concentrations by radioimmunoassay. This method has been widely used to determine the effectiveness of aromatase inhibitors in vivo (Wouters et al., J.Steroid Biochem., 1989, 32 : 781 - 788).

(ii) Inhibition of androstenedione stimulated uterine growth in ovariectomised rats

Female rats (250g) were ovariectomised and used to determine the effectiveness of aromatase inhibition on androstenedione stimulated uterine growth. Administration of androstenedione (30mg/kg/d) for a 2-week period results in a significant increase in uterine growth in ovariectomised animals. This increase in uterine growth is stimulated by oestrogen which is derived from the administered androstenedione as a result of the action of the aromatase enzyme. By co-administration of compounds with androstenedione the extent of aromatase inhibition can be determined by
measurements of uterine weights in treated and untreated animals.

THERAPY

[0207] The compounds of the present invention may be used as therapeutic agents - i.e. in therapy applications.
[0208] The term "therapy" includes curative effects, alleviation effects, and prophylactic effects.
[0209] The therapy may be on humans or animals, preferably female animals.

PHARMACEUTICAL COMPOSITIONS

[0210] In one aspect, the present invention provides a pharmaceutical composition, which comprises a compound according to the present invention and optionally a pharmaceutically acceptable carrier, diluent or excipient (including combinations thereof).

[0211] The pharmaceutical compositions may be for human or animal usage in human and veterinary medicine and will typically comprise any one or more of a pharmaceutically acceptable diluent, carrier, or excipient. Acceptable carriers or diluents for therapeutic use are well known in the pharmaceutical art, and are described, for example, in Remington's Pharmaceutical Sciences, Mack Publishing Co: (A. R. Gennaro edit. 1985). The choice of pharmaceutical carrier, excipient or diluent can be selected with regard to the intended route of administration and standard pharmaceutical practice. The pharmaceutical compositions may comprise as - or in addition to - the carrier, excipient or diluent any suitable binder(s), lubricant(s), suspending agent(s), coating agent(s), solubilising agent(s).

[0212] Preservatives, stabilisers, dyes and even flavouring agents may be provided in the pharmaceutical composition. Examples of preservatives include sodium benzoate, sorbic acid and esters of p-hydroxybenzoic acid. Antioxidants and suspending agents may be also used.

[0213] There may be different composition/formulation requirements dependent on the different delivery systems. By way of example, the pharmaceutical composition of the present invention may be formulated to be delivered using a mini-pump or by a mucosal route, for example, as a nasal spray or aerosol for inhalation or ingestible solution, or parenterally in which the composition is formulated by an injectable form, for delivery, by, for example, an intravenous, intramuscular or subcutaneous route. Alternatively, the formulation may be designed to be delivered by both routes.

[0214] Where the agent is to be delivered mucosally through the gastrointestinal mucosa, it should be able to remain stable during transit though the gastrointestinal tract; for example, it should be resistant to proteolytic degradation, stable at acid pH and resistant to the detergent effects of bile.

[0215] Where appropriate, the pharmaceutical compositions can be administered by inhalation, in the form of a suppository or pessary, topically in the form of a lotion, solution, cream, ointment or dusting powder, by use of a skin patch, orally in the form of tablets containing excipients such as starch or lactose, or in capsules or cubes either alone or in admixture with excipients, or in the form of elixirs, solutions or suspensions containing flavouring or colouring agents, or they can be injected parenterally, for example intravenously, intramuscularly or subcutaneously. For parenteral administration, the compositions may be best used in the form of a sterile aqueous solution which may contain other substances, for example enough salts or monosaccharides to make the solution isotonic with blood. For buccal or sublingual administration the compositions may be administered in the form of tablets or lozenges which can be formulated in a conventional manner.

COMBINATION PHARMACEUTICAL

[0216] The compound of the present invention may be used in combination with one or more other active agents, such as one or more other pharmaceutically active agents.

[0217] By way of example, the compounds of the present invention may be used in combination with other STS inhibitors and/or other inhibitors such as an aromatase inhibitor (such as for example, 4-hydroxyandrostenedione (4-OHA)) and/or steroids - such as the naturally occurring neurosteroids dehydroepiandrosterone sulfate (DHEAS) and pregnenolone sulfate (PS) and/or other structurally similar organic compounds. Examples of other STS inhibitors may be found in the above references. By way of example, STS inhibitors for use in the present invention include EMATE, and either or both of the 2-ethyl and 2-methoxy 17-deoxy compounds that are analogous to compound 5 presented herein.

[0218] In addition, or in the alternative, the compound of the present invention may be used in combination with a biological response modifier.

[0219] The term biological response modifier ("BRM") includes cytokines, immune modulators, growth factors, haematopoiesis regulating factors, colony stimulating factors, chemotactic, haemolytic and thrombolytic factors, cell surface receptors, ligands, leukocyte adhesion molecules, monoclonal antibodies, preventative and therapeutic vaccines, hormones, extracellular matrix components, fibronectin, etc. For some applications, preferably, the biological response modifier is a cytokine. Examples of cytokines include: interleukins (IL) - such as IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-
8, IL-9, IL-10, IL-11, IL-12, IL-19; Tumour Necrosis Factor (TNF) - such as TNF-α; Interferon alpha, beta and gamma; TGF-β. For some applications, preferably the cytokine is tumour necrosis factor (TNF). For some applications, the TNF may be any type of TNF - such as TNF-α, TNF-β, including derivatives or mixtures thereof. More preferably the cytokine is TNF-α. Teachings on TNF may be found in the art - such as WO-A-98/08870 and WO-A-98/13348.

**ADMINISTRATION**

[0220] Typically, a physician will determine the actual dosage which will be most suitable for an individual subject and it will vary with the age, weight and response of the particular patient. The dosages below are exemplary of the average case. There can, of course, be individual instances where higher or lower dosage ranges are merited.

[0221] The compositions of the present invention may be administered by direct injection. The composition may be formulated for parenteral, mucosal, intramuscular, intravenous, subcutaneous, intraocular or transdermal administration. Depending upon the need, the agent may be administered at a dose of from 0.01 to 30 mg/kg body weight, such as from 0.1 to 10 mg/kg, more preferably from 0.1 to 1 mg/kg body weight.

[0222] By way of further example, the agents of the present invention may be administered in accordance with a regimen of 1 to 4 times per day, preferably once or twice per day. The specific dose level and frequency of dosage for any particular patient may be varied and will depend upon a variety of factors including the activity of the specific compound employed, the metabolic stability and length of action of that compound, the age, body weight, general health, sex, diet, mode and time of administration, rate of excretion, drug combination, the severity of the particular condition, and the host undergoing therapy.

[0223] Aside from the typical modes of delivery - indicated above - the term "administered" also includes delivery by techniques such as lipid mediated transfection, liposomes, immunoliposomes, lipofectin, cationic facial amphiphiles (CFAs) and combinations thereof. The routes for such delivery mechanisms include but are not limited to mucosal, nasal, oral, parenteral, gastrointestinal, topical, or sublingual routes.

[0224] The term "administered" includes but is not limited to delivery by a mucosal route, for example, as a nasal spray or aerosol for inhalation or as an ingestable solution; a parenteral route where delivery is by an injectable form, such as, for example, an intravenous, intramuscular or subcutaneous route.

[0225] Thus, for pharmaceutical administration, the STS inhibitors of the present invention can be formulated in any suitable manner utilising conventional pharmaceutical formulating techniques and pharmaceutical carriers, adjuvants, excipients, diluents etc. and usually for parenteral administration. Approximate effective dose rates may be in the range from 1 to 1000 mg/day, such as from 10 to 900 mg/day or even from 100 to 800 mg/day depending on the individual activities of the compounds in question and for a patient of average (70Kg) bodyweight. More usual dosage rates for the preferred and more active compounds will be in the range 200 to 800 mg/day, more preferably, 200 to 500 mg/day, most preferably from 200 to 250 mg/day. They may be given in single dose regimes, split dose regimes and/or in multiple dose regimes lasting over several days. For oral administration they may be formulated in tablets, capsules, solution or suspension containing from 100 to 500 mg of compound per unit dose. Alternatively and preferably the compounds will be formulated for parenteral administration in a suitable parenterally administrable carrier and providing single daily dosage rates in the range 200 to 800 mg, preferably 200 to 500, more preferably 200 to 250 mg. Such effective daily doses will, however, vary depending on inherent activity of the active ingredient and on the bodyweight of the patient, such variations being within the skill and judgement of the physician.

**CELL CYCLING**

[0226] The compounds of the present invention may be useful in the method of treatment of a cell cycling disorder.

[0227] Thus, the compound of the present invention may be suitable for use in the treatment of cell cycling disorders such as cancers, including hormone dependent and hormone independent cancers.

[0228] In addition, the compound of the present invention may be suitable for the treatment of cancers such as breast cancer, ovarian cancer, endometrial cancer, sarcomas, melanomas, prostate cancer, pancreatic cancer etc. and other solid tumours.

[0229] For some applications, cell cycling is inhibited and/or prevented and/or arrested, preferably wherein cell cycling is prevented and/or arrested. In one aspect cell cycling may be inhibited and/or prevented and/or arrested in the G2/M phase. In one aspect cell cycling may be irreversibly prevented and/or inhibited and/or arrested, preferably wherein cell cycling is irreversibly prevented and/or arrested.

[0230] By the term "irreversibly prevented and/or inhibited and/or arrested" it is meant after application of a compound of the present invention, on removal of the compound the effects of the compound, namely prevention and/or inhibition and/or arrest of cell cycling, are still observable. More particularly by the term "irreversibly prevented and/or inhibited and/or arrested" it is meant that when assayed in accordance with the cell cycling assay protocol presented herein, cells treated with a compound of interest show less growth after Stage 2 of the protocol I than control cells. Details on this
Thus, the present invention provides compounds which: cause inhibition of growth of oestrogen receptor positive (ER+) and ER negative (ER-) breast cancer cells in vitro by preventing and/or inhibiting and/or arresting cell cycling; and/or cause regression of nitroso-methyl urea (NMU)-induced mammary tumours in intact animals (i.e. not ovariectomised), and/or prevent and/or inhibit and/or arrest cell cycling in cancer cells; and/or act in vivo by preventing and/or inhibiting and/or arresting cell cycling and/or act as a cell cycling agonist.

**CELL CYCLING ASSAY**

**(PROTOCOL 7)**

Procedure

**Stage 1**

[0232] MCF-7 breast cancer cells are seeded into multi-well culture plates at a density of 105 cells/well. Cells were allowed to attach and grown until about 30% confluent when they are treated as follows:

- Control - no treatment
- Compound of Interest (COI) 20μM

[0233] Cells are grown for 6 days in growth medium containing the COI with changes of medium/COI every 3 days. At the end of this period cell numbers were counted using a Coulter cell counter.

**Stage 2**

[0234] After treatment of cells for a 6-day period with the COI cells are re-seeded at a density of 10⁴ cells/well. No further treatments are added. Cells are allowed to continue to grow for a further 6 days in the presence of growth medium. At the end of this period cell numbers are again counted.

**CANCER**

[0235] As indicated, the compounds of the present invention may be useful in the treatment of a cell cycling disorder. A particular cell cycling disorder is cancer.

[0236] We believe that the compound of the present invention provides a means for the treatment of cancers and, especially, breast cancer.

[0237] In addition or in the alternative the compound of the present invention may be useful in the blocking the growth of cancers including leukaemias and solid tumours such as breast, endometrium, prostate, ovary and pancreatic tumours.

**THERAPY CONCERNING OESTROGEN**

[0238] We believe that some of the compounds of the present invention may be useful in the control of oestrogen levels in the body - in particular in females. Thus, some of the compounds may be useful as providing a means of fertility control - such as an oral contraceptive tablet, pill, solution or lozenge. Alternatively, the compound could be in the form of an implant or as a patch.

[0239] Thus, the compounds of the present invention may be useful in treating hormonal conditions associated with oestrogen.

[0240] In addition or in the alternative the compound of the present invention may be useful in treating hormonal conditions in addition to those associated with oestrogen. Hence, the compound of the present invention may also be capable of affecting hormonal activity and may also be capable of affecting an immune response.

**NEURODEGENERATIVE DISEASES**

[0241] We believe that some of the compounds of the present invention may be useful in the treatment of neurodegenerative diseases, and similar conditions.

[0242] By way of example, it is believed that STS inhibitors may be useful in the enhancing the memory function of patients suffering from illnesses such as amnesia, head injuries, Alzheimer's disease, epileptic dementia, presenile dementia, post traumatic dementia, senile dementia, vascular dementia and post-stroke dementia or individuals otherwise...
seeking memory enhancement.

**TH1**

[0243] We believe that some of the compounds of the present invention may be useful in regulating TH1 cytokine response.

[0244] By way of example, it is believed that the presence of STS inhibitors within the macrophage or other antigen presenting cells may lead to a decreased ability of sensitised T cells to mount a TH1 (high IL-2, IFN-γ; low IL-4) response. The normal regulatory influence of other steroids such as glucocorticoids would therefore predominate.

**INFLAMMATORY CONDITIONS**

[0245] We believe that some of the compounds of the present invention may be useful in treating inflammatory conditions - such as conditions associated with any one or more of: autoimmunity, including for example, rheumatoid arthritis, type I and II diabetes, systemic lupus erythematosus, multiple sclerosis, myasthenia gravis, thyroiditis, vasculitis, ulcerative colitis and Crohn’s disease, skin disorders e.g. psoriasis and contact dermatitis; graft versus host disease; eczema; asthma and organ rejection following transplantation.

[0246] By way of example, it is believed that STS inhibitors may prevent the normal physiological effect of DHEA or related steroids on immune and/or inflammatory responses.

[0247] The compounds of the present invention may be useful in the manufacture of a medicament for revealing an endogenous glucocorticoid-like effect.

**OTHER THERAPIES**

[0248] It is also to be understood that the compound/composition of the present invention may have other important medical implications.

[0249] For example, the compound or composition of the present invention may be useful in the treatment of the disorders listed in WO-A-99/52890 - viz:

In addition, or in the alternative, the compound or composition of the present invention may be useful in the treatment of disorders listed in WO-A-98/05635. For ease of reference, part of that list is now provided: cancer, inflammation or inflammatory disease, dermatological disorders, fever, cardiovascular effects, haemorrhage, coagulation and acute phase response, cachexia, anorexia, acute infection, HIV infection, shock states, graft-versus-host reactions, autoimmune disease, reperfusion injury, meningitis, migraine and aspirin-dependent anti-thrombosis; tumour growth, invasion and spread, angiogenesis, metastases, malignant, ascites and malignant pleural effusion; cerebral ischaemia, ischaemic heart disease, osteoarthritis, rheumatoid arthritis, osteoporosis, asthma, multiple sclerosis, neurodegeneration, Alzheimer’s disease, atherosclerosis, stroke, vasculitis, Crohn’s disease and ulcerative colitis; periodontitis, gingivitis; psoriasis, atopic dermatitis, chronic ulcers, epidermolysis bullosa; corneal ulceration, retinopathy and surgical wound healing; rhinitis, allergic conjunctivitis, eczema, anaphylaxis; restenosis, congestive heart failure, endometriosis, atherosclerosis or endoclerosis.

[0250] In addition, or in the alternative, the compound or composition of the present invention may be useful in the treatment of disorders listed in WO-A-98/07859. For ease of reference, part of that list is now provided: cytokine and cell proliferation/differentiation activity; immunosuppressant or immunostimulant activity (e.g. for treating immune deficiency, including infection with human immune deficiency virus; regulation of lymphocyte growth; treating cancer and many autoimmune diseases, and to prevent transplant rejection or induce tumour immunity); regulation of haematopoiesis, e.g. treatment of myeloid or lymphoid diseases; promoting growth of bone, cartilage, tendon, ligament and nerve tissue, e.g. for healing wounds, treatment of burns, ulcers and periodontal disease and neurodegeneration; inhibition or activation of follicle-stimulating hormone (modulation of fertility); chemotactic/chemokinetic activity (e.g. for mobilising specific cell types to sites of injury or infection); haemostatic and thrombolytic activity (e.g. for treating haemophilia and stroke); antiinflammatory activity (for treating e.g. septic shock or Crohn’s disease); as antimicrobials; modulators of e.g. metabolism or behaviour; as analgesics; treating specific deficiency disorders; in treatment of e.g. psoriasis, in human or veterinary medicine.

[0251] In addition, or in the alternative, the composition of the present invention may be useful in the treatment of disorders listed in WO-A-98/09985. For ease of reference, part of that list is now provided: macrophage inhibitory and/or T cell inhibitory activity and thus, antiinflammatory activity; anti-immune activity, i.e. inhibitory effects against a cellular and/or humoral immune response, including a response not associated with inflammation; inhibit the ability of macrophages and T cells to adhere to extracellular matrix components and fibronectin, as well as up-regulated fas receptor
expression in T cells; inhibit unwanted immune reaction and inflammation including arthritis, including rheumatoid arthritis, inflammation associated with hypersensitivity, allergic reactions, asthma, systemic lupus erythematosus, collagen diseases and other autoimmune diseases, inflammation associated with atherosclerosis, arteriosclerosis, atherosclerotic heart disease, reperfusion injury, cardiac arrest, myocardial infarction, vascular inflammatory disorders, respiratory distress syndrome or other cardiopulmonary diseases, inflammation associated with peptic ulcer, ulcerative colitis and other diseases of the gastrointestinal tract, hepatic fibrosis, liver cirrhosis or other hepatic diseases, thyroiditis or other glandular diseases, glomerulonephritis or other renal and urologic diseases, otitis or other oto-rhino-laryngological diseases, dermatitis or other dermal diseases, periodontal diseases or other dental diseases, orchitis or epididimo-orchitis, infertility, orchidai trauma or other immune-related testicular diseases, placental dysfunction, placental insufficiency, habitual abortion, eclampsia, pre-eclampsia and other immune and/or inflammatory-related gynaecological diseases, posterior uveitis, intermediate uveitis, anterior uveitis, conjunctivitis, chorioretinitis, uveoretinitis, optic neuritis, intraocular inflammation, e.g. retinitis or cystoid macular oedema, sympathetic ophthalmia, scleritis, retinitis pigmentosa, immune and inflammatory components of degenerative fondus disease, inflammatory components of ocular trauma, ocular inflammation caused by infection, proliferative vitreo-retinopathies, acute ischaemic optic neuropathy, excessive scarring, e.g. following glaucoma filtration operation, immune and/or inflammation reaction against ocular implants and other immune and inflammatory-related ophthalmic diseases, inflammation associated with autoimmune diseases or conditions or disorders where, both in the central nervous system (CNS) or in any other organ, immune and/or inflammation suppression would be beneficial, Parkinson's disease, complication and/or side effects from treatment of Parkinson's disease, AIDS-related dementia complex HIV-related encephalopathy, Devic's disease, Sydenham chorea, Alzheimer's disease and other degenerative diseases, conditions or disorders of the CNS, inflammatory components of strokes, post-polio syndrome, immune and inflammatory components of psychiatric disorders, myelitis, encephalitis, subacute sclerosing pan-encephalitis, encephalomyelitis, acute neuropathy, subacute neuropathy, chronic neuropathy, Guillain-Barre syndrome, Sydenham chora, myasthenia gravis, pseudo-tumour cerebri, Down's Syndrome, Huntington's disease, amyotrophic lateral sclerosis, inflammatory components of CNS compression or CNS trauma or infections of the CNS, inflammatory components of muscular atrophies and dystrophies, and immune and inflammatory related diseases, conditions or disorders of the central and peripheral nervous systems, post-traumatic inflammation, septic shock, infectious diseases, inflammatory complications or side effects of surgery, bone marrow transplantation or other transplantation complications and/or side effects, inflammatory and/or immune complications and side effects of gene therapy, e.g. due to infection with a viral carrier, or inflammation associated with AIDS, to suppress or inhibit a humoral and/or cellular immune response, to treat or ameliorate monocyte or leukocyte proliferative diseases, e.g. leukaemia, by reducing the amount of monocytes or lymphocytes, for the prevention and/or treatment of graft rejection in cases of transplantation of natural or artificial cells, tissue and organs such as cornea, bone marrow, organs, lenses, pacemakers, natural or artificial skin tissue.

**COMPOUND PREPARATION**

**[0252]** The compounds of the present invention may be prepared by reacting an appropriate alcohol with a suitable chloride. By way of example, the sulphamate compounds of the present invention may be prepared by reacting an appropriate alcohol with a suitable sulfamoyl chloride, of the formula R₃R₄NSO₂Cl.

**[0253]** Typical conditions for carrying out the reaction are as follows.

**[0254]** Sodium hydride and a sulfamoyl chloride are added to a stirred solution of the alcohol in anhydrous dimethyl formamide at 0°C. Subsequently, the reaction is allowed to warm to room temperature whereupon stirring is continued for a further 24 hours. The reaction mixture is poured onto a cold saturated solution of sodium bicarbonate and the resulting aqueous phase is extracted with dichloromethane. The combined organic extracts are dried over anhydrous MgSO₄. Filtration followed by solvent evaporation in vacuo and co-evaporated with toluene affords a crude residue which is further purified by flash chromatography.

**[0255]** Preferably, the alcohol is derivatised, as appropriate, prior to reaction with the sulfamoyl chloride. Where necessary, functional groups in the alcohol may be protected in known manner and the protecting group or groups removed at the end of the reaction.

**[0256]** Preferably, the sulphamate compounds are prepared according to the teachings of Page et al (1990 Tetrahedron 46; 2059-2068).

**[0257]** Preferred preparations are also presented in the following text.

**SUMMARY**

**[0258]** In summation, the present invention provides novel compounds for use as steroid sulphatase inhibitors and/or aromatase inhibitors and/or modulators of apoptosis and/or modulators of cell cycling and/or cell growth, and pharmaceutical compositions containing them.
EXAMPLES

[0259] The present invention will now be described in further detail by way of example only with reference to the accompanying figure in which:-

Figure 1 shows a summary scheme; and
Figure 2 shows a summary scheme.

[0260] The present invention will now be described only by way of example. However, it is to be understood that the examples also present preferred compounds of the present invention, as well as preferred routes for making same and useful intermediates in the preparation of same.

Experimental

General Methods

[0261] NMR Spectra were recorded on Jeol 270 MHz or Bruker 400 MHz instruments. Low resolution mass spectra were obtained from a Micromass platform LCZ (APCI +). HPLC data was obtained from a Waters Alliance-HT-2790 machine with a Symmetry R C18 column. Unless otherwise stated HPLC grade solvents were used and commercial reagents and starting materials were used without further purification. Thin layer chromatography was undertaken using Kieselgel 60 F254 plates (Merck). For automated chromatography the Argonaut parallel purification system Flashmaster II was used with Argonaut pre-packed silica columns of specified size. Elution methods employed:

**method1:** 0.00 min, 100 % hexane; 5.00 min, 50 % hexane, 50 % EtOAc; 10.00 min, 50 % hexane, 50 % EtOAc; 12.00 min, 100 % EtOAc; 20.00 min, 100 % EtOAc; 20.01 min, 100 % hexane; 25.00 min, 100 % hexane.

**method2:** 0.00 min, 100 % hexane; 5.00 min, 50 % hexane, 50 % EtOAc; 10.00 min, 50 % hexane, 50 % EtOAc; 12.50 min, 100 % EtOAc; 25.00 min, 100 % EtOAc; 25.01 min, 100 % hexane; 30.00 min, 100 % hexane.

**method3:** 0.00 min, 100 % dichloromethane; 2.50 min, 100 % hexane; 7.50 min, 50 % hexane, 50 % EtOAc; 12.50 min, 75 % EtOAc, 25 % dichloromethane; 15.00 min, 100 % EtOAc; 25.00 min, 100 % EtOAc; 25.01 min, 100 % hexane; 30.00 min, 100 % hexane.

**method4:** 0.00 min, 100 % dichloromethane; 2.50 min, 100 % hexane; 7.50 min, 50 % hexane, 50 % EtOAc; 12.50 min, 75 % EtOAc, 25 % dichloromethane; 20.00 min, 100 % EtOAc; 30.00 min, 100 % EtOAc; 30.01 min, 100 % hexane; 35.00 min, 100 % hexane.

**method5:** 0.00 min, 100 % hexane; 10.00 min, 100 % EtOAc; 20.00 min, 100 % EtOAc; 20.01 min, 90 % EtOAc, 10 % MeOH; 25.00 min, 90 % EtOAc, 10 % MeOH; 25.01 min, 100 % hexane; 30.00 min, 100 % hexane.

**method6:** 0.00 min, 100 % EtOAc; 20.00 min, 100 % EtOAc; 20.01 min, 90 % EtOAc, 10 % MeOH; 30.00 min, 90 % EtOAc, 10 % MeOH; 30.01 min, 100 % hexane; 35.00 min, 100 % hexane.

**method7:** 0.00 min, 100 % dcm; 7.50 min, 100 % dcm; 7.51 min, 100 % hexane; 20.00 min, 100 % EtOAc; 30.00 min, 100 % EtOAc; 30.01 min, 100 % hexane; 35.00 min, 100 % hexane.

**method8:** 0.00 min, 100 % hexane; 5.00 min, 100 % hexane; 15.00 min, 100 % dcm; 25.00 min, 100 % EtOAc; 35.00 min, 100 % EtOAc; 35.01 min, 100 % hexane; 40.00 min, 100 % hexane.

**method9:** 0.00 min, 100 % EtOAc; 25.00 min, 100 % EtOAc; 25.01 min, 90 % EtOAc, 10 % MeOH; 35.00 min, 90 % EtOAc, 10 % MeOH; 35.01 min, 100 % hexane; 38.00 min, 100 % hexane.

**method10:** 0.00 min, 100 % hexane; 10.00 min, 100 % EtOAc; 20.00 min, 100 % EtOAc; 20.01 min, 100 % hexane; 25.00 min, 100 % hexane.

Synthetic Routes

[0262] Compounds which were comparative and in accordance with the present invention were synthesised in accordance with the synthetic routes and schemes.
6-Hydroxynaphthalen-2-yl-2-boronic acid (TJA02057)

C_{10}H_{9}BO_{3} MW 187.99

[0263] A dry 250 ml r.b. flask was loaded with 6-bromo-2-naphthol (5.38 g, 24.1 mmol) and purged with \( \text{N}_2 \). Anhydrous THF (80 mL) added with stirring and the vessel cooled to -78 °C (dry ice/acetone bath). After 30 mins n-BuLi, 2.3 M in hexanes, (12.9 mL, 28.9 mmol) was added dropwise over 20 min. The reaction was left to stir for 1 h. Triisopropyl borate (6.65 mL, 28.9 mmol) was added dropwise with the reaction still at -78 °C. After 15 min of stirring at this temperature the dry ice/acetone bath was removed. At 0 °C 2 M HCl (aq) (5 mL) was added and the reaction left to stir for a further 15 min. THF removed under vacuum and residues taken up in distilled water (20 mL) and dichloromethane (50 mL) added. The resulting white precipitate was filtered and washed with dichloromethane and distilled water. Dried under vacuum at 70 °C to give the title compound as an off white solid (1.88 g, 43 %).

\[ \delta = 7.04-7.08 \text{ (2H, m, ArH), 7.58-7.61 \text{ (1H, d, } J = 8.4 \text{ Hz, ArH), 7.73-7.76 \text{ (2H, d, } J = 8.4 \text{ Hz, ArH), 7.72-7.73 \text{ (1H, d, } J = 1.5 \text{ Hz, ArH), 8.06 \text{ (2H, s, ArB(OH)\textsubscript{2}), 8.23 \text{ (1H, s, ArH) and 9.83 \text{ (1H, s, ArOH);}}}}} \]

\[ HPLC (70 \% \text{ CH}_3\text{CN in H}_2\text{O}) \tau = 5.431 (97.67 \%), \]

\[ LCMS (APCI), m/z 187.04 (\text{M}^+ - \text{H, 100 %}), 142.92 ((\text{M}^+ - \text{H}) - \text{B(OH)\textsubscript{2}}, 55). \]
1-Bromo-3-bromomethyl-5-methylbenzene (TJA01023)

C₆H₈Br₂ MW 263.96

[0264] To a solution of sodium bromate (24.4 g, 162 mmol) in distilled H₂O (40 mL) was added 5-bromo-m-xylene (10.0 g, 54.0 mmol) in cyclohexane (108 mL). To this clear mixture a solution of sodium hydrogen sulphate (30.8 g, 162 mmol) in distilled H₂O (81 mL) was added drop wise with vigorous stirring over 60 min. The reaction mixture was stirred for a further 3 h at room temperature. The ethyl acetate was separated and diethyl ether (100 mL) added. This was then washed with saturated Na₂SO₃(aq) (100 mL), distilled water (100 ml x 2) and brine (100 mL). Dried over Na₂SO₄ and solvent removed in vacuo to leave a clear syrup. Column chromatography (hexane) eluted the title compound as a clear oil that crystallised on standing to give a white crystalline solid that was used without further purification (8.45 g, 60 %); Rf 0.52 (hexane), c.f 0.52 (dibromobenzylbromide), 0.45 (1,5-dibenzylbromide), 0.6 (5-bromo-m-xylene).

1H NMR (270 MHz, CDCl₃) δ 2.31 (3H, s, ArCH₃), 4.38 (2H, s, ArCH₂Br), 7.11 (1H, s, ArH), 7.25 (1H, s, ArH) and 7.32 (1H, s, ArH);

(3-Bromo-5-methyl-phenyl)acetonitrile (TJA01029)

C₉H₈BrN MW 210.07

[0265] TJA01023 (11.3 g, 42.7 mmol), potassium cyanide (3.34 g, 51.2 mmol) and tetrabutylammonium bromide (0.700 g, 2.10 mmol) were loaded to an r.b. flask together with dichloromethane (60 mL) and distilled water (15 mL). With vigorous stirring the reaction mixture was set to reflux (45 °C) for 24 h. On cooling the organic fraction was separated and washed with distilled water (50 mL x 2) and brine (50 mL) then dried over Na₂SO₄ and solvent removed in vacuo to leave a red/orange oil. Column chromatography initially eluting with hexane separated the dibromobenzylbromide impurity. Further elution with hexane/dichloromethane (50:50) gave the title compound as a clear yellow oil (6.63 g, 74 %), Rf 0.54 (hexane/dichloromethane 50:50)

1H NMR (270 MHz, CDCl₃) δ 2.31 (3H, s, ArCH₃), 3.66 (2H, s, ArCH₂CN), 7.06 (1H, s, ArH), 7.25 (1H, s, ArH) and 7.27 (1H, s, ArH);

2-(3-Bromo-5-methylphenyl)-2-methyl-propionitrile (TJA01035)

C₁₁H₁₂BrN MW 238.13

[0266] To a dry r.b. flask purged with N₂(g) was added TJA01029 (6.00 g, 28.6 mmol) and dry THF (20 mL). With stirring this was cooled via an ice-water bath and NaH (1.71 g, 71.4 mmol) was added gradually and then left to stir at 0 °C under N₂(g) for 15 min. Iodomethane (3.91 mL, 62.8 mmol) was then added dropwise. The resulting suspension was left to stir at room temperature for 16 h. Propan-2-ol (5 mL) was carefully added to the reaction mixture followed by dichloromethane (50 mL) and washed with distilled H₂O (50 mL x 2) and brine (50 mL). Dried over Na₂SO₄ and solvent removed in vacuo to leave a red/orange oil. Column chromatography (hexane/dichloromethane 50:50) eluted the title compound as a light yellow oil (5.65 g, 83 %);

1H NMR (270 MHz, CDCl₃) δ 1.68 (6H, s, ArC(CH₃)₂CN), 2.33 (3H, s, ArCH₃), 7.26 (1H, s, ArH) and 7.34 (1H, s, ArH);

HPLC (80 % CH₃CN in H₂O) tₚ=2.78 (72.5 %);

LCMS (APCI), m/z 239.93 (81BrM+ + H, 3 %), 237.93 (79BrM+ + H, 4), 212.92 ((81BrM+ + H) -CN, 100), 210.92 ((79BrM+ + H) -CN, 96).

2-(3-Bromo-5-bromomethyl-phenyl)-2-methyl-propionitrile (TJA01036)

C₁₁H₁₁Br₂N MW 317.03

[0267] To a solution of sodium bromate (9.51 g, 63.0 mmol) in distilled H₂O (32 mL) was added TJA01035 (5.00 g,
21.0 mmol) in cyclohexane (42 mL). To this clear mixture a solution of sodium hydrogen sulphate (7.56 g, 63.0 mmol) in distilled H2O (63 mL) was added drop wise with vigorous stirring over 1 h. The reaction mixture was stirred for a further 4 h at room temperature. The cyclohexane was separated and diethyl ether (100 mL) added. This was then washed with saturated Na2SO3(aq) (50 mL), distilled water (50 mL x 2) and brine (50 mL). Dried over Na2SO4 and solvent removed in vacuo to leave viscous orange oil. Column chromatography (hexane/dichloromethane 50:50) eluted starting material and the title compound as a clear viscous oil (3.64 g, 54 %), Rf 0.55 (hexane/dichloromethane 50:50), c.f. 0.38. (2-(3-bromo-5-methylphenyl)-2-methyl-propionitrile); 1H NMR (270 MHz, CDCl3) δ 1.71 (6H, s, ArC(CH3)2CN), 4.41 (2H, s, ArCH2Br), 7.40-7.41 (1H, t, J=1.7, ArH) and 7.48-7.51 (2H, m, ArH); HPLC (80 % CH3CN in H2O) tr=2.508 (83.05 %); LRMS (FAB+), m/z 319.1 (81BrM+ + H, 100 %), 317.1 (79BrM+ + H, 100).

2-(3-Bromo-5-[1,2,4-triazole-1-yl-methylphenyl]-2-methylpropionitrile (TJA01037, STX1453)

[0268] TJA01036 (3.20 g, 10.1 mmol), 1,2,4-triazole (1.05 g, 15.2 mmol), potassium carbonate (1.40 g, 10.1 mmol), potassium iodide (0.10 g, 0.600 mmol) and acetone (150 mL) were loaded to an r.b. flask. With vigorous stirring this mixture was set to reflux (60 °C) for 24 h. The reaction mixture was allowed to cool and acetone was removed in vacuo. The residues were taken up in ethyl acetate (50 mL) and washed with distilled water (50 mL x 2), 1M NaOH (50 mL x 1) and brine (50 mL). Dried over Na2SO4 and solvent removed in vacuo to leave a yellow oil. Column chromatography (ethyl acetate) eluted the title compound as a clear viscous oil that crystallised on standing to give a colourless crystalline solid (1.97 g, 64 %), mp 70.9-71.8 °C; Rf 0.24 (ethyl acetate).

1H NMR (270 MHz, CDCl3) δ 1.68 (6H, s, ArC(CH3)2CN), 5.33 (2H, s, ArCH2N), 7.40-7.41 (2H, t, J=1.7, ArH), 7.54-7.55 (1H, t, J=1.7, ArH), 7.99 (1H, s, C2H2N3) and 8.12 (1H, s, C2H2N3); 13C NMR (100.5 MHz, CDCl3) δ 29.0 (CH3), 37.0 (C), 52.6 (CH2), 123.5, 123.7, 128.6, 130.4, 137.7, 143.4, 144.5 and 152.6 (one overlapping peak); HPLC (60 % CH3CN in H2O increasing to 95 % over 10 min) tr= 2.293 (98.87 %); MS (EI), m/z 307.09 (81BrM+ + H, 100 %), 305.09 (79BrM+ + H, 99), 238.01 ((81BrM+ + H) - C2H2N3, 22), 236.01 ((79BrM+ + H) -C2H2N3, 24).

2-(3-((1H-1,2,4-Triazol-1-yl)methyl)-5-(2-hydroxynaphthalen-6-yl)phenyl)-2-methylpropanenitrile (TJA02061)

[0269] A 10 mL microwave vial was loaded with TJA02004 (0.150 g, 0.492 mmol), TJA02057 (0.138 g, 0.737 mmol), potassium carbonate (0.170 g, 1.23 mmol), tetrabutylammonium bromide (0.164 g, 0.492 mmol), Pd(OAc)2 (0.003-0.004 g, 2-3 mol %), ethanol (1.5 mL) and distilled water (3.5 mL). The vial was sealed and loaded (with no prior degassing) into a CEM Explorer Microwave. After a run time of 10 min at 150 °C the reaction mixture was allowed to cool and ethyl acetate (50 mL) added. This was then washed with distilled water (30 mL x 3) and brine (30 mL). The organic layer was dried over MgSO4, filtered and solvent removed in vacuo to leave a yellow/brown residue. The crude product was purified via flash chromatography (20 g column, method4) which eluted the title compound as a light yellow solid (0.130 g, 72 %), mp 193.7-198.4 °C; Rf 0.42 (ethyl acetate);

1H NMR (270 MHz, DMSO-d6) δ 1.76 (6H, s, ArC(CH3)2CN), 5.55 (2H, s, ArCH2N), 7.11-7.21 (2H, t, J= 1.8 & 8.7 Hz, ArH), 7.79-7.81 (2H, d, J= 8.7 Hz, ArH), 8.02 (1H, s, C2H2N3), 8.09 (1H, s, ArH), 8.76 (1H, s, ArH), 7.68-7.72 (1H, dd, J= 1.8 & 8.7 Hz, ArH), 7.79-7.81 (2H, m, ArH), 7.85-7.88 (1H, d, J= 8.7 Hz, ArH), 8.02 (1H, s, C2H2N3), 8.09 (1H, s, ArH), 8.76 (1H, s, C2H2N3) and 9.88 (1H, s, ArOH); 13C NMR (67.9 MHz, DMSO-d6) δ 28.9 (CH3), 37.4 (C), 52.6 (CH2), 109.0 (CH), 119.8 (CH), 123.6 (CH), 124.1 (CH), 125.1 (C), 125.8 (CH), 126.1 (CH), 126.4 (CH), 127.4 (CH), 128.4 (C), 130.5 (CH), 134.0 (C), 134.7 (C), 138.2 (C), 142.0 (C), 143.3 (C), 145.0 (CH), 152.4 (CH) and 156.3 (C); HPLC (90 % CH3CN in H2O) tr= 3.697 (100 %); LCMS (APCI), m/z 369.65 (M+ + H, 100 %).
1-(3-Bromobenzyl)-1H-(1,2,4)-triazole (TJA01009, STX1360)

C9H8BrN3 MW 238.08

[0270] To a solution of 3-bromobenzylbromide (20.0 g, 80.0 mmol) in acetone (300 mL) was added 1,2,4-triazole (10.8 g, 120 mmol), potassium carbonate (11.0 g, 80.0 mmol) and potassium iodide (0.790 g, 4.72 mmol). The resulting white suspension was heated to 55 °C with vigorous stirring for 16 h. The yellow reaction mixture was cooled and ethyl acetate (100 mL) added. This was then washed with distilled water (100 mL x 2), 1M NaOH (aq) (100 mL x 2) and brine (100 mL). The organic layer was dried over Na2SO4, filtered and solvent removed in vacuo to leave a clear yellow oil. The crude product was purified by column chromatography (ethyl acetate) to give the title compound as a yellow crystalline solid (12.4 g, 65 %), Rf. 0.4 (ethyl acetate), c.f. 0.95 (3-bromobenzylbromide);

1H NMR (270 MHz, CDCl3) δ 5.27 (2H, s, ArCH2N), 7.15-7.42 (5H, m, ArH), 7.95 (1H, s, C2H2N3) and 8.07 (1H, s, C2H2N3);

13C NMR (100.5 MHz, CDCl3) δ 52.7 (CH2), 123.1, 126.5, 130.6, 130.9, 131.8, 136.9, 143.2 and 152.4;

HPLC (90 % CH3CN in H2O) tR = 2.273 (100 %);

LRMS (FAB+), m/z 240.0. (81BrM+ + H, 100 %), 238.0 (79BrM+ + H, 100);

Anal. Calcd. for C9H8BrN3: C 45.40, H 3.39, N 17.65. Found: C 45.60, H 3.55, N 17.50%.

1-Biphenyl-3-methyl-1H-(1,2,4)-triazole (TJA01006, STX1361)

C15H13N3 MW 235.28

[0271] A 3 necked round bottomed flask was loaded with TJA01009 (0.149 g 0.625 mmol), phenylboronic acid (0.738 g, 0.9000 mmol), toluene (9 mL), ethanol (1mL) and 2M Na2CO3 (aq) (1 mL). This mixture was degassed by bubbling N2 through it for 1 h. A catalytic quantity of Pd(Ph3)4 was added and the reaction mixture heated with vigorous stirring to 115 °C for 20 h. The reaction mixture was allowed to cool and ethyl acetate (100 mL) added. This was then washed with 1M NaOH (aq) (50 mL x 2), distilled water (50 mL x 2) and brine (50 mL). The organic layer was dried over Na2SO4, filtered and solvent removed in vacuo to leave a yellow/brown residue. The crude product was purified by column chromatography (ethyl acetate) to give a yellow oil that crystallised on standing to a waxy yellow solid (Rf 0.4). Recrystallisation (cyclohexane) gave the title compound as a white crystalline solid (0.0300 g, 20 %), m.p. 81.3-81.5 °C; Rf 0.4 (ethyl acetate), c.f. 0.4 (1-biphenyl-3-methyl-1H-(1,2,4)-triazole) and 0.8 (phenylboronic acid);

1H NMR (270 MHz, CDCl3) δ 5.40 (2H, s, ArCH2N), 7.24-7.55 (9H, m, ArH), 7.98 (1H, s, C2H2N3) and 8.09 (1H, s, C2H2N3);

13C NMR (100.5 MHz, CDCl3) δ 53.7 (CH2), 126.8, 127.2, 127.5, 127.7, 128.9, 129.6, 135.1, 140.4, 142.2, 143.2 and 152.3;

HPLC (90 % CH3CN in H2O) tR = 2.216 (100 %);

LCMS (APCI), m/z 236.87 (M*+H, 12 %), 235.74 (M*, 100).
1-(4'-Benzyloxy-biphenyl-3-methyl)-1H-(1,2,4)-triazole (TJA01023, STX1362)

C_{22}H_{19}N_{3}O MW 341.42

[0272] A 3 necked r.b. flask was loaded with TJA01009, (0.119 g 0.500 mmol), 4-benzyloxybenzeneboronic acid (0.137 g, 0.600 mmol), potassium carbonate (0.173 g, 1.25 mmol), tetrabutylammonium bromide (0.166 g, 0.500 mmol) and distilled H_{2}O (3.5 mL). This mixture was degassed by bubbling N_{2}(g) through it for 1 h at 70 °C. A catalytic quantity of Pd(OAc)_{2} (0.006-0.007 g, 2-3 mol%) was added and the reaction mixture heated with vigorous stirring at 70 °C for 1 h. The reaction mixture was allowed to cool and ethyl acetate (100 mL) added. This was then washed with distilled water (50 mL x 3) and brine (50 mL). The organic layer was dried over Na_{2}SO_{4}, filtered and solvent removed in vacuo to leave a yellow solids. The crude product was purified by flash chromatography (20 g column, method10) to give the title compound as yellow solid (0.099 g, 58 %), R_{f}: 0.45 (ethyl acetate), c.f. 0.40 (1-biphenyl-3-methyl-1H-(1,2,4)-triazole) and 0.8 (3-chlorophenylboronic acid);

[0273] 1H NMR (270 MHz, CDCl_{3}) δ 5.09 (2H, s, ArCH_{2}O), 5.38 (2H, s, ArCH_{2}N), 7.01-7.04 (2H, d, J=8 Hz, AA'BB'), 7.16-7.19 (1H, m, ArH), 7.31-7.53 (10H, m, ArH), 7.97 (1H, m, ArH), 7.97 (1H, s, C_{2}H_{2}N_{3}) and 8.07 (1H, s, C_{2}H_{2}N_{3});

13C NMR (100.5 MHz, CDCl_{3}) δ 53.7 (CH_{2}), 70.1 (CH_{2}), 115.3 (C), 126.3, 126.4, 127.1, 127.5, 128.1, 128.3, 128.7, 129.5, 131.3, 135.1, 136.1, 141.8, 143.1, 152.3 and 158.7; HPLC (80 % CH_{3}CN in H_{2}O) t=2.400 (99.69 %);

LCMS (APCI), m/z 341.86 (M^+ + H, 100 %), 272.77 ((M^+ + H) -C_{2}H_{2}N_{3}, 40);

HRMS (FAB^+) calcd. for C_{22}H_{19}N_{3}O (M)^+ 341.1528, found 341.1526.

STX1384

[0273]
1-(3-Chloro-biphenyl-3-yl-methyl)-1H-(1,2,4-triazole TJA01018, STX1384)

C_{15}H_{12}ClN_{3} MW 269.74

[0274] A 3 necked r.b. flask was loaded with TJA01009 (0.238 g 1.00 mmol), 3-chlorophenylboronic acid (0.253 g, 2.00 mmol), potassium carbonate (0.346 g, 2.50 mmol), tetrabutylammonium bromide (0.332 g, 1.00 mmol), distilled H_{2}O (7 mL) and ethanol (3 mL). This mixture was degassed with N_{2} for 1 h at 70 °C. A catalytic quantity of Pd(OAc)_{2} (0.006-0.007 g, 2-3 mol%) was added and the reaction mixture heated with vigorous stirring to 70 °C for 1 h. The reaction mixture was allowed to cool and ethyl acetate (100 mL) added. This was then washed with 1M NaOH (50 mL x 2), distilled water (50 mL x 2) and brine (50 mL). The organic layer was dried over Na_{2}SO_{4}, filtered and solvent removed in vacuo to leave a yellow/brown residue. The crude product was purified by flash chromatography (20 g column, method1) to give the title compound as a clear oil that crystallised on standing to a waxy white solid (0.219 g, 81 %).

Recrystallisation (cyclohexane) yielded a white crystalline solid (0.121 g, 45 %), m.p. 71.8-72.4 °C;

1H NMR (270 MHz, CDCl_{3}) \delta 5.39 (2H, s, ArCH_{2}N), 7.24-7.51 (8H, m, ArH), 7.97 (1H, s, C_{2}H_{2}N_{3}) and 8.09 (1H, s, C_{2}H_{2}N_{3});

13C NMR (100.5 MHz, CDCl_{3}) \delta 53.5 (CH_{2}), 125.4, 126.8, 127.3, 127.4, 127.5, 127.7, 129.7, 130.1, 134.8, 134.9, 140.8, 142.2, 143.1 and 152.3;

HPLC (60 % CH_{3}CN in H_{2}O) t_{R}=2.521 (99.04 %);

LCMS (APCI), m/z 271.58 (^{35}ClM^{+} + H, 35 %), 269.2 (^{35}ClM^{+} + H, 100), 202.49 (^{37}ClM^{+} + H -C_{2}H_{2}N_{3}, 22 %), 200.49 (^{35}ClM^{+} + H -C_{2}H_{2}N_{3}, 60);

HRMS (FAB+) calcd. for C_{15}H_{12}N_{3}Cl (M^{+}) 269.0720, found 269.0725.

1-(3-Napthalen-biphenyl-2-yl-benzyl)-1H-(1,2,4)-triazole (TJA01019, STX1385)

C_{19}H_{15}N_{3} MW 285.35

[0275] A 3 necked r.b. flask was loaded with TJA01009 (0.238 g 1.00 mmol), 2-naphthaleneboronic acid (0.344 g, 2.00 mmol), potassium carbonate (0.346 g, 2.50 mmol), tetrabutylammonium bromide (0.332 g, 1.00 mmol), distilled H_{2}O (7 mL) and ethanol (3 mL). This mixture was degassed with N_{2} for 1 h at 70 °C. A catalytic quantity of Pd(OAc)_{2} (0.006-0.007 g, 2-3 mol%) was added and the reaction mixture heated with vigorous stirring to 70 °C for 1 h. The reaction mixture was allowed to cool and ethyl acetate (100 mL) added. This was then washed with 1M NaOH (50 mL x 2), distilled water (50 mL x 2) and brine (50 mL). The organic layer was dried over Na_{2}SO_{4}, filtered and solvent removed in vacuo to leave a yellow/brown residue. The crude product was purified by flash chromatography (20 g column, method2) to give the title compound as a clear yellow oil that crystallised on standing to a cream waxy solid (0.165 g, 58 %). Recrystallisation (cyclohexane) yielded a white crystalline solid (0.087 g, 31 %), m.p 73.1-75.2 °C;

1H NMR (270 MHz, CDCl_{3}) \delta 5.43 (2H, s, ArCH_{2}N), 7.26 (1H, s, ArH), 7.45-7.70 (5H, m, ArH), 7.83-7.91 (3H, m, ArH), 7.99 (1H, s, C_{2}H_{2}N_{3}) and 8.11 (1H, s, C_{2}H_{2}N_{3});

13C NMR (100.5 MHz, CDCl_{3}) \delta 53.7 (CH_{2}), 125.4, 126.0, 126.2, 126.5, 126.9, 127.1, 127.7, 129.7, 132.8, 133.6, 135.2, 137.7, 142.2, 143.2 and 152.3; HPLC (80 % CH_{3}CN in H_{2}O) t_{R}=2.466 (99.15 %);

1-(3-Naphthalen-biphenyl-2-yl-benzyl)-1H-(1,2,4)-triazole (TJA01019, STX1385)

C_{19}H_{15}N_{3} MW 285.35

[0275] A 3 necked r.b. flask was loaded with TJA01009 (0.238 g 1.00 mmol), 2-naphthaleneboronic acid (0.344 g, 2.00 mmol), potassium carbonate (0.346 g, 2.50 mmol), tetrabutylammonium bromide (0.332 g, 1.00 mmol), distilled H_{2}O (7 mL) and ethanol (3 mL). This mixture was degassed with N_{2} for 1 h at 70 °C. A catalytic quantity of Pd(OAc)_{2} (0.006-0.007 g, 2-3 mol%) was added and the reaction mixture heated with vigorous stirring to 70 °C for 1 h. The reaction mixture was allowed to cool and ethyl acetate (100 mL) added. This was then washed with 1M NaOH (50 mL x 2), distilled water (50 mL x 2) and brine (50 mL). The organic layer was dried over Na_{2}SO_{4}, filtered and solvent removed in vacuo to leave a yellow/brown residue. The crude product was purified by flash chromatography (20 g column, method2) to give the title compound as a clear yellow oil that crystallised on standing to a cream waxy solid (0.165 g, 58 %). Recrystallisation (cyclohexane) yielded a white crystalline solid (0.087 g, 31 %), m.p 73.1-75.2 °C;

1H NMR (270 MHz, CDCl_{3}) \delta 5.43 (2H, s, ArCH_{2}N), 7.26 (1H, s, ArH), 7.45-7.70 (5H, m, ArH), 7.83-7.91 (3H, m, ArH), 7.99 (1H, s, C_{2}H_{2}N_{3}) and 8.11 (1H, s, C_{2}H_{2}N_{3});

13C NMR (100.5 MHz, CDCl_{3}) \delta 53.7 (CH_{2}), 125.4, 126.0, 126.2, 126.5, 126.9, 127.1, 127.7, 129.7, 132.8, 133.6, 135.2, 137.7, 142.2, 143.2 and 152.3; HPLC (80 % CH_{3}CN in H_{2}O) t_{R}=2.466 (99.15 %);
LCMS (APCI), m/z 286.19 (M^++H, 100%), 217.10 ((M^++H)-C<sub>2</sub>H<sub>2</sub>N₃, 90%); HRMS (FAB*) calcd. for C<sub>19</sub>H<sub>15</sub>N<sub>3</sub> (M)^+ 285.1266, found 285.1253.

**STX1386**

![Chemical structure of STX1386](image)

1-(4'-Chloro-biphenyl-3-yl-methyl)-1H-(1,2,4)-triazole (TJA01024, STX1386)

C<sub>15</sub>H<sub>12</sub>CN<sub>3</sub> MW 269.74

[0276] A 3 necked r.b. flask was loaded with TJA01009 (0.238 g 1.00 mmol), 4-chlorophenylboronic acid (0.253 g, 2.00 mmol), potassium carbonate (0.346 g, 2.50 mmol), tetrabutylammonium bromide (0.332 g, 1.00 mmol), distilled H<sub>2</sub>O (7 mL) and ethanol (3 mL). This mixture was degassed with N<sub>2</sub>(g) for 1 h at 70 °C. A catalytic quantity of Pd(OAc)<sub>2</sub> (0.006-0.007 g, 2-3 mol%) was added and the reaction mixture heated with vigorous stirring to 70 °C for 1 h. The reaction mixture was allowed to cool and ethyl acetate (100 mL) added. This was then washed with 1M NaOH(aq) (50 mL x 2), distilled water (50 mL x 2) and brine (50 mL). The organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and solvent removed in vacuo to leave a yellow/brown residue. The crude product was purified by flash chromatography (20 g column, method2) to give the **title compound** as a clear yellow oil that crystallised on standing to a yellow waxy solid (0.123 g, 46%). Recrystallisation (cyclohexane) yielded a white crystalline solid (0.087 g, 33%), mp 56.9-59.2 °C; R<sub>f</sub> 0.45 (ethyl acetate, c.f. 0.40 (1-biphenyl-3-methyl-1H-(1,2,4)-triazole) and 0.80 (2-naphthaleneboronic acid).

<sup>1</sup>H NMR (270 MHz, CDCl<sub>3</sub>) δ 5.39 (2H, s, ArCH<sub>2</sub>N), 7.37-7.50 (8H, m, ArH), 7.97 (1H, s, C<sub>2</sub>H<sub>2</sub>N<sub>3</sub>) and 8.09 (1H, s, C<sub>2</sub>H<sub>2</sub>N<sub>3</sub>);
<sup>13</sup>C NMR (100.5 MHz, CDCl<sub>3</sub>) δ 53.6 (CH<sub>2</sub>), 126.6, 127.1, 127.3, 128.4, 129.1, 129.7, 135.3, 138.8, 141.0, 143.2 and 152.3 (one overlapping signal);
HPLC (80 % CH<sub>3</sub>CN in H<sub>2</sub>O) t<sub>f</sub>=2.401 (98.36 %);
LCMS (APCI), m/z 272.02 (37ClM^+ + H, 35%), 270.0 (35ClM^+ + H, 100), 202.91 (37ClM^+ + H)-C<sub>2</sub>H<sub>2</sub>N<sub>3</sub>, 21 %), 200.491 (35ClM^+ + H)-C<sub>2</sub>H<sub>2</sub>N<sub>3</sub>, 68);
HRMS (FAB*) calcd. for C<sub>15</sub>H<sub>12</sub>N<sub>3</sub>Cl (M)^+ 269.0720, found 269.0733.

**STX1387**

![Chemical structure of STX1387](image)

1,2,4-triazole, K<sub>2</sub>CO<sub>3</sub>, KI

<table>
<thead>
<tr>
<th>Reagents</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2,4-triazole, K&lt;sub&gt;2&lt;/sub&gt;CO&lt;sub&gt;3&lt;/sub&gt;, KI</td>
<td>STX1380 TJA01009</td>
</tr>
<tr>
<td>Pd(OAc)&lt;sub&gt;2&lt;/sub&gt;, TBAB, K&lt;sub&gt;2&lt;/sub&gt;CO&lt;sub&gt;3&lt;/sub&gt;</td>
<td>STX1369 TJA01009</td>
</tr>
<tr>
<td>H&lt;sub&gt;2&lt;/sub&gt;(g) 10 % Pd/C</td>
<td>56 %</td>
</tr>
</tbody>
</table>

**STX1387**
3’-(1,2,4)Triazole-1-yl-methyl-biphenyl-4-ol (TJA01025, STX1387)

C₁₅H₁₃N₃O MW 251.29

[0277] TJA01022 (0.198 g, 580 mmol) was dissolved in THF (5 mL) and MeOH (5 mL) in an r.b. flask to which was added 10 % Pd/C (0.015 g) to form a black suspension on vigorous stirring. The flask was evacuated and back filled with H₂(g) via a balloon (x3) and then left to stir for 24 h. The reaction mixture was filtered through celite which was subsequently washed with THF (30 mL x 2). Solvent was removed in vacuo to leave a brown residue. Flash chromatography (20 g column, method2) eluted the title compound as a white solid (0.128 g, 88 %). Recrystallisation from ethyl acetate/hexane (7:3) gave a white crystalline solid (0.0810 g, 56 %), mp 164.4-166.2 °C. 

R₇ 0.44 (ethyl acetate), c.f. 0.50 (TJA01022).

¹H NMR (270 MHz, DMSO-d₆) δ 5.45 (2H, s, ArCH₂N), 6.82-6.85 (2H, d, J=8 Hz, ArH), 7.14-7.16 (2H, d, J=7.5 Hz, ArH), 7.35-7.51 (5H, m, ArH), 7.98 (1H, s, C₂H₂N₃) and 9.57 (1H, s, ArOH);

¹³C NMR (100 MHz, DMSO-d₆) δ 52.6 (CH₂), 116.2, 126.0, 126.0, 126.3, 128.2, 129.6, 130.9, 137.3, 141.0, 144.8, 152.2, 157.8;

HPLC (80 % CH₃CN in H₂O) tᵣ = 1.820 (100 %);

LCMS (APCI), m/z 251.74 (M⁺, 72 %), 182.71 (M⁺-C₂H₂N₃, 100).

STX1388

1-(1,1',4',1")Terphenyl-3-yl-methyl-1H-(1,2,4)triazole (TJA01028, STX 1388)

C₂₁H₁₇N₃ MW 311.39

[0278] A 3 necked r.b. flask was loaded with TJA01009 (0.238 g 1.00 mmol), 4’-biphenylboronic acid (0.297 g, 1.50 mmol), potassium carbonate (0.346 g, 2.50 mmol), tetrabutylammonium bromide (0.332 g, 1.00 mmol), distilled H₂O (7 mL) and ethanol (3 mL). This mixture was degassed with N₂(g) for 1 h at 70 °C. A catalytic quantity of Pd(OAc)₂ (0.006-0.007 g, 2-3 mol%) was added and the reaction mixture heated with vigorous stirring to 70 °C for 1 h. The reaction mixture was allowed to cool and ethyl acetate (100 mL) added. This was then washed with 1M NaOH(aq) (50 mL x 2), distilled water (50 mL x 2) and brine (50 mL). The organic layer was dried over Na₂SO₄, filtered and solvent removed in vacuo to leave a yellow/brown residue. The crude product was purified by flash chromatography (20 g column, method2) to give the title compound as a yellow solid (0.170 g, 55 %), mp 144.6-147.3 °C;

R₇ 0.45 (ethyl acetate), c.f. 0.40 (1-(3-bromobenzyl)-1H-(1,2,4)-triazole) and 0.80 (4’-biphenylboronic acid).

¹H NMR (270 MHz, CDCl₃) δ 5.41 (2H, s, ArCH₂N), 7.24-7.67 (13H, m, ArH), 7.98 (1H, s, C₂H₂N₃) and 8.10 (1H, s, C₂H₂N₃);

¹³C NMR (100.5 MHz, CDCl₃) δ 53.7 (CH₂), 126.7, 126.9, 127.1, 127.4, 127.5, 127.6, 128.9, 129.6, 135.2, 139.2, 140.5, 140.6, 141.7, 143.2 and 152.3;

HPLC (80 % CH₃CN in H₂O) tᵣ=2.746 (99.28 %);

LCMS (APCI), m/z 311.57 (M⁺, 100 %), 242.42 (M⁺-C₂H₂N₃, 50).

HRMS (FAB⁺) calcd. for C₂₁H₁₇N₃ (M⁺) 311.1422, found 311.1477.
1-(4'-Methoxy-biphenyl-3-yl-methyl)-1H-(1,2,4)triazole. (TJA01034, STX1452) C_{16}H_{15}N_{3}O MW 265.32

[0279] A 3 necked r.b. flask was loaded with TJA01009 (0.238 g 1.00 mmol), 4-chlorophenylboronic acid (0.253 g, 2.00 mmol), potassium carbonate (0.346 g, 2.50 mmol), tetrabutylammonium bromide (0.332 g, 1.00 mmol), distilled H_{2}O (7 mL) and ethanol (3 mL). This mixture was degassed with N_{2} (g) for 1 h at 70 °C. A catalytic quantity of Pd(OAc)_{2} (0.006-0.007 g, 2-3 mol%) was added and the reaction mixture heated with vigorous stirring to 70 °C for 1 h. The reaction mixture was allowed to cool and ethyl acetate (100 mL) added. This was then washed with 1M NaOH(aq) (50 mL x 2), distilled water (50 mL x 2) and brine (50 mL). The organic layer was dried over Na_{2}SO_{4}, filtered and solvent removed in vacuo to leave a yellow/brown residue. The crude product was purified by flash chromatography (20 g column, method2) to give the title compound as a clear yellow oil that crystallised on standing to a yellow waxy solid (0.129 g, 49 %). Recrystallisation (cyclohexane) yielded a white crystalline solid (0.105 g, 39 %), mp 101.5-102.0 °C; R_{s} 0.5 (ethyl acetate), c.f. 0.40 (1-(3-bromobenzyl)-1H-(1,2,4)-triazole) and 0.80 (4'-biphenylboronic acid).

1H NMR (270 MHz, CDCl_{3}) \delta 3.83 (3H, s, ArOCH_{3}), 5.38 (2H, s, ArCH_{2}N), 6.94-6.97 (2H, d, \textit{J} = 8.5 Hz, AA'BB'), 7.19 (1H, d, \textit{J} = 7.5 Hz, ArH), 7.40-7.50 (5H, m, ArH), 7.97 (1H, s, C_{2}H_{2}N_{3}) and 8.07 (1H, s, C_{2}H_{2}N_{3});

13C NMR (100.5 MHz, CDCl_{3}) \delta 53.7 (CH_{3}), 55.4 (CH_{2}), 114.3, 126.2, 126.4, 127.1, 128.2, 129.5, 132.8, 135.0, 141.8, 143.1, 152.2 and 159.5;

HPLC (80 % CH_{3}CN in H_{2}O) \textit{t}_{r}=2.157 (99.21 %);

LCMS (APCI), \textit{m}/\textit{z} 266.08 (M^{+}H, 100 %).

Sulfamic acid 3'-{(1,2,4)triazol-1-ylmethyl-biphenyl-4-yl ester (TJA01047, STX1455)

C_{15}H_{14}N_{4}O_{3}S MW 330.37

[0280] Sulfamoyl chloride in toluene (0.35 M, 2.86 mL) was transferred to a 10 mL r.b. flask and the solvent removed under vacuum at 30 °C. On cooling a white solid formed to which was added N,N-dimethylacetamide (1.5 mL) to form a colourless solution. TJA01025 (0.050 g, 0.199 mmol) was added and the solution left to stir at room temperature under
N₂(g) for 20 h. The reaction mixture was then poured into distilled H₂O (30 mL) and extracted with ethyl acetate (25 mL x 2). The organic layers were combined and washed with distilled H₂O (25 mL x 4) and brine (25 mL). Dried over Na₂SO₄ and solvent removed in vacuo to leave off white residues. Column chromatography (dichloromethane/acetone 80:20) eluted the title compound as an off white waxy solid (0.017 g, 26 %); Rₛ 0.42 (dichloromethane/acetone 80:20), c.f. 0.38 3’-(1,2,4)triazole-1-yl-methylbiphenyl-4-ol.

1H NMR (400 MHz, DMSO-d₆) δ 5.51 (2H, s, ArCH₂N), 7.28-7.30 (1H, d, J=6.5 Hz, ArH), 7.38-7.40 (2H, d, J=9 Hz, AA'BB'), 7.46-7.50 (1H, t, J=7.5 Hz, ArH), 7.60-7.64 (2H, m, ArH), 7.98 (1H, s, C₂H₂N₃), 8.69 (1H, s, C₂H₂N₃) and 9.57 (1H, s, ArOH); HPLC (80 % CH₃CN in H₂O) tᵣ = 1.772 min (99.13 %);

LCMS (APCI), m/z 330.59 (M⁺, 72 %), 261.50 (M⁺-C₂H₂N₃, 100), 182.40 ((M⁺-C₂H₂N₃) -SO₂NH₂, 48);

HRMS (FAB⁺) calcd. for C₁₅H₁₄N₄O₃S (M⁺) 330.0787 found 330.0782.

4-Bromo-2-bromomethylbenzonitrile (TJA01043)

C₆H₅Br₂N MW 274.94

[0281] 4-Bromo-2-methylbenzonitrile (5.00 g, 25.5 mmol), N-bromosuccinimide (4.99 g, 28.1 mmol), benzyl peroxide (0.198 g, 0.816 mmol) and carbon tetrachloride (100 mL) were loaded to a r.b. flask and set to reflux (79 °C) for 6 h. Once cooled the succinimide was filtered off and carbon tetrachloride removed via a dry ice-acetone cooled rotary evaporator. The residues were dissolved in dichloromethane (100 mL) and washed with distilled H₂O (50 mL x 3) and brine (50 mL x 2). Dried over Na₂SO₄ and solvent removed in vacuo to leave yellow residues. Column chromatography (hexane/dichloromethane 60:40) eluted the title compound as a yellow solid. Recrystallisation (cyclohexane) gave a white crystalline solid (5.07 g, 73 %), mp 61.7-77.2 °C;

Rₛ 0.30 (hexane/dichloromethane 60:40), c.f. 0.36 (dibromobenzylbromide), 0.36 (4-bromo-2-methylbenzonitrile); HPLC (60 % CH₃CN in H₂O) Rₛ 3.130 (50.62 %), 2.701 (42.38 %, dibromobenzylbromide); MS (EI), m/z 274.0 (M⁺- - H, 34 %).

4-Bromo-2-(1,2,4)triazol-1-ylmethyl-benzonitrile (TJA01046, STX1454)

C₁₀H₇BrN₄ MW 263.10

[0282] TJA01043 (5.00 g, 18.2 mmol), 1,2,4-triazole (1.89 g, 27.3 mmol), potassium carbonate (2.52 g, 18.2 mmol), potassium iodide (0.178 g, 1.07 mmol) and acetone (150 mL) were loaded to an r.b. flask. With vigorous stirring this mixture was set to reflux (60 °C) for 4 h. The reaction mixture was allowed to cool and acetone was removed in vacuo. The residues were taken up in ethyl acetate (50 mL) and washed with distilled water (50 mL x 2), 1M NaOH (50 mL x 1) and brine (50 mL x 2). Dried over Na₂SO₄ and solvent removed in vacuo to leave orange/yellow residues. Flash chromatography (50 g column, method8) eluted dibromobenzylbromide and the title compound as a yellow solid. Recrystallisation (ethyl acetate/hexane 1:6) gave a yellow crystalline solid (1.58 g, 66 %), mp 106.8-107.6 °C;

Rₛ 0.55 (ethyl acetate).

1H NMR (270 MHz, CDC₁₃) δ 5.51 (2H, s, ArCH₂N), 7.50 (1H, s, ArH), 7.53-7.56 (1H, d, J=8.8 Hz, ArH), 7.59-7.62 (1H, dd, J=1.7 & 8.5 Hz, ArH), 7.99 (1H, s, C₂H₂N₃) and 8.27 (1H, s, C₂H₂N₃);

13C NMR (100.5 MHz, CDC₁₃) δ 50.7 (CH₂), 110.6, 116.3, 128.8, 132.8, 132.9, 134.2, 139.8, 143.9 and 153.0; HPLC (80 % CH₃CN in H₂O) tᵣ = 1.947 min (100 %);
3-[1,2,4]Triazol-1-ylmethyl-biphenyl-4-carbonitrile (TJA01049, STX1456)

C_{16}H_{12}N_{4} MW 260.30

[0283] A 3-necked r.b. flask was loaded with TJA01046 (0.100 g, 0.380 mmol), phenylboronic acid (0.070 g, 0.570 mmol), potassium carbonate (0.131 g, 0.950 mmol), tetrabutylammonium bromide (0.126 g, 0.380 mmol), distilled H_{2}O (7 mL) and ethanol (3 mL). This mixture was degassed with N_{2} (g) for 1 h at 70 °C. A catalytic quantity of Pd(OAc)$_{2}$ (0.002-0.003 g, 2-3 mol%) was added and the reaction mixture heated with vigorous stirring to 70 °C for 1 h. The reaction mixture was allowed to cool and ethyl acetate (100 mL) added. This was then washed with 1M NaOH (aq) (50 mL x 2), distilled water (50 mL x 2) and brine (50 mL). The organic layer was dried over Na$_{2}$SO$_{4}$, filtered and solvent removed in vacuo to leave a yellow/brown residue. The crude product was purified by flash chromatography (20 g column, method3) to give the title compound as a colourless oil (0.076 g, 49%). Recrystallisation (cyclohexane) yielded a white crystalline solid (0.105 g, 39%), mp 107.8-108.1 °C; R$_{f}$ 0.52 (ethyl acetate).

1H NMR (270 MHz, CDCl$_{3}$) δ 5.59 (2H, s, ArCH$_{2}$N), 7.42-7.56 (6H, m, ArH), 7.63-7.67 (1H, dd, J = 1.8 & 8.1 Hz, ArH), 7.74-7.77 (1H, d, J = 8.2 Hz, ArH), 7.98 (1H, s, C$_{2}$H$_{2}$N$_{3}$) and 8.30 (1H, s, C$_{2}$H$_{2}$N$_{3}$); 13C NMR (100.5 MHz, CDCl$_{3}$) δ 51.4 (CH$_{2}$), 110.3, 117.1, 127.3, 127.8, 128.2, 129.1, 129.2, 133.6, 138.4, 138.6, 143.9, 146.7 and 152.8; HPLC (90 % CH$_{3}$CN in H$_{2}$O) t = 2.034 (100 %); LCMS (APCI), m/z 261.18 (M++H, 100 %), 191.99 ((M++H)-C$_{2}$H$_{2}$N$_{3}$, 15).

STX1457

4'-Benzyloxy-3-[1,2,4]triazol-1-ylmethyl-biphenyl-4-carbonitrile (TJA01050, STX1457)

C$_{23}$H$_{18}$N$_{4}$O MW 366.43

[0284] A 3-necked r.b. flask was loaded with TJA01046 (0.300 g, 1.14 mmol), 4-benzyloxybenzene boronic acid (0.390 g, 1.71 mmol), potassium carbonate (0.390 g, 2.85 mmol), tetrabutylammonium bromide (0.379 g, 1.14 mmol), distilled H$_{2}$O (7 mL) and ethanol (3 mL). This mixture was degassed with N$_{2}$ (g) for 1 h at 70 °C. A catalytic quantity of Pd(OAc)$_{2}$ (0.002-0.003 g, 2-3 mol%) was added and the reaction mixture heated with vigorous stirring to 70 °C for 1 h. The reaction mixture was allowed to cool and ethyl acetate (100 mL) added. This was then washed with 1M NaOH (aq) (50 mL x 2), distilled water (50 mL x 2) and brine (50 mL). The organic layer was dried over Na$_{2}$SO$_{4}$, filtered and solvent removed in vacuo to leave a yellow/brown residue. The crude product was purified by flash chromatography (20 g column, method3) to give the title compound as a pale yellow solid (0.315 g, 75%). Precipitation (EtOAc/hexane) yielded a white solid (0.270 g, 65%), mp 127.7-128.1 °C; R$_{f}$ 0.52 (ethyl acetate).

1H NMR (270 MHz, CDCl$_{3}$) δ 5.10 2H, s, ArOCH$_{2}$), 5.58 (2H, s, ArCH$_{2}$N), 7.02-7.05 (2H, d, J = 11.5 Hz, ArH), 7.32-7.51 (8H, m, ArH), 7.58-7.61 (1H, d, J = 8.0 Hz, ArH), 7.70-7.73 (1H, d, J = 8.0 Hz, ArH), 7.98 (1H, s, C$_{2}$H$_{2}$N$_{3}$) and 8.28 (1H,
3'-[1,2,4]Triazol-1-ylmethyl-biphenyl-3-carbonitrile (TJA01051, STX1458)

C_{16}H_{12}N_{4} MW 260.30

A 3 necked r.b. flask was loaded with TJA01009 (0.238 g, 1.00 mmol), 3-cyanophenyl boronic acid (0.220 g, 1.50 mmol), potassium carbonate (0.346 g, 2.50 mmol), tetrabutylammonium bromide (0.332 g, 1.00 mmol), distilled H_{2}O (7 mL) and ethanol (3 mL). This mixture was degassed with N\textsubscript{2}(g) for 1 h at 70 °C. A catalytic quantity of Pd(OAc)\textsubscript{2} (0.006-0.007 g, 2-3 mol%) was added and the reaction mixture heated with vigorous stirring to 70 °C for 1 h. The reaction mixture was allowed to cool and ethyl acetate (100 mL) added. This was then washed with 1M NaOH (aq) (50 mL x 2), distilled water (50 mL x 2) and brine (50 mL). The organic layer was dried over Na\textsubscript{2}SO\textsubscript{4}, filtered and solvent removed in vacuo to leave a yellow/brown residue. The crude product was purified by flash chromatography (20 g column, method3) to give the title compound as a viscous colourless oil (0.190 g, 73 %), R\textsubscript{f}.0.30 (ethyl acetate);

\textsuperscript{1}H NMR (270 MHz, CDCl\textsubscript{3}) δ 5.36 (2H, s, ArCH\textsubscript{2}N), 7.22-7.26 (1H, dt, J=1.5 & 9.0 Hz, ArH), 7.38-7.51 (4H, m, ArH), 7.56-7.60 (1H, dt, J=1.5 & 7.5 Hz, ArH), 7.67-7.71 (1H, dt, J=1.5 & 7.7 Hz, ArH), 7.75-7.76 (1H, m, ArH), 7.93 (1H, s, C\textsubscript{2}H\textsubscript{2}N\textsubscript{3}) and 8.07 (1H, s, C\textsubscript{2}H\textsubscript{2}N\textsubscript{3});

\textsuperscript{13}C NMR (100.5 MHz, CDCl\textsubscript{3}) δ 53.4 (CH\textsubscript{2}), 113.1, 118.7, 126.7, 127.5, 127.9, 129.8, 130.0, 130.8, 131.2, 131.6, 135.7, 139.9, 141.6, 143.2 and 152.4;

HPLC (80 % CH\textsubscript{3}CN in H\textsubscript{2}O) t\textsubscript{R}=2.013 (100 %);

LCMS (APCI), m/z 261.18 (M\textsuperscript{+}H, 82 %), 191.99 (M\textsuperscript{+} + H - C\textsubscript{2}H\textsubscript{2}N\textsubscript{3}, 100).
3'-[1,2,4]Triazol-1-ylmethyl-biphenyl-4-carbonitrile (TJA01054, STX1459)

C₁₆H₁₂N₄ MW 260.30

\[ \text{C}_{16}\text{H}_{12}\text{N}_4 \text{ MW 260.30} \]

[0286] A 3 necked r.b. flask was loaded with TJA01009 (0.238 g, 1.00 mmol), 4-cyanophenyl boronic acid (0.220 g, 1.50 mmol), potassium carbonate (0.346 g, 2.50 mmol), tetrabutylammonium bromide (0.332 g, 1.00 mmol), distilled \( \text{H}_2\text{O} \) (7 mL) and ethanol (3 mL). This mixture was degassed with \( \text{N}_2 \) for 1 h at 70 °C. A catalytic quantity of \( \text{Pd(OAc)}_2 \) (0.006-0.007 g, 2-3 mol%) was added and the reaction mixture heated with vigorous stirring to 70 °C for 1 h. The reaction mixture was allowed to cool and ethyl acetate (100 mL) added. This was then washed with 1M \( \text{NaOH(aq)} \) (50 mL x 2), distilled water (50 mL x 2) and brine (50 mL). The organic layer was dried over \( \text{Na}_2\text{SO}_4 \), filtered and solvent removed \textit{in vacuo} to leave a yellow/brown residue. The crude product was purified by flash chromatography (20 g column, \textit{method4}) to give the \textit{title compound} as a viscous colourless oil that crystallised on standing to give a white crystalline solid (0.190 g, 73 %), mp 117.4-117.9 °C; \( R_f \) 0.38 (ethyl acetate).

\( ^1\text{H NMR (270 MHz, CDCl}_3 \) δ 5.38 (2H, s, ArCH\(_2\)N), 7.28-7.31 (1H, m, ArH), 7.44-7.57 (3H, m, ArH), 7.62-7.74 (4H, dd, \( J=2.0 \& 8.5 \text{ Hz, AA'BB'} \)), 7.97 (1H, s, C\(_2\)H\(_2\)N\(_3\)) and 8.07 (1H, s, C\(_2\)H\(_2\)N\(_3\));

\( ^{13}\text{C NMR (100.5 MHz, CDCl}_3 \) δ 53.4 (CH\(_2\)), 111.4, 118.8, 126.8, 127.6, 127.8, 128.1, 129.9, 132.7, 135.8, 140.2, 143.2, 144.8 and 152.4;

HPLC (80 % CH\(_3\)CN in H\(_2\)O) \( t_r = 1.990 \) (98.29 %);

LCMS (APCI), \( m/z \) 261.18 (M\(^++\)H, 100 %), 191.99 ((M\(^++\)) - C\(_2\)H\(_2\)N\(_3\), 88).

STX1502
A 3 necked r.b. flask was loaded with TJA01009 (0.250 g, 1.05 mmol), 4-benzyloxy-3-chlorophenylboronic acid (0.413 g, 1.58 mmol), potassium carbonate (0.363 g, 2.63 mmol), tetrabutylammonium bromide (0.349 g, 1.05 mmol), distilled H₂O (7 mL) and ethanol (3 mL). This mixture was degassed with N₂ for 1 h at 70 °C. A catalytic quantity of Pd(OAc)₂ (0.006-0.007 g, 2-3 mol%) was added and the reaction mixture heated with vigorous stirring to 70 °C for 1 h. The reaction mixture was allowed to cool and ethyl acetate (100 mL) added. This was then washed with 1M NaOH (50 mL x 2), distilled water (50 mL x 2) and brine (50 mL). The organic layer was dried over Na₂SO₄, filtered and solvent removed in vacuo to leave a yellow/brown residue. The crude product was purified by flash chromatography (20 g column, method4) to give the title compound as a white crystalline solid (0.150 g, 38 %), mp 91.2-91.8 °C; 

1H NMR (270 MHz, CDCl₃) δ 5.19 (2H, s, ArOCH₂), 5.38 (2H, s, ArCH₂N), 6.98-7.01 (1H, d, J = 8.6 Hz, ArH), 7.18-7.50 (9H, m, ArH), 7.57-7.58 (1H, d, J = 2.2 Hz, ArH)), 7.97 (1H, s, C₂H₂N₃) and 8.08 (1H, s, C₂H₂N₃); 13C NMR (100.5 MHz, CDCl₃) δ 53.6 (CH₂), 70.9 (CH₂), 114.2, 123.7, 126.3, 126.4, 126.8, 127.1, 128.1, 128.7, 129.0, 129.7, 131.4, 138.3, 136.4, 140.5, 143.2, 152.3 and 153.9 (one overlapping signal); HPLC (80 % CH₃CN in H₂O) tᵣ=2.573 (99.33 %); LCMS (APCI), m/z 378.19 C37ClM⁺+H, 30 %), 379.24 (35ClM⁺+H, 100).

A 3 necked r.b. flask was loaded with TJA01046 (0.100 g, 0.380 mmol), 3- chlorophenylboronic acid (0.089 g, 0.570 mmol), potassium carbonate (0.131 g, 0.950 mmol), tetrabutylammonium bromide (0.126 g, 0.380 mmol), distilled H₂O (7 mL) and ethanol (3 mL). This mixture was degassed with N₂ for 1 h at 70 °C. A catalytic quantity of Pd(OAc)₂ (0.002-0.003 g, 2-3 mol%) was added and the reaction mixture heated with vigorous stirring to 70 °C for 1 h. The reaction mixture was allowed to cool and ethyl acetate (100 mL) added. This was then washed with 1M NaOH (50 mL x 2), distilled water (50 mL x 2) and brine (50 mL). The organic layer was dried over Na₂SO₄, filtered and solvent removed in vacuo to leave a yellow/brown residue. The crude product was purified by flash chromatography (20 g column, method4) to give the title compound as a yellow waxy solid (0.076 g, 68 %), mp 107.8-108.2 °C; 

1H NMR (270 MHz, CDCl₃) δ 5.59 (2H, s, ArCH₂N), 7.38 (3H, d, J= 1.5 Hz, ArH), 7.49-7.64 (1H, m, ArH), 7.75-7.77 (1H, d, J=7.9 Hz, ArH)), 7.98 (1H, s, C₂H₂N₃) and 8.31 (1H, s, C₂H₂N₃); 13C NMR (100.5 MHz, CDCl₃) δ 51.3 (CH₂), 111.0, 116.9, 125.5, 127.4, 128.3, 129.1, 130.5, 133.7, 135.2, 138.8, 140.2, 143.9, 145.2 and 152.8; HPLC (80 % CH₃CN in H₂O) tᵣ=2.136 (95.08 %); LCMS (APCI), m/z 297.26 (37ClMF⁺+H, 30 %), 295.25 (35ClM⁺+H, 100).
4-Naphthalene-2-yl-2-(1,2,4)triazol-1-ylmethyl-benzonitrile (TJA01055-3, STX1504)

C_{20}H_{14}N_{4} MW 310.35

[0289] A 3 necked r.b. flask was loaded with TJA01046 (0.100 g, 0.380 mmol), 2-naphthaleneboronic acid (0.098 g, 0.570 mmol), potassium carbonate (0.131 g, 0.950 mmol), tetrabutylammonium bromide (0.126 g, 0.380 mmol), distilled H_{2}O (7 mL) and ethanol (3 mL). This mixture was degassed with N_{2}(g) for 1 h at 70 °C. A catalytic quantity of Pd(OAc)$_2$ (0.002-0.003 g, 2-3 mol%) was added and the reaction mixture heated with vigorous stirring to 70 °C for 1 h. The reaction mixture was allowed to cool and ethyl acetate (100 mL) added. This was then washed with 1M NaOH(aq) (50 mL x 2), distilled water (50 mL x 2) and brine (50 mL). The organic layer was dried over Na$_2$SO$_4$, filtered and solvent removed in vacuo to leave a yellow/brown residue. The crude product was purified by flash chromatography (20 g column, method4) to give the title compound as a yellow solid (0.061 g, 52 %), mp 119.1-120.8 °C; R$_f$: 0.47 (ethyl acetate);

1H NMR (270 MHz, CDCl$_3$) δ 5.61 (2H, s, ArCH$_2$N), 7.49-7.98 (10H, m, ArH), 7.99 (1H, s, C=H$_2$N$_3$) and 8.32 (1H, s, C=H$_2$N$_3$);

13C NMR (100.5 MHz, CDCl$_3$) δ 51.4 (CH$_2$), 110.3, 117.2, 124.7, 126.8, 126.9, 127.1, 127.8, 128.4, 128.5, 129.1, 133.3, 133.4, 133.7, 135.7, 138.6, 143.9, 146.6, and 152.8; HPLC (80 % CH$_3$CN in H$_2$O) t$_r$=2.224 (99.00 %);

LCMS (APCI), m/z 311.24 (M$^+$+H, 100 %).

3'-{(1,2,4)Triazol-1-ylmethyl-biphenyl-3,4'-dicarbonitrile (TJA01055-4, STX1505)

C$_{17}$H$_{11}$N$_5$ MW 285.10

[0290] A 3 necked r.b. flask was loaded with TJA01046 (0.100 g, 0.380 mmol), 3-cyanophenylboronic acid (0.084 g, 0.570 mmol), potassium carbonate (0.131 g, 0.950 mmol), tetrabutylammonium bromide (0.126 g, 0.380 mmol), distilled
H₂O (7 mL) and ethanol (3 mL). This mixture was degassed with N₂(g) for 1 h at 70 °C. A catalytic quantity of Pd(OAc)₂ (0.002-0.003 g, 2-3 mol%) was added and the reaction mixture heated with vigorous stirring to 70 °C for 1 h. The reaction mixture was allowed to cool and ethyl acetate (100 mL) added. This was then washed with 1M NaOH (aq) (50 mL x 2), distilled water (50 mL x 2) and brine (50 mL). The organic layer was dried over Na₂SO₄, filtered and solvent removed in vacuo to leave a yellow/brown residue. The crude product was purified by flash chromatography (20 g column, method4) to give the title compound as a white solid (0.066 g, 61 %), mp 160.4-160.8 °C; Rₚ 0.35 (ethyl acetate);

¹H NMR (270 MHz, CDCl₃) δ 5.60 (2H, s, ArCH₂N), 7.36-7.81 (7H, m, ArH), 7.97 (1H, s, C₂H₂N₃) and 8.32 (1H, s, C₂H₂N₃); ¹³C NMR (100.5 MHz, CDCl₃) δ 51.2 (CH₂), 111.6, 113.6, 116.7, 118.2, 127.9, 128.4, 130.2, 130.8, 131.6, 132.4, 133.9, 139.1, 139.8, 143.9, 144.2 and 152.9; HPLC (80 % CH₃CN in H₂O) tᵣ= 1.907 (100 %); LCMS (APCI), m/z 286.30 (M⁺+H, 100 %).

STX1506

²-Methyl-2-(5-(1,2,4)triazol-1-ylmethyl-biphenyl-3-yl)-propionitrile (TJA01055-5, STX1506)

C₁₉H₁₈N₄ MW 302.15

[0291] A 3 necked r.b. flask was loaded with TJA01037 (0.100 g, 0.328 mmol), phenylboronic acid (0.060 g, 0.492 mmol), potassium carbonate (0.113 g, 0.820 mmol), tetrabutylammonium bromide (0.109 g, 0.328 mmol), distilled H₂O (3.5 mL) and ethanol (1.5 mL). This mixture was degassed with N₂(g) for 1 h at 70 °C. A catalytic quantity of Pd(OAc)₂ (0.002-0.003 g, 2-3 mol%) was added and the reaction mixture heated with vigorous stirring to 70 °C for 1 h. The reaction mixture was allowed to cool and ethyl acetate (100 mL) added. This was then washed with 1M NaOH (aq) (50 mL x 2), distilled water (50 mL x 2) and brine (50 mL). The organic layer was dried over Na₂SO₄, filtered and solvent removed in vacuo to leave a yellow/brown residue. The crude product was purified by flash chromatography (20 g column, method4) to give the title compound as a yellow viscous oil (0.065 g, 66 %), Rₚ 0.27 (ethyl acetate).

¹H NMR (270 MHz, CDCl₃) δ 1.67 (6H, s, ArC(CH₃)₂CN), 5.35 (2H, s, ArCH₂N), 7.23-7.47 (7H, m, ArH), 7.56-7.57 (1H, t, J= 1.8 Hz, ArH), 7.92 (1H, s, C₂H₂N₃) and 8.08 (1H, s, C₂H₂N₃); ¹³C NMR (100.5 MHz, CDCl₃) δ 29.2 (CH₃), 37.3 (C), 53.4 (CH₂), 123.4, 124.2, 124.4, 126.6, 127.3, 128.1, 129.0, 136.1, 139.8, 143.0, 143.2, 143.3 and 152.5; HPLC (80 % CH₃CN in H₂O) tᵣ=2.062 (97.56 %);
LCMS (APCI), m/z 303.31 (M*+H, 100 %), 234.17 ((M*+H)-C₂H₂N₃, 30 %).

**STX1507**

2-(3'-Chloro-5-(1,2,4)triazol-1-ylmethyl-biphenyl-3yl)-2-methyl-propionitrile (TJA01055-6, STX1507)

C₁₉H₁₇ClN₄ MW 336.11

[0292] A 3 necked r.b. flask was loaded with TJA01037 (0.100 g, 0.328 mmol), 3-chlorophenylboronic acid (0.077 g, 0.492 mmol), potassium carbonate (0.113 g, 0.820 mmol), tetrabutylammonium bromide (0.109 g, 0.328 mmol), distilled H₂O (3.5 mL) and ethanol (1.5 mL). This mixture was degassed with N₂(g) for 1 h at 70 °C. A catalytic quantity of Pd (OAco)₂ (0.002-0.003 g, 2-3 mol%) was added and the reaction mixture heated with vigorous stirring to 70 °C for 1 h. The reaction mixture was allowed to cool and ethyl acetate (100 mL) added. This was then washed with 1M NaOH (aq) (50 mL x 2), distilled water (50 mL x 2) and brine (50 mL). The organic layer was dried over Na₂SO₄, filtered and solvent removed *in vacuo* to leave a yellow/brown residue. The crude product was purified by flash chromatography (20 g column, *method4*) to give the title compound as a colourless viscous oil (0.077 g, 70 %), R₇: 0.31 (ethyl acetate).

[^1] H NMR (270 MHz, CDCl₃) δ 1.73 (6H, s, ArC(CH₃)₂CN), 5.40 (2H, s, ArCH₂N), 7.29-7.38 (5H, m, ArH), 7.46-7.48 (1H, dd, J= 1.4 & 1.5 Hz, ArH), 7.57-7.58 (1H, t, J= 1.7 Hz, ArH), 7.98 (1H, s, C₂H₂N₃) and 8.14 (1H, s, C₂H₂N₃);

[^13] C NMR (100.5 MHz, CDCl₃) δ 29.2 (CH₃), 37.3 (C), 53.3 (CH₂), 124.0, 124.4, 125.5, 126.3, 127.4, 128.2, 130.3, 134.9, 136.4, 141.7, 141.8, 143.2, 143.3 and 152.5 (one overlapping signal);

HPLC (80 % CH₃CN in H₂O) tᵣ=2.190 (95.03 %);

LCMS (APCI), m/z 339.27 (³⁷ClM*+H, 42 %), 337.25 (³⁵ClM*+H, 100), 270.25 (³⁷ClM*+H)- C₂H₂N₃, 10) 268.17 (³⁵ClM*+H)-C₂H₂N₃, 30).
A 3-necked round-bottom flask was loaded with TJA01037 (0.100 g, 0.328 mmol), 2-naphthaleneboronic acid (0.085 g, 0.492 mmol), potassium carbonate (0.113 g, 0.820 mmol), tetrabutylammonium bromide (0.109 g, 0.328 mmol), distilled water (3.5 mL) and ethanol (1.5 mL). This mixture was degassed with N₂(g) for 1 h at 70 °C. A catalytic quantity of Pd(OAc)₂ (0.002-0.003 g, 2-3 mol%) was added and the reaction mixture heated with vigorous stirring to 70 °C for 1 h. The reaction mixture was allowed to cool and ethyl acetate (100 mL) added. This was then washed with 1M NaOH (aq) (50 mL x 2), distilled water (50 mL x 2) and brine (50 mL). The organic layer was dried over Na₂SO₄, filtered and solvent removed in vacuo to leave a yellow/brown residue. The crude product was purified by flash chromatography (20 g column, method4) to give the title compound as a pale yellow waxy solid (0.061 g, 53 %), Rᶠ = 0.31 (ethyl acetate).

¹H NMR (270 MHz, CDCl₃) δ 1.72 (6H, s, ArC(CH₃)₂CN), 5.40 (2H, s, ArCH₂N), 7.32-7.49 (4H, m, ArH), 7.57-7.60 (1H, dd, J = 2.0 & 6.7 Hz, ArH), 7.70-7.71 (1H, t, J = 1.7 Hz, ArH), 7.78-7.91 (4H, m, ArH), 7.95 (1H, s, C₂H₂N₃) and 8.11 (1H, s, C₂H₂N₃);

¹³C NMR (100.5 MHz, CDCl₃) δ 29.2 (CH₃), 37.3 (C), 53.4 (CH₂), 109.9, 123.5, 124.2, 124.7, 125.3, 126.2, 126.5, 126.6, 126.7, 127.7, 128.3, 128.8, 132.9, 133.5, 136.2, 137.1, 143.1, 143.3 and 152.5;

HPLC (80 % CH₃CN in H₂O) tᵣ = 2.251 (98.56 %);

LCMS (APCI), m/z 353.37 (M⁺, 100 %), 284.29 ((M⁺+H)-C₂H₂N₃, 35).
A 3 necked r.b. flask was loaded with TJA01037 (0.100 g, 0.328 mmol), 3-cyanophenylboronic acid (0.072 g, 0.492 mmol), potassium carbonate (0.113 g, 0.820 mmol), tetrabutylammonium bromide (0.109 g, 0.328 mmol), distilled H₂O (3.5 mL) and ethanol (1.5 mL). This mixture was degassed with N₂(g) for 1 h at 70 °C. A catalytic quantity of Pd(OAc)₂ (0.002-0.003 g, 2-3 mol%) was added and the reaction mixture heated with vigorous stirring to 70 °C for 1 h. The reaction mixture was allowed to cool and ethyl acetate (100 mL) added. This was then washed with 1M NaOH (aq) (50 mL x 2), distilled water (50 mL x 2) and brine (50 mL). The organic layer was dried over Na₂SO₄, filtered and solvent removed in vacuo to leave a yellow/brown residue. The crude product was purified by flash chromatography (20 g column, method 4) to give the title compound as a yellow viscous oil (0.038 g, 36 %), Rf. 0.23 (ethyl acetate).

H NMR (270 MHz, CDCl₃) δ 1.70 (6H, s, ArC(CH₃)₂CN), 5.38 (2H, s, ArCH₂N), 7.30-7.74 (7H, m, ArH), 7.93 (1H, s, C₂H₂N₃) and 8.12 (1H, s, C₂H₂N₃);

C₂₀H₁₇N₅ MW 327.15

C₂₀H₁₇N₅ MW 327.15

1H NMR (270 MHz, CDCl₃) δ 1.70 (6H, s, ArC(CH₃)₂CN), 5.38 (2H, s, ArCH₂N), 7.30-7.74 (7H, m, ArH), 7.93 (1H, s, C₂H₂N₃) and 8.12 (1H, s, C₂H₂N₃);

C₂₀H₁₇N₅ MW 327.15

1H NMR (270 MHz, CDCl₃) δ 1.70 (6H, s, ArC(CH₃)₂CN), 5.38 (2H, s, ArCH₂N), 7.30-7.74 (7H, m, ArH), 7.93 (1H, s, C₂H₂N₃) and 8.12 (1H, s, C₂H₂N₃);

C₂₀H₁₇N₅ MW 327.15

1H NMR (270 MHz, CDCl₃) δ 1.70 (6H, s, ArC(CH₃)₂CN), 5.38 (2H, s, ArCH₂N), 7.30-7.74 (7H, m, ArH), 7.93 (1H, s, C₂H₂N₃) and 8.12 (1H, s, C₂H₂N₃);

C₂₀H₁₇N₅ MW 327.15

1H NMR (270 MHz, CDCl₃) δ 1.70 (6H, s, ArC(CH₃)₂CN), 5.38 (2H, s, ArCH₂N), 7.30-7.74 (7H, m, ArH), 7.93 (1H, s, C₂H₂N₃) and 8.12 (1H, s, C₂H₂N₃);

C₂₀H₁₇N₅ MW 327.15

1H NMR (270 MHz, CDCl₃) δ 1.70 (6H, s, ArC(CH₃)₂CN), 5.38 (2H, s, ArCH₂N), 7.30-7.74 (7H, m, ArH), 7.93 (1H, s, C₂H₂N₃) and 8.12 (1H, s, C₂H₂N₃);

C₂₀H₁₇N₅ MW 327.15

1H NMR (270 MHz, CDCl₃) δ 1.70 (6H, s, ArC(CH₃)₂CN), 5.38 (2H, s, ArCH₂N), 7.30-7.74 (7H, m, ArH), 7.93 (1H, s, C₂H₂N₃) and 8.12 (1H, s, C₂H₂N₃);

C₂₀H₁₇N₅ MW 327.15

1H NMR (270 MHz, CDCl₃) δ 1.70 (6H, s, ArC(CH₃)₂CN), 5.38 (2H, s, ArCH₂N), 7.30-7.74 (7H, m, ArH), 7.93 (1H, s, C₂H₂N₃) and 8.12 (1H, s, C₂H₂N₃);

C₂₀H₁₇N₅ MW 327.15

1H NMR (270 MHz, CDCl₃) δ 1.70 (6H, s, ArC(CH₃)₂CN), 5.38 (2H, s, ArCH₂N), 7.30-7.74 (7H, m, ArH), 7.93 (1H, s, C₂H₂N₃) and 8.12 (1H, s, C₂H₂N₃);

C₂₀H₁₇N₅ MW 327.15

1H NMR (270 MHz, CDCl₃) δ 1.70 (6H, s, ArC(CH₃)₂CN), 5.38 (2H, s, ArCH₂N), 7.30-7.74 (7H, m, ArH), 7.93 (1H, s, C₂H₂N₃) and 8.12 (1H, s, C₂H₂N₃);

C₂₀H₁₇N₅ MW 327.15

1H NMR (270 MHz, CDCl₃) δ 1.70 (6H, s, ArC(CH₃)₂CN), 5.38 (2H, s, ArCH₂N), 7.30-7.74 (7H, m, ArH), 7.93 (1H, s, C₂H₂N₃) and 8.12 (1H, s, C₂H₂N₃);
3-(1,2,4)Triazol-1-ylmethyl-biphenyl-4,4'-dicarbonitrile (TJA01055-9, STX1510)

C_{17}H_{11}N_{5} MW 285.10

**[0295]** A 3 necked r.b. flask was loaded with TJA01046 (0.100 g, 0.380 mmol), 4-cyanophenylboronic acid (0.084 g, 0.570 mmol), potassium carbonate (0.131 g, 0.950 mmol), tetrabutylammonium bromide (0.126 g, 0.380 mmol), distilled H_{2}O (7 mL) and ethanol (3 mL). This mixture was degassed with N_{2}(g) for 1 h at 70 °C. A catalytic quantity of Pd(OAc)$_2$ (0.002-0.003 g, 2-3 mol%) was added and the reaction mixture heated with vigorous stirring to 70 °C for 1 h. The reaction mixture was allowed to cool and ethyl acetate (100 mL) added. This was then washed with 1M NaOH(aq) (50 mL x 2), distilled water (50 mL x 2) and brine (50 mL). The organic layer was dried over Na$_2$SO$_4$, filtered and solvent removed in vacuo to leave a yellow/brown residue. The crude product was purified by flash chromatography (20 g column, method4) to give the title compound as a white solid (0.082 g, 76 %), mp 222.1-222.6 °C.

R$_f$: 0.36 (ethyl acetate).

$^{1}$H NMR (270 MHz, CDCl$_3$) $\delta$ 5.56 (2H, s, ArCH$_2$N), 7.52-7.77 (7H, m, ArH), 7.94 (1H, s, C$_2$H$_2$N$_3$) and 8.27 (1H, s, C$_2$H$_2$N$_3$);

$^{13}$C NMR (100.5 MHz, CDCl$_3$) $\delta$ 53.1 (CH$_2$), 111.8, 112.8, 116.6, 118.3, 128.0, 128.4, 133.0, 133.9, 139.1, 142.8, 144.0, 144.6 and 152.9;

HPLC (80 % CH$_3$CN in H$_2$O) $t_r$ = 1.908 (100 %); LCMS (APCI), $m/z$ 286.24 (M$^+$+H, 100 %).

Phenyl-(3'-(1,2,4)triazol-1-ylmethyl-biphenyl-3-yl)-methanene (TJA01055-10, STX1511)

C$_{22}$H$_{17}$N$_3$O MW 339.14

**[0296]** A 3 necked r.b. flask was loaded with TJA01009 (0.100 g, 0.420 mmol), 4-benzoylphenylboronic acid (0.142 g, 0.630 mmol), potassium carbonate (0.145 g, 1.05 mmol), tetrabutylammonium bromide (0.139 g, 0.420 mmol), distilled H$_2$O (7 mL) and ethanol (3 mL). This mixture was degassed with N$_2$(g) for 1 h at 70 °C. A catalytic quantity of Pd(OAc)$_2$ (0.006-0.007 g, 2-3 mol%) was added and the reaction mixture heated with vigorous stirring to 70 °C for 1 h. The reaction mixture was allowed to cool and ethyl acetate (100 mL) added. This was then washed with 1M NaOH(aq) (50 mL x 2), distilled water (50 mL x 2) and brine (50 mL). The organic layer was dried over Na$_2$SO$_4$, filtered and solvent removed in vacuo to leave a yellow/brown residue. The crude product was purified by flash chromatography (20 g column, method4) to give the title compound as a white solid (0.071 g, 50 %), mp 120.7-120.9 °C.

R$_f$: 0.24 (ethyl acetate);

$^{1}$H NMR (270 MHz, CDCl$_3$) $\delta$ 5.41 (2H, s, ArCH$_2$N), 7.25-7.28 (1H, m, ArH), 7.94 (1H, s, C$_2$H$_2$N$_3$) and 8.27 (1H, s, C$_2$H$_2$N$_3$);

$^{13}$C NMR (100.5 MHz, CDCl$_3$) $\delta$ 53.1 (CH$_2$), 126.9, 127.1, 127.7, 128.4, 129.8, 130.1, 132.5, 135.5, 136.7, 137.6, 141.0, 143.2, 144.3, 152.4 and 196.3 (three overlapping signals);

HPLC (80 % CH$_3$CN in H$_2$O) $t_r$ = 2.297 (96.90 %);

LCMS (APCI), $m/z$ 340.34 (M$^+$+H), 100 %), 271.19 ((M$^+$+H)-C$_2$H$_2$N$_2$, 41).
1-(3'-Chloro-4'-methoxy-biphenyl-3-ylmethyl)-1H-[1,2,4]triazole (TJA01061, STX1512)

A 3 necked r.b. flask was loaded with TJA01009 (0.238 g, 1.00 mmol), 3-chloro-4-methoxyphenylboronic acid (0.280 g, 1.50 mmol), potassium carbonate (0.346 g, 2.50 mmol), tetrabutylammonium bromide (0.332 g, 1.00 mmol), distilled H₂O (7 mL) and ethanol (3 mL). This mixture was degassed with N₂ (g) for 1 h at 70 °C. A catalytic quantity of Pd(OAc)₂ (0.006-0.007 g, 2-3 mol%) was added and the reaction mixture heated with vigorous stirring to 70 °C for 1 h. The reaction mixture was allowed to cool and ethyl acetate (100 mL) added. This was then washed with 1M NaOH (aq) (50 mL x 2), distilled water (50 mL x 2) and brine (50 mL). The organic layer was dried over Na₂SO₄, filtered and solvent removed in vacuo to leave a yellow/brown residue. The crude product was purified by flash chromatography (20 g column, method 4) to give the title compound as a pale yellow solid (0.187 g, 63%).

mp 78.2-78.4 °C;

HPLC (80 % CH₃CN in H₂O) tᵣ=2.188 (99.43 %);
LCMS (APCI), m/z 302.24 ([3⁵ClM⁺+H], 52 %), 300.22 ([3⁷ClM⁺+H], 82), 233.10 ([3⁵ClM⁺+H]-C₂H₂N₃, 78), 231.09 ([3⁷ClM⁺+H]-C₂H₂N₃, 100).

STX1519

mp 78.2-78.4 °C;

HPLC (80 % CH₃CN in H₂O) tᵣ=2.188 (99.43 %);
LCMS (APCI), m/z 302.24 ([3⁵ClM⁺+H], 52 %), 300.22 ([3⁷ClM⁺+H], 82), 233.10 ([3⁵ClM⁺+H]-C₂H₂N₃, 78), 231.09 ([3⁷ClM⁺+H]-C₂H₂N₃, 100).
3-Chloro-3'-[1,2,4]triazol-1-ylmethyl-biphenyl-4-ol (TJA01064, STX1519)

C₁₅H₁₂ClN₃O MW 285.73

[0298] TJA01055-1 (0.100 g, 0.267 mmol) was dissolved in THF (5 mL) and MeOH (5 mL) in an r.b. flask to which was added 10 % Pd/C (0.010 g) to form a black suspension on vigorous stirring. The flask was evacuated and back filled with H₂(g) via a balloon (x3) and then left to stir for 16 h. The reaction mixture was filtered through celite which was subsequently washed with THF (30 mL x 2). Solvent was removed in vacuo to leave a brown residue. Flash chromatography (20 g column, method5) eluted the title compound as a white solid (0.051 g, 67 %), mp 153.2-153.3 °C

Rf: 0.28 (ethyl acetate).

1H NMR (270 MHz, DMSO-d₆) δ 5.54 (2H, s, ArCH₂N), 7.03-7.06 (1H, d, J= 8.4 Hz, ArH), 7.17-7.20 (1H, d, J= 7.4 Hz, ArH), 7.36-7.45 (2H, m, ArH), 7.54-7.56 (2H, m, J= 7.2 Hz, ArH), 7.60-7.61 (1H, d, J= 2.5 Hz, ArH), 7.99 (1H, s, C₂H₂N₃), 8.70 (1H, s, C₂H₂N₃) and 10.36 (1H, s, ArOH);

HPLC (80 % CH₃CN in H₂O) tᵣ= 1.982 (95.50 %);

LCMS (APCI), m/z 286.18 (³⁷ClM--H, 30 %), 284.16 (³⁵ClM--H, 100).

3-Chloro-3'-[1,2,4]triazol-1-ylmethyl-biphenyl-4-carbonitrile (TJA01065, STX1520)

C₁₆H₁₂N₄O MW 276.30

[0299] A 10 mL microwave vial was loaded with TJA01046 (0.100 g, 0.380 mmol), 4-hydroxyphenylboronic acid (0.079 g, 0.570 mmol), potassium carbonate (0.131 g, 0.950 mmol), tetrabutylammonium bromide (0.126 g, 0.380 mmol), Pd(OAc)₂ (0.001-0.002 g, 2-3 mol %), ethanol (1.5 mL) and distilled water (3.5 mL). The vial was sealed and loaded (with no prior degassing) into a CEM Discover Microwave. After a run time of 3 min at 120 °C the reaction mixture was allowed to cool and ethyl acetate (50 mL) added. This was then washed with distilled water (30 mL x 3) and brine (30 mL). The organic layer was dried over Na₂SO₄, filtered and solvent removed in vacuo to leave a yellow/brown residue. The crude product was purified by flash chromatography (20 g column, method4) eluting the title compound as a white solid (0.082 g, 79 %), mp 203.4-203.6 °C

Rf: 0.43 (ethyl acetate).

1H NMR (270 MHz, DMSO-d₆) δ 5.62 (2H, s, ArCH₂N), 6.85-6.88 (2H, d, J= 8.7 Hz, ArH), 7.51-7.55 (2H, d, J= 8.7 Hz, ArH), 7.67-7.89 (3H, m, ArH), 7.99 (1H, s, C₂H₂N₃), 8.71 (1H, s, C₂H₂N₃) and 9.83 (1H, s, ArOH);

13C NMR (100.5 MHz, DMSO-d₆) δ 51.0, 109.2, 116.5, 117.8, 126.5, 127.5, 128.8, 134.3, 139.9, 145.4, 152.6 and 159.0;

HPLC (80 % CH₃CN in H₂O) tᵣ=1.783 (97.91 %);

LCMS (APCI), m/z 275.22 (M⁺+H, 100 %).
2-(4'-Hydroxy-5-[1,2,4]triazol-1-ylmethyl-biphenyl-3-yl)-2-methyl-propionitrile (TJA01067, STX1521)

C_{19}H_{18}N_{4}O MW 318.37

[0300] A 10 mL microwave vial was loaded with TJA01037 (0.200 g, 0.656 mmol), 4-hydroxyphenylboronic acid (0.136 g, 0.984 mmol), potassium carbonate (0.227 g, 1.64 mmol), tetrabutylammonium bromide (0.218 g, 0.656 mmol), Pd(OAc)_2 (0.004-0.005 g, 2-3 mol %), ethanol (1.5 mL) and distilled water (3.5 mL). The vial was sealed and loaded (with no prior degassing) into a CEM Discover Microwave. After a run time of 3 min at 120 °C the reaction mixture was allowed to cool and ethyl acetate (50 mL) added. This was then washed with distilled water (30 x 3 mL) and brine (30 mL). The organic layer was dried over Na_2SO_4, filtered and solvent removed in vacuo to leave a yellow/brown residue. The crude product was purified by flash chromatography (20 g column, method-4) eluting the title compound as a pale yellow (0.216 g, 89 %), mp 65.8-68.1°C. R_f: 0.28 (ethyl acetate).

H NMR (270 MHz, DMSO-d_6) δ 1.71 (6H, s, ArC(CH_3)CN), 5.49 (2H, s, ArCH_2N), 6.84-6.87 (2H, d, J= 8.7 Hz, ArH), 7.38 (1H, s, ArH), 7.42 (1H, s, ArH), 7.44-7.48 (2H, d, J= 8.7 Hz, ArH), 7.59 (1H, s, ArH), 8.00 (1H, s, C_2H_2N_3), 8.72 (1H, s, C_2H_2N_3) and 9.64 (1H, s, ArOH);

C NMR (100.5 MHz, DMSO-d_6) δ 28.8 (CH_3), 37.3 (C), 52.5 (CH_2), 116.3, 122.9, 123.3, 125.0, 125.5, 128.5, 130.5, 138.0, 141.8, 143.0, 144.9, 152.3 and 158.0;

HPLC (80 % CH_3CN in H_2O) t_r= 1.787 (99.55 %);

LCMS (APCI), m/z 317.29 (M-H, 100 %).
**1-(3′-Fluoro-biphenyl-3-ylmethyl)-1H-[1,2,4]triazole (TJA01070, STX1524)**

C₁₅H₁₂FN₃ MW 253.27

[0301] A 10 mL microwave vial was loaded with TJA01009 (0.100 g, 0.420 mmol), 3-fluorophenylboronic acid (0.088 g, 0.630 mmol), potassium carbonate (0.145 g, 1.05 mmol), tetrabutylammonium bromide (0.139 g, 0.420 mmol), Pd (OAc)$_₂$ (0.002-0.003 g, 2-3 mol %), ethanol (1.5 mL) and distilled water (3.5 mL). The vial was sealed and loaded (with no prior degassing) into a CEM Discover Microwave. After a run time of 3 min at 120 °C complete conversion was evident by tlc (ethyl acetate). The reaction mixture was allowed to cool and ethyl acetate (50 mL) added. This was then washed with distilled water (30 mL x 3) and brine (30 mL). The organic layer was dried over MgSO$_₄$, filtered and solvent removed in vacuo to leave a yellow/brown residue. The crude product was purified by flash chromatography (20 g column, method4) eluting the title compound as a colourless oil (0.035 g, 30 %), $R_f$: 0.29 (ethyl acetate);

$^1$H NMR (270 MHz, CDCl$_₃$) δ 5.39 (2H, s, ArCH$_₂$N), 7.02-7.06 (1H, s, ArH), 7.20-7.54 (7H, m, ArH), 7.97 (1H, s, C$_₂$H$_₂$N$_₃$) and 8.09 (1H, s, C$_₂$H$_₂$N$_₃$);

HPLC (80 % CH$_₃$CN in H$_₂$O) $t_r=2.151$ (96.90 %);

LCMS (APCI), m/z 254.13 ([M$^+$H], 62 %), 184.94 ([M$^+$H]-C$_₂$H$_₂$N$_₃$, 100).

**1-(4′-Fluoro-biphenyl-3-ylmethyl)-1H-[1,2,4]triazole (TJA01071, STX1525)**

C$_{1₅}$H$_{1₂}$FN$_₃$ MW 253.27

[0302] A 10 mL microwave vial was loaded with TJA01009 (0.100 g, 0.420 mmol), 4-fluorophenylboronic acid (0.088 g, 0.630 mmol), potassium carbonate (0.145 g, 1.05 mmol), tetrabutylammonium bromide (0.139 g, 0.420 mmol), Pd (OAc)$_₂$ (0.002-0.003 g, 2-3 mol %), ethanol (1.5 mL) and distilled water (3.5 mL). The vial was sealed and loaded (with no prior degassing) into a CEM Discover Microwave. After a run time of 3 min at 120 °C complete conversion was evident...
by tlc (ethyl acetate). The reaction mixture was allowed to cool and ethyl acetate (50 mL) added. This was then washed with distilled water (30 mL x 3) and brine (30 mL). The organic layer was dried over MgSO₄, filtered and solvent removed in vacuo to leave a yellow/brown residue. The crude product was purified by flash chromatography (20 g column, method 4) eluting the title compound as an off white solid (0.030 g, 28 %).

mp 82.9-83.8 °C;

Rᵢ 0.32 (ethyl acetate);

1H NMR (270 MHz, CDCl₃) δ 5.34 (2H, s, ArCH₂N), 7.02-7.08 (2H, m, ArH); 7.15-7.19 (1H, d, J = 7.6 Hz, ArH), 7.35-7.46 (5H, m, ArH), 7.92 (1H, s, C₂H₂N₃) and 8.04 (1H, s, C₂H₂N₃);

13C NMR (100.5 MHz, CDCl₃) δ 53.6 (CH₃), 115.7-115.9 (J_C-F 21.5 Hz), 126.7, 126.8, 127.4, 128.7-128.8 (J_C-F 8.5 Hz), 129.6, 135.3, 136.5, 141.2, 143.2, 152.3 and 161.5-163.9 (J_C-F 246.9 Hz);

HPLC (80 % CH₃CN in H₂O) tᵣ=2.168 (98.68 %);

LCMS (APCI), m/z 254.19 (M⁺+H, 48 %), 185.07 ((M⁺+H)-C₂H₂N₃, 100).

STX1835

1-(2'-Phenoxy-biphenyl-3-ylmethyl)-1H-[1,2,4]triazole (TJA01135, STX1835)

C₂₁H₁₇N₃O MW 327.38

[0303] A 10 mL microwave vial was loaded with TJA01009 (0.100 g, 0.420 mmol), 4-phenoxyphenylboronic acid (0.135 g, 0.630 mmol), potassium carbonate (0.145 g, 1.05 mmol), tetrabutylammonium bromide (0.139 g, 0.420 mmol), Pd (OAc)₂ (0.002-0.003 g, 2-3 mol %), ethanol (1.5 mL) and distilled water (3.5 mL). The vial was sealed and loaded (with no prior degassing) into a CEM Discover Microwave. After a run time of 3 min at 120 °C the reaction mixture was allowed to cool and ethyl acetate (50 mL) added. This was then washed with distilled water (30 mL x 3) and brine (30 mL). The organic layer was dried over MgSO₄, filtered and solvent removed in vacuo to leave a yellow/brown residue. The crude product was purified by flash chromatography (20 g column, method 4) eluting the title compound as a light yellow viscous oil (0.120 g, 88 %), Rᵢ 0.44 (ethyl acetate);

1H NMR (270 MHz, DMSO-d₆) δ 5.41 (2H, s, ArCH₂N), 6.83-6.86 (2H, d, J = 7.7 Hz, ArH), 6.98-7.05 (2H, m, ArH), 7.19-7.51 (11H, m, ArH), 7.97 (1H, s, C₂H₂N₃) and 8.63 (1H, s, C₂H₂N₃);

13C NMR (67.9 MHz, CDCl₃) δ 53.7, 117.9, 120.1, 120.4, 122.8, 124.3, 126.9, 129.0, 129.2, 129.6, 129.7, 131.2, 132.9, 134.4, 138.7, 143.1, 152.2, 153.5 and 157.7;

HPLC (90 % CH₃CN in H₂O) tᵣ=2.278 (98.66 %);

LCMS (APCI), m/z 328.46 (M⁺+H, 100%).
1-(3'-[1,2,4]Triazol-1-ylmethyl-biphenyl-3-yl)-ethanone (TJA01136, STX1838)

C₁₇H₁₅N₃O MW 277.32

[0304] A 10 mL microwave vial was loaded TJA01009 (0.100 g, 0.420 mmol), 3-acetylphenylboronic acid (0.103 g, 0.630 mmol), potassium carbonate (0.145 g, 1.05 mmol), tetrabutylammonium bromide (0.139 g, 0.420 mmol), Pd(OAc)₂ (0.002-0.003 g, 2-3 mol %), ethanol (1.5 mL) and distilled water (3.5 mL). The vial was sealed and loaded (with no prior degassing) into a CEM Discover Microwave. After a run time of 3 min at 120 °C the reaction mixture was allowed to cool and ethyl acetate (50 mL) added. This was then washed with distilled water (30 mL x 3) and brine (30 mL). The organic layer was dried over MgSO₄, filtered and solvent removed in vacuo to leave a yellow/brown residue. The crude product was purified by flash chromatography (20 g column, method4) eluting the title compound as a colourless viscous oil (0.074 g, 64 %), Rf: 0.38 (ethyl acetate);

1H NMR (270 MHz, CDCl₃) δ 2.62 (3H, s, ArCOCH₃), 5.42 (2H, s, ArCH₂N), 7.28 (1H, s, ArH), 7.41-7.62 (4H, m, ArH), 7.71-7.76 (1H, ddd, J = 0.7 & 2.0 & 11.0 Hz, ArH), 7.92-7.94 (1H, dt, J = 0.5 & 7.7 Hz, ArH), 7.98 (1H, s, C₂H₂N₃), 8.11 (1H, s, C₂H₂N₃) and 8.13-8.15 (1H, t, J = 1.8 Hz, ArH);

13C NMR (100.5 MHz, CDCl₃) δ 26.9 (CH₃), 53.6 (CH₂), 126.9 (CH), 127.4 (CH), 127.7 (CH), 127.8 (CH), 129.3 (CH), 129.8 (CH), 131.9 (CH), 135.5 (C), 140.9 (C), 141.2 (C), 143.3 (CH), 152.4 (CH) and 156.1 (C);

HPLC (90 % CH₃CN in H₂O) tᵣ=2.300 (100 %);

LCMS (APCI), m/z 278.39 (M⁺+H, 100 %).

STX1839

1-(3-Dibenzofuran-4-yl-benzyl)-1H-[1,2,4]triazole (TJA01137, STX1839)

C₂₁H₁₅N₃O MW 325.36

[0305] A 10 mL microwave vial was loaded with TJA01009 (0.100 g, 0.420 mmol), 4-dibenzofuranboronic acid (0.134 g, 0.630 mmol), potassium carbonate (0.145 g, 1.05 mmol), tetrabutylammonium bromide (0.139 g, 0.420 mmol), Pd(OAc)₂ (0.002-0.003 g, 2-3 mol %), ethanol (1.5 mL) and distilled water (3.5 mL). The vial was sealed and loaded (with no prior degassing) into a CEM Discover Microwave. After a run time of 3 min at 120 °C the reaction mixture was allowed to cool and ethyl acetate (50 mL) added. This was then washed with distilled water (30 mL x 3) and brine (30 mL). The organic layer was dried over MgSO₄, filtered and solvent removed in vacuo to leave a yellow/brown residue. The crude product was purified by flash chromatography (20 g column, method4) eluting the title compound as a colourless viscous oil (0.097 g, 71 %), Rf: 0.39 (ethyl acetate);

1H NMR (270 MHz, CDCl₃) δ 5.47 (2H, s, ArCOCH₃), 7.28-7.60 (7H, m, ArH), 7.81 (1H, m, ArH), 7.87-7.99 (3H, m, ArH), 8.04 (1H, s, C₂H₂N₃) and 8.16 (1H, s, C₂H₂N₃);

13C NMR (67.9 MHz, CDCl₃) δ 53.8 (CH₂), 111.9 (CH), 120.2 (CH), 120.8 (CH), 123.0 (CH), 123.4 (CH), 124.1 (C), 125.0 (C), 125.1 (C), 126.8 (CH), 127.4 (CH), 127.5 (CH), 128.5 (CH), 129.2 (CH), 129.5 (CH), 135.1 (C), 137.4 (C), 143.3 (CH), 152.4 (CH), 153.3 (C) and 156.1 (C);
HPLC (90 % CH$_3$CN in H$_2$O) $t_r = 3.018$ (98.25 %);
LCMS (APCI), $m/z$ 326.45 (M$^+$ + H, 100 %).

**STX1840**

3'-[1,2,4]Triazol-1-ylmethyl-biphenyl-3-ol (TJA01138, STX1840)

C$_{15}$H$_{13}$N$_3$O MW 251.29

[0306] A 10 mL microwave vial was loaded with TJA01009 (0.150 g, 0.630 mmol), 3-hydroxyphenylboronic acid (0.130 g, 0.945 mmol), potassium carbonate (0.218 g, 1.58 mmol), tetrabutylammonium bromide (0.209 g, 0.630 mmol), Pd (OAc)$_2$ (0.004-0.005 g, 2-3 mol %), ethanol (1.5 mL) and distilled water (3.5 mL). The vial was sealed and loaded (with no prior degassing) into a CEM Discover Microwave. After a run time of 3 min at 120 °C the reaction mixture was allowed to cool and ethyl acetate (50 mL) added. This was then washed with distilled water (25 x 3 mL) and brine (25 mL). The organic layer was dried over MgSO$_4$, filtered and solvent removed in vacuo to leave a yellow/brown residue. The crude product was purified by flash chromatography (20 g column, method4) eluting the title compound as a pale yellow solid (0.130 g, 82 %), $R_f$: 0.25 (ethyl acetate);

$^1$H NMR (270 MHz, DMSO-$d_6$) δ 5.48 (2H, s, ArCH$_2$N), 6.75-6.79 (1H, dd, $J = 0.8$ & 8.9 Hz, ArH), 6.97-7.04 (2H, m, ArH), 7.23-7.29 (2H, m, ArH), 7.43-7.58 (3H, m, ArH), 8.01 (1H, s, C$_2$H$_2$N$_2$), 8.73 (1H, s, C$_2$H$_2$N$_2$) and 9.59 (1H, s, ArOH);

$^{13}$C NMR (67.9 MHz, DMSO-$d_6$) δ 52.6 (CH$_2$), 114.0 (CH), 115.1 (C), 115.2 (CH), 118.0 (CH), 126.7 (CH), 127.4 (CH), 129.8 (CH), 130.6 (CH), 137.5 (C), 141.2 (C), 144.9 (CH), 152.4 (CH) and 158.4 (C) (one overlapping signal);

HPLC (90 % CH$_3$CN in H$_2$O) $t_r = 2.199$ (99.70 %);

LCMS (APCI), $m/z$ 252.25 (M$^+$ + H, 100 %);

**STX1841**
5-bromo-2-fluorotoluene (5.00 g, 26.5 mmol), N-bromosuccinimide (5.18 g, 29.1 mmol), benzyl peroxide (0.205 g, 0.850 mmol) and carbon tetrachloride (50 mL) were loaded to a r.b. flask and set to reflux (79 °C) for 2 h. Once cooled the succinimide was filtered off and carbon tetrachloride removed via a dry ice-acetone cooled rotary evaporator. The residues were dissolved in dichloromethane (100 mL) and washed with distilled H2O (50 mL x 3) and brine (50 mL). Dried over MgSO4 and solvent removed in vacuo to yield the title compound as a colourless liquid yellow (6.80 g, 96 %), Rf: 0.55 (dichloromethane/hexane 10:90), c.f. 0.79 (5-bromo-2-fluorotoluene); HPLC (70 % CH3CN in H2O) t_r=4.786 (71.55 %);

1-(5-Bromo-2-fluoro-benzyl)-1H-[1,2,4]triazole (TJA01132, STX1834)

To a solution of TJA01131 (5.00 g, 18.7 mmol) in acetone (50 mL) was added 1,2,4-triazole (1.94 g, 28.1 mmol), potassium carbonate (2.58 g, 18.7 mmol) and potassium iodide (0.182 g, 1.10 mmol). The resulting white suspension was heated to 55 °C with vigorous stirring for 16 h. The yellow reaction mixture was cooled and ethyl acetate (100 mL) added. This was then washed with distilled water (100 mL x 2) and brine (100 mL). The organic layer was dried over MgSO4, filtered and solvent removed in vacuo to leave clear yellow oil that crystallises on standing to give the title compound as a yellow crystalline solid (2.54 g, 53 %), Rf: 0.57 (ethyl acetate);

1-(4-Fluoro-biphenyl-3-ylmethyl)-1H-[1,2,4]triazole (TJA01139, STX1841)

A 10 mL microwave vial was loaded with TJA01132 (0.100 g, 0.391 mmol), phenylboronic acid (0.071 g, 0.586 mmol), potassium carbonate (0.135 g, 0.978 mmol), tetrabutylammonium bromide (0.130 g, 0.391 mmol), Pd(OAc)2 (0.002-0.003 g, 2-3 mol %), ethanol (1.5 mL) and distilled water (3.5 mL). The vial was sealed and loaded (with no prior degassing) into a CEM Discover Microwave. After a run time of 3 min at 120 °C the reaction mixture was allowed to cool and ethyl acetate (50 mL) added. This was then washed with distilled water (30 mL x 3) and brine (30 mL). The organic layer was dried over MgSO4, filtered and solvent removed in vacuo to leave a yellow/brown residue. The crude product was purified by flash chromatography (20 g column, method7) eluting the title compound as a colourless viscous oil (0.079 g, 80 %), Rf: 0.45 (ethyl acetate);

1-H NMR (270 MHz, CDCl3) δ 5.44 (2H, s, ArCH2N), 7.13-7.20 (2H, m, ArH), 7.31-7.57 (7H, m, ArH), 7.96 (1H, s, C2H2N3) and 8.17 (1H, s, C2H2N3);
13C NMR (67.9 MHz, CDCl3) δ 47.4-47.5 (CH2, J_C-F 4.5 Hz), 116.1-116.4 (CH, J_C-F 21.7 Hz), 122.1-122.4 (C, J_C-F 20.4 Hz), 127.1 (CH), 127.8 (CH), 129.0 (CH), 129.3-129.3 (CH, J_C-F 3.2 Hz), 129.6-129.5 (CH, J_C-F 8.9 Hz), 138.2 (C), 139.5 (C), 143.3 (CH), 152.4 (CH) and 158.4-162.1 (C, J_C-F 260 Hz);
HPLC (90 % CH3CN in H2O) t_r=2.197 (98.14 %);
LCMS (APCI), m/z 256.33 (M+ + H, 100 %).
4'-Fluoro-3-[1,2,4]triazol-1-ylmethyl-biphenyl-4-ol (TJA01140, STX1842)

C₁₅H₁₂FN₃O MW 269.27

[0310] A 10 mL microwave vial was loaded with TJA01132 (0.200 g, 0.781 mmol), 4-hydroxyphenylboronic acid (0.164 g, 1.17 mmol), potassium carbonate (0.270 g, 1.95 mmol), tetrabutylammonium bromide (0.260 g, 0.781 mmol), Pd (OAc)₂ (0.005-0.006 g, 2-3 mol %), ethanol (1.5 mL) and distilled water (3.5 mL). The vial was sealed and loaded (with no prior degassing) into a CEM Discover Microwave. After a run time of 3 min at 120 °C the reaction mixture was allowed to cool and ethyl acetate (50 mL) added. This was then washed with distilled water (30 mL x 3) and brine (30 mL). The organic layer was dried over MgSO₄, filtered and solvent removed in vacuo to leave a yellow/brown residue. The crude product was purified by flash chromatography (20 g column, method7) eluting the title compound as a white solid (0.139 g, 66 %), Rₛ: 0.40 (ethyl acetate);

¹H NMR (270 MHz, DMSO-d₆) δ 5.51 (2H, ArCH₂N), 6.82-6.86 (2H, d, J= 8.4 Hz, AA’BB’), 7.22-7.30 (1H, t, J=8.6 Hz, ArH), 7.40-7.43 (2H, d, J= 8.4 Hz, AA’BB’), 7.53-7.58 (2H, m, ArH), 7.99 (1H, s, C₂H₂N₃), 8.69 (1H, s, C₂H₂N₃) and 9.63 (1H, s, ArOH);

¹³C NMR (67.9 MHz, DMSO-d₆) δ 46.8-46.9 (CH₂, J_C-F 3.2 Hz), 116.3-116.6 (CH, J_C-F 21.7 Hz), 123.7-123.9 (C, J_C-F 15.9 Hz), 128.3 (CH), 128.4 (CH), 128.8-128.9 (CH, J_C-F 3.8 Hz), 130.1 (C), 137.4 (C), 137.5 (C), 145.0 (CH), 152.3 (C), 157.8 (C), 157.0-161.6 (C, J_C-F 251.7 Hz);

HPLC (90 % CH₃CN in H₂O) tᵣ = 1.965 (100 %);

LCMS (APCI), m/z 270.40 (M⁺ + H, 100 %);

STX1843
A 10 mL microwave vial was loaded with TJA01046 (0.200 g, 0.760 mmol), 3-hydroxyphenylboronic acid (0.160 g, 1.14 mmol), potassium carbonate (0.263 g, 1.90 mmol), tetrabutylammonium bromide (0.253 g, 0.760 mmol), Pd (OAc)₂ (0.005-0.006 g, 2-3 mol %), ethanol (1.5 mL) and distilled water (3.5 mL). The vial was sealed and loaded (with no prior degassing) into a CEM Discover Microwave. After a run time of 3 min at 120 °C the reaction mixture was allowed to cool and ethyl acetate (50 mL) added. This was then washed with distilled water (30 mL x 3) and brine (30 mL). The organic layer was dried over MgSO₄, filtered and solvent removed in vacuo to leave a yellow/brown residue. The crude product was purified by flash chromatography (20 g column, method7) eluting the title compound as a white solid (0.184 g, 89 %), mp 182.7-184.3 °C; Rf: 0.33 (ethyl acetate);

H NMR (270 MHz, DMSO-d₆) δ 5.68 (2H, s, ArCH₂N), 6.83-6.87 (1H, dd, J = 2.5 & 8.2 Hz, ArH), 7.01-7.10 (2H, m, ArH), 7.28-7.34 (1H, t, J = 7.9 Hz, ArH), 7.68 (1H, s, ArH), 7.76-7.79 (1H, dd, J = 1.8 & 8.1 Hz, ArH), 7.93-7.96 (1H, d, J = 8.2 Hz, ArH), 8.06 (1H, s, C₂H₂N₂), 8.75 (1H, s, C₂H₂N₂) and 9.73 (1H, s, ArOH);

13C NMR (67.9 MHz, DMSO-d₆) δ 51.0 (CH₂), 110.5 (C), 114.2 (CH), 116.5 (CH), 117.7 (C), 118.3 (CH), 127.6 (CH), 128.4 (CH), 130.9 (CH), 134.5 (CH), 139.8 (C), 140.2 (C), 145.5 (CH), 145.6 (C), 152.7 (CH) and 158.6 (C);

HPLC (90 % CH₃CN in H₂O) tᵣ = 1.963 (100 %);

LCMS (APCI), m/z 277.39 (M⁺ + H, 100 %).

2-(3'-Benzoyl-5-[1,2,4]triazol-1-ylmethyl-biphenyl-3-yl)-2-methyl-propionitrile (TJA01142, STX1844)

C₂₆H₂₂N₄O MW 406.48

A 10 mL microwave vial was loaded with TJA01037 (0.100 g, 0.328 mmol), 4-benzoylphenylboronic acid (0.111 g, 0.492 mmol), potassium carbonate (0.113 g, 0.820 mmol), tetrabutylammonium bromide (0.109 g, 0.328 mmol), Pd (OAc)₂ (0.002-0.003 g, 2-3 mol %), ethanol (1.5 mL) and distilled water (3.5 mL). The vial was sealed and loaded (with no prior degassing) into a CEM Discover Microwave. After a run time of 3 min at 120 °C the reaction mixture was allowed...
to cool and ethyl acetate (50 mL) added. This was then washed with distilled water (30 mL x 3) and brine (30 mL). The
organic layer was dried over MgSO₄, filtered and solvent removed in vacuo to leave a yellow/brown residue. The crude
product was purified by flash chromatography (20 g column, method 7) eluting the title compound as a colourless viscous oil
(0.108 g, 81 %), Rf: 0.19 (ethyl acetate);

1H NMR (270 MHz, CDCl₃) δ 1.74 (6H, s, ArC(CH₃)₂CN), 5.45 (2H, s, ArCH₂N), 7.38-7.52 (4H, m, ArH), 7.79-7.89 (4H, m, ArH), 7.00 (1H, s, C₂H₂N₃) and 8.17 (1H, s, C₂H₂N₃);

13C NMR (67.9 MHz, CDCl₃) δ 29.2 (CH₃), 37.4 (C), 53.3 (CH₂), 124.1 (C), 124.3 (CH), 126.4 (CH), 127.4 (CH), 128.5 (CH), 130.1 (CH), 130.9 (CH), 132.7 (CH), 136.6 (C), 137.1 (C), 137.5 (c), 142.0 (C), 143.4 (C), 143.4 (CH), 143.7 (C), 152.6 (CH) and 196.2 (C=O) (two overlapping signals);

HPLC (90 % CH₃CN in H₂O) tᵣ=2.072 (96.88 %);

LCMS (APCI), m/z 407.42 (M⁺ + H, 100 %).

Sulfamic acid 3'-{(1,2,4)triazol-1-ylmethyl-biphenyl-3-yl ester (TJA01184, STX1848)

C₁₅H₁₄N₄O₃S MW 330.37

[0313] Sulfamoyl chloride in toluene (1.24 mL, 0.743 mmol) was transferred to a 10 mL r.b. flask and the solvent
removed under vacuum at 30 °C. On cooling a white solid formed to which was added N,N-dimethylacetamide (1.5 mL)
to form a colourless solution. TJA01138 (0.040 g, 0.149 mmol) was added and the solution left to stir at room temperature
under N₂ (g) for 20 h. The reaction mixture was then poured into distilled H₂O (30 mL) and extracted with ethyl acetate
(25 mL x 2). The organic layers were combined and washed with distilled H₂O (25 mL x 4) and brine (25 mL). Dried over
MgSO₄ and solvent removed in vacuo to leave off white residues. Column chromatography (dichloromethane/acetone
80:20) eluted the title compound as a white solid (0.045 g, 92%),

Rf: 0.20 (dichloromethane/acetone 80:20);

1H NMR (270 MHz, DMSO-d₆) δ 5.50 (2H, s, ArCH₂N), 7.28-7.31 (2H, d, J= 5.2 Hz, ArH), 7.48-7.63 (6H, m, ArH), 8.00
(3H, bs, ArSO₂NH₂ & C₂H₂N₃) and 8.79 (1H, s, C₂H₂N₃);

13C NMR (67.9 MHz, DMSO-d₆) δ 52.6 (CH₂), 121.1 (CH), 122.0 (CH), 125.5 (CH), 127.0 (CH), 128.1 (CH), 130.0 (CH),
131.0 (CH), 137.4 (C), 140.0 (C), 142.1 (C), 144.9 (CH), 151.2 (C) and 152.4 (CH) (one overlapping signal);

HPLC (90 % CH₃CN in H₂O) tᵣ=1.869 (100 %);

LCMS (APCI), m/z 331.42 (M⁺ + H, 100 %), 252.38 ((M⁺ + H) - SO₂NH₂, 20).

HRMS (ES⁺) calcd. for C₁₅H₁₄N₄O₃S (M⁺H)⁺ 331.0859, found 331.0857:
3-Chloro-4-hydroxyphenylboronic acid (TJA01187)

C₆H₆BClO₃ MW 172.37

[0314] A dry 250 ml r.b. flask was loaded with 4-bromo-2-chlorophenol (5.00 g, 24.1 mmol) and purged with N₂(g). Anhydrous THF (100 mL) added with stirring and the vessel cooled to -78 °C (dry ice/acetone bath). After 30 mins n-BuLi, 2.3 M in hexanes, (12.9 mL, 28.9 mmol) was added dropwise over 20 min. The reaction was left to stir for 1 h. Triisopropyl borate (6.65 mL, 28.9 mmol) was added dropwise with the reaction still at -78 °C. After 15 min of stirring at this temperature the dry ice/acetone bath was removed. At about 0 °C 2 M HCl (aq) (5 mL) was added and the reaction left to stir for a further 15 min. THF removed under vacuum and residues taken up in ethyl acetate (50 mL). Distilled H₂O (50 mL) was added and the organic layer separated. The aqueous layer was extracted with ethyl acetate (50 mL x 2). The organic portions were combined and washed with sat. Na₂CO₃(aq). The aqueous layer was separated and treated with 2M HCl (aq) until the pH was about 4. This was then extracted with ethyl acetate (50 mL x 2). The organic portions were then dried over MgSO₄ and solvent removed. The resultant off white residues were taken up in a minimum of ethyl acetate (2-3 mL) and added to dropwise to hexane (50 mL) with stirring. The white ppt was filtered to give the title compound as an off white solid (0.490 g, 12 %).

1H NMR (600 MHz, DMSO-d₆) δ 6.89-6.92 (1H, d, J = 8.2 Hz, ArH), 7.52-7.56 (1H, dd, J = 1.8 & 7.9 Hz, ArH), 7.72-7.73 (1H, d, J = 1.5 Hz, ArH), 7.98 (2H, s, ArB(OH)₂) and 10.33 (1H, s, ArOH);
HPLC (70 % CH₃CN in H₂O) tᵣ = 3.654 (97.92 %);
LCMS (APCI), m/z 173.11 (37ClM-H, 30 %), 171.10 (35ClM-H, 100 %).

3'-(1,2,4)Triazole-1-yl-methyl-biphenyl-3-chloro-4-ol (TJA01191)

C₁₅H₁₂ClN₃O MW 285.73

[0315] A 10 mL microwave vial was loaded with TJA01009 (0.150 g, 0.630 mmol), TJA01187 (0.130 g, 0.756 mmol), potassium carbonate (0.218 g, 1.58 mmol), tetrabutylammonium bromide (0.209 g, 0.630 mmol), Pd(OAc)₂ (0.004-0.005 g, 2-3 mol %), ethanol (1.5 mL) and distilled water (3.5 mL). The vial was sealed and loaded (with no prior degassing) into a CEM Explorer Microwave. After a run time of 3 min at 120 °C the reaction mixture was allowed to cool and ethyl acetate (50 mL) added. This was then washed with distilled water (25 mL x 3) and brine (25 mL). The organic layer was dried over MgSO₄, filtered and solvent removed in vacuo to leave a yellow/brown residue. The crude product was purified via flash chromatography (20 g column, method4) eluted the title compound as an off white solid (0.129 g, 72 %), Rₛ 0.35 (ethyl acetate).

1H NMR (270 MHz, DMSO-d₆) δ 5.46 (2H, s, ArCH₂N), 7.04-7.07 (1H, d, J = 8.4 Hz, ArH), 7.18-7.20 (1H, d, J = 7.4 Hz, ArH), 7.28-7.62 (5H, m, ArH), 8.01 (1H, s, C₂H₂N₃), 8.71 (1H, s, C₂H₂N₃) and 10.40 (1H, bs, ArOH);
HPLC (70 % CH₃CN in H₂O) tᵣ=4.274 (96.66 %);
LCMS (APCI), m/z 286.33 (37ClM-H, 30 %), 284.32 (35ClM-H, 100 %).
Sulfamic acid 3’-(1,2,4)triazol-1-ylmethyl-biphenyl-3-chloro-4-yl ester (TJA02001, STX1854)

\[ \text{C}_{15}\text{H}_{13}\text{ClN}_{4}\text{O}_{3}\text{S} \text{ MW 364.81} \]

**[0316]** Sulfamoyl chloride in toluene (2.03 mL, 1.22 mL) was transferred to a 10 mL r.b. flask and the solvent removed under vacuum at 30 °C. On cooling a white solid formed to which was added \(N,N\)-dimethylacetamide (1.5 mL) to form a colourless solution. TJA01191 (0.070 g, 0.244 mmol) was added and the solution left to stir at room temperature under \(N_2\) (g) for 72 h. The reaction mixture was then poured into distilled \(H_2O\) (30 mL) and extracted with ethyl acetate (25 mL x 2). The organic layers were combined and washed with distilled \(H_2O\) (25 mL x 4) and brine (25 mL). Dried over MgSO\(_4\) and solvent removed in vacuo to leave off white residues. Column chromatography (dichloromethane/acetone 80:20) eluted the title compound as a white solid (0.055 g, 62 %).

Following the same procedure used for TJA01047, TJA02001 was prepared from TJA01191 (0.070 g, 0.244 mmol) and sulfamoyl chloride (2.03 mL, 1.22 mmol) after 72 h. Purification via column chromatography (dichloromethane/acetone 80:20) eluted the title compound as a white solid (0.055 g, 62 %), mp 148.3-153.3 °C; 

\( R_f \) 0.18 (dichloromethane/acetone 80:20).

\( ^1H \) NMR (270 MHz, DMSO-\(d_6\)) \( \delta \) 5.49 (2H, s, ArCH\(_2\)N), 7.27-7.31 (1H, d, \( J = 7.4 \) Hz, ArH), 7.44-7.50 (1H, t, \( J = 5.9 \) Hz, ArH), 7.57-7.72 (4H, m, ArH), 7.86-7.87 (1H, d, \( J = 2.0 \) Hz), 8.00 (1H, s, C\(_2\)H\(_2\)N\(_3\)), 8.34 (2H, bs, ArSO\(_2\)NH\(_2\)) and 8.72 (1H, s, C\(_2\)H\(_2\)N\(_3\));

\( ^13C \) NMR (67.9 MHz, DMSO-\(d_6\)) \( \delta \) 52.5 (CH\(_2\)), 124.8 (CH), 127.0 (CH), 127.1 (CH), 127.6 (C), 128.2 (CH), 129.0 (CH), 130.0 (CH), 137.3 (C), 138.7 (C), 139.9 (C), 144.9 (CH), 146.1 (C) and 152.4 (CH) (one overlapping signal);

HPLC (70 % CH\(_3\)CN in \(H_2O\)) \( t_r = 2.694 \) (100 %);

LCMS (APCI), \( \text{m/z} \) 367.25 (\(^{37}\text{Cl}M^+ + H^+, 20 \%\)), 365.24 (\(^{35}\text{Cl}M^+ + H^+, 55 \%\)), 288.22 (\(^{37}\text{Cl}M^+ + H^+ - \text{SO}_2\text{NH}_2^-, 30 \%\)), 286.20 (\(^{35}\text{Cl}M^+ + H^+ - \text{SO}_2\text{NH}_2^-, 100 \%\));

HRMS (ES+) calcd. for C\(_{15}\)H\(_{13}\)ClN\(_4\)O\(_3\)S (M+H\(^+\)) 365.0470, found 365.0471.

**STX1975**

\[
\begin{align*}
\text{Br} & \xrightarrow{1,2,4-\text{triazole}, \text{K}_2\text{CO}_3, \text{KI}} \text{Br} \\
\text{Br} & \xrightarrow{\text{Pd(OA)ClP, TBA, K}_2\text{CO}_3} \text{N} \\
\text{N} & \xrightarrow{68 \%} \text{TJA02018} \\
\text{Br} & \xrightarrow{88 \%} \text{STX1975} \\
\text{TJA02018} & \xrightarrow{88 \%} \text{STX1975} \\
\text{TJA02018} & \xrightarrow{88 \%} \text{STX1975} \\
\end{align*}
\]

1-(4-Bromobenzyl)-1H-1,2,4-triazole (TJA02018)

\[ \text{C}_9\text{H}_8\text{BrN}_3 \text{ MW 238.08} \]

**[0317]** 4-Bromobenzylbromide (5.00 g, 20.0 mmol), 1,2,4-triazole (2.07 g, 30.0 mmol), potassium carbonate (2.76 g, 20.0 mmol), potassium iodide (0.190 g, 1.18 mmol) and acetone (100 mL) were loaded to an r.b. flask. With vigorous stirring this mixture was set to reflux (60 °C) for 24 h. The reaction mixture was allowed to cool and acetone was removed in vacuo. The residues were taken up in ethyl acetate (50 mL) and washed with distilled water (50 mL x 2) and brine (50 mL). Dried over MgSO\(_4\) and solvent removed in vacuo to leave a yellow solid. Column chromatography (ethyl acetate) eluted the title compound as a white solid (3.24 g, 68 %), \( R_f \) 0.50 (ethyl acetate).

\( ^1H \) NMR (270 MHz, CDCl\(_3\)) \( \delta \) 5.29 (2H, s, ArCH\(_2\)N), 7.10-7.13 (2H, d, \( J = 8.7 \) Hz, AA’BB’), 7.47-7.50 (2H, d, \( J = 8.6 \) Hz, AA’BB’), 7.96 (1H, s, C\(_2\)H\(_2\)N\(_3\)) and 8.06 (1H, s, C\(_2\)H\(_2\)N\(_3\));

\( ^13C \) NMR (67.9 MHz, CDCl\(_3\)) \( \delta \) 52.9 (CH\(_2\)), 122.9 (C), 129.7 (CH), 132.3 (CH), 133.7 (C), 143.2 (CH) and 152.5 (CH); HPLC (90 % CH\(_3\)CN in \(H_2O\)) \( t_r = 2.693 \) (100 %);
**1-Biphenyl-4-methyl-1H-(1,2,4)-triazole (TJA02025, STX1975)**

\[ \text{C}_{15}\text{H}_{13}\text{N}_{3} \text{ MW 235.28} \]

[0318] A 10 mL microwave vial was loaded with TJA02018 (0.150 g, 0.630 mmol), phenylboronic acid (0.115 g, 0.945 mmol), potassium carbonate (0.218 g, 1.58 mmol), tetrabutylammonium bromide (0.209 g, 0.630 mmol), Pd(\text{OAc})\text{\textsubscript{2}} (0.003-0.004 g, 2-3 mol %), ethanol (1.5 mL) and distilled water (3.5 mL). The vial was sealed and loaded (with no prior degassing) into a CEM Explorer Microwave (150 W, 3 min, 120 °C). The reaction mixture was allowed to cool and ethyl acetate (50 mL) added. This was then washed with distilled water (25 mL x 3) and brine (25 mL). The organic layer was dried over MgSO\textsubscript{4}, filtered and solvent removed \textit{in vacuo} to leave a yellow/brown residue. Flash chromatography (20 g column, \textit{method} 4) eluted the title compound as a white solid (0.130 g, 88 %), mp 160.4-164.2 °C; 
\[ R_{f} 0.44 \text{ (ethyl acetate);} \]
\[ ^{1}\text{H NMR (270 MHz, CDCl}\textsubscript{3}) \delta 5.37 (2H, s, ArCH}_{2}\text{N), 7.31-7.47 (5H, m, ArH), 7.54-7.61 (4H, m, ArH), 7.99 (1H, s, C}_{2}\text{H}_{2}\text{N}_{3}) \text{ and 8.10 (1H, s, C}_{2}\text{H}_{2}\text{N}_{3}); \]
\[ ^{13}\text{C NMR (67.9 MHz, CDCl}\textsubscript{3}) \delta 53.4 (\text{CH}_{2}), 127.2 (\text{CH}), 127.8 (\text{CH}), 127.9 (\text{CH}), 128.6 (\text{CH}), 129.0 (\text{CH}), 133.5 (\text{C}), 140.4 (\text{C}), 141.8 (\text{C}), 143.2 (\text{CH}) \text{ and 152.4 (CH);} \]
\[ \text{HPLC (90 % CH}_{3}\text{CN in H}_{2}\text{O}) t_{r} = 2.414 (99.30 %); \]
\[ \text{LCMS (APCI), } m/z 236.06 (M}^{+} + \text{ H, 100 %); \]

**STX1976**

\[ \text{4'}-\text{(1,2,4)Triazole-1-yl-methyl-biphenyl-4-ol (TJA02026)} \]

\[ \text{C}_{15}\text{H}_{13}\text{N}_{3}\text{O MW 251.28} \]

[0319] A 10 mL microwave vial was loaded with TJA02018 (0.200 g, 0.840 mmol), 4-hydroxyphenylboronic acid (0.174 g, 1.26 mmol), potassium carbonate (0.290 g, 2.10 mmol), tetrabutylammonium bromide (0.279 g, 0.840 mmol), Pd (\text{OAc})\text{\textsubscript{2}} (0.005-0.006 g, 2-3 mol %), ethanol (1.5 mL) and distilled water (3.5 mL). The vial was sealed and loaded (with no prior degassing) into a CEM Explorer Microwave. After a run time of 3 min at 120 °C the reaction mixture was allowed to cool and ethyl acetate (50 mL) added. This was then washed with distilled water (25 mL x 3) and brine (25 mL). The organic layer was dried over MgSO\textsubscript{4}, filtered and solvent removed \textit{in vacuo} to leave a yellow/brown residue. The crude product was purified via flash chromatography (20 g column, \textit{method} \textit{d}) eluted the title compound as an off white solid (0.151 g, 72 %), 
\[ R_{f} 0.37 \text{ (ethyl acetate;} \]
\[ ^{1}\text{H NMR (270 MHz, DMSO-}d\textsubscript{6}) \delta 5.42 (2H, s, ArCH}_{2}\text{N), 6.82-6.85 (2H, d, } J = 8.6 \text{ Hz, AA'BB'}, 7.32-7.48 (2H, d, } J = 8.2 \text{ Hz, AA'BB'), 7.45-7.57 (2H, d, } J = 8.4 \text{ Hz, AA'BB'), 7.99 (1H, s, C}_{2}\text{H}_{2}\text{N}_{3}), 8.68 (1H, s, C}_{2}\text{H}_{2}\text{N}_{3}) \text{ and 9.58 (1H, bs, ArOH);} \]
\[ \text{HPLC (90 % CH}_{3}\text{CN in H}_{2}\text{O}) t_{r} = 2.163 (92.21 %); \]
\[ \text{LCMS (APCI), } m/z 252.25 (M}^{+} + \text{ H, 100 %); \]
Sulfamic acid 4’-(1,2,4)triazol-1-ylmethyl-biphenyl-4-yl ester (TJA02029, STX1976)

C_{15}H_{14}N_4O_3S MW 330.37

[S0320] Sulfamoyl chloride in toluene (0.30 M, 9.50 mL) was transferred to a 10 mL r.b. flask and the solvent removed under vacuum at 30 °C. On cooling a white solid formed to which was added N,N-dimethylacetamide (1.5 mL) to form a colourless solution. TJA02026 (0.143 g, 0.570 mmol) was added and the solution left to stir at room temperature under N2 (g) for 72 h. The reaction mixture was then poured into distilled H2O (30 mL) and extracted with ethyl acetate (25 mL x 2). The organic layers were combined and washed with distilled H2O (25 mL x 4) and brine (25 mL). Dried over MgSO4 and solvent removed in vacuo to leave off white residues. Column chromatography (dichloromethane/aceton 80:20) eluted the title compound as a white solid (0.085 g, 45 %), mp 169.6-175.0 °C; Rf: 0.28 (dichloromethane/aceton 80:20).

1H NMR (270 MHz, DMSO-d$_6$) δ 5.47 (2H, s, ArCH$_2$N), 7.35-7.39 (4H, dd, J = 7.4 & 8.2 Hz, AA'BB'), 7.65-7.76 (4H, dd, J = 7.9 & 8.4 Hz, AA'BB'), 8.01 (1H, s, C$_2$H$_2$N$_3$), 8.07 (2H, bs, ArOSO$_2$NH$_2$) and 8.77 (1H, s, C$_2$H$_2$N$_3$);

13C NMR (67.9 MHz, DMSO-d$_6$) δ 52.3 (CH$_2$), 123.3 (CH), 127.6 (CH), 128.6 (CH), 129.1 (CH), 136.3 (C), 138.6 (C), 139.3 (C), 144.9 (CH), 150.3 (C) and 152.4 (CH); HPLC (70 % CH$_3$CN in H$_2$O) t$_r$ = 3.000 (99.36 %);

LCMS (APCI), m/z 331.05 (M$^+$ + H, 100 %);

HRMS (FAB+) calcd. for C$_{15}$H$_{14}$N$_4$O$_3$S (M$^+$ + H)$^+$ 331.0859, found 331.0858.

2-Bromo-4-methylbenzamide (TJA02017)

C$_8$H$_8$BrNO MW 214.06

[S0321] 2-bromo-4-methylbenzoic acid (5.00 g, 23.3 mmol) and thionyl chloride (30 mL) were loaded to a 100 mL r.b. flask and the mixture set to reflux for 20 h. The reaction was then allowed to cool and excess thionyl chloride was removed via a rotary evaporator. Resultant dark brown residues were taken up in THF (40 mL) and added, with stirring, to ammonia water (35 %, 50 mL) which had been cooled to 0 °C. Left to stir for 1 h. Conc. HCl(aq) was carefully added dropwise until the mixture had reached pH 3-5. THF was removed via a rotary evaporator and the solids were filtered and washed thoroughly with distilled H$_2$O. After drying under vacuum at 70 °C the title compound was obtained as a white solid (4.24 g, 84 %), mp 173.2-175.8 °C;

1H NMR (270 MHz, DMSO-d$_6$) δ 2.35 (3H, s, ArCH$_3$), 7.20-7.23 (1H, d, J = 8.2 Hz, ArH), 7.28-7.31 (1H, d, J = 7.7 Hz, 8.4 Hz);
ArH), 7.47 (1H, s, ArH), 7.51 (1H, bs, ArCONH₂) and 7.79 (1H, bs, ArCONH₂);

\[ ^{13}C \text{NMR (67.9 MHz, DMSO-d}_6) \delta 20.9 (CH₃), 119.1 (C), 128.6 (CH), 129.0 (CH), 133.5 (CH), 136.9 (C), 141.3 (C) and 169.6 (C=O); \]

HPLC (70 % CH₃CN in H₂O) \( t_r = 4.446 \) (100 %);

LCMS (APCI), \( m/z \) 215.95 (\(^{81}\text{BrM}^+ + H\), 95 %), 213.95 (\(^{79}\text{BrM}^+ + H\), 100).

2-Bromo-4-methylbenzonitrile (TJA02020)

C₈H₆BrN MW 196.04

[0322] Phosphorus oxychloride (22.6 mL, 243 mmol), TJA02017 (4.00 g, 18.7 mmol) and sodium chloride (2.40 g, 41.1 mmol) were loaded to a 100 mL r.b. flask and set to reflux with stirring for 4 h. The mixture was allowed to cool and excess phosphorus oxychloride was removed via a rotary evaporator. The resultant brown residues were poured into iced water with stirring and left for 10 min. A brown ppt. had formed and was collected via filtration, washed thoroughly with distilled H₂O and dried under vacuum at 70 °C. Recrystallisation (hexane) yielded the **title compound** as a white crystalline solid (3.07 g, 84 %), mp 49.9-51.9 °C;

\[ ^1\text{H NMR (270 MHz, CDCl}_3) \delta 2.40 (3H, s, ArH), 7.18-7.22 (1H, d, \text{J}= 8.6 Hz, ArH) \text{ and } 7.49-7.54 (2H, m, ArH); \]

\[ ^{13}C \text{NMR (67.9 MHz, CDCl}_3) \delta 21.7 (CH₃), 112.8 (C), 117.5 (C), 125.2 (C), 128.6 (CH), 133.8 (CH), 134.1 (CH) \text{ and } 145.5 (C); \]

HPLC (70 % CH₃CN in H₂O) \( t_r = 4.917 \) (99.75 %);

LCMS (APCI), \( m/z \) 198.07 (\(^{81}\text{BrM}^+ + H\), 100 %), 196.07 (\(^{79}\text{BrM}^+ + H\), 98 %).

2-Bromo-4-(bromomethyl)benzonitrile (TJA02023)

C₈H₅Br₂N MW 274.94

[0323] TJA02020 (2.50 g, 12.8 mmol), N-bromosuccinimde (2.73 g, 14.4 mmol), benzyl peroxide (0.100 g, 0.410 mmol) and carbon tetrachloride (50 mL) were loaded to a 100 mL r.b. flask and set to reflux with stirring for 4 h. Allowed to cool. The succinimide was filtered off and carbon tetrachloride removed via a dry ice-acetone cooled rotary evaporator. The residues were dissolved in dichloromethane (50 mL) and washed with distilled H₂O (50 mL x 3) and brine (50 mL x 2). Dried over MgSO₄ and solvent removed in vacuo to leave yellow residues. Column chromatography (hexane/ dichloromethane 60:40) eluted the **title compound** as a white crystalline solid (3.31 g, 94 %) of which (by HPLC) 23.39 % is TJA02020 and 1.32 % is 2-bromo-4-(dibromomethyl)benzonitrile.

HPLC (70 % CH₃CN in H₂O) \( t_r = 4.150 \) (75.29 %);

LCMS (APCI), \( m/z \) 276.06 (M⁺ + H, 40 %).

4-(((1H-1,2,4-triazol-1-yl)methyl)-2-bromobenzonitrile (TJA02024, STX1974)

C₁₀H₇BrN₄ MW 263.09

[0324] TJA02023 (3.31 g, 12.0 mmol), 1,2,4-triazole (1.24 g, 18.0 mmol), potassium carbonate (1.66 g, 12.0 mmol), potassium iodide (0.117 g, 0.706 mmol) and acetone (50 mL) were loaded to an r.b. flask. With vigorous stirring this mixture was set to reflux (60 °C) for 24 h. The reaction mixture was allowed to cool and acetone was removed in vacuo. The residues were taken up in ethyl acetate (50 mL) and washed with distilled water (50 mL x 2) and brine (50 mL). Dried over MgSO₄ and solvent removed in vacuo to leave yellow residues. Column chromatography (ethyl acetate) eluted the **title compound** as a light yellow solid (1.44 g, 56 %), mp 95.7-97.6 °C;

\[ R_f 0.30 \] (ethyl acetate).

\[ ^1\text{H NMR (270 MHz, CDCl}_3) \delta 5.38 (2H, s, ArCH₂N), 7.23-7.27 (1H, dd, \text{J}= 1.7 & 8.2 Hz, ArH), 7.53-7.54 (1H, d, \text{J}= 1.2 Hz, ArH), 7.63-7.66 (1H, d, \text{J}= 7.9 Hz, ArH), 8.01 (1H, s, C₂H₂N₃) \text{ and } 8.17 (1H, s, C₂H₂N₃); \]

\[ ^{13}C \text{NMR (67.9 MHz, CDCl}_3) \delta 52.1 (CH₂), 115.9 (C), 116.8 (C), 126.1 (C), 126.9 (CH), 132.2 (CH), 134.8 (CH), 141.5 (C), 143.7 (CH) \text{ and } 153.0 (CH); \]

HPLC (70 %) \( R_f 2.425 \) (100 %);

LCMS (APCI), \( m/z \) 265.15 (\(^{81}\text{BrM}^+ + H\), 95 %), 263.15 (\(^{79}\text{BrM}^+ + H\), 100).

65
A 10 mL microwave vial was loaded with TJA02024 (0.150 g, 0.570 mmol), phenylboronic acid (0.104 g, 0.855 mmol), potassium carbonate (0.198 g, 1.43 mmol), tetrabutylammonium bromide (0.189 g, 0.570 mmol), Pd(OAc)$_2$ (0.003-0.004 g, 2-3 mol %), ethanol (1.5 mL) and distilled water (3.5 mL). The vial was sealed and loaded (with no prior degassing) into a CEM Explorer Microwave (150 W, 3 min, 120 °C). The reaction mixture was allowed to cool and ethyl acetate (50 mL) added. This was then washed with distilled water (25 mL x 3) and brine (25 mL). The organic layer was dried over MgSO$_4$, filtered and solvent removed in vacuo to leave a yellow/brown residue. Flash chromatography (20 g column, method4) eluted the title compound as a white solid (0.118 g, 80 %), mp 119.3-126.8 °C; $R_f$: 0.49 (ethyl acetate);

$^1$H NMR (270 MHz, CDCl$_3$) δ 5.40 (2H, s, ArCH$_2$N), 7.24-7.34 (2H, m, ArH), 7.45-7.48 (5H, m, ArH), 7.74-7.77 (1H, d, $J$ = 7.9 Hz, ArH), 8.00 (1H, s, C$_2$H$_2$N$_3$) and 8.17 (1H, s, C$_2$H$_2$N$_3$);

$^{13}$C NMR (67.9 MHz, CDCl$_3$) δ 52.8 (CH$_2$), 111.6 (C), 118.2 (C), 126.7 (CH), 128.8 (CH), 128.9 (CH), 129.2 (CH), 129.3 (CH), 134.5 (CH), 137.4 (C), 140.0 (C), 143.6 (CH), 146.7 (C) and 152.8 (CH);

HPLC (70 % CH$_3$CN in H$_2$O) $t_r$ = 3.900 (100 %);

LCMS (APCI), $m/z$ 261.20 (M$^+$ + H, 100 %);

HRMS (FAB$^+$) calcd. for C$_{16}$H$_{12}$N$_4$ (M + H)$^+$ 261.1135, found 261.1134.

STX1979
Cyanomethyl-trimethyl-phosphonium iodide (TJA01110)

C$_2$H$_{11}$INP MW 243.03

[0326] Trimethylphosphine in THF (1M, 20.0 mL, 20.0 mmol) at 0 °C under N$_2$(g) was diluted with anhydrous toluene (40 mL). Iodoacetonitrile (1.40 mL, 19.4 mmol) was added dropwise with vigorous stirring forming a white ppt. The mixture was allowed to warm to r.t. and left to stir for 40 h. The mixture was filtered and washed with toluene to give a white solid which was dried under vacuum. Recrystallisation (acetonitrile) provided the title compound as a white crystalline solid (3.23 g, 66 %).

$^1$H NMR (300 MHz, DMSO-$d_6$) $\delta$ 2.01-2.06 (9H, d, $J$ = 15.3 Hz, P(CH$_3$)$_3$), 4.01-4.07 (2H, d, $J$ = 16.4 Hz, PCH$_2$CN);

$^{31}$P NMR (121.5 MHz, DMSO-$d_6$) $\delta$ 32.9.

3-Chloro-4-methanesulfonyloxy-benzenesulfonic acid sodium salt (TJA01127)

C$_7$H$_6$ClNaO$_6$S$_2$ MW 308.69

[0327] 4-hydroxy-3-chlorobenzenesulfonic acid sodium salt (11.53 g, 50.0 mmol) and sodium hydroxide (2.00 g, 50.0 mmol) were dissolved in distilled water (50 mL) and the solution cooled to 0 °C. Methane sulfonyl chloride (4.25 mL, 55.0 mmol) was added dropwise with stirring and the mixture then allowed to warm to room temp. and left for 2 h. Brine
(20 mL) was added and the solution left to stand for 1 h with the formation of white crystalline solid. The solids were filtered, recrystallised (brine), and dried under vacuum to give the title compound as a white crystalline solid (9.40 g, 61 %), mp > 250 °C;

$^1$H NMR (300 MHz, DMSO-d$_6$) δ 3.31 (3H, s, ArOSO$_2$CH$_3$), 7.48-7.51 (1H, d, J= 8.4 Hz, ArH), 7.59-7.62 (1H, dd, J= 2.2 & 8.4 Hz, ArH) and 7.69-7.72 (1H, d, J= 2.2 Hz, ArH);

$^{13}$C NMR (67.9 MHz, DMSO-d$_6$) δ 39.1 (CH$_3$), 124.4 (CH), 126.3 (C), 126.5 (CH), 128.3 (CH), 145.3 (C) and 148.8 (C).

Methanesulfonic acid 2-chloro-4-chlorosulfonyl-phenyl ester (TJA01128)

C$_7$H$_6$Cl$_2$O$_5$S$_2$ MW 305.16

[0328] Thionyl chloride (30 mL) was cooled to 0 °C. Cautiously, with stirring, TJA01127 (8.60 g, 28.0 mmol) was added followed by DMF (0.5 mL). The reaction mixture was subsequently heated to reflux (79 °C) for 1 h (or until evolution of gas has ceased) and then cooled. Thionyl chloride was removed in vacuo and the resulting yellow residues were taken up in dichloromethane (50 mL) and distilled water (50 mL) carefully added. The organic layer was separated and washed with distilled water (50 mL x 2) and brine (50 mL), dried over MgSO$_4$ and solvent removed in vacuo to leave yellow residues. Recrystallisation (dichloromethane/hexane) gave the title compound as a white crystalline solid (7.10 g, 84 %),

$^1$H NMR (300 MHz, CDCl$_3$) δ 3.37 (3H, s, ArOSO$_2$CH$_3$), 7.70-7.73 (1H, d, J= 8.8 Hz, ArH), 7.99-8.03 (1H, dd, J= 2.4 & 8.8 Hz, ArH) and 8.19-8.20 (1H, d, J= 2.4 Hz, ArH);

$^{13}$C NMR (67.9 MHz, CDCl$_3$) δ 39.6 (CH$_3$), 125.6 (CH), 127.2 (CH), 128.8 (C), 129.9 (CH), 143.1 (C) and 149.9 (C);

HPLC (90 % CH$_3$CN in H$_2$O) $t_r=2.489$ (99.62 %);.

Methanesulfonic acid 2-chloro-4-mercapto-phenyl ester (TJA01129)

C$_7$H$_7$ClO$_3$S$_2$ MW 238.71

[0329] A 50 mL r.b. flask was loaded with red phosphorus powder (0.630 g, 20.5 mmol), iodine (0.035 g, 0.137 mmol) and acetic acid (7 mL). Cautiously TJA01128 (2.50 g, 8.19 mmol) was added and the reaction mixture then set to reflux (118 °C) for 2 h. Distilled water (1.5 mL) was added and the mixture left to reflux for a further 1 h. Reaction allowed to cool. Chloroform (30 mL) and distilled water (30 mL) were added. The organic layer was separated and washed with distilled water (30 mL x 3) and brine (30 mL). Dried over MgSO$_4$, filtered and solvent removed in vacuo.

Column chromatography (ethyl acetate/hexane 50:50) eluted the title compound as a colourless viscous oil (1.68 g, 87 %), $R_f$ 0.71 (ethyl acetate);

$^1$H NMR (300 MHz, CDCl$_3$) δ 3.24 (3H, s, ArOSO$_2$CH$_3$), 3.56 (1H, s, ArSH), 7.18-7.22 (1H, d, J= 2.3 & 8.5 Hz, ArH), 7.30-7.33 (1H, d, J= 8.1 Hz, ArH) and 7.39-7.40 (1H, d, J= 2.2 Hz, ArH);

$^{13}$C NMR (67.9 MHz, CDCl$_3$) δ 38.7 (CH$_3$), 125.1 (CH), 127.4 (C), 128.9 (CH), 130.9 (CH), 132.1 (C) and 143.2 (C);

HPLC (90 % CH$_3$CN in H$_2$O) $t_r = 1.811$ (92.46 %);

LCMS (APCI), $m/z$ 239.01 (37ClM- - H, 10 %), 237.01 (35ClM- - H, 30).

Methyl 3-((1H-1,2,4-triazol-1-yl)methyl)benzoate (TJA02008)

C$_{11}$H$_{11}$N$_3$O$_2$ MW 217.22

[0330] Methyl 3-(bromobenzyl)benzoate (5.00 g, 21.8 mmol), 1,2,4-triazole (2.26 g, 32.7 mmol), potassium carbonate (3.01 g, 21.8 mmol), potassium iodide (0.213 g, 1.28 mmol) and acetone (100 mL) were loaded to an r.b. flask. With vigorous stirring this mixture was set to reflux (60 °C) for 24 h. The reaction mixture was allowed to cool and acetone was removed in vacuo. The residues were taken up in ethyl acetate (50 mL) and washed with distilled water (50 mL x 2) and brine (50 mL). Dried over MgSO$_4$ and solvent removed in vacuo to leave a yellow oil. Column chromatography (ethyl acetate) eluted the title compound as a yellow viscous oil (3.35 g, 71 %), $R_f$ 0.42 (ethyl acetate).

$^1$H NMR (270 MHz, CDCl$_3$) δ 3.86 (3H, s, ArCO$_2$CH$_3$), 5.37 (2H, s, ArCH$_2$N), 7.39-7.44 (2H, m, ArH), 7.93-7.94 (1H, m, ArH), 7.96 (1H, s, C$_2$H$_2$N$_2$), 7.97-8.01 (1H, m, ArH), and 8.09 (1H, s, C$_2$H$_2$N$_2$);

$^{13}$C NMR (67.9 MHz, CDCl$_3$) δ 52.4 (CH$_3$), 53.2 (CH$_2$), 129.1 (CH), 129.3 (CH), 131.1 (C), 132.5 (CH), 135.1 (C), 143.2 (CH), 152.5 (CH) and 166.5 (C=O); HPLC (90 % CH$_3$CN in H$_2$O) $t_r = 2.080$ (100 %); LCMS (APCI), $m/z$ 218.42 (M$^+$ + H, 100 %).
(3-((1H-1,2,4-Triazol-1-yl)methyl)phenyl)methanol (TJA02011)

C_{10}H_{11}N_{3}O MW 189.21

[0331] A 25 mL r.b. flask was loaded with TJA02008 (0.500 g, 2.36 mmol) and polyethylene glycol 400 (6.0 g). The mixture was heated to 80 °C with stirring until a solution had formed. Sodium borohydride (0.261 g, 6.91 mmol) was added carefully resulting in evolution of gas. The reaction mixture was stirred vigorously at 80 °C for 16 h. Extremely viscous glue formed that gradually dissolved in dichloromethane (50 mL) with heating (40 °C). This solution was washed with 1M HCl(aq) (10 mL) and then carefully neutralised with sodium bicarbonate. Washed with distilled water (50 mL x 4) and brine (50 mL), separated and dried over MgSO₄. Solvent removed in vacuo to leave a viscous yellow oil. Flash chromatography (20 g column, method 6) eluted the title compound as a colourless viscous oil (0.101 g, 22 %), R_f: 0.24 (ethyl acetate);

\[ \delta \text{H NMR (270 MHz, CDCl}_3\) s 2.53 (1H, bs, ArCH}_2O\H), 4.66 (2H, s, ArCH}_2OH), 5.30 (2H, s, ArCH}_2N), 7.14-7.17 (1H, m, ArH), 7.29-7.37 (2H, m, ArH), 7.89 (1H, s, C\_2H\_2N\_3) and 8.00 (1H, s, C\_2H\_2N\_3);]

\[ \delta \text{C NMR (67.9 MHz, CDCl}_3\) s 53.6 (CH}_2), 64.7 (CH}_2), 126.5 (CH), 127.2 (CH), 129.3 (CH), 134.8 (C), 142.2 (C), 143.1 (CH) and 152.2 (CH); \]

HPLC (70 % CH₃CN in H₂O) \( t_r = 3.647 \) (100 %);

LCMS (APCI), \( m/z 189.75 \) (M+ + H, 100 %).

4-(3-((1H-1,2,4-Triazol-1-yl)methyl)benzylthio)-2-chlorophenyl methanesulfonate (TJA02031)

C_{17}H_{16}ClN_{3}O_{3}S_{2} MW 409.91

[0332] A dry 5 mL r.b. flask purged with N₂(g) was loaded with TJA02011 (0.100 g, 0.529 mmol), TJA01129 (0.189 g, 0.794 mmol), TJA01110 (0.154, 0.635 mmol), diisopropylethylamine (119 \text{mL}, 0.687 mmol) and propionitrile (1.0 mL). The mixture was then set to stir at 93 °C. After 18 h the reaction was allowed to cool. Dichloromethane (20 mL) and distilled water (20 mL) were added and the aqueous layer separated and extracted with dichloromethane (20 mL x 2). The organic fractions were combined and washed with brine (20 mL), dried over MgSO₄ and solvent removed in vacuo to leave yellow residues. Column chromatography (ethyl acetate) eluted the title compound as a yellow viscous oil (0.105 g, 49 %), R_f: 0.55 (ethyl acetate);

\[ \delta \text{H NMR (270 MHz, CDCl}_3\) s 3.23 (3H, s, ArOSO}_2CH}_3), 4.07 (2H, s, ArCH}_2SAr), 5.30 (2H, s, ArCH}_2N), 7.09-7.16 (3H, m, ArH), 7.26-7.34 (4H, m, ArH), 7.98 (1H, s, C\_2H\_2N\_3) and 8.06 (1H, s, C\_2H\_2N\_3); \]

\[ \delta \text{C NMR (67.9 MHz, CDCl}_3\) s 38.7 (CH}_2), 38.9 (CH}_3), 53.3 (CH}_2), 124.8 (CH), 127.2 (CH), 128.3 (CH), 128.9 (CH), 129.3 (CH), 129.6 (CH), 131.4 (CH), 135.2 (C), 136.9 (C), 137.6 (C), 143.2 (CH), 143.6 (C) and 152.3 (CH) (one overlapping signal); \]

HPLC (90 % CH₃CN in H₂O) \( t_r = 2.006 \) (99.32 %);

LCMS (APCI), \( m/z 412.08 \) (37ClM+ + H, 43 %), 410.07 (35ClM+ + H, 100).

4-(3-((1H-1,2,4-Triazol-1-yl)methyl)benzylthio)-2-chlorophenol (TJA02035)

C_{16}H_{14}ClN_{3}OS MW 331.82

[0333] TJA02031 (0.100 g, 0.244 mmol) was dissolved in THF (2.0 mL) and methanol (2.0 mL) to which 2M NaOH(aq) (0.61 mL) was added. The mixture was set to stir at room temp. for 3 h. The reaction was then set to stir at 93 °C for 18 h. After 18 h the reaction was allowed to cool. Dichloromethane (20 mL) and distilled water (20 mL) were added and the aqueous layer separated and extracted with dichloromethane (20 mL x 2). The organic fractions were combined and washed with brine (20 mL), dried over MgSO₄ and solvent removed in vacuo to leave yellow residues. Column chromatography (dichloromethane/acetone 80:20) eluted the title compound as a colourless viscous oil (0.105 g, 49 %), R_f: 0.82 (dichloromethane/acetone 80:20);

\[ \delta \text{H NMR (270 MHz, CDCl}_3\) s 4.08 (2H, s, ArCH}_2SAr), 5.38 (2H, s, ArCH}_2N), 6.84-6.88 (1H, d, J = 8.4 Hz, ArH), 7.07-7.29 (6H, m, ArH), 7.20 (1H, s, ArH), 7.98 (1H, s, C\_2H\_2N\_3), 8.63 (1H, s, C\_2H\_2N\_3) and 10.36 (1H, s, ArOH); \]

\[ \delta \text{C NMR (67.9 MHz, CDCl}_3\) s 39.1 (CH}_2), 52.5 (CH}_2), 117.6 (CH), 120.5 (C), 125.4 (C), 127.1 (CH), 128.7 (CH), 129.0 (CH), 129.2 (CH), 131.7 (CH), 132.8 (CH), 136.9 (C), 138.8 (C), 144.8 (CH), 152.3 (CH) and 153.0 (C); \]

HPLC (100 % CH₃CN in H₂O) \( t_r = 3.561 \) (94.57 %);

LCMS (APCI), \( m/z 334.26 \) (37ClM+ + H, 35 %), 332.24 (35ClM+ + H, 100).
Sulfamoyl chloride in toluene (2.76 mL, 0.829 mmol) was transferred to a 10 mL r.b. flask and the solvent removed under vacuum at 30 °C. On cooling a white solid formed to which was added N,N-dimethylacetamide (1.5 mL) to form a colourless solution. TJA02035 (0.055 g, 0.166 mmol) was added and the solution left to stir at room temperature under N2(g) for 20 h. The reaction mixture was then poured into distilled H2O (30 mL) and extracted with ethyl acetate (25 mL x 2). The organic layers were combined and washed with distilled H2O (25 mL x 4) and brine (25 mL). Dried over Na2SO4 and solvent removed in vacuo to leave off white residues. Column chromatography (dichloromethane/acetone 80:20) eluted the title compound as an off white waxy solid (0.061 g, 90 %); Rf: 0.45 (dichloromethane/acetone 80:20).

1H NMR (270 MHz, DMSO-d6) δ 4.22 (2H, s, ArSCH2Ar), 5.39 (2H, s, ArCH2N), 7.14-7.17 (1H, m, ArH), 7.28-7.40 (5H, m, ArH), 7.52-7.53 (1H, d, J= 2.0 Hz, ArH), 7.98 (1H, s, C2H2N3), 8.29 (2H, bs, ArOSO2NH2) and 8.64 (1H, s, C2H2N3); 13C NMR (67.9 MHz, DMSO-d6) δ 36.7 (CH2), 52.4 (CH2), 124.7 (CH), 127.4 (CH), 127.6 (C), 128.2 (CH), 128.7 (CH), 129.0 (CH), 129.4 (CH), 129.6 (CH), 136.6 (C), 137.2 (C), 138.0 (C), 144.5 (C), 144.8 (CH) and 152.3 (CH); HPLC (100 % CH3CN in H2O) tR=7.961 (98.96 %); LCMS (APCn, m/z 413.40 (35ClM+ + H, 35 %), 411.39 (35ClM+ + H, 100).

STX1980
Methyl 4-((1H-1,2,4-triazol-1-yl)methyobenzoate (TJA02010)

C_{11}H_{11}N_{3}O_{2} MW 217.22

[0335] Methyl 4-(bromobenzyl)benzoate (5.00 g, 21.8 mmol), 1,2,4-triazole (2.26 g, 32.7 mmol) and potassium carbonate (3.01 g, 21.8 mmol) were loaded to an r.b. flask. With vigorous stirring this mixture was set to reflux (60 °C) for 24 h. The reaction mixture was allowed to cool and acetone was removed in vacuo. The residues were taken up in ethyl acetate (50 mL) and washed with distilled water (50 mL x 2) and brine (50 mL). Dried over MgSO4 and solvent removed in vacuo to leave a yellow solid. Column chromatography (ethyl acetate) eluted the title compound as a light yellow crystalline solid (2.77 g, 71 %), mp 119.2-120 °C; Rf 0.38 (ethyl acetate).

1H NMR (270 MHz, CDCl3) δ 3.85 (3H, s, ArCO 2CH3), 5.39 (2H, s, ArCH 2N), 7.26-. 7.29 (2H, d, J= 8.7 Hz, AA'BB'), 7.97 (1H, s, C2H2N3), 8.00-8.03 (2H, d, J= 8.4 Hz, AA'BB') and 8.10 (1H, s, C2H2N3);

13C NMR (67.9 MHz, CDCl3) δ 52.4 (CH3), 53.1 (CH), 127.8 (CH), 130.4 (CH), 130.5 (C), 139.6 (C), 143.4 (CH) and 152.3 (CH) and 166.3 (C=O);

HPLC (90 % CH3CN in H2O) tr = 2.181 (100 %);

LCMS (APCI), m/z 218.23 (M++ H, 100 %).

(4-((1H-1,2,4-triazol-1-yl)methyl)phenyl)methanol (TJA02013)

C_{10}H_{11}N_{3}O MW 189.21

[0336] A 25 mL r.b. flask was loaded with TJA02010 (0.500 g, 2.36 mmol) and polyethylene glycol 400 (6.0 g). The mixture was heated to 80 °C with stirring until a solution had formed. Sodium borohydride (0.261 g, 6.91 mmol) was added carefully resulting in evolution of gas. The reaction mixture was stirred vigorously at 80 °C for 16 h. An extremely viscous glue formed that gradually dissolved in dichloromethane (50 mL) with heating (40 °C). This solution was washed with 1M HCl(aq) (10 mL) and then carefully neutralised with sodium bicarbonate. Washed with distilled water (50 mL x 4) and brine (50 mL), separated and dried over MgSO4. Solvent removed in vacuo to leave a viscous yellow oil. Flash chromatography (20 g column, method6) eluted the title compound as a colourless viscous oil (0.175 g, 39 %), mp 72.9-74.2 °C;

1H NMR (270 MHz, CDCl3) δ 2.26-2:31 (1H, to J= 5.7 Hz, ArCH2O H), 4.67-4.69 (2H, d, J= 5.7 Hz, ArCH2OH), 5.39 (2H, s, ArCH2N), 7.22-7.25 (2H, d, J= 7.8 Hz, AA'BB'), 7.35-7.38 (2H, d, J= 6.2 Hz, AA'BB'), 7.93 (1H, s, C2H2N3) and 8.01 (1H, s, C2H2N3);

13C NMR (67.9 MHz, CDCl3) δ 53.4 (CH2), 64.7 (CH2), 127.6 (CH), 128.4 (CH), 133.8 (C), 141.8 (C), 143.1 (CH) and 152.2 (CH);

HPLC (90 % CH3CN in H2O) t\text{R} = 2.971 (100 %);

LCMS (APCI), m/z 190.19 (M+ + H, 100 %).

4-(4-((1H-1,2,4-triazol-1-yl)methyl)benzylthio)-2-chlorophenyl methanesulfonate (TJA02032)

C_{17}H_{16}ClN_{3}O_{3}S_{2} MW 409.91

[0337] A dry 5 mL r.b. flask purged with N2(g ) was loaded with TJA02013 (0.100 g, 0.529 mmol), TJA01129 (0.189 g, 0.974 mmol), TJA01175 (0.154, 0.635 mmol), disopropylethylamine (119 µL, 0.687 mmol) and propionitrile (1.0 mL). The mixture was then set to stir at 93 °C. After 20 h the reaction was allowed to cool. Dichloromethane (20 mL) and distilled water (20 mL) were added and the aqueous layer separated and extracted with dichloromethane (20 mL x 2). The organic fractions were combined and washed with brine (20 mL), dried over MgSO4 and solvent removed in vacuo to leave yellow residues. Column chromatography (ethyl acetate) eluted the title compound as a yellow viscous oil (0.115 g, 53 %), Rf 0.58 (ethyl acetate).
1H NMR (270 MHz, CDCl3) δ 3.21 (3H, s, ArOSO2CH3), 4.12 (2H, s, ArCH2SAr), 5.30 (2H, s, ArCH2N), 7.14-7.32 (7H, m, ArH), 7.96 (1H, s, C2H2N3) and 8.06 (1H, s, C2H2N3); 13C NMR (67.9 MHz, CDCl3) δ 38.4 (CH2), 38.8 (CH3), 53.3 (CH2), 124.9 (CH), 126.3 (C), 128.4 (CH), 128.9 (CH), 129.6 (CH), 131.0 (CH), 134.1 (C), 137.0 (C), 137.1 (C), 143.2 (CH), 143.5 (C) and 152.3 (CH); HPLC (90 % CH3CN in H2O) τf = 1.986 (97.35 %); LCMS (APCI), m/z 412.27 (37ClM++H, 35 %), 410.26 (35ClM+ + H, 100).  
4-(4-((1H-1,2,4-Triazol-1-yl)methyl)benzylthio)-2-chlorophenol (TJA02036)

[C16H14ClN3OS, MW 331.82]

TJA02032 (0.100 g, 0.244 mmol) was dissolved in THF (2.0 mL) and methanol (2.0 mL) to which 2M NaOH(aq) (0.61 mL) was added. The mixture was set to stir at room temp. for 2 h. THF was removed under reduced pressure and the residues taken up in ethyl acetate (20 mL) and washed with 2M KHSO4(aq) (20mL), distilled water (20 mL x 2) and brine (20 mL). The organic layer was then dried over MgSO4 and solvent removed under reduced pressure to leave a colourless viscous oil. Column chromatography (dichloromethane/acetone 80:20) eluted the title compound as a white solid (0.066 g, 81 %), mp 133.4-135.7 °C; Rf: 0.35 (dichloromethane/acetone 80:20); 1H NMR (270 MHz, DMSO-d6) δ 4.09 (2H, s, ArCH2SAr), 5.37 (2H, s, ArCH2N), 6.85-6.88 (1H, d, J = 8.4 Hz, ArH), 7.09-7.13 (1H, dd, J = 2.2 & 8.4 Hz, ArH), 7.15-7.25 (4H, dd, J = 8.2 & 16.8 Hz, AA'BB'), 7.28-7.29 (1H, d, J = 2.2 Hz, ArH), 7.97 (1H, s, C2H2N3), 8.63 (1H, s, C2H2N3) and 10.34 (1H, s, ArOH); 13C NMR (67.9 MHz, DMSO-d6) δ 39.0 (CH2), 52.3 (CH2), 117.6 (CH), 120.5 (C), 125.5 (C), 128.4 (CH), 129.6 (CH), 131.6 (CH), 132.7 (CH), 135.6 (C), 138.1 (C), 144.8 (CH), 152.3 (CH) and 152.9 (C); HPLC (100 % CH3CN in H2O) τf = 3.527 (93.93 %); LCMS (APCI), m/z 334.26 (37ClM++H, 35 %), 332.31 (35ClM++H, 100).

4-(4-((1H-1,2,4-Triazol-1-yl)methyl)benzylthio)-2-chlorophenyl sulfamate (TJA02039, STX1980)

[C16H15ClN4O3S2, MW 410.03]

Sulfamoyl chloride in toluene (3.01 mL, 0.904 mmol) was transferred to a 10 mL r.b. flask and the solvent removed under vacuum at 30 °C. On cooling a white solid formed to which was added N,N-dimethylacetamide (1.5 mL) to form a colourless solution: TJA02036 (0.060 g, 0.181 mmol) was added and the solution left to stir at room temperature under N2 (g) for 20 h. The reaction mixture was then poured into distilled H2O (30 mL) and extracted with ethyl acetate (25 mL x 2). The organic layers were combined and washed with distilled H2O (25 mL x 4) and brine (25 mL). Dried over Na2SO4 and solvent removed in vacuo to leave off white residues. Column chromatography (dichloromethane/acetone 80:20) eluted the title compound as an off white waxy solid (0.067 g, 91 %); mp 128.1-132.5 °C; Rf: 0.31 (dichloromethane/acetone 80:20); 1H NMR (270 MHz, DMSO-d6) δ 4.30 (2H, s, ArSCH2Ar), 5.38 (2H, s, ArCH2N), 6.85-6.88 (1H, d, J = 8.4 Hz, ArH), 7.09-7.13 (1H, dd, J = 2.2 & 8.4 Hz, ArH), 7.15-7.25 (4H, dd, J = 8.2 & 16.8 Hz, AA'BB'), 7.28-7.29 (1H, d, J = 2.2 Hz, ArH), 7.97 (1H, s, C2H2N3), 8.63 (1H, s, C2H2N3) and 10.34 (1H, s, ArOH); 13C NMR (67.9 MHz, DMSO-d6) δ 36.3 (CH2), 52.3 (CH2), 117.6 (CH), 120.5 (C), 125.5 (C), 128.4 (CH), 129.6 (CH), 131.6 (CH), 132.7 (CH), 135.6 (C), 138.1 (C), 144.8 (CH), 152.3 (CH) and 152.9 (C); HPLC (100 % CH3CN in H2O) τf = 3.246 (100 %); LCMS (APCI), m/z 413.15 (37ClM+ + H, 42 %), 411.14 (35ClM+ + H, 100).
1-(3-(2-Methoxynaphthalen-6-yl)benzyl)-1H-1,2,4-triazole (TJA02040, STX1981)

C_{20}H_{17}N_{3}O MW 315.37

[0340] A 10 mL microwave vial was loaded with TJA01009 (0.150 g, 0.630 mmol), 6-methoxy-2-naphthalene (0.153 g, 0.756 mmol), potassium carbonate (0.218 g, 1.58 mmol), tetrabutylammonium bromide (0.209 g, 0.630 mmol), Pd (OAc)$_2$ (0.004-0.005 g, 2-3 mol %), ethanol (1.5 mL) and distilled water (3.5 mL). The vial was sealed and loaded (with no prior degassing) into a CEM Explorer Microwave. After a run time of 5 min at 150 °C the reaction mixture was allowed to cool and ethyl acetate (50 mL) added. This was then washed with distilled water (25 mL x 3) and brine (25 mL). The organic layer was dried over MgSO$_4$, filtered and solvent removed in vacuo to leave a yellow/brown residue. Flash chromatography (20 g column, method 4) eluted the title compound as a white solid (0.051 g, 26 %), mp 133.5-134.1 °C; $R_f$: 0.52 (ethyl acetate);

$^1$H NMR (270 MHz, CDCl$_3$) $\delta$ 3.93 (3H, s, ArOCH$_3$), 5.42 (2H, s, ArCH$_2$N), 7.15-7.24 (3H, m, ArH), 7.44-7.50 (1H, t, $J=7.7$ Hz, ArH), 7.58-7.69 (3H, m, ArH), 7.76-7.81 (2H, dd, $J=5.0$ & $8.4$ Hz, ArH), 7.92-7.93 (1H, d, $J=1.2$ Hz, ArH), 8.00 (1H, s, C$_2$H$_2$N$_3$) and 8.12 (1H, s, C$_2$H$_2$N$_3$);

$^{13}$C NMR (67.9 MHz, CDCl$_3$) $\delta$ 53.8 (CH$_2$), 55.4 (CH$_3$), 105.6 (CH), 119.4 (CH), 125.9 (CH), 126.7 (CH) 127.0 (CH), 127.5 (CH), 127.7 (CH), 129.1 (C), 129.7 (CH), 129.8 (CH), 134.0 (C), 135.2 (C), 135.5 (C), 142.3 (C), 143.2 (CH), 152.4 (CH) and 158.0 (C) (one overlapping signal);

HPLC (90 % CH$_3$CN in H$_2$O) $t_R=3.674$ (98.77 %);

LCMS (APCI), $m/z$ 316.25 (M$^+$ + H, 100 %);

HRMS (FAB$^+$) calcd. for C$_{20}$H$_{17}$N$_3$O (M + H)$^+$ 316.1444, found 316.1447.

STX2052
6-(3-((1H-1,2,4-Triazol-1-yl)methyl)phenyl)naphthalen-2-ol (TJA02059)

C_{19}H_{15}N_{3}O MW 301.34

5 [0341] A 10 mL microwave vial was loaded with TJA01009 (0.150 g, 0.630 mmol), TJA02057 (0.178 g, 0.945 mmol), potassium carbonate (0.218 g, 1.58 mmol), tetrabutylammonium bromide (0.209 g, 0.630 mmol), Pd(OAc)$_2$ (0.004-0.005 g, 2-3 mol %), ethanol (1.5 mL) and distilled water (3.5 mL). The vial was sealed and loaded (with no prior degassing) into a CEM Explorer Microwave. After a run time of 10 min at 150 °C the reaction mixture was allowed to cool and ethyl acetate (50 mL) added. This was then washed with distilled water (25 mL x 3) and brine (25 mL). The organic layer was dried over MgSO$_4$, filtered and solvent removed \textit{in vacuo} to leave a yellow/brown residue. The crude product was purified via flash chromatography (20 g column, method4) which eluted the \textit{title compound} as a white solid (0.155 g, 82 %), $R_f$ 0.51 (ethyl acetate);

$^1$H NMR (270 MHz, DMSO-$d_6$) $\delta$ 5.50 (2H, s, ArCH$_2$N), 7.10-7.14 (2H, m, ArH), 7.23-7.26 (1H, d, J= 7.7 Hz, ArH), 7.44-7.50 (1H, t, J= 7.7 Hz, ArH), 7.66-7.86 (5H, m, ArH), 8.00 (1H, s, C$_2$H$_2$N$_3$), 8.05 (1H, s, ArH), 8.72 (1H, s, C$_2$H$_2$N$_3$) and 9.85 (1H, bs, ArOH);

$^{13}$C NMR (67.9 MHz, DMSO-$d_6$) $\delta$ 52.7 (CH$_2$), 109.0 (CH), 119.7 (CH), 125.7 (CH), 125.8 (CH), 126.8 (CH), 126.9 (CH), 127.1 (CH), 127.3 (CH), 128.5 (C), 129.9 (CH), 130.4 (CH), 134.4 (C), 134.5 (C), 137.5 (C), 141.2 (C), 144.9 (CH), 152.3. (CH) and 156.2 (C);

HPLC (90 % CH$_3$CN in H$_2$O) $t_r$= 3.136 (97.81 %);

LCMS (APCI), m/z 300.38 (M-- H, 100 %).

2-(3-((1H-1,2,4-Triazol-1-yl)methyl)phenyl)naphthalen-6-yl sulfamate (TJA02060, STX2052)

C$_{19}$H$_{16}$N$_{4}$O$_{3}$S MW 380.42

Sulfamoyl chloride in toluene (5.53 mL, 1.66 mmol) was transferred to a 10 mL r.b. flask and the solvent removed under vacuum at 30 °C. On cooling a white solid formed to which was added N,N-dimethylacetamide (1.5 mL) to form a colourless solution. TJA02059 (0.100 g, 0.332 mmol) was added and the solution left to stir at room temperature under N$_2$(g) for 18 h. The reaction mixture was then poured into distilled H$_2$O (30 mL) and extracted with ethyl acetate (25 mL x 2). The organic layers were combined and washed with distilled H$_2$O (25 mL x 4) and brine (25 mL). Dried over MgSO$_4$ and solvent removed \textit{in vacuo} to leave off white residues. Column chromatography (dichloromethane/acetone 80:20) eluted the \textit{title compound} as a white solid (0.066 g, 52 %), mp 172.5-177.6 °C;

$^1$H NMR (270 MHz, DMSO-$d_6$) $\delta$ 5.53 (2H, s, ArCH$_2$N), 7.29-7.31 (1H, d, J= 7.4 Hz, ArH), 7.46-7.51 (2H, m, ArH), 7.78-7.91 (4H, dd, J= 9.2 & 25.4 Hz, ArH), 8.01 (1H, C$_2$H$_2$N$_3$), 8.07-8.11 (4H, m, ArH & ArOSO$_2$NH$_2$), 8.28 (1H, s, ArH) and 8.75 (1H, s, C$_2$H$_2$N$_3$);

$^{13}$C NMR (67.9 MHz, DMSO-$d_6$) $\delta$ 52.7 (CH$_2$), 119.6 (CH), 122.7 (CH), 125.7 (CH), 125.7 (CH), 126.4 (CH), 127.2 (CH), 127.2 (CH), 127.8 (CH), 129.1 (CH), 130.0 (CH), 130.7 (CH), 132.2 (C), 133.1 (C), 137.7 (C), 137.8 (C), 140.5 (C), 144.9 (CH), 148.5 (C) and 152.4 (CH);

HPLC (90 % CH$_3$CN in H$_2$O) $t_r$= 8.729 (100 %);

LCMS (APCI), m/z 379.47 (M-- H, 100 %).
1-(3-Ethynylbenzyl)-1H-1,2,4-triazole (TJA02055)

C_{11}H_{9}N_{3} MW 183.21

A dry 25 mL r.b. flask fitted with a condenser was purged with N_{2} and loaded with TJA01009 (0.250 g, 1.05 mmol), trimethylsilylacetylene (174 µL, 1.26 mmol), copper iodide (0.006 g, 3 mol %), PdCl_{2}(PPh_{3})_{2} (0.022 g, 3 mol %), NEt_{3} (3 mL) and anhydrous THF (10 mL). The reaction vessel was then evacuated and backfilled with N_{2} three times. The reaction was heated to reflux for 20 h then allowed to cool and the THF was removed under reduced pressure. Residues were dissolved in EtOAc and filtered through a pad of silica. Solvent was removed under reduced pressure and the yellow residues (HPLC (100 % CH_{3}CN in H_{2}O) t_{r}= 7.161 (90.61 %); LCMS (APCD, m/z 256.35 (M^{+} + H, 100 %)) were dissolved in MeOH (5 mL) and potassium carbonate (0.174 g, 1.26 mmol) was added and the mixture turned brown. Stirred at room temperature for 20 h. Solvent removed under reduced pressure. Dark brown residues dissolved in EtOAc (30 mL) and washed with distilled water (30 mL x 2) and brine (30 mL). Dried over MgSO_{4} and solvent removed under reduced pressure to give brown residues. Column chromatography (ethyl acetate) eluted the title compound as an orange/red oil (0.171 g, 89 %), R_{f}: 0.60 (ethyl acetate).

1H NMR (270 MHz, CDCl_{3}) δ 3.08 (1H, s, ArCCH), 5.30 (2H, s, ArCH_{2}N), 7.17-7.38 (3H, m, ArH), 7.43-7.46 (1H, d, J= 7.7 Hz, ArH), 7.96 (1H, s, C_{2}H_{2}N_{3}) and 8.07 (1H, s, C_{2}H_{2}N_{3}); HPLC (90 % CH_{3}CN in H_{2}O) t_{r}= 3.796 (87.54 %); LCMS (APCI), m/z 184.02 (M^{+} + H, 100 %).

4-(2-(3-((1H-1,2,4-Triazol-1-yl)methyl)phenyl)ethynyl)-2-chlorophenol (TJA02058)

C_{17}H_{12}ClN_{3}O MW 309.75

A dry 10 mL r.b. flask fitted with a condenser was purged with N_{2} and loaded with TJA02055 (0.100 g, 0.546 mmol), 4-bromo-2-chlorophenol (0.136 g, 0.655 mmol), copper iodide (0.003 g, 3 mol %), PdCl(PPh_{3})_{2} (0.011 g, 3 mol %), NEt_{3} (1 mL) and anhydrous THF (5 mL). The reaction vessel was then evacuated and backfilled with N_{2} three
times. The reaction was heated to reflux for 22 h then allowed to cool and the THF was removed under reduced pressure. Residues were dissolved in EtOAc (30 mL) and washed with distilled water (30 mL x 2) and brine (30 mL). Dried over MgSO₄ and solvent removed under reduced pressure to give brown residues. Column chromatography (ethyl acetate) eluted the title compound as a yellow solid (0.071 g, 42 %), \(R_f\) 0.55 (ethyl acetate).

1H NMR (270 MHz, CDCl₃) \(\delta\) 5.31 (2H, s, ArCH₂N), 6.47 (1H, bs, ArOH), 6.96-6.99 (1H, d, \(J=8.4\) Hz, ArH), 7.19-7.69 (6H, m, ArH), 7.99 (1H, s, C₂H₂N₃) and 8.09 (1H, s, C₂H₂N₃);

HPLC (90 % CH₃CN in H₂O) \(t_r=2.814\) (95.24 %);

LCMS (APCI), \(m/z\) 310.33 (37ClM⁻-H, 30 %), 308.31 (35ClM⁻-H, 100).

4-(2-(3-((1H-1,2,4-Triazol-1-yl)methyl)phenyl)ethynyl)-2-chlorophenyl sulfamate (TJA02065, STX2054)

C₁₁H₁₃ClN₄O₃S MW 388.83

[0345] Sulfamoyl chloride in toluene (1.75 mL, 1.05 mmol) was transferred to a 10 mL r.b. flask and the solvent removed under vacuum at 30 °C. On cooling a white solid formed to which was added \(N,N\)-dimethylacetamide (1.5 mL) to form a colourless solution. TJA02058 (0.065 g, 0.210 mmol) was added and the solution left to stir at room temperature under N₂ (g) for 18 h. The reaction mixture was then poured into distilled H₂O (30 mL) and extracted with ethyl acetate (25 mL x 2). The organic layers were combined and washed with distilled H₂O (25 mL x 4) and brine (25 mL). Dried over MgSO₄ and solvent removed in vacuo to leave off white residues. Column chromatography (dichloromethane/acetone 80:20) eluted the title compound as a white solid (0.053 g, 64 %), mp 172.5-177.6 °C;

\(R_f\) 0.36 (dichloromethane/acetone 80:20).

1H NMR (270 MHz, DMSO-d₆) \(\delta\) 5.46 (2H, s, ArCH₂N), 7.35-7.61 (6H, m, ArH), 7.84 (1H, s, ArH), 8.02 (1H, s, C₂H₂N₃), 8.41 (2H, bs,ArSO₂NH₂) and 8.71 (1H, s, C₂H₂N₃);

13C NMR (67.9 MHz, DMSO-d₆) \(\delta\) 52.1 (CH₂), 88.0 (C), 90.8 (C), 122.0 (C), 122.5 (C), 124.6 (CH), 127.4 (C), 129.4 (CH), 129.8 (CH), 131.4 (CH), 131.6 (CH), 132.1 (CH), 133.7 (CH), 137.6 (C), 145.0 (CH), 146.9 (C) and 152.5 (CH);

HPLC (90 % CH₃CN in H₂O) \(t_r=2.802\) (97.73 %);

LCMS (APCI), \(m/z\) 391.18 (37ClM⁺-H, 35 %), 389.16 (35ClM⁺-H, 100).

STX2112
A dry 250 ml r.b. flask was loaded with 4-bromo-2-chlorophenol (5.00 g, 24.1 mmol) and purged with N\textsubscript{2}(g). Anhydrous THF (100 mL) added with stirring and the vessel cooled to -78 °C (dry ice/acetone bath). After 30 mins n-BuLi, 2.3 M in hexanes, (12.9 mL, 28.9 mmol) was added dropwise over 20 min. The reaction was left to stir for 1 h. Triisopropyl borate (6.65 mL, 28.9 mmol) was added dropwise with the reaction still at -78 °C. After 15 min of stirring at this temperature the dry ice/acetone bath was removed. At about 0 °C 2 M HCl (aq) (5 mL) was added and the reaction left to stir for a further 15 min. THF removed under vacuum and residues taken up in ethyl acetate (50 mL). Distilled H\textsubscript{2}O (50 mL) was added and the organic layer separated. The aqueous layer was extracted with ethyl acetate (50 mL x 2). The organic portions were combined and washed with sat. Na\textsubscript{2}CO\textsubscript{3} (aq). The aqueous layer was separated and treated with 2M HCl (aq) until the pH was about 4. This was then extracted with ethyl acetate (50 mL x 2). The organic portions were then dried over MgSO\textsubscript{4} and solvent removed. The resultant brown residues were taken up in a minimum of ethyl acetate (2-3 mL) and added to dropwise to hexane (50 mL) with stirring. The brown ppt was filtered to give the title compound as a brown solid (1.11 g, 27%).

\[ \text{[0346]} \]

A dry 250 ml r.b. flask was loaded with 4-bromo-2-chlorophenol (5.00 g, 24.1 mmol) and purged with N\textsubscript{2}(g). Anhydrous THF (100 mL) added with stirring and the vessel cooled to -78 °C (dry ice/acetone bath). After 30 mins n-BuLi, 2.3 M in hexanes, (12.9 mL, 28.9 mmol) was added dropwise over 20 min. The reaction was left to stir for 1 h. Triisopropyl borate (6.65 mL, 28.9 mmol) was added dropwise with the reaction still at -78 °C. After 15 min of stirring at this temperature the dry ice/acetone bath was removed. At about 0 °C 2 M HCl (aq) (5 mL) was added and the reaction left to stir for a further 15 min. THF removed under vacuum and residues taken up in ethyl acetate (50 mL). Distilled H\textsubscript{2}O (50 mL) was added and the organic layer separated. The aqueous layer was extracted with ethyl acetate (50 mL x 2). The organic portions were combined and washed with sat. Na\textsubscript{2}CO\textsubscript{3} (aq). The aqueous layer was separated and treated with 2M HCl (aq) until the pH was about 4. This was then extracted with ethyl acetate (50 mL x 2). The organic portions were then dried over MgSO\textsubscript{4} and solvent removed. The resultant brown residues were taken up in a minimum of ethyl acetate (2-3 mL) and added to dropwise to hexane (50 mL) with stirring. The brown ppt was filtered to give the title compound as a brown solid (1.11 g, 27%).

\[ \text{[0346]} \]

A dry 250 ml r.b. flask was loaded with 4-bromo-2-chlorophenol (5.00 g, 24.1 mmol) and purged with N\textsubscript{2}(g). Anhydrous THF (100 mL) added with stirring and the vessel cooled to -78 °C (dry ice/acetone bath). After 30 mins n-BuLi, 2.3 M in hexanes, (12.9 mL, 28.9 mmol) was added dropwise over 20 min. The reaction was left to stir for 1 h. Triisopropyl borate (6.65 mL, 28.9 mmol) was added dropwise with the reaction still at -78 °C. After 15 min of stirring at this temperature the dry ice/acetone bath was removed. At about 0 °C 2 M HCl (aq) (5 mL) was added and the reaction left to stir for a further 15 min. THF removed under vacuum and residues taken up in ethyl acetate (50 mL). Distilled H\textsubscript{2}O (50 mL) was added and the organic layer separated. The aqueous layer was extracted with ethyl acetate (50 mL x 2). The organic portions were combined and washed with sat. Na\textsubscript{2}CO\textsubscript{3} (aq). The aqueous layer was separated and treated with 2M HCl (aq) until the pH was about 4. This was then extracted with ethyl acetate (50 mL x 2). The organic portions were then dried over MgSO\textsubscript{4} and solvent removed. The resultant brown residues were taken up in a minimum of ethyl acetate (2-3 mL) and added to dropwise to hexane (50 mL) with stirring. The brown ppt was filtered to give the title compound as a brown solid (1.11 g, 27%).

[H NMR (270 MHz, DMSO-d\textsubscript{6}) δ 6.89-6.92 (1H, d, J= 8.2 Hz, ArH), 7.52-7.56 (1H, dd, J= 1.8 & 7.9 Hz, ArH), 7.72-7.73 (1H, d, J= 1.5 Hz, ArH), 7.98 (2H, s, ArB(OH)\textsubscript{2}) and 10.33 (1H, s, ArOH);

LCMS (APCI), m/z 172.86 (\textsuperscript{37}ClM- - H, 28 %), 171.10 (\textsuperscript{35}ClM- - H, 55), 126.78 (\textsuperscript{35}ClM- - H - B(OH)\textsubscript{2}, 100).

3-Chloro-4-hydroxyphenylboronic acid (TJA02028)

C\textsubscript{6}H\textsubscript{6}BClO\textsubscript{3} MW 172.37
4'-Hydroxy-3'-chloro-3-[12,4]triazol-1-ylmethyl-biphenyl-6-carbonitrile (TJA02038, STX2112)

C₁₆H₁₁ClN₄O MW 310.74

[0347] A 10 mL microwave vial was loaded with TJA01024 (0.150 g, 0.570 mmol), TJA02028 (0.147 g, 0.855 mmol), potassium carbonate (0.198 g, 1.43 mmol), tetrabutylammonium bromide (0.189 g, 0.570 mmol), Pd(OAc)₂ (0.003-0.004 g, 2-3 mol %), ethanol (1.5 mL) and distilled water (3.5 mL). The vial was sealed and loaded (with no prior degassing) into a CEM Explorer Microwave. After a run time of 5 min at 150 °C the reaction mixture was allowed to cool and ethyl acetate (50 mL) added. This was then washed with distilled water (25 mL x 3) and brine (25 mL). The organic layer was dried over MgSO₄, filtered and solvent removed in vacuo to leave a yellow/brown residue. The crude product was purified via flash chromatography (20 g column, method4) to give a white solid (0.074 g). Recrystallisation (dichloromethane) gave the title compound as a white solid (0.026 g, 13%), mp 186.2-188.9 °C;

1H NMR (270 MHz, DMSO-d₆) δ 5.56 (2H, s, ArCH₂N), 7.09-7.12 (1H, d, J= 8.4 Hz, ArH), 7.33-7.37 (2H, m, ArH), 7.52 (1H, s, ArH), 7.55-7.56 (1H, d, J= 2.2 Hz, ArH), 7.90-7.92 (1H, d, J= 7.9 Hz, ArH), 8.03 (1H, s, C₂H₂N₃), 8.72 (1H, s, C₂H₂N₃) and 10.67 (1H, bs, ArOH);

HPLC (70 % CH₃CN in H₂O) tᵣ = 3.774 (97.17 %);
LCMS (APCI), m/z 311.08 (3²ClM⁺ - H, 30 %), 309.13 (3⁵ClM⁺ - H, 100).

4'-Hydroxy-3-[1,2,4]triazol-1-ylmethyl-biphenyl-6-carbonitrile (TJA02034, STX2114)

C₁₆H₁₂N₄O MW 276.29

[0348] A 10 mL microwave vial was loaded with TJA02024 (0.150 g, 0.570 mmol), 4-hydroxyphenylboronic acid (0.118 g, 0.855 mmol), potassium carbonate (0.198 g, 1.43 mmol), tetrabutylammonium bromide (0.189 g, 0.570 mmol), Pd (OAc)₂ (0.003-0.004 g, 2-3 mol %), ethanol (1.5 mL) and distilled water (3.5 mL). The vial was sealed and loaded (with no prior degassing) into a CEM Explorer Microwave (150 W, 3 min, 120 °C). The reaction mixture was allowed to cool
and ethyl acetate (50 mL) added. This was then washed with distilled water (25 mL x 3) and brine (25 mL). The organic layer was dried over MgSO₄, filtered and solvent removed in vacuo to leave a yellow/brown residue. Flash chromatography (20 g column, method4) eluted a white solid (0.102 g, 65 %). Precipitation from MeOH/CHCl₃ gave the title compound as a white solid (0.085 g, 54 %) mp 211.2-212.7 °C;

\[ R_f \] 0.42 (ethyl acetate);

\[ ^1H \text{ NMR} \] (270 MHz, CDCl₃) 5.62 (2H, s, ArCH₂N), 6.88-6.92 (2H, d, \( J = 8.6 \) Hz, AA'BB'), 7.31-7.33 (1H, d, \( J = 8.2 \) Hz, ArH), 7.37-7.39 (2H, d, \( J = 8.5 \) Hz, AA'BB'), 7.45 (1H, s, ArH), 7.87-7.90 (1H, d, \( J = 7.9 \) Hz, ArH), 8.02 (1H, s, C₂H₂N₃), 8.17 (1H, s, C₂H₂N₃) and 9.87 (1H, s, ArOH);

\[ ^13C \text{ NMR} \] (69.5.5 MHz, DMSO-d₆) δ 52.0 (CH₂), 109.8 (C), 116.1 (CH), 119.2 (C), 127.0 (CH), 128.6 (C), 129.6 (CH), 130.5 (CH), 134.8 (CH), 142.4 (C), 145.3 (CH), 145.5 (C), 152.6 (CH) and 158.8 (C);

HPLC (90 % CH₃CN in H₂O) \( t_r = 1.683 \) (98.59 %);

LCMS (APCI), \text{m/z} 277.32 (M⁺ + H, 100 %);

**TJA01189**

\[ \text{3-Chloro-4-hydroxyphenylboronic acid (TJA01187)} \]

\[ \text{C}_6\text{H}_6\text{BClO}_3 \text{ MW 172.37} \]

[0349] A dry 250 ml r.b. flask was loaded with 4-bromo-2-chlorophenol (5.00 g, 24.1 mmol) and purged with N₂(g). Anhydrous THF (100 mL) added with stirring and the vessel cooled to -78 °C (dry ice/acetone bath). After 30 mins n-BuLi, 2.3 M in hexanes, (12.9 mL, 28.9 mmol) was added dropwise over 20 min. The reaction was left to stir for 1 h. Trisopropyl borate (6.65 mL, 28.9 mmol) was added dropwise with the reaction still at -78 °C. After 15 min of stirring at this temperature the dry ice/acetone bath was removed. At about 0 °C 2 M HCl(aq) (5 mL) was added and the reaction...
left to stir for a further 15 min. THF removed under vacuum and residues taken up in ethyl acetate (50 mL). Distilled H₂O (50 mL) was added and the organic layer separated. The aqueous layer was extracted with ethyl acetate (50 mL x 2). The organic portions were combined and washed with sat. Na₂CO₃ (aq). The aqueous layer was separated and treated with 2M HCl (aq) until the pH was about 4. This was then extracted with ethyl acetate (50 mL x 2). The organic portions were then dried over MgSO₄ and solvent removed. The resultant brown residues were taken up in a minimum of ethyl acetate (2-3 mL) and added to dropwise to hexane (50 mL) with stirring. The brown ppt was filtered to give the title compound as a brown solid (1.11 g, 27 %).

1H NMR (270 MHz, DMSO-d₆) δ 6.89-6.92 (1H, d, J = 8.2 Hz, ArH), 7.52-7.56 (1H, dd, J= 1.8 & 7.9 Hz, ArH), 7.72-7.73 (1H, d, J= 1.5 Hz, ArH), 7.98 (2H, s, ArB(OH)₂) and 10.33 (1H, s, ArOH);

HPLC (70 % CH₃CN in H₂O) tᵣ = 3.447 (96.77 %);

LCMS (APCI), m/z 172.86 (17ClM⁺ - H, 28 %), 171.10 (35ClM⁺ - H, 55), 126.78 ((35ClM⁺ - H) - B(OH)₂, 100).

2-(4’-Hydroxy-3-chloro-5-[1,2,4]triazol-1-ylmethyl-biphenyl-3-yl)-2-methyl-propionitrile (TJA01189)

[0350] A 10 mL microwave vial was loaded with TJA01037 (0.200 g, 0.656 mmol), TJA01187 (0.136 g, 0.787 mmol), potassium carbonate (0.227 g, 1.64 mmol), tetrabutylammonium bromide (0.218 g, 0.656 mmol), Pd(OAc)₂ (0.004-0.005 g, 2-3 mol %), ethanol (1.5 mL) and distilled water (3.5 mL). The vial was sealed and loaded (with no prior degassing) into a CEM Explorer Microwave. After a run time of 5 min at 150 °C the reaction mixture was allowed to cool and ethyl acetate (50 mL) added. This was then washed with distilled water (30 mL x 3) and brine (30 mL). The organic layer was dried over MgSO₄, filtered and solvent removed in vacuo to leave a yellow/brown residue. The crude product was purified via flash chromatography (20 g column, method4) to give a white solid (0.074 g). Recrystallisation (dichloromethane) gave the title compound as a white solid (0.175 g, 75 %), Rf 0.19 (ethyl acetate).

1H NMR (270 MHz, DMSO-d₆) δ 1.72 (6H, s, ArC(CH₃)₂CN), 5.49 (2H, s, ArCH₂N), 7.05-7.08 (1H, d, J= 8.4 Hz, ArH), 7.42-7.51 (3H, m, ArH), 7.64-7.68 (2H, m, ArH), 8.02 (1H, s, C₂H₂N₃), 8.73 (1H, s, C₂H₂N₃) and 10.44 (1H, s, ArOH).

13C NMR (67.9 MHz, DMSO-d₆) δ 28.8 (CH₃), 37.4 (C), 52.5 (CH₂), 117.6 (CH), 120.9 (C), 123.1 (CH), 124.1 (CH), 125.1 (CH), 125.9 (CH), 127.1 (CH), 128.6 (CH), 131.9 (C), 138.2 (C), 140.5 (C), 143.2 (C), 144.9 (CH), 152.4 (CH) and 153.6 (C);

HPLC (90 % CH₂CN in H₂O) tᵣ = 1.921 (94.06 %);

LCMS (APCI), m/z 353.40 (37ClM⁺ - H, 35 %), 351.39 (35ClM⁺ - H, 100).
3-Chloro-4-hydroxyphenylboronic acid (TJA01185)

C₆H₆BClO₃ MW 172.37

[0351] A dry 250 ml r.b. flask was loaded with 4-bromo-2-chlorophenol (5.00 g, 24.1 mmol) and purged with N₂(g). Anhydrous THF (100 mL) added with stirring and the vessel cooled to -78 °C (dry ice/acetone bath). After 30 mins n-BuLi, 2.3 M in hexanes, (12.9 mL, 28.9 mmol) was added dropwise over 20 min. The reaction was left to stir for 1 h. Triisopropyl borate (6.65 mL, 28.9 mmol) was added dropwise with the reaction still at -78 °C. After 15 min of stirring at this temperature the dry ice/acetone bath was removed. At about 0 °C 2 M HCl (aq) (5 mL) was added and the reaction left to stir for a further 15 min. THF removed under vacuum and residues taken up in ethyl acetate (50 mL). Distilled H₂O (50 mL) was added and the organic layer separated. The aqueous layer was extracted with ethyl acetate (50 mL x 2). The organic portions were combined and washed with sat. Na₂CO₃ (aq). The aqueous layer was separated and treated with 2M HCl (aq) until the pH was about 4. This was then extracted with ethyl acetate (50 mL x 2). The organic portions were then dried over MgSO₄ and solvent removed. The resultant brown residues were taken up in a minimum of ethyl acetate (2-3 mL) and added to dropwise to hexane (50 mL) with stirring. The brown ppt was filtered to give the title compound as a brown solid (1.11 g, 27 %).

1H NMR (270 MHz, DMSO-d₆) δ 6.89-6.92 (1H, d, J = 8.2 Hz, ArH), 7.52-7.56 (1H, dd, J = 1.8 & 7.9 Hz, ArH), 7.72-7.73 (1H, d, J= 1.5 Hz, ArH), 7.98 (2H, s, ArB (OH)₂) and 10.3.3 (1H, s, ArOH);

HPLC (70 % CH₃CN in H₂O) tᵣ=3.447 (96.77 %);

LCMS (APCI), m/z 172.86 (37ClM+- H, 28 %), 126.78 (35ClM+- H, 55), 171.10 (35ClM+- H, 55), 126.78 (35ClM+- H, 55), 126.78 (35ClM+- H, 55).

4'-Hydroxy-3'-chloro-3-[1,2,4]triazol-1-ylmethyl-biphenyl-4-carbonitrile (TJA02027)

C₁₆H₁₁ClN₄O MW 310.74

[0352] A 10 mL microwave vial was loaded with TJA01046 (0.150 g, 0.570 mmol), TJA01085 (0.118 g, 0.684 mmol), potassium carbonate (0.197 g, 1.43 mmol), tetrabutylammonium bromide (0.189 g, 0.570 mmol), Pd(OAc)₂ (0.003-0.004 g, 2-3 mol %), ethanol (1.5 mL) and distilled water (3.5 mL). The vial was sealed and loaded (with no prior degassing) into a CEM Explorer Microwave. After a run time of 3 min at 120 °C the reaction mixture was allowed to cool and ethyl acetate (50 mL) added. This was then washed with distilled water (30 mL x 3) and brine (30 mL). The organic layer was dried over MgSO₄, filtered and solvent removed in vacuo to leave a yellow/brown residue. The crude product was purified
via flash chromatography (20 g column, method4) eluted the title compound as a white solid (0.065 g, 37 %),

R_f: 0.44 (ethyl acetate);

^1^H NMR (270 MHz; DMSO-^d_6) δ 5.67 (2H, s, ArCH_2N), 7.07-7.10 (1H, d, J= 8.4 Hz, ArH), 7.52-7.56 (1H, dd, J= 2.2 & 8.2 Hz, ArH), 7.74-7.75 (1H, d, J= 2.2 Hz, ArH), 7.80-7.83 (2H, m, ArH), 7.89-7.93 (2H, m, ArH & C_2H_2N_3), 8.04 (1H, s, C_2H_2N_3) and 8.73 (1H, s, ArOH);

^1^3^C NMR (69.5 MHz, DMSO-^d_6) δ 51.1 (CH_2), 110.0 (C), 117.7 (CH), 121.2 (C), 126.9 (CH), 127.4 (CH), 128.1 (CH), 128.9 (CH), 130.1 (C), 134.5 (CH), 140.0 (C), 144.0 (C), 145.4 (CH), 152.6 (CH) and 154.6 (C) (one overlapping signal);

HPLC (90 % CH_3CN in H_2O) t_r= 2.073 (98.19 %);

LCMS (APCI), m/z 312.66 ([^3]^ClM^+ + H, 35 %), 310.64 ([^3]^ClM^++ H, 100).

STX2110

4-(4-((1H-1,2,4-triazol-1-yl)methyl)benzyl)oxy)phenol (TJA02079)

C_{16}H_{15}N_3O_2 MW 281.31

[A 10 mL r.b. flask, purged with N_2 (g) was loaded with TJA02078 (0.100 g, 0.528 mmol), triphenyl phosphine (0.168 g, 0.634 mmol), hydroquinone (0.581 g, 5.28 mmol) and anhydrous THF (3 mL) and cooled to 0 °C. With stirring diethylazodicarboxylate (99.8 μL, 0.634 mmol) was added deropwise and the reaction mixture left to stir at room temperature for 20 h. THF was then removed in vacuo and the resulting residues dissolved in ethyl acetate (30 mL) and washed with distilled H_2O (30 mL x 3), brine (30 mL) and dried over MgSO_4. Solvents were removed in vacuo. Column chromatography (ethyl acetate) eluted a white solid that was recrystallised (ethyl acetate/hexane) to give the title compound as a white crystalline solid (0.051 g, 34 %),

mp 167.4-168.9 °C;

R_f 0.41 (ethyl acetate);

^1^H NMR (270 MHz, DMSO-^d_6) δ 4.96 (2H, s, ArCH_2OAr), 5.41 (2H, s, ArCH_2N), 6.64-6.81 (4H, dd, J= 8.9 & 30.1 Hz, AA’BB’), 7.25-7.41 (4H, dd, J=7.9 & 34.6 Hz, AA’BB’), 7.98 (1H, s, C_2H_2N_3), 8.66 (1H, s, C_2H_2N_3) and 8.93 (1H, bs, ArOH); HPLC (90 % CH_3CN in H_2O) t_r=3.486 (98.68 %);

LCMS (APCI), m/z 282.49 (M^+ + H, 70 %), 213.32 ((M^+ + H) - C_2H_2N_3, 100 %).
Sulfamoyl chloride in toluene (1.37 mL, 0.889 mmol) was transferred to a 10 mL r.b. flask and the solvent removed under vacuum at 30 °C. On cooling a white solid formed to which was added N,N-dimethylacetamide (1.5 mL) to form a colourless solution. TJA02079 (0.050 g, 0.178 mmol) was added and the solution left to stir at room temperature under N2(g) for 60 h. The reaction mixture was then poured into distilled H2O (25 mL) and extracted with ethyl acetate (25 mL x 2). The organic layers were combined and washed with distilled H2O (25 mL x 4) and brine (25 mL). Dried over MgSO4 and solvent removed in vacuo to leave off white residues. Column chromatography (dichloromethane/acetone 80:20) eluted the title compound as a white solid (0.048 g, 75 %); mp 164-166.7 °C; Rf 0.32 (dichloromethane/acetone 75:25).

1H NMR (270 MHz, DMSO-d6) δ 5.09 (2H, s, ArCH2OAr), 5.41 (2H, s, ArCH2N), 7.02-7.19 (4H, dd, J= 6.7 & 37.1 Hz, AA'BB'), 7.27-7.45 (4H, dd, J= 8.2 & 38.8 Hz, ArH), 7.85 (2H, bs, ArOSO2NH2) 7.98 (1H, s, C2H2N3) and 8.67 (1H, s, C2H2N3);

HPLC (70 % CH3CN in H2O) tR=6.254 (100 %);
LCMS (APCI), m/z 361.46 (M++ H, 100 %).

1-(3-(4-(Benzyl)phenoxy)benzyl)-1H-1,2,4-triazole (TJA02081)

C22H19N3O2 MW 357.41

[0355] A 10 mL r.b. flask was loaded with TJA01009 (0.400 g, 1.68 mmol), 4-(benzyl)phenol (0.504 g, 2.52 mmol), cesium carbonate (0.888 g, 2.52 mmol), (CuOTf)2.PhH (0.020 g, 5 mol% Cu), ethyl acetate (8 mL, 5 mol%), 1-naphthoic acid (0.432 g, 2.52 mmol), 4Å molecular sieves (0.350 g) and anhydrous toluene (3.0 mL). The flask was sealed and heated to 110 °C under N2(g) with stirring for 24 h. The reaction was then cooled, ethyl acetate (50 mL) added and then washed with distilled H2O (30 mL x 4), brine (30 mL), dried over MgSO4 and solvent removed in vacuo to leave brown residues. Column chromatography (ethyl acetate) eluted the title compound as an off white solid (0.190 g, 32 %); Rf 0.56 (ethyl acetate);

1H NMR (270 MHz, CDCl3) δ 5.04 (2H, s, ArCH2OAr), 5.30 (2H, s, ArCH2N), 6.84-6.96 (7H, m, ArH), 7.24-7.45 (6H, m,
EP 1 966 166 B1

ArH), 7.95 (1H, s, C₂H₂N₂) and 8.04 (1H, s, C₂H₂N₂);
HPLC (90 % CH₃CN in H₂O) tᵣ = 5.976 (97.22 %);
LCMS (APCI), m/z 358.56 (M⁺ + H, 100 %).

4-(3-{[(1H-1,2,4-Triazol-1-yl)methyl]phenoxy}phenol (STX2111; TJA02084)

C₁₅H₁₃N₃O₂ MW 267.28

[0356] TJA02081 (0.185 g, 0.518 mmol) was dissolved in THF (2.5 mL) and MeOH (2.5 mL) in an r.b. flask to which
was added 5 % Pd/C (0.015 g) to form a black suspension on vigorous stirring. The flask was evacuated and back filled
with H₂(g) via a balloon (x3) and then left to stir for 16 h. The reaction mixture was filtered through celite which was
subsequently washed with THF (30 mL x 2). Solvent was removed in vacuo to leave a brown residue. Flash chroma-
tography (20 g column, method9) eluted the title compound as a white solid (0.112 g, 81 %),
mp 156.3-159.7 °C;
1H NMR (270 MHz, DMSO-d₆) δ 5.37 (2H, s, ArCH₂N), 6.74-6.92 (7H, m, ArH), 7.26-7.31 (1H, t, J = 7.5 Hz, ArH), 7.98
(1H, s, C₂H₂N₂), 8.64 (1H, s, C₂H₂N₂) and 9.39 (1H, s, ArOH);
13C NMR (67.9 MHz, DMSO-d₆) δ 52.3 (CH₂), 116.6 (CH), 116.7 (CH), 116.8 (CH), 121.7 (CH), 122.0 (CH), 130.6 (CH),
138.8 (C), 144.8 (CH), 147.9 (C), 152.3 (CH), 154.6 (C) and 159.2 (C); HPLC (90 % CH₃CN in H₂O) tᵣ=3.294 (97.07 %);
LCMS (APCI), m/z 268.44 (M⁺ + H, 85 %), 199.33 ((M⁺ + H) - C₂H₂N₃, 100 %).

4-(3-{[(1H-1,2,4-Triazol-1-yl)methyl]phenoxy}phenyl sulfamate (STX2113, TJA02086)

C₁₅H₁₄N₄O₄S MW 346.36

[0357] Sulfamoyl chloride in toluene (2.17 mL, 1.41 mmol) was transferred to a 10 mL r.b. flask and the solvent removed
under vacuum at 30 °C. On cooling a white solid formed to which was added N,N-
dimethylacetamide (1.5 mL) to form
a colourless solution. TJA02084 (0.075 g, 0.281 mmol) was added and the solution left to stir at room temperature under
N₂( g ) for 70 h. The reaction mixture was then poured into distilled H₂O (25 mL) and extracted with ethyl acetate (25 mL
x 2). The organic layers were combined and washed with distilled H₂O (25 mL x 4) and brine (25 mL). Dried over MgSO₄
and solvent removed in vacuo to leave off white residues. Column chromatography (dichloromethane/acetone 75:25)
eluted the title compound as a white solid (0.082 g, 85 %);
mp 131.5-133.3 °C
Rᵣ: 0.23 (dichloromethane/acetone 75:25).
1H NMR (270 MHz, DMSO-d₆) δ 5.42 (2H, s, ArCH₂N), 6.89-7.05 (3H, m, ArH), 7.07-7.09 (2H, d, J= 9.2 Hz, AA’BB’),
7.27-7.29 (2H, d, J= 9.2 Hz, AA’BB’), 7.35-7.41 (1H, t, J = 7.7 Hz, ArH), 7.99 (3H, s, ArOSO₂NH₂ & C₂H₂N₃) and 8.66
(1H, s, C₂H₂N₂);
HPLC (90 % CH₃CN in H₂O) tᵣ=3.459 (100 %);
LCMS (APCI), m/z 347.49 (M⁺ + H, 100 %).

BIOLOGICAL DATA

[0358] A number of compounds were tested for aromatase and steroid sulphatase inhibition in accordance with the
above Protocols 1 and 6.

<table>
<thead>
<tr>
<th>STX</th>
<th>STRUCTURE</th>
<th>JEG3-cells Aromatase IC₅₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: &lt;10µM</td>
<td>B: &lt;1µM</td>
<td></td>
</tr>
<tr>
<td>JEG3-cells STS IC₅₀</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A: &lt;10µM</td>
<td>B: &lt;1µM</td>
<td></td>
</tr>
</tbody>
</table>

<p>| 1361 | ![Image] | B | NR |</p>
<table>
<thead>
<tr>
<th>STX</th>
<th>STRUCTURE</th>
<th>JEG3-cells Aromatase IC$_{50}$</th>
<th>JEG3-cells STS IC$_{50}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A: &lt;10µM</td>
<td>B: &lt;1µM</td>
</tr>
<tr>
<td>1362</td>
<td><img src="image1" alt="Structure" /></td>
<td>A</td>
<td>NR</td>
</tr>
<tr>
<td>1384</td>
<td><img src="image2" alt="Structure" /></td>
<td>B</td>
<td>NR</td>
</tr>
<tr>
<td>1385</td>
<td><img src="image3" alt="Structure" /></td>
<td>B</td>
<td>NR</td>
</tr>
<tr>
<td>1386</td>
<td><img src="image4" alt="Structure" /></td>
<td>B</td>
<td>NR</td>
</tr>
<tr>
<td>1387</td>
<td><img src="image5" alt="Structure" /></td>
<td>B</td>
<td>NR</td>
</tr>
<tr>
<td>1388</td>
<td><img src="image6" alt="Structure" /></td>
<td>A</td>
<td>NR</td>
</tr>
<tr>
<td>1452</td>
<td><img src="image7" alt="Structure" /></td>
<td>B</td>
<td>NR</td>
</tr>
<tr>
<td>1455</td>
<td><img src="image8" alt="Structure" /></td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>STX</td>
<td>Structure</td>
<td>JEG3-cells Aromatase IC$_{50}$</td>
<td>JEG3-cells STS IC$_{50}$</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>--------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>1456</td>
<td><img src="image1" alt="Structure" /></td>
<td>B</td>
<td>NR</td>
</tr>
<tr>
<td>1457</td>
<td><img src="image2" alt="Structure" /></td>
<td>A</td>
<td>NR</td>
</tr>
<tr>
<td>1458</td>
<td><img src="image3" alt="Structure" /></td>
<td>B</td>
<td>NR</td>
</tr>
<tr>
<td>1459</td>
<td><img src="image4" alt="Structure" /></td>
<td>B</td>
<td>NR</td>
</tr>
<tr>
<td>1502</td>
<td><img src="image5" alt="Structure" /></td>
<td>A</td>
<td>NR</td>
</tr>
<tr>
<td>1503</td>
<td><img src="image6" alt="Structure" /></td>
<td>B</td>
<td>NR</td>
</tr>
<tr>
<td>1504</td>
<td><img src="image7" alt="Structure" /></td>
<td>B</td>
<td>NR</td>
</tr>
<tr>
<td>1505</td>
<td><img src="image8" alt="Structure" /></td>
<td>A</td>
<td>NR</td>
</tr>
<tr>
<td>STX</td>
<td>STRUCTURE</td>
<td>JEG3-cells Aromatase IC$_{50}$</td>
<td>JEG3-cells STS IC$_{50}$</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>--------------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td>A: &lt;10μM</td>
<td>B: &lt;1μM</td>
<td>A: &lt;10μM</td>
</tr>
<tr>
<td>1506</td>
<td></td>
<td>B</td>
<td>NR</td>
</tr>
<tr>
<td>1507</td>
<td></td>
<td>B</td>
<td>NR</td>
</tr>
<tr>
<td>1508</td>
<td></td>
<td>B</td>
<td>NR</td>
</tr>
<tr>
<td>1509</td>
<td></td>
<td>B</td>
<td>NR</td>
</tr>
<tr>
<td>1510</td>
<td></td>
<td>B</td>
<td>NR</td>
</tr>
<tr>
<td>1511</td>
<td></td>
<td>B</td>
<td>NR</td>
</tr>
<tr>
<td>STX</td>
<td>STRUCTURE</td>
<td>JEG3-cells Aromatase $\text{IC}_{50}$</td>
<td>JEG3-cells STS $\text{IC}_{50}$</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>--------------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A: $&lt;10 \mu\text{M}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B: $&lt;1\mu\text{M}$</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1512</td>
<td>B</td>
<td>NR</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1519</td>
<td>B</td>
<td>NR</td>
</tr>
<tr>
<td>20</td>
<td>1520</td>
<td>B</td>
<td>NR</td>
</tr>
<tr>
<td>25</td>
<td>1521</td>
<td>B</td>
<td>NR</td>
</tr>
<tr>
<td>30</td>
<td>1524</td>
<td>B</td>
<td>NR</td>
</tr>
<tr>
<td>35</td>
<td>1525</td>
<td>B</td>
<td>NR</td>
</tr>
<tr>
<td>40</td>
<td>1835</td>
<td>B</td>
<td>NR</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Table: JEG3-cells Aromatase IC₅₀ and JEG3-cells STS IC₅₀

<table>
<thead>
<tr>
<th>STX</th>
<th>STRUCTURE</th>
<th>JEG3-cells Aromatase IC₅₀</th>
<th>JEG3-cells STS IC₅₀</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td><strong>A:</strong> &lt;10 μM</td>
<td><strong>B:</strong> &lt;1 μM</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>A:</strong> &lt;10 μM</td>
<td><strong>B:</strong> &lt;1 μM</td>
</tr>
<tr>
<td>1838</td>
<td><img src="image1" alt="Structure" /></td>
<td>B</td>
<td>NR</td>
</tr>
<tr>
<td>1839</td>
<td><img src="image2" alt="Structure" /></td>
<td>B</td>
<td>NR</td>
</tr>
<tr>
<td>1840</td>
<td><img src="image3" alt="Structure" /></td>
<td>B</td>
<td>NR</td>
</tr>
<tr>
<td>1841</td>
<td><img src="image4" alt="Structure" /></td>
<td>B</td>
<td>NR</td>
</tr>
<tr>
<td>1842</td>
<td><img src="image5" alt="Structure" /></td>
<td>B</td>
<td>NR</td>
</tr>
<tr>
<td>1843</td>
<td><img src="image6" alt="Structure" /></td>
<td>B</td>
<td>NR</td>
</tr>
<tr>
<td>1844</td>
<td><img src="image7" alt="Structure" /></td>
<td>B</td>
<td>NR</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>STX</th>
<th>STRUCTURE</th>
<th>JEG3-cells Aromatase IC$_{50}$</th>
<th>JEG3-cells STS IC$_{50}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A: &lt;10μM</td>
<td>A: &lt;10μM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B: &lt;1μM</td>
<td>B: &lt;1μM</td>
</tr>
<tr>
<td>1848</td>
<td><img src="image1" alt="Structure" /></td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>1854</td>
<td><img src="image2" alt="Structure" /></td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>1975</td>
<td><img src="image3" alt="Structure" /></td>
<td>A</td>
<td>NR</td>
</tr>
<tr>
<td>1976</td>
<td><img src="image4" alt="Structure" /></td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>1978</td>
<td><img src="image5" alt="Structure" /></td>
<td>B</td>
<td>NR</td>
</tr>
<tr>
<td>1979</td>
<td><img src="image6" alt="Structure" /></td>
<td>B</td>
<td>B</td>
</tr>
</tbody>
</table>
Various modifications and variations of the present invention will be apparent to those skilled in the art. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in chemistry, biology or related fields are intended to be within the invention, the scope of which is defined by the following claims.

**Claims**

1. A compound of Formula II
wherein at least one of R₃, R₄, R₅, R₆ and R₇ is -CH₂-1H-1,2,4-triazole, and at least one of R₃, R₄, R₅, R₆ and R₇ is -Y-R₈ wherein R₈ is selected from cyano (-CN), nitro (-NO₂), H-bond acceptors, and halogens;
wherein Y is an optional linker group;
wherein ring A is optionally further substituted; and
wherein R₉ is selected from H, -OH and -OSO₂NR₁R₂ wherein R₁ and R₂ are independently selected from H and hydrocarbyl.

2. A compound according to claim 1 wherein R₈ is -CN.

3. A compound according to claim 1 wherein R₈ is selected from cyano (-CN) and halogens.

4. A compound according to claim 3 wherein -Y-R₈ is selected from -CN, -C(CH₃)₂-CN, and -F.

5. A compound according to claim 3 or 4 wherein when present Y is selected from -CH₂-and -C(CH₃)₂-.

6. A compound according to any one of claims 1 to 5 wherein A is further substituted by groups selected from -OH, hydrocarbyl groups, oxyhydrocarbyl groups, cyano (-CN), nitro (-NO₂), H-bond acceptors, and halogens.

7. A compound of Formula I

wherein R₃, R₄, R₅, R₆ and R₇ are independently selected from H and -Y-R₈ wherein each R₈ is independently selected from -OH, hydrocarbyl groups, oxyhydrocarbyl groups, cyano (-CN), nitro (-NO₂), H-bond acceptors, and halogens;
wherein at least one of R₃, R₄, R₅, R₆ and R₇ is CH₂-1H-1,2,4-triazole;
wherein X is a bond or a linker group
wherein Y is an optional linker group; and
wherein R₉ is selected from H, -OH and -OSO₂NR₁R₂ wherein in addition to R₉ ring A is substituted by one or more groups selected from Cl, -OH, fused phenyl, phenyl, -OMe, -OCH₂Ph, -CN, -C(O)-Ph, -F, -O-Ph, -C(O)-Me, fused phenyl optionally substituted with one of -OMe or -OH, and a fused heterocyclic group such that ring A forms a bibenzofuranyl;
wherein R₁ and R₂ are independently selected from H and hydrocarbyl;
wherein

(a) X is a bond and at least one of R₃, R₄, R₅, R₆ and R₇ is -Y-R₈; OR
(b) R₉ is -OSO₂NR₁R₂ or -OH and four of R₃, R₄, R₅, R₆ and R₇ are H and one of R₃, R₄, R₅, R₆ and R₇ is -Y-R₈.

8. A compound according to claim 1 or claim 7 selected from compounds of the formulae
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td><img src="image1" alt="Chemical Structure 1" /></td>
<td><img src="image2" alt="Chemical Structure 2" /></td>
</tr>
<tr>
<td>10</td>
<td><img src="image3" alt="Chemical Structure 3" /></td>
<td><img src="image4" alt="Chemical Structure 4" /></td>
</tr>
<tr>
<td>15</td>
<td><img src="image5" alt="Chemical Structure 5" /></td>
<td><img src="image6" alt="Chemical Structure 6" /></td>
</tr>
<tr>
<td>20</td>
<td><img src="image7" alt="Chemical Structure 7" /></td>
<td><img src="image8" alt="Chemical Structure 8" /></td>
</tr>
<tr>
<td>25</td>
<td><img src="image9" alt="Chemical Structure 9" /></td>
<td><img src="image10" alt="Chemical Structure 10" /></td>
</tr>
<tr>
<td>30</td>
<td><img src="image11" alt="Chemical Structure 11" /></td>
<td><img src="image12" alt="Chemical Structure 12" /></td>
</tr>
<tr>
<td>35</td>
<td><img src="image13" alt="Chemical Structure 13" /></td>
<td><img src="image14" alt="Chemical Structure 14" /></td>
</tr>
<tr>
<td>40</td>
<td><img src="image15" alt="Chemical Structure 15" /></td>
<td><img src="image16" alt="Chemical Structure 16" /></td>
</tr>
<tr>
<td>45</td>
<td><img src="image17" alt="Chemical Structure 17" /></td>
<td><img src="image18" alt="Chemical Structure 18" /></td>
</tr>
<tr>
<td>50</td>
<td><img src="image19" alt="Chemical Structure 19" /></td>
<td><img src="image20" alt="Chemical Structure 20" /></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9. A compound selected from compounds of the formulae

10. A compound according to any one of claims 1 to 9 for use in medicine.

11. A pharmaceutical composition comprising the compound according to any one of claims 1 to 9 optionally admixed with a pharmaceutically acceptable carrier, diluent, excipient or adjuvant.

12. Use of a compound according to any one of claims 1 to 9 in the manufacture of a medicament for use in the therapy of a condition or disease associated with STS and/or aromatase and/or cell cycling and/or apoptosis and/or cell growth.
Patentansprüche

1. Verbindung der Formel II,

\[ \text{Formel II} \]

wobei es sich bei mindestens einem von \( R_3, R_4, R_5 \) und \( R_7 \) um -CH\(_2\)H-1,2,4-Triazol handelt und bei mindestens einem von \( R_3, R_4, R_5 \) und \( R_7 \) um -Y-R\(_8\) handelt,

wobei \( R_8 \) aus Cyanogruppe (-CN), Nitrogruppe (-NO\(_2\)), Wasserstoffbrückenbindungsakzeptoren und Halogenen ausgewählt wird;

wobei \( Y \) eine optische Linkergruppe ist;

wobei Ring A gegebenenfalls weiter substituiert ist; und

wobei \( R_9 \) aus H, -OH und -OSO\(_2\)NR\(_1\)R\(_2\) ausgewählt wird, wobei \( R_1 \) und \( R_2 \) unabhängig aus H und Hydrocarbylgruppe ausgewählt werden.

2. Verbindung nach Anspruch 1, wobei es sich bei \( R_8 \) um -CN handelt.

3. Verbindung nach Anspruch 1, wobei \( R_8 \) aus Cyano (-CN) und Halogenen ausgewählt wird.

4. Verbindung nach Anspruch 3, wobei -Y-R\(_8\) aus -CN, -C(CH\(_3\))\(_2\)-CN und -F ausgewählt wird.

5. Verbindung nach Anspruch 3 oder 4, wobei \( Y \), wenn vorhanden, aus -CH\(_2\)- und -C(CN\(_3\))\(_2\)- ausgewählt wird.

6. Verbindung nach einem der Ansprüche 1 bis 5, wobei A weiter durch Gruppen substituiert ist, die aus -OH, Hydrocarbylgruppen, Oxihydrocarbylgruppen, Cyanogruppe (-CN), Nitrogruppe (-NO\(_2\)), VVasserstoffbrückenakzeptoren und Halogenen ausgewählt werden.

7. Verbindung nach Formeln I,
wobei X eine Bindung oder eine Linkergruppe ist
wobei Y eine optionale Linkergruppe ist und
wobei R₃ aus H, -OH und -OSO₂NR₁R₂ ausgewählt wird;
wobei Ring A zusätzlich zu R₉ durch eine oder mehrere Gruppen substituiert ist, die aus -Cl, -OH, aneliertem Phenyl, Phenyl, -OMe -OCH₂-Ph, -CN, -C(O)-Ph, -F, -O-Ph, -C(O)-Me, aneliertem Pheny, das gegebenenfalls substituiert ist mit einem von -OMe oder -OH, und einem anelierten heterozyklischen Rest ausgewählt werden, so dass Ring A ein Bibenzofuranyl bildet;
wobei R₁ und R₂ unabhängig aus H und Hydrocarbylgruppe ausgewählt werden; wobei

(a) X eine Bindung ist und wobei es sich mindestens bei einem von R₃, R₄, R₅, R₆ und R₇ um -Y-R₈ handelt; oder
(b) es sich bei R₉ um O₅₇₁::u₂NR₁R₂ oder -OH handelt und es sich bei vier von R₃, R₄, R₅, R₆ und R₇ um H und bei einem von R₃, R₄, R₅, R₆ und R₇ um -Y-R₈ handelt.

8. Verbindung nach Anspruch 1 oder Anspruch 7, die aus den folgenden Formeln ausgewählt wird:
9. Verbindung, die ausgewählt wird aus Verbindungen der Formeln

10. Verbindung nach einem der Ansprüche 1 bis 9 für die Verwendung in der Medizin.

11. Pharmazeutische Zusammensetzung bestehend aus der Verbindung nach einem der Ansprüche 1 bis 9, gegebenenfalls unter Beifügung eines pharmazeutisch vertretbaren Trägers, Verdünnungsmittels, Hilfsstoffe oder Adjuvans.

12. Verwendung einer Verbindung nach einem der Ansprüche 1 bis 9 für die Herstellung eines Medikaments zur Verwendung bei der Therapie eines Zustands oder einer Erkrankung im Zusammenhang mit STS und/oder Aromatase und/oder Zellzyklus und/oder Apoptose und/oder Zellwachstum.

Revendications

1. Composé de formule II

2. Composé selon la revendication 1, dans lequel R₈ est un groupe cyano (-CN).
3. Composé selon la revendication 1, dans lequel R₈ est choisi parmi le groupe cyano (-CN) et les atomes d’halogène ;

4. Composé selon la revendication 3, dans lequel -Y- R₈ est choisi parmi les groupes -CN, -C(CH₃)₂-CN et un atome de fluor.

5. Composé selon la revendication 3 ou 4, dans lequel Y, lorsqu’il est présent, est choisi parmi -CH₂- et -C(CH₃)₂-.

6. Composé selon l’une quelconque des revendications 1 à 5, dans lequel A est en outre substitué par des groupes choisis parmi les groupes -OH, hydrocarbyle, oxyhydrocarbyle, cyano (-CN), nitro (-NO₂), les accepteurs de liaison H et les atomes d’halogène.

7. Composé de formule I

![Formule I](image)

dans laquelle R₃, R₄, R₅, R₆ et R₇ sont choisis indépendamment parmi un atome d’hydrogène et un groupe -Y- R₈, dans lequel chaque radical R₈ est choisi indépendamment parmi les groupes -OH, hydrocarbyle, oxyhydrocarbyle, cyano (-CN), nitro (-NO₂), les accepteurs de liaisons H et les atomes d’halogène ;

dans laquelle l’un au moins parmi R₃, R₄, R₅, R₆ et R₇ est un groupe -CH₂-1H-1,2,4-triazole ;

dans laquelle X est une liaison ou un groupe lieur ;

dans laquelle Y est un groupe lieur facultatif ;

dans laquelle R₉ est choisi parmi H, -OH et -OSO₂NR₁R₂ ;

dans laquelle R₉, le cycle A est substitué par un ou plusieurs groupes choisis parmi -Cl, -OH, un phényle fusionné, un phényle, -OMe, -OCH₂Ph, -CN, -C(O)-Ph, -F, -O-Ph, -C(O)-Me, un phényle fusionné éventuellement substitué par un groupe -OMe ou -OH, et un groupe hétérocyclique fusionné tel que le cycle A forme un dibenzofuranyle ;

dans laquelle R₁ et R₂ sont indépendamment un atome d’hydrogène ou un groupe hydrocarbyle ;

dans laquelle

(a) X est une liaison et l’un au moins parmi R₃, R₄, R₅, R₆ et R₇ est un groupe -Y- R₈ ; ou

(b) R₉ est un groupe -OSO₂NR₁R₂ ou -OH et quatre des radicaux R₃, R₄, R₅, R₆ et R₇ sont un atome d’hydrogène et l’un des radicaux R₃, R₄, R₅, R₆ et R₇ est un groupe -Y- R₈.

8. Composé selon la revendication 1 ou la revendication 7 choisi parmi les composés de formules
9. Composé choisi parmi les composés de formules

10. Composé selon l'une quelconque des revendications 1 à 9, destiné à être utilisé en médecine.

11. Composition pharmaceutique comprenant le composé selon l'une quelconque des revendications 1 à 9 le cas échéant en mélange avec un véhicule, un diluant, un excipient ou un adjuvant pharmaceutiquement acceptable.

12. Utilisation d'un composé selon l'une quelconque des revendications 1 à 9 dans la fabrication d'un médicament destiné à être utilisé pour traiter un état ou une maladie associée à la STS et/ou à l'aromatase et/ou au cycle cellulaire.
et/ou à l'apoptose et/ou à la croissance cellulaire.
DEHYDROEPIANDROSTERONE SULPHATE

DEHYDROEPIANDROSTERONE

ANDROSTENEDIONE

5α-DIHYDROTESTOSTERONE

TESTOSTERONE

OESTRADIOL

OESTRONE

OESTRONE SULPHATE

KEY ENZYMES IN STEROIDOGENSES:
1. SULPHATASE  2. AROMATASE  3. DEHYDROGENASE  4. 5α REDUCTASE

FIG. 1
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- GB 9201587 W [0012]
- WO 03045925 A [0019] [0201]
- WO 9950453 A [0171]
- GB 9502638 W [0197]
- WO 9808870 A [0219]
- WO 9813348 A [0219]
- WO 9952890 A [0249]
- WO 9805635 A [0249]
- WO 9807859 A [0250]
- WO 9809985 A [0251]

Non-patent literature cited in the description

- SAKURA et al. J Inherit Metab Dis, November 1997, vol. 20 (6), 807-10 [0164]