Osterreichisches

o patentamt

10 AT 508 441 A2 2011-01-15

1 Osterreichische Patentanmeldung

(21) Anmeldenummer: A 932/2010
(22) Anmeldetag: 08.06.2010
(43) Verdffentlicht am: 15.01.2011

(51) Int. ci8: GO6K 19/077 (200.06),
B42D 15/10 (2006.01),
GO6K 19/10 (2006.01),
GOGF 11/36 (2006.01)

(30) Prioritat:

13.06.2009 DE 102009024768
beansprucht.

(73) Patentinhaber:

AUSTRIA CARD GMBH
A-1230 WIEN (AT)

AT 508 441 A2 2011-01-15

(54) VERFAHREN ZUM PRUFEN EINER CHIPKARTE DURCH SIMULATION VON ANGRIFFEN

(57) Verfahren zum Priifen einer Chipkarte mit
Angriffen auf das Betriebssystem oder die
Applikationen bei der Herstellung der Chip-
karte, wobei ein hardwareméagiger Angriff
auf die Chipkarte dadurch simuliert wird,
dass stattdessen mit einer Angriffssoftware
(18) in den Programmablauf des Betriebs-
systems oder der Applikationen uber die
Schnittstelle (16) eingegriffen wird und ge-
zielt bestimmte Daten entsprechend einem
hardwaremaRigen Angriff veréndert wer-
den, wobei Betriebssystem oder die Appli-
kationen auf einem durch einen Chip-
Simulator (17) simulierten Chip (15) ausge-
fuhrt werden.

DVR. 0078018

10

s 0009 Oves
L .8]

¢ ® Gow oov
. .

L . L]
(1] (1] e e 900 gwe

13

Zusammenfassung

Verfahren zum Priifen einer Chipkarte mit Angriffen auf das Betriebssystem oder
die Applikationen bei der Herstellung der Chipkarte, wobei ein hardwareméafiger
Angriff auf die Chipkarte dadurch simuliert wird, dass stattdessen mit einer
Angriffssoftware (18) in den Programmablauf des Betriebssystems oder der
Applikationen Gber die Schnittstelle (16) eingegriffen wird und gezielt bestimmte
Daten entsprechend einem hardwaremaBigen Angriff verandert werden, wobei
Betriebssystem oder die Applikationen auf einem durch einen Chip-Simulator (17)
simulierten Chip (15) ausgefiihrt werden..

10

15

20

25

30

Verfahren zum Priifen einer Chipkarte durch Simulation von Angriffen

Chipkarten, die von einem Hersteller an einen Chipkarten-Verwender geliefert
werden, werden von dem Chipkarten-Hersteller mit einer bestimmten Software
programmiert. Es handelt sich hierbei um ein Betriebssystem und Applikationen.
Das Betriebssystem und die Applikationen enthalten verschiedene Prifroutinen

zur Uberprifung der Daten- und Ablaufintegritat der Chipkarte.

Solche fertig programmierten und ablauffahigen Chipkarten werden in einem
Pruflabor mit bekannten Verfahren gepriift, wobei auch Angriffe auf die Chipkarte
mit Hilfe von Laserstrahlen, Licht, ionisierender Strahlung und mit Spannungs- und
Frequenzveranderungen an den Kontakten des Chips sowie physikalische
Manipulationen mittels sehr feine Sonden / Kontakten und chemische

Manipulationen durchgefiihrt werden.

Eine bekannte Angriffsmethode besteht darin, dass versucht wird, in der auf der
Chipkarte ablaufenden Software gezielt Fehler auszuldsen (als ,fault induction®
oder Fehlerinduktion bekannt).

Hierbei ist es bekannt, mit einem Laserstrahl Uber ein Mikroskop auf die
Oberflache des Chips einzustrahlen und hierbei in einem sehr feinen Raster den
Chip der Chipkarte zu beschief3en.

Solche Angriffe werden mit umfangreichen Ortsverénderungen (X, Y Koordinate
auf der Chipoberflache) des Laserstrahls durchgefiihrt wobei sowohl die Intensitat
des Lasers, die Fokussierung des Lasers, die Wellenldnge des Lasers, die
Zeitpunkte des Angriffs und andere Parameter geédndert werden, um einen — nicht
erwiinschten — Fehler auf dem Chip zu provozieren.

Insgesamt ist dies ein sehr zeitaufwendiger und ressourcenaufwendiger Prozess,
der im Prinzip immer nur das Ziel hat, eine bestimmte unbekannte Stelle in der
Hardware zu manipulieren. Das Endergebnis eines solchen Angriffes ist im
Erfolgsfall, dass

10

15

20

25

30

e s .0
Lo
L [
[4 . - .

(24 L 24 LA o0 se (X 3

2

e esee evee
[X4 *
s o0e o2
. . .

(XX X
so0
(X X2
(XX 2]
(XXX}

o der Inhalt einer Speicherzelle (im fliichtigen oder nicht-flichtigen
Speicherbereich) geandert wird oder

e der Inhalt eines Prozessor-Registers (eines Haupt- oder Co-Prozessors
oder ein spezielles Hardware-Register) gedndert wird. Handelt es sich
hierbei beispielsweise um den so genannten Programm Counter, welcher
den als nachsten auszufiihrenden Befehl bezeichnet, so wird das

Programm an einer anderen Stelle fortgesetzt.

Eine solche Veranderung des Inhaltes kann grundsétzlich persistent oder
transient sein. Folgende Falle sind zu unterscheiden:

e persistente Veranderung im nicht flichtigen Speicher: alle
nachfolgenden Lese-Zugriffe liefern den geénderten Wert zuriick.

o Persistente Veranderung im flichtigen Speicher: alle nachfolgenden
Lese-Zugriffe bis zum nachsten Reset des Chips liefern den
veranderten Wert zuriick (nach dem Reset ist der Inhalt des flichtigen
Speichers im Alilgemeinen undefiniert).

¢ Persistente Veranderung eines Prozessor-Registers: alle nachfolgenden
Lese-Zugriffe bis zu dem Zeitpunkt an dem ein neuer Wert in das
Register geschrieben wird (das kann auch selbsttagig von der Chip-
Hardware verursacht werden), liefern den gednderten Wert zuriick

e Transiente Verdnderung einer Speicherzelle oder eines Registers: nur
der aktuelle Lese-Zugriff auf die Speicherzelle oder ein Register liefert
einen geanderten Wert zuriick. Alle nachfolgenden Lese-Zugriffe liefern
wieder den korrekten Wert zuriick. Dieser Angriff funktioniert im
Aligemeinen nur dann, wenn der Angriff exakt zum Zeitpunkt des Lese-
Zugriffs ausgefiihrt wird. Es handelt sich hier um den Angriff mit der
derzeit hochsten — da auf realer Hardware am einfachsten ausfiihrbaren

- Erfolgsrate.

Die derzeit bekannten Angriffe auf reale Hardware haben gemeinsam, dass das
Setzen einer Speicherzelle auf einen bestimmten Wert im Allgemeinen sehr
schwierig ist, sondern ein zumeist ein — von aufien fur den Angreifer aufgrund von
Speicherverschliisselungsmechanismen - nicht vorhersehbares Bit-Muster

i
i
i. D
b
i

10

15

20

25

30

3

gesetzt wird oder alle Bits der zu verandernden Speicherzelle auf den Wert Null
oder alle Bits auf den Wert Eins gesetzt werden.

Der Erfindung liegt deshalb die Aufgabe zu Grunde, einen Angriff auf die
Chipkarte und insbesondere auf den Chip der Chipkarte durch eine Software zu
simulieren, ohne dass es des hardwaremaBigen Einsatzes eines Lasers oder
anderer energiereicher Strahlen, einer physikalischen oder chemischen
Manipulation des Chips bedarf.

Zur Lésung der gestellten Aufgabe ist die Erfindung durch die technische Lehre
des Anspruches 1 gekennzeichnet.

Wesentliches Merkmal ist, dass ein hardwaremaBiger Angriff auf die Chipkarte
dadurch simuliert wird, dass mit einer Angriffssoftware in den Programmablauf des
Betriebssystems oder der Applikationen durch einen Chip-Simulator eines
simulierten Chips uber die Schnittstelle eingegriffen wird und gezielt bestimmte

Daten entsprechend einem hardwaremaRigen Angriff verandert werden.

Die Idee ist jetzt, diese Angriffe durch eine Software zu simulieren, um diesen zeit-
und ressourcenintensiven Hardwareprozess Uberhaupt nicht mehr zu bendtigen
und / oder eine Gefahrenanalyse durch die Simulation zu erhalten. Diese
Simulation ist relativ einfach, weil das Fehlermodell welches dahintersteht einfach
ist. Das Fehlermodel besteht darin, entweder den Inhalt einer Speicherzelle oder
eines Registers permanent oder transient zu veréandern.
Ein Vorteil ist, dass Angriffe dadurch gezielt simuliert werden kdnnen. Dazu macht
man es sich zu Nutze, dass bei der Simulation die Aufteilung des logischen
Speicheradressraumes in unterschiedliche physikalische Speicher (beispielsweise
ROM, EEPROM, RAM, Flash) und die unterschiedliche Arten von Registern
bekannt sind. So kdnnen unterschiedliche Klassen von Fehlern getrennt simuliert
und betrachtet werden, wie beispielsweise:

e Veranderung des Programm-Counters

e Veranderung des Prozessor-Stacks

e Veranderung von Hardware-Registern

e Veranderungen im flichtigen Speicher

10

15

20

25

30

*s 26 Osee 080
L d * 9 []

L2 N ® 500 OO0
L3 (] * .
.

L] L]
[1] [24 .e s® 080 weoe

4

e Veranderungen im nicht flichtigen Speicher.

Ferner kénnen so durch Einbringen von transienten bzw. persistenten Fehlern
unterschiedliche Hardware-Angriffe simuliert werden.

Dies ist deshalb interessant, da fiir diese unterschiedlichen Fehlerklassen im

Allgemeinen unterschiedliche Sicherheitsmanahmen implementiert sind.

Ebenso wird man fiir alle diese Klassen transiente und persistente Fehler getrennt

betrachten und analysieren kénnen.

Ob alle Fehlerarten betrachtet werden oder nur bestimmte Fehlerarten, hangt
davon ab, welche Fehlerarten nach dem Stand der Technik auf der jeweiligen
Chip-Hardware Plattform bekannterweise ~mit hoher bzw. geringer
Wahrscheinlichkeit erfolgreich ausgefiihrt werden kénnen.

Ein weiterer Vorteil ist im Folgenden beschrieben: Bei der tats&chlichen
Durchfilhrung von Angriffen besteht das weitere Problem, dass es auch Hardware-
Gegenmafnahmen gibt, die eben z. B. ebenfalls die Speicherintegritat oder die
Integritat von Registern priifen oder die versuchen Angriffe mittels Sensoren zu
erkennen. Diese Hardware-Gegenmafinahmen kann man auf der Softwareseite
erfindungsgemaf im Simulationsfall ausschalten und getrennt betrachten, dadurch
kann erfindungsgemaR der statistische oder diskrete Prozess des Angreifens der
Hardware durch eine softwaremafige Simulation wesentlich genauer betrachtet

werden; er ist schneller und bendtigt weniger Ressourcen schonender.

Wenn man nun erfindungsgemaf einen Angriff simulieren will, bendtigt man hierzu
einen softwaremafRig hergestellten Chip-Simulator mit einer Schnittstelle zur
erfindungsgemaflen Angriffs-Software.

Bei einer weiteren Ausfihrungsform kann anstelle der Chip-Simulation Software

auch eine Chip-Emulator Hardware eingesetzt werden.

10

15

20

25

30

s s OGooe 20O¢
L4 [] .
*s ¢ S SoO
. . . .
L] [] . [)
L 4] (]] o 29 veo® (3]

5

Es ist bereits bekannt, bei Software-Anwendungen und bei der Programmierung
der Software eines Betriebssystems fiir eine Chipkarte einen (Chip-)Simulator zu
verwenden. Bisher ist es jedoch noch nicht bekannt, einen solchen Simulator far
die Simulation von Angriffen auf das Betriebssystem der Chipkarte gezielt
einzusetzen.

Die Schnittstelle zwischen Chip-Simulator und Angriffs-Software ist relativ einfach.
Zumindest folgende Zugriffsmoglichkeiten werden benétigt:
e Zugriff auf die Speicherzellen des simulierten Chips
o Zugriff auf die Register (aller enthaltenen Prozessoren) des simulierten
Chips

Die Zugriffe missen zu jedem Zeitpunkt schreibend und lesend mdglich sein.
Heute bekannte Chip-Simulatoren bieten im Allgemeinen diese Moglichkeiten.

Uber diesen einfachen Mechanismus kann man nun erfindungsgemaf alle Arten

von Angriffen simulieren.

Ein Angriff kann beispielsweise wie folgt simuliert werden:

Die Angriffs-Software pruft durch Auslesen des Programm-Counters bzw. durch
Zahlen der abgearbeiteten Prozessor-Instruktionen, an welcher Stelle im
Programmablauf sich die Chip-Software gerade befindet. Stimmt diese mit der
anzugreifenden Stelle Uberein, wird ein Angriff durchgefiihrt. Durch Variieren der
anzugreifenden Stelle kénnen Variationen des Zeitpunktes des Angriffes simuliert
werden. Der Angriff selbst manipuliert nun einen bestimmten Speicherbereich im
fluchtigen oder nicht flichtigen Speicher-Bereich oder von Registern. Durch die
Variation des angegriffenen Speicherbereiches bzw. der unterschiedlichen
Register werden daher die unterschiedlichen Orte des Angriffes an der
Chipoberflache (X, Y Koordinaten) simuliert.

Durch Variation der Anzahl der verdnderten Speicher-Bits und der geschriebenen
Werte d.h. unterschiedlicher Angriffsparameter (insbesondere Fokussierung,
Energie, Wellenlange der eingestrahlten elektromagnetischen Wellen, Angriff
durch direkte Kontaktierung mit Micro-Probes, Angriff durch ionisierende
Strahlung) kann beispielsweise die Angriffsart simuliert werden.

& e

10

15

20

25

30

9 S3e0 04
[. *

oe L X e

* oS¢ o0& (3

[.g o‘oo s o 0ses See
[d * ® .0 . - »
L4 ve [LR 1 L] L -
e (14 . e SO (3 X4

6

Man kann deshalb im Wesentlichen auf die im Labor durchgefiihrten
hardwaremaRigen Angriffe verzichten, die auRerordentlich zeitaufwendig sind und
Maschinen-Ressourcen bendtigen. Nachteil dieser hardwareméaRigen Angriffe ist
namlich, dass man aus physikalischen oder zeitlichen Grinden nicht jede Stelle
des Chips bei gleichzeitiger Variation aller anderen Parameter beschief’en kann,
weil dies entweder aus raumlichen Griinden nicht moglich ist oder sich eine

auRerordentliche zeitaufwendige Uberpriifung ergeben wiirde.

Vorteil der Erfindung ist, dass man Testergebnisse, die beim softwaremafigen
Angriff auf den Chip erkannt werden, bei der Programmierung des Chips oder der
Chip-Betriebssoftware wieder beriicksichtigt werden kénnen. D.h., bei der
Chipentwicklung kénnen Ergebnisse bezlglich der Angreifbarkeit des Chips
erkannt und vorweggenommen werden, wodurch die Chipsoftware insgesamt
verlasslicher und sicherer wird. Weiters wiirden damit die Kosten einer
Sicherheitszertifizierung ~ wesentlich gesenkt und der Zeitaufwand

dementsprechend minimiert werden.

Solche Angriffe, die auf der Hardwareseite nach dem Stand der Technik
stattfinden, werden im Zeitablauf Wochen verwendet, um solche Angriffe
realistisch durchzufithren, was mit den Merkmalen der vorliegenden Erfindung mit
Sicherheit vermieden wird. Dies ist sowohl ein Vorteil fir den Entwickler (Austria
Card) als auch fur das Priflabor, weil einerseits der Entwicklungsaufwand
minimiert wird und andererseits die Priufroutinen und die Prifprozeduren

wesentlich verkurzt werden.

Oft miissen sicherheitskritische Systeme in regelmafigen Absténden (z.B. zwei
Jahre) =zertifiziet werden und es sind immer neue Zertifikationsprozesse
notwendig, die mit den Merkmalen der vorliegenden Erfindung damit wesentlich

verkiirzt und kostenglnstiger gestaltet werden kénnen.

Im Folgenden ist der typische Ablauf der Kommando-Abarbeitung innerhalb eines
Chipkarten-Betriebssystems beschrieben.

10

15

20

25

30

L X J e e o Ovee 600
. . .
".

L
* L J L}
(2] [1] s *e G0 o

7

s 609 o8&
3 . v
.

seoe
eou s
[XX 2]
[XXX

Die typische Kommando-Abarbeitung innerhalb des Chipkarten-Betriebssystems
lauft wie folgt ab: Alle Kommandos an die Chipkarte empfangt diese Uber eine I/O-
Schnittstelle. Fehlererkennungs- und —Korrekturmechanismen filhrt der 1/O-
Manager bei Bedarf vollig unabhéngig von den tbrigen, darauf aufbauenden
Schichten aus. Nachdem ein Kommando volistandig und fehlerfrei empfangen
wurde, muss der Secure Messaging Manager diesen gegebenenfalls
entschliisseln oder auf Integritét prifen. Findet eine gesicherte Datentbertragung
statt, ist dieser Manager sowohl fir Kommando als auch Antwort vollig

transparent.

Nach dieser Bearbeitung versucht die dariiberliegende Schicht, der
Kommandointerpreter, das Kommando zu dekodieren. Ist dies nicht mdoglich, folgt
ein Aufruf des Returncode-Managers, welcher einen entsprechenden Returncode
generiert und via I/0-Manager an das Terminal zurlicksendet. Es kann notwendig
sein, den Returncode-Manager applikationsspezifisch zu gestalten, da die
Returncodes nicht zwangslaufig fur alle Anwendungen einheitlich sind. Konnte das
Kommando jedoch dekodiert werden, ermittelt der Logical Channel Manager den
angewahlten Kanal, schaltet auf dessen Zustande um und ruft dann im Gutfall den

Zustandsautomaten auf.

Dieser prift nun, ob das Kommando an die Chipkarte mit den gesetzten
Parametern im aktuellen Zustand tberhaupt erlaubt ist. Ist dies der Fall, wird der
eigentliche Programmcode des Anwendungskommandos ausgefiihrt, welcher die
Abarbeitung des Kommandos Ubernimmt. Falls das Kommando im aktuellen
Zustand verboten ist oder die Parameter dazu nicht erlaubt sind, erhélt das
Terminal Uber Returncode Manager und 1/O-Manager eine entsprechende
Meldung.

Die Dateiverwaltung selber benutzt einen weiteren Speichermanager, der die
komplette Verwaltung des physikalisch adressierten nichtfliichtigen Speichers
Ubernimmt. Damit ist sichergestellt, dass nur in diesem Programmmodul mit
echten physikalischen Adressen gearbeitet wird, was die Portabilitat und
Sicherheit des Betriebssystems erheblich steigert.

10

15

20

25

30

0 Owse oS00
* [B *
L d o oo Ses
L] . * .
. [] . .
e *® oS *e S0 oo

8

Die beigefiigte Abbildung zeigt ein Blockschaltbild, in welchem einerseits der
durch die Chip-Simulationssoftware (17) simulierte Chip (15) und die typischen
den Chip aufbauenden Komponenten (1) - (14) sowie weiters die
erfindungsgemaRe Angriffssoftware (18) eingezeichnet sind. Diese fihrt Zugriffe
(19) — (24) Uber die bereits bekannte Schnittstelle (16) auf folgende Komponenten
des simulierten Chips (15) zu:

e Speichereinheit (1) bestehend aus

o RAM (2): Zugriff (19)

o EEPROM (3): Zugriff (20)

o ROM (4): Zugriff (21)
CPU (5) enthaltend

o Register (6): Zugriff (22)
Beliebige Anzahl von Co-Prozessoren (7): Zugriff (23)
Special Function Register (8): Zugriff (24)

Auf die Komponenten

e Timer (9)

e Takterzeuger (10)

e |/O Baustein (11)

e Sensoren (12)

e RNG (13)
wird typischerweise durch Zugriff auf spezielle definierte Speicherbereiche (d.h.
auf (2), (3), (4) und Special Function Register (8) zugegriffen.

Mit den eingezeichneten Zugriffen (19) — (24) kénnen somit gezielt Daten gelesen
und verandert werden, um einen Fehlerfall zu provozieren.

Insbesondere kann ein Speicherwert innerhalb der Speichereinheit (1) oder ein
Register (6) innerhalb der CPU (5) oder ein Wert innerhalb eines Co-Prozessors
(7) oder ein Special Function Register (8) verandert werden.

.o ae e 20 Oeaw 4ce9
.0 L]

- se o@ [

[] [[X 2 2 T 1 e 63 o6
. [3] [34 e v -+ N
L] . L e

[] L} L 2
e (14 . 8 0S8s o0

9

Die Chip-Simulationssoftware (17) und die Angriffssoftware (18) werden in einer

Laufzeitumgebung (25) beispielsweise einem Computer (oder mehreren)
betrieben.

S TTTE——————

10

15

20

25

.o e s 8¢ Ouas 00se
[4 .
L] ® sos vee
- . >
[3 . .
e (14 (1 4 o6 eode aae

10

sesee
L XY X]
[X4 1]
[XX X J
[XY Y}
(X X 24

Zeichnungslegende

Speichereinheit

RAM

EEPROM

ROM

CPU

Register

,7a Co-Prozessoren (beliebige Anzahl)

0 N OO O AW N -

Special Function Register

9 Timer

10 Takterzeuger

11 1/0 Baustein

12 Sensoren

13 RNG

14 Interne Verbindungen (Datenbusse)
15 Simulierter Chip

16 Schnittstelle des Chip-Simulators
17 Chip-Simulator

18 Angriffssoftware

19 Zugriff auf RAM

20 Zugriff auf EEPROM

21 Zugriff auf ROM

22 Zugriff auf Register

23 Zugriff auf Co-Prozessoren

24 Zugriff auf Special Function Register

25 Laufzeitumgebung von Chip-Simulationssoftware und Angriffssoftware

10

15

20

25

.o (1) . e i BSOS
L L]

11
Patentanspriiche

1. Verfahren zum Prifen einer Chipkarte mit Angriffen auf das Betriebssystem
oder die Applikatonen bei der Herstellung der Chipkarte, dadurch
gekennzeichnet, dass ein hardwaremaRiger Angriff auf die Chipkarte dadurch
simuliert wird, dass mit einer Angriffssoftware (18) in den Programmablauf des
Betriebssystems oder der Applikationen durch einen Chip-Simulator (17) eines
simulierten Chips (15) Uber die Schnittstelle (16) eingegriffen wird und gezielt
bestimmte Daten entsprechend einem hardwaremafigen Angriff veréndert

werden.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass insbesondere ein
Speicherwert innerhalb der Speichereinheit (1) oder ein Register (6) innerhalb der
CPU (5) oder ein Wert innerhalb eines Co-Prozessors (7) oder ein Special

Function Register (8) verandert wird.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass durch
Variation der angegriffenen Speicherzelle unterschiedliche Orte des Angriffes auf
der Chipoberflache (X, Y Koordinaten) simuliert werden.

4. Verfahren nach einem der Anspriiche 1 bis 3, dadurch gekennzeichnet, dass
durch Auslesen des Programm-Counters bzw. zahlen der abgearbeiteten
Prozessor-Instruktionen unterschiedliche Zeitpunkte des Angriffes simuliert

werden.

5. Verfahren nach einem der Anspriiche 1 bis 4, dadurch gekennzeichnet, dass
durch Einbringen von transienten bzw. persistenten Fehlern unterschiedliche
Hardware-Angriffe simuliert werden.

10

15

20

25

e 9 Yepe OVOV
L] L3 L. L]
oew ¢ e 6w L X 14

[4 -
* []

6. Verfahren nach einem der Anspriiche 1 bis 5, dadurch gekennzeichnet, dass
durch Variation der Anzahl der veranderten Speicher-Bits bzw. Bytes und der
geschriebenen Werte unterschiedliche Angriffsparameter (insbesondere
Fokussierung, Energie, Wellenldnge der eingestrahlten elektromagnetischen
Wellen, Angriff durch direkte Kontaktierung mit Micro-Probes, Angriff durch

ionisierende Strahlung) simuliert werden.

7. Verfahren nach einem der Anspriiche 1 bis 6, dadurch gekennzeichnet, dass
durch diskrete oder statistische Auswertung der Simulationsergebnisse die
Wirksamkeit von unterschiedlichen im Betriebssystem oder den Applikationen

implementierten Gegenmallnahmen bewertet wird.

8. Verfahren nach einem der Anspriiche 1 bis 7, dadurch gekennzeichnet, dass
die Angriffssoftware (18) fur die Provokation von Angriffen auf das Betriebssystem
oder die Applikationen der Chipkarte verwendet wird.

9. Verfahren nach einem der Anspriiche 1 bis 8, dadurch gekennzeichnet, dass
anstelle der Chip-Simulator Software (17) eine Chip-Emulator Hardware benutzt
wird.

10. Angriffssoftware zur Ausfiihrung des Verfahrens nach einem der Anspriiche 1
bis 9, dadurch gekennzeichnet, dass die Angriffssoftware (18) innerhalb des
Chipkartenbetriebssystems oder der Applikationen eingebettet ist.

11. Chipkarte, dadurch gekennzeichnet, dass diese ein Betriebssystem oder
Applikationen enthélt, welche(s) wahrend oder nach der Entwicklung mit einem
Verfahren nach einem oder mehreren der Anspriiche 1 bis 10 geprift wurde(n).

25

17

9

10
1
12
13

l 15

Fm————————————————— =

22
23
4

-
o~

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

