Title: MODIFIED ETHYLENEDIAMINE-N,N'-DISUCCINIC ACID/ETHYLENEDIAMINE IYASE

Abstract: It is intended to provide a modified ethylenediamine-N,N’-disuccinic acid:ethylenediamine lyase. Namely, a protein comprising the amino acid sequence represented by SEQ ID NO:1, or a protein comprising an amino acid sequence derived from the amino acid sequence represented by SEQ ID NO:1 by deletion, substitution or addition of one or more amino acid residues and having an ethylenediamine-N,N’-disuccinic acid:ethylenediamine lyase activity.

Description: The present invention relates to a modified ethylenediamine-N,N’-disuccinic acid:ethylenediamine lyase (EC 3.5.1.24) that is capable of degrading ethylenediamine-N,N’-disuccinic acid. The modified enzyme has an enhanced activity for the degradation of ethylenediamine-N,N’-disuccinic acid compared to the wild-type enzyme. The modified enzyme can be used in various applications, such as therapeutic, cosmetic, and industrial processes. The modified enzyme is produced by expression in a host cell using a recombinant DNA method. The modified enzyme is stable under various conditions and can be easily purified.
明細書

改変型エチレンジアミン-N, N'-ジコハク酸：エチレンジアミンリアーゼ

5 技術分野

本発明は新規なエチレンジアミン-N, N'-ジコハク酸：エチレンジアミンリアーゼ活性を有するタンパク質、およびそれをコードする遺伝子 DNA に関する。さらに、酵素の変異体として誘導されうる改変型エチレンジアミン-N, N'-ジコハク酸：エチレンジアミンリアーゼ、および改変型エチレンジアミン-N, N'-ジコハク酸：エチレンジアミンリアーゼをコードする遺伝子 DNA を含む組換え DNA、および改変型エチレンジアミン-N, N'-ジコハク酸：エチレンジアミンリアーゼをコードする遺伝子 DNA を含む組換え DNA を含む形質転換体または形質導入体、およびそれら形質転換体または形質導入体を用いたジアミノアルキレン-N, N'-ジコハク酸の製造法に関する。

背景技術

ジアミノアルキレン-N, N'-ジコハク酸は、医薬品合成中間体として重要である一方、重金属を捕捉するという特異な性質を持つことから、自然界に放出された後に生分解を受けやすい可能性を持つ廃棄物の光学活性体は、キレート剤や洗剤用ビルダーなどの用途が見込まれている。

本出願申請は先に、微生物の触媒作用を利用してフマル酸あるいはマレイン酸と各種アミンから効率よく光学活性 S, S-ジアミノアルキレン-N, N'-ジコハク酸を合成する新規な製造方法を提案している（特開平 9-140390 号、同 9-289895 号および同 10-52292 号公報記載）。さらには、エチレンジアミン-N, N'-ジコハク酸：エチレンジアミンリアーゼ遺伝子を単離同定し、遺伝子組換えの手法を用いることで、菌体の触媒活性の向上および菌体生産性の改善に成功している（特開平 10-210984 号公報記載）。

ところで、一般的に微生物菌体内にはフマラーゼが存在することが広く知られている。フマラーゼは、フマル酸に水添加してリンゴ酸を生成する酵素である。
従って、エチレンジアミン-N,N'-ジコハク酸：エチレンジアミンリアーゼ活性を有する微生物を用いてジアミノアルキレン-N,N'-ジコハク酸を製造しようとする場合、リンゴ酸等の副生物の生成を避けるために、微生物菌体内のフマラーゼを失活させる必要がある。これを解決する手段として、本出願人らは前に、微生物菌体をアルカリ水溶液中で処理することにより、菌体内フマラーゼ活性を低減できることを見出している（特開平11-196882号公報記載）。

上記方法によるフマラーゼ失活処理においては、フマラーゼの失活速度は処理温度に依存するため、高温であればあるほど短時間での失活が可能となる。また、宿主微生物によってフマラーゼの安定性は異なるが、フマラーゼが失活しにくい微生物を用いた場合においても、より高温での失活処理が望まれる。したがって、本発明は、耐熱性を向上させたエチレンジアミン-N,N'-ジコハク酸：エチレンジアミンリアーゼを提供することを目的とする。

発明の開示

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、新規に見出されたブレプリミナ・ディミニュタ（Brevundimonas diminuta）MR-E001 株由来であるエチレンジアミン-N,N'-ジコハク酸：エチレンジアミンリアーゼのアミノ酸配列において、少なくとも一つ以上のアミノ酸残基を天然アミノ酸のグループから選択される残基で置換することにより、該酵素の耐熱性が向上することを見出し、本発明を完成するに至った。すなわち、本願は以下の発明を提供するものである。

（1）配列番号1記載のアミノ酸配列から成り、且つ、エチレンジアミン-N,N'-ジコハク酸：エチレンジアミンリアーゼ活性を有するタンパク質。

（2）配列番号1記載のアミノ酸配列において、1又は複数のアミノ酸残基が欠失、置換又は付加されたアミノ酸配列から成り、且つ、エチレンジアミン-N,N'-ジコハク酸：エチレンジアミンリアーゼ活性を有するタンパク質。

（3）配列番号1記載のアミノ酸配列において、120番目のアラニン残基、166番目のイソロイシン残基及び365番目のアラニン残基のうち少なくとも1つのアミノ酸残基が他のアミノ酸残基に置換されたアミノ酸配列から成り、且つ、エチレンジアミン-N,N'-ジコハク酸：エチレンジアミンリアーゼ活性を有するタンパク質。
（4）配列番号1記載のアミノ酸配列において、少なくとも120番目のリジン残基がグルタミン酸に置換されたアミノ酸配列から成り、且つ、エチレンジアミン-N,N'-ジコハク酸：エチレンジアミンリアーゼ活性を有するタンパク質。

（5）配列番号1記載のアミノ酸配列において、少なくとも166番目のイソロイシン残基がセリンに置換されたアミノ酸配列から成り、且つ、エチレンジアミン-N,N'-ジコハク酸：エチレンジアミンリアーゼ活性を有するタンパク質。

（6）配列番号1記載のアミノ酸配列において、少なくとも166番目のイソロイシン残基がスレオニンに置換されたアミノ酸配列から成り、且つ、エチレンジアミン-N,N'-ジコハク酸：エチレンジアミンリアーゼ活性を有するタンパク質。

（7）配列番号1記載のアミノ酸配列において、少なくとも365番目のアラニン残基がパリニに置換されたアミノ酸配列から成り、且つ、エチレンジアミン-N,N'-ジコハク酸：エチレンジアミンリアーゼ活性を有するタンパク質。

（8）配列番号1記載のアミノ酸配列において、少なくとも120番目のリジン残基がグルタミン酸に、166番目のイソロイシン残基がセリンにそれぞれ置換されたアミノ酸配列から成り、且つ、エチレンジアミン-N,N'-ジコハク酸：エチレンジアミンリアーゼ活性を有するタンパク質。

（9）配列番号1記載のアミノ酸配列において、少なくとも120番目のリジン残基がグルタミン酸に、166番目のイソロイシン残基がスレオニンにそれぞれ置換されたアミノ酸配列から成り、且つ、エチレンジアミン-N,N'-ジコハク酸：エチレンジアミンリアーゼ活性を有するタンパク質。

（10）配列番号1記載のアミノ酸配列において、少なくとも166番目のイソロイシン残基がセリンに、365番目のアラニン残基がパリニにそれぞれ置換されたアミノ酸配列から成り、且つ、エチレンジアミン-N,N'-ジコハク酸：エチレンジアミンリアーゼ活性を有するタンパク質。

（11）配列番号1記載のアミノ酸配列において、少なくとも166番目のイソロイシン残基がスレオニンに、365番目のアラニン残基がパリニにそれぞれ置換されたアミノ酸配列から成り、且つ、エチレンジアミン-N,N'-ジコハク酸：エチレンジアミンリアーゼ活性を有するタンパク質。

（12）配列番号1記載のアミノ酸配列において、少なくとも120番目のリジン
残基がグルタミン酸に、166番目のイソロイシン残基がセリンに、365番目のアラニン残基がパリンにそれぞれ置換されたアミノ酸配列から成り、且つ、エチレンジアミン-N,N'−ジコハク酸:エチレンジアミンリアーゼ活性を有するタンパク質。
(13) 配列番号1記載のアミノ酸配列において、少なくとも120番目のリジン
残基がグルタミン酸に、166番目のイソロイシン残基がスレオニンに、365番目のアラニン残基がパリンにそれぞれ置換されたアミノ酸配列から成り、且つ、エチレンジアミン-N,N'−ジコハク酸:エチレンジアミンリアーゼ活性を有するタンパク質。

(14) (1)に記載されたタンパク質をコードする遺伝子DNA。

(15) 以下の(a)又は(b)の遺伝子DNA。
(a) 配列番号2記載の塩基配列から成る遺伝子DNA。
(b) 配列番号2記載の塩基配列又はその一部の配列からなるDNAと相補的な配列からなるDNAとストリングジェントな条件下でハイブリダイズし、かつ、エチレンジアミン-N,N'−ジコハク酸:エチレンジアミンリアーゼ活性を有するタンパク質をコードする遺伝子DNA。

(16) (2)に記載されたタンパク質をコードする遺伝子DNA。

(17) 配列番号2記載の塩基配列において、1又は複数の塩基が欠失、置換又は付加された塩基配列から成る(16)記載の遺伝子DNA。

(18) (3)に記載されたタンパク質をコードする遺伝子DNA。

(19) 配列番号2記載の塩基配列において、358番目から360番目、496番目から498番目及び1093番目から1095番目の塩基のうち少なくとも1つの塩基が他の異なる塩基に置換された塩基配列から成る請求項18記載の遺伝子DNA。

(20) (4)に記載されたタンパク質をコードする遺伝子DNA。

(21) 配列番号2記載の塩基配列において、358番目から360番目の塩基AAAがGAA又はGAGに置換された塩基配列から成る(20)記載の遺伝子DNA。

(22) 配列番号2記載の塩基配列において、358番目の塩基アデニンがグアニンに置換された塩基配列から成る(20)記載の遺伝子DNA。

(23) (5)に記載されたタンパク質をコードする遺伝子DNA。

(24) 配列番号2記載の塩基配列において、496番目から498番目の塩基ATCがAGC、AGT又はTCN(NはA、G、C又はTを表す。)に置換された塩基配列から成
る（23）記載の遺伝子 DNA。
（25）配列番号 2 記載の塩基配列において、497 番目の塩基チミンがグアニンに置換された塩基配列から成る（23）記載の遺伝子 DNA。
（26）（6）に記載されたタンパク質をコードする遺伝子 DNA。
（27）配列番号 2 記載の塩基配列において、496 番目から 498 番目の塩基 ATC が ACN（N は A, G, C 又は T を表す。）に置換された塩基配列から成る（26）記載の遺伝子 DNA。
（28）配列番号 2 記載の塩基配列において、497 番目の塩基チミンがシトシンに置換された塩基配列から成る（26）記載の遺伝子 DNA。
（29）（7）に記載されたタンパク質をコードする遺伝子 DNA。
（30）配列番号 2 記載の塩基配列において、1093 番目から 1095 番目の塩基 GC が GTN（N は A, G, C 又は T を表す。）に置換された塩基配列から成る（29）記載の遺伝子 DNA。
（31）配列番号 2 記載の塩基配列において、1094 番目の塩基シトシンがチミンに置換された塩基配列から成る（29）記載の遺伝子 DNA。
（32）（8）に記載されたタンパク質をコードする遺伝子 DNA。
（33）配列番号 2 記載の塩基配列において、358 番目から 360 番目の塩基 AAA が GAA 又は GAG に、496 番目から 498 番目の塩基 ATC が AGC, AGT 又は TCN（N は A, G, C 又は T を表す。）にそれぞれ置換された塩基配列から成る（32）記載の遺伝子 DNA。
（34）配列番号 2 記載の塩基配列において、358 番目の塩基アデニンがグアニンに、497 番目の塩基チミンがグアニンにそれぞれ置換された塩基配列から成る（32）記載の遺伝子 DNA。
（35）（9）に記載されたタンパク質をコードする遺伝子 DNA。
（36）配列番号 2 記載の塩基配列において、358 番目から 360 番目の塩基 AAA が GAA 又は GAG に、496 番目から 498 番目の塩基 ATC が ACN（N は A, G, C 又は T を表す。）にそれぞれ置換された塩基配列から成る（35）記載の遺伝子 DNA。
（37）配列番号 2 記載の塩基配列において、358 番目の塩基アデニンがグアニンに、497 番目の塩基チミンがシトシンにそれぞれ置換された塩基配列から成る（35）記載の遺伝子 DNA。
配列番号2記載の塩基配列において、496番目から498番目の塩基ATCがAGC、AGT又はTCN（NはA、G、C又はTを表す。）に、1093番目から1095番目の塩基GCCがGTN（NはA、G、C又はTを表す。）にそれぞれ置換された塩基配列からなる（38）記載の遺伝子DNA。

配列番号2記載の塩基配列において、497番目の塩基チミンがグルニンに、1094番目の塩基シトシンがチミンにそれぞれ置換された塩基配列からなる（38）記載の遺伝子DNA。

配列番号2記載の塩基配列において、496番目から498番目の塩基ATCがACN（NはA、G、C又はTを表す。）に、1093番目から1095番目の塩基GCCがGTN（NはA、G、C又はTを表す。）にそれぞれ置換された塩基配列からなる（41）記載の遺伝子DNA。

配列番号2記載の塩基配列において、497番目の塩基チミンがシトシンに、1094番目の塩基シトシンがチミンにそれぞれ置換された塩基配列からなる（41）記載の遺伝子DNA。

配列番号2記載の塩基配列において、358番目から360番目の塩基AAAがGAA又はGAGに、496番目から498番目の塩基ATCがAGC、AGT又はTCN（NはA、G、C又はTを表す。）に、1093番目から1095番目の塩基GCCがGTN（NはA、G、C又はTを表す。）にそれぞれ置換された塩基配列からなる（44）記載の遺伝子DNA。

配列番号2記載の塩基配列において、358番目の塩基アデニンがグルニンに、497番目の塩基チミンがグルニンに、1094番目の塩基シトシンがチミンにそれぞれ置換された塩基配列からなる（44）記載の遺伝子DNA。

配列番号2記載の塩基配列において、358番目から360番目の塩基AAAがGAA又はGAGに、496番目から498番目の塩基ATCがACN（NはA、G、C又はTを表す。）に、1093番目から1095番目の塩基GCCがGTN（NはA、G、C又はTを表す。）にそれぞれ置換された塩基配列からなる（47）記載の遺伝子DNA。
（49）配列番号-2記載の塩基配列において、358番目の塩基アデニンがグアニン、497番目の塩基チミンがシトシンに、1094番目の塩基シトシンがチミンにそれぞれ置換された塩基配列から成る（47）記載の遺伝子DNA。

（50）（14）～（49）記載の遺伝子DNAをベクターDNAに挿入した組換えDNA。

（51）（50）記載の組換えDNAを含む形質転換体又は形質導入体。

（52）（51）記載の形質転換体又は形質導入体を培養し、得られる培養物からエチレンジアミン-N,N'－ジホアキ酸：エチレンジアミンリアーゼを採取することを特徴とするエチレンジアミン-N,N'－ジホアキ酸：エチレンジアミンリアーゼの製造方法。

（53）フマル酸とジアミンを、（51）記載の形質転換体又は形質導入体の存在下で反応させ、得られる反応産物からジアミノアルキレン-N,N'－ジホアキ酸を採取することを特徴とするジアミノアルキレン-N,N'－ジホアキ酸の製造方法。

図面の簡単な説明

図1は、プラスミドpEDS9001の制限酵素地図。
図2は、プラスミドpEDS9003の制限酵素地図。
図3は、プラスミドpEDS9020の制限酵素地図。
図4は、発現ベクターpFY529Vの構築図。
図5は、単変異体の耐熱性評価を示す図。
図6は、単変異体および多重変異体の構造を示す模式図。□はT497C（Ile166Thr）の変異を、△はA358G（Lys120Glu）の変異を、○はT497G（Ile166Ser）の変異を、△はC1094T（Ala365Val）の変異をそれぞれ示す。
図7は、多重変異体の耐熱性評価を示す図。

発明を実施するための形態

以下、本発明について詳細に説明する。本発明におけるエチレンジアミン-N,N'－ジホアキ酸：エチレンジアミンリアーゼ（「EDDSase」ともいう）とは、フマル酸とエチレンジアミンからエチレンジアミン-N,N'－ジホアキ酸を可逆的に生成する能力を持つ酵素を示すが、反応の条件によってはエチレンジアミン-N－モノホアキ酸を生成することもある。さらに本酵素は、エチレンジアミン以外のジアミン
類にも反応性を示し、対応するジアミノアルキレン-N,N’-ジホル酸を生成する。また、生成するジアミノアルキレン-N,N’-ジホル酸は、多くの場合光学活性体であるが、ラセミ体を生成する酵素もある。このような反応性を示す一連の酵素は、本出願人らにより自然界から分離同定された複数の属に属する細菌類に見出されており、これら細菌類は上記特開平9-140390号、同9-289895号および同10-52292号公報に記載されている。さらに、本出願人らは、特開平10-52292号公報記載のプレンディモナス(Brevundimonas) sp. TN-1株よりエチレンジアミン-N,N’-ジホル酸：エチレンジアミンリアーゼ遺伝子を単離し、そのアミノ酸配列および遺伝子配列を初めて明らかにするとともに、該遺伝子産物の大量発現の可能性を有する形質転換体の作出に成功している（特開平10-210984号公報記載）。

一方、近年の組換えDNA技術の進歩により、酵素の作用を実質的に変えることなく、その酵素の構成アミノ酸の1個以上を欠失、付加、削除、挿入、もしくは他のアミノ酸で置換した変異体を作製することが可能となっている。これら変異体は、置換、欠失、付加、削除、もしくは挿入されるアミノ酸残基の個所および置換されるアミノ酸の種類によっては、変異の導入されていない野生型酵素と比較して、有機溶媒耐性、耐熱性、耐酸性、耐アルカリ性、基質特異性、基質親和性などの性能が著しく向上することが知られている。これら性能の向上は、触媒としての酵素の安定化、反応工程の簡略化、反応収率の向上等を通じて、酵素反応を利用した工業的生産における生産コストの大幅な低減をもたらすことがある。従って、多くの酵素において様々な性能が向上した有用な改良酵素の創製が行われている。

本明細書中、「野生型」とは、自然界より分離されてきた微生物に保持されていた酵素を構成するアミノ酸配列、および該酵素をコードする遺伝子の塩基配列が、意図的または非意図的に欠失、削除、挿入、もしくは他のアミノ酸あるいは塩基で置換されていないことを意味する。

本出願人らは、更なる有用なエチレンジアミン-N,N’-ジホル酸：エチレンジアミンリアーゼを求めて、該酵素活性を保有する微生物のスクリーニングを行った。その結果、高い該酵素活性を持ちプレンディモナス・ディミニュータ MR-E001株（以下MR-E001株ということがある）を単離するとともに、MR-E001株よりエ
チレンジアミン-N, N'-ジホハク酸：エチレンジアミンリアーゼ遺伝子を取得した。さらに、該酵素のアミノ酸配列において少なくとも一つ以上のアミノ酸残基を天然アミノ酸のグループから選択される残基で置換することにより該酵素の耐熱性が向上することを見出し、本発明を完成するに至った。

本発明の改変型エチレンジアミン-N, N'-ジホハク酸：エチレンジアミンリアーゼは、例えば、次のようにして得ることができる。先ず、MR-E001 株より、野生型エチレンジアミン-N, N'-ジホハク酸：エチレンジアミンリアーゼ遺伝子の取得を行う。遺伝子の取得には、如何なる公知の手段を用いてもよい。例えば、MR-E001 株より調製した染色体 DNA を錶型として PCR (Polymerase Chain Reaction) を行い、該遺伝子の一部を含む DNA 断片を得る。PCR に用いるプライマーは、一般的には、該酵素を単離精製した後、アミノ酸分析を行い、得られたアミノ酸配列情報に基づいて設計したデジェネレートプライマーを用いることができる。また、「目的とする該遺伝子の配列が既に知られている他生物種由来の該遺伝子の配列と相違性を有することが期待される」場合、あるいは「既に知られている他生物種由来の該遺伝子の配列と相違性を有する該遺伝子の取得を目的とする」場合は、その既知の他生物種由来の該遺伝子によりコードされるアミノ酸配列情報よりデジェネレートプライマーを設計し、利用することも可能である。かくして設計されたプライマーを用い、MR-E001 株染色体 DNA を錶型として PCR を行い、得られた増幅 DNA 産物を後に行うコロニーハイブリダイゼーションのプロープとして用いる。

続いて DNA ライブラリーの作製を行う。公知の方法、例えば Saito and Miura らの方法 (Biochem. Biophys. Acta, 72, 619(1963)) に従って調製した MR-E001 株染色体を適切な制限酵素により切断、または部分切断し、同制限酵素切断末端と連結可能な切断末端を生じさせることがができる制限酵素で処理したベクター DNA に連結し、適切な微生物宿主の形質転換体または形質導入体を作製することにより、該染色体の DNA ライブラリーを得る。形質転換体または形質導入体の宿主とする微生物は特に限定されるものではなく、例えば大腸菌を用いる場合、大腸菌 K12 株、JM109 株、XL1-Blue 株などを挙げることができる。形質転換体作製に用いるプラスミド DNA としては、例えば大腸菌を宿主とする場合、大腸菌中での自律複製可能な領域を有している pBR322、pUC18、pBluescript II SK(+)などが
挙げられる。また、上記プラスミドベクター-DNA に限定されることなく、それ以外のファージベクター-DNA を用いて形質導入体を作製してもよい。

ここで、遺伝子操作に関する工程における説明中、作製する組換え DNA を含む微生物は、プラスミドベクター-DNA を用いた場合は形質導入体といい、ファージベクター-DNA を用いた場合は形質導入体という。上記形質導入体及び形質導入体は、いずれも本発明に含まれる。以下、プラスミドベクター-DNA を用いた形質導入体の場合は例として述べる。

かくして得られた該染色体の DNA ライブラリーに対し、上述の PCR による増幅 DNA 産物をプロープとしてコロニーハイブリダイゼーションを行う。コロニーハイブリダイゼーションは通常行う方法でよく、例えば次のようにして行うことができる。すなわち、寒天培地上に生育した該染色体 DNA ライブラリー形質導入体をライオンメンブレン上に写し取った後、溶菌させて DNA を固定化する。上述の PCR による増幅 DNA 産物を、例えば DNA Labeling kit (ロシュ・ダイアグラス社製) を用いて標識してプロープとした後、メンブレンに対してハイブリダイゼーションを行い、DNA Luminescent Detection kit (ロシュ・ダイアグラス社製) などを用いて、陽性クローンの選択を行うことができる。得られた陽性クローンより定法に従ってプラスミド DNA を調製し、必要に応じてサブクローニングを行った後、挿入断片の塩基配列を決定する。塩基配列の決定方法は如何なる方法でもよく、通常、市販のキット等を用いたジデオキシ法（Methods in Enzymology, 101, 20-78, 1983）により決定することができる。このようにして、MR-E001 株由来野生型エチレンジアミン-N,N'-ジコハク酸：エチレンジアミンリーザー遺伝子を取得し、また、そのアミノ酸配列および塩基配列を決定することができる。

次いで、得られた野生型エチレンジアミン-N,N'-ジコハク酸：エチレンジアミンリーザーのアミノ酸配列において、少なくとも一つが他の天然アミノ酸残基で置換された変異型エチレンジアミン-N,N'-ジコハク酸：エチレンジアミンリーザーを得るには、如何なる方法でもよく、通常公知の方法で行ない得る。すなわち、野生型エチレンジアミン-N,N'-ジコハク酸：エチレンジアミンリーザー遺伝子 DNA に対して、例えば、ハイドロキシルアミンや亜硝酸等の変異源となる薬剤を接触・作用させる方法、紫外線照射により変異を誘発する方法、PCR を用いてラン
ダムに変異を導入する方法、市販のキットを利用して部位特異的な置換を生じさせる方法、遺伝子 DNA を選択的に開裂し、次いで選択されたオリゴヌクレオチドを除去・付加し連結する方法等が挙げられる。

上記処理のいずれかによって種々の変異を持つエチレンジアミン-N, N’-ジコハク酸: エチレンジアミンリーゼ遺伝子 DNA を得たのち、形質転換体を作製する。形質転換に用いることができるプラスミドベクターとしては、例えば、大腸菌を宿主とする場合、上記 DNA ライブラリー作製工程で挙げたプラスミドベクターを用いることもできるが、後にスクリーニング工程において、熱処理後のエチレンジアミン-N, N’-ジコハク酸: エチレンジアミンリーゼ残存活性を効率よく検出すため、発現効率の高い発現ベクター、例えば trc プロモーターを有する発現ベクター pKK233-2（アマシャン社製）、あるいは後の実施例で示す pKK233-2 の誘導体 pFY529V などを使うことが好ましい。

但し、本発明において使用するベクター及び宿主は、上記プラスミド及び大腸菌に限定されるものではない。例えば、ベクターとしてはプラスミド DNA、バクテリオファージ DNA、レトロトランスポゾン DNA、人工染色体 DNA などが挙げられる。

本発明のエチレンジアミン-N, N’-ジコハク酸: エチレンジアミンリーゼ遺伝子 DNA は、該遺伝子 DNA が導入される宿主生物において発現されるように、遺伝子をベクターに組み込むことが必要である。そこで、本発明のベクターには、本発明の遺伝子 DNA のほか、プロモーター、ターミネーター、エンハンサー、スプライシングシグナル、ポリ A 付加シグナル、選択マーカー、リポソーム結合配列（SD 配列）等を連結することができる。なお、選択マーカーとしては、例えばヒドロキシル酸還元酵素遺伝子、アンピシリン耐性遺伝子、ネオマイシン耐性遺伝子等が挙げられる。

本発明の形質転換体は、本発明の組換えベクターを、エチレンジアミン-N, N’-ジコハク酸: エチレンジアミンリーゼ遺伝子が発現し得るように宿主中に導入することにより得ることができる。ここで、宿主としては、例えば、大腸菌、枯草菌等の細菌が挙げられる。また、酵母、動物細胞、昆虫細胞、植物細胞等を用いることもできる。

大腸菌としては、例えばエッジェリヒア・コリ (Escherichia coli) 等が挙げられる。
れ、枯草菌としては、例えばバチルス・ズブチリス(Bacillus subtilis)等が挙げられる。細菌への組換えベクターの導入方法としては、細菌にDNAを導入する方法であれば特に限定されるものではない。例えばカルシウムイオンを用いる方法、エレクトロポレーション法等が挙げられる。
酵母を宿主とする場合には、例えばサッカロミセス・セレビシエ(Saccharomyces cerevisiae)、シソサッカロミセス・ポンベ(Shizosaccharomyces pombe)、ピヒア・パストリス(Pichia pastoris)等が用いられる。酵母への組換えベクターの導入方法としては、酵母にDNAを導入する方法であれば特に限定されず、例えばエレクトロポレーション法、スフェロプラスト法、酢酸レチウム法等が挙げられる。
動物細胞を宿主とする場合は、サル細胞COS-7、Vero、CHO細胞、マウスL細胞、ラットGH3、ヒトFL細胞等が用いられる。動物細胞への組換えベクターの導入方法としては、例えばエレクトロポレーション法、リン酸カルシウム法、リポフェクション法等が挙げられる。
昆虫細胞を宿主とする場合は、Sf9細胞、Sf21細胞等が用いられる。昆虫細胞への組換えベクターの導入方法としては、例えばリン酸カルシウム法、リポフェクション法、エレクトロポレーション法等が用いられる。
植物細胞を宿主とする場合は、トウモロコシ、イネ、タバコ等が挙げられるが、これらに限定されるものではない。植物細胞への組換えベクターの導入方法としては、例えばアグロバクテリウム法、パーティクルガン法、PEG法、エレクトロポレーション法等が用いられる。
上記の通り、種々のエチレンジアミン-N,N'-ジホ酸：エチレンジアミノリアーゼ遺伝子を含む組換えDNAを保有する形質転換体を得ることができる。
宿主を大腸菌とした場合は、得られた形質転換体を寒天培地上で培養してコロニーを形成させた後、液体培養し、エチレンジアミン-N,N'-ジホ酸：エチレンジアミノリアーゼを生産させる。得られた培養物を、例えば、40〜65°Cの温度下、30分間の熱処理に供した後、残存エチレンジアミン-N,N'-ジホ酸：エチレンジアミノリアーゼ活性を測定し、残存エチレンジアミン-N,N'-ジホ酸：エチレンジアミノリアーゼ活性の高い形質転換体を選択する。かくして得られた優良形質転換体の組換えDNAに挿入されているエチレンジアミン-N,N'-ジホ酸：エチレンジアミノリアーゼ遺伝子の塩基配列の決定は、例えば、ジデオキシ

法により行なうことができる。

配列番号2に本発明のエチレンジアミン-N, N'-ジカク酸：エチレンジアミンリアーゼ遺伝子 DNAの塩基配列を、配列番号1に本発明の遺伝子によりコードされるアミノ酸配列を例示する。

5 また、酵素に耐熱性を付与する複数の異なる単変異置換を組み合わせ、多重変異体とすることにより、単変異体よりもさらに耐熱性の向上した変異酵素を創製できる可能性があることが知られている。多重変異体を作製する手段は如何なる方法でもよく、例えば、合成一本鎖オリゴヌクレオチドを用いて部位特異的な置換を生じさせる方法、複数の異なる単変異個所を含む DNA断片を制限酵素で切断して連絡させる方法などが挙げられる。

してがって、エチレンジアミン-N, N'-ジカク酸：エチレンジアミンリアーゼがその酵素活性を有する限り、配列番号1に示すアミノ酸配列において複数個、好ましくは1又は数個のアミノ酸に欠失、置換、付加等の変異が生じてもよい。例えば、配列番号1に示されるアミノ酸配列の1～10個、好ましくは1～5個のアミノ酸が欠失してもよく、配列番号1に示されるアミノ酸配列に1～10個、好ましくは1～5個のアミノ酸が付加してもよく、あるいは、配列番号1に示されるアミノ酸配列の1～10個、好ましくは1～5個のアミノ酸が他のアミノ酸に置換してもよい。

本発明においては、特に、配列番号1に示すアミノ酸配列において120番目のLys、166番目のIle、365番目のAlaのうち少なくとも1つのアミノ酸が他のアミノ酸に置換したものが好ましい。記載3箇所のアミノ酸置換は、任意に組み合わせることができる。好ましい置換の態様を以下に示す。なお、以下の置換の態様において、数字は配列番号1に示すアミノ酸配列の位置の番号、番号の左のアルファベットは置換前のアミノ酸（1文字表記）、数字の右のアルファベットは置換後のアミノ酸（1文字表記）である。

K120E
I166S
I166T
A365V

(K120E, I166S)
(K120E, I166T)
(I166S, A365V)
(I166T, A365V)
(K120E, I166S, A365V)

また、K120E の置換を生じさせるときの塩基置換は以下の通りである。

120 番目の Lys に対応する配列番号 2 に示す塩基配列の位置は 358 番目から 36
0 番目であり、その塩基配列は「AAA」である。一方、グルタミン酸のコードは G
AA 又は GAG であるため、本発明においては、AA が GAA 又は GAG となるように塩
基を置換させることができる。特に、358 番目の A を G に置換すること（AAA→GA
A）が好ましい。

上記と同様にして、I166S の置換を生じさせるときは、配列番号 2 に示す塩基
配列において 496 番目から 498 番目の塩基 ATC を、AGC、AGT、ACA、ACC、ACG 又
は ACT に置換させることができる。特に、497 番目の T を G に置換すること（A
TC→AGC）が好ましい。I166T の置換を生じさせるときは、配列番号 2 に示す塩基
配列において 496 番目から 498 番目の塩基 ATC を、ACA、ACC、ACG 又は ACT に置
換させることができる。特に、497 番目の T を C に置換させること（ATC→ACC）
が好ましい。

A365V の置換を生じさせるときは、配列番号 2 に示す塩基配列において 1093 番
目から 1095 番目の塩基 GCC を、GTA、GTG、GTC 又は GTT に置換することができる、
特に、1094 番目の C を T に置換すること（GCC→GTC）が好ましい。

但し、本発明においては、置換後のアミノ酸は上記例に限定されるものではない。
したがって、配列番号 1 に示すアミノ酸配列の 120 番目、166 番目、365 番目
のアミノ酸のうち少なくとも 1 つのアミノ酸残基となるように、当該アミノ酸を
コードするコードの少なくとも 1 つの塩基を他の塩基に置換することができる。

ここで、「エチレンジアミン-N,N’-ジホル酸:エチレンジアミンリアーゼ活性」とは、フマル酸及びジアミンとを反応させてジアミノアルキレン-N,N’-ジホル酸
酸を生成するための触媒活性を意味する。

また、配列番号 2 記載の塩基配列又はその一部の配列からなる DNA と相補的な
配列からなる DNA とストリングアントな条件下でハイブリダイズし、かつ、エチ
レンジアミン-N, N’-ジコハク酸：エチレンジアミンリアーゼ活性を有するタンパク質をコードする遺伝子 DNA も本発明の遺伝子 DNA に含まれる。ストリックジャントな条件とは、いわゆる特異的なハイブリッドが形成される条件をいう。例えば、相同性が高い核酸同士、すなわち 80％以上、好ましくは 90％以上の相同性を有する DNA であって、エチレンジアミン-N, N’-ジコハク酸：エチレンジアミンリアーゼ活性を有するタンパク質をコードする DNA 同士がハイブリダイズし、それより相同性が低い DNA 同士がハイブリダイズしない条件が挙げられる。より具体的には、ナトリウム濃度が 300～2000mM、好ましくは 600～900mM であり、温度が 40～75℃、好ましくは 55～65℃での条件をいう。

一旦本発明の遺伝子の塩基配列が確定されると、その後は化学合成によって、又はクローニングされた DNA を餌型とした PCR によって、あるいは該塩基配列を有する DNA 断片をプローブとしてハイブリダイズさせることによって、本発明の遺伝子 DNA を得ることができる。

本発明において、耐熱性とは、野生型エチレンジアミン-N, N’-ジコハク酸：エチレンジアミンリアーゼが失活する温度範囲においても酵素活性を保持することができる性質を意味し、45～60℃、好ましくは 50～60℃である。50～60℃の範囲内において、変異型エチレンジアミン-N, N’-ジコハク酸：エチレンジアミンリアーゼは 50℃のときの酵素活性と比較して 60％の酵素活性を維持することができる。

かくして得られた単変異あるいは多重変異が導入された変異型エチレンジアミン-N, N’-ジコハク酸：エチレンジアミンリアーゼ遺伝子を含む組換えプラスマド DNA を保有する形質転換体を用いて、エチレンジアミン-N, N’-ジコハク酸：エチレンジアミンリアーゼを製造することができる。また、上記形質転換体を用いて（例えば、大腸菌の形質転換体を用いて）、ジアミノアルキレン-N, N’-ジコハク酸を製造することもできる。

エチレンジアミン-N, N’-ジコハク酸：エチレンジアミンリアーゼを製造するには、上記形質転換体を培養し、その培養物から採取することにより得ることができる。「培養物」とは、培養上清、培養細胞若しくは培養菌体、又は細胞若しくは菌体の破砕物のいずれをも意味するものである。本発明の形質転換体を培養する方法は、宿主の培養に用いられる通常の方法に従って行われる。
大腸菌や酵母菌等の微生物を宿主として得られた形質転換体を培養する培地は、微生物が蓄化し得る炭素源、窒素源、無機塩類等を含有し、形質転換体の培養を効率的に行うことができる培地であれば、天然培地、合成培地のいずれを用いてもよい。窒素源としては、グルコース、フラクトース、スクロース、デンプン等の炭水化物、酢酸、プロピオン酸等の有機酸、エタノール、プロパンール等のアルコール類が挙げられる。窒素源としては、アンモニア、塩化アンモニウム、硫酸アンモニウム、酢酸アンモニウム、リン酸アンモニウム等の無機酸若しくは有機酸のアンモニウム塩又はその他の含窒素化合物のほか、ベプトン、肉エキス、コーンスティープリナー等が挙げられる。無機物としては、リン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、硫酸マンガン、硫酸銅、炭酸カルシウム等が挙げられる。培養は、通常、振盪培養又は通気攪拌培養などの好気的条件下で行う。pHの調整は、無機又は有機酸、アルカリ溶液等を用いて行う。培養中は必要に応じてアンビシンリンやテトラサイクリン等の抗生物質を培地に添加してもよい。

プロモーターとして誘導性のプロモーターを用いた発現ベクターで形質転換した微生物を培養する場合は、必要に応じてインデューサーを培地に添加してもよい。例えば、イソプロピル-β-D-チオガラクトシド(IPTG)で誘導可能なプロモーターを有する発現ベクターで形質転換した微生物を培養するときには IPTG 等を培地に添加することができる。また、インドール酢酸(IAA)で誘導可能な trp プロモーターを用いた発現ベクターで形質転換した微生物を培養するときには IAA 等を培地に添加することができる。

動物細胞を宿主として得られた形質転換体を培養する培地としては、一般に使用されている RPMI1640 培地、DMEM 培地又はこれらの培地に牛胎児血清等を添加した培地等が挙げられる。培養は、通常、5%CO₂存在下、37°Cで1〜30日行う。

培養中は必要に応じてカナマイシン、ペニシリン等の抗生物質を培地に添加してもよい。

培養後、本発明のタンパク質が菌体内又は細胞内に生産される場合には、超音波処理、凍結融解の繰り返し、ホモジナイザー処理などを施して菌体又は細胞を破砕することにより目的のタンパク質採取する。また、本発明のタンパク質が菌体外又は細胞外に生産される場合には、培養液をそのまま使用するか、遠心分離
等により菌体又は細胞を除去する。その後、タンパク質の単離精製に用いられる一般的な生化学的方法、例えば硫酸アンモニウム沈殿、ゲルクロマトグラフィー、イオン交換クロマトグラフィー、アフィニティークロマトグラフィー等を単独で又は適宜組み合わせて用いることにより、前記培養物中から本発明のタンパク質を単離精製することができる。

形態性質異体が植物細胞又または植物組織である場合は、培養は、通常の植物培養用培地、例えば MS 基本培地、LS 基本培地等を用いることにより行うことができる。培養方法は、通常の固体培養法、液体培養法のいずれをも採用することができる。

培養物から本発明のタンパク質を精製するには、まず、セルラーーゼ、ペクチナーゼ等の酵素を用いた細胞溶解処理、超音波破砕処理、磨砕処理等により細胞を破壊する。次いで、濾過又は遠心分離等で用いて不溶物を除去し、粗タンパク質溶液を得る。上記粗溶液から本発明のタンパク質を精製するには、塩析、各種クロマトグラフィー（例えばゲル濾過クロマトグラフィー、イオン交換クロマトグラフィー、アフィニティークロマトグラフィー等）、SDS ポリアクリルアミドゲル電気泳動等を単独で又は適宜組み合わせて実施する。

ジアミノアルキレン-N,N’-ジホク酸を製造するには、下記のようにして行なうことができる。大腸菌形質転換体を培養するには、通常の固体培養法で培養してもよいが、可能な限り液体培養法を採用して培養するのが好ましい。培養に用いる培地としては、例えば、酵母エキス、トリプトン、ポリペプトン、コーンスティーブリカー、大豆若しくは小麦ふすまの浸出液等の 1 種以上の窒素源に、塩化ナトリウム、リン酸第一カリウム、リン酸第二カリウム、硫酸マグネシウム、塩化マグネシウム、塩化第二鉄、硫酸第二鉄若しくは硫酸マンガン等の無機塩類の 1 種以上を添加し、更に必要により糖質原料、ビタミン等を適宜添加したもののが用いられる。なお、培地の初発 pH は 7 ～ 9 に調整するのが適当である。また、培養は、25～42℃で 6 ～ 24 時間、通気攪拌深部培養、振盪培養、静置培養等により実施するのが好ましい。

培養終了後、得られた微生物細胞を集菌し、適当な緩衝液、例えば、50mM ホウ酸緩衝液 (pH9.0) で菌体を洗浄した後、同緩衝液に懸濁することにより菌体懸濁液を調製する。この菌体懸濁液を、例えば、40～65℃の温度下、30 分～72 時間熱処理することにより、フマラーゼ活性が消失し、かつエチレンジアミン-N,N’-ジ
コハク酸：エチレンジアミンリアーゼ活性を有する菌体を調製することができる。かくして得られた菌体を、フマル酸あるいはマレイン酸と各種アミンを含む水溶液中に懸濁して反応させることにより、リンゴ酸等の副生物を含まない、光学活性S，S-ジアミノアルキレン-N，N’-ジコハク酸水溶液を製造することができる。

なお、ブレップディモナス・ディミニュータ（Brevundimonas diminuta）MR-E001株の菌学的性質は下記表のとおりである。
表1

MR-E001 株の菌学的性質

<table>
<thead>
<tr>
<th>性質</th>
<th>樹菌</th>
</tr>
</thead>
<tbody>
<tr>
<td>形態</td>
<td>樹菌</td>
</tr>
<tr>
<td>グラム染色性</td>
<td>-</td>
</tr>
<tr>
<td>胞子</td>
<td>-</td>
</tr>
<tr>
<td>運動性</td>
<td>+</td>
</tr>
<tr>
<td>鞭毛</td>
<td>極毛</td>
</tr>
<tr>
<td>酸素に対する態度</td>
<td>好気性</td>
</tr>
<tr>
<td>オキシダーゼ</td>
<td>+</td>
</tr>
<tr>
<td>カタラーゼ</td>
<td>+</td>
</tr>
<tr>
<td>OFテスト</td>
<td>-</td>
</tr>
<tr>
<td>集落の色調</td>
<td>特徴的色素を生成せず</td>
</tr>
<tr>
<td>蛍光色素の生成</td>
<td>-</td>
</tr>
<tr>
<td>PHB の蓄積</td>
<td>+</td>
</tr>
<tr>
<td>栄養要求性</td>
<td>有り</td>
</tr>
<tr>
<td>キノン系</td>
<td>Q-10</td>
</tr>
<tr>
<td>硝酸塩還元</td>
<td>+</td>
</tr>
<tr>
<td>インドール生成</td>
<td>-</td>
</tr>
<tr>
<td>アルギニンジヒドロラーゼ</td>
<td>-</td>
</tr>
<tr>
<td>尿素分解</td>
<td>-</td>
</tr>
<tr>
<td>エスクリン分解</td>
<td>-</td>
</tr>
<tr>
<td>ゼラチン液化</td>
<td>-</td>
</tr>
<tr>
<td>PNPG</td>
<td>-</td>
</tr>
<tr>
<td>質化性</td>
<td>-</td>
</tr>
<tr>
<td>グルコース</td>
<td>-</td>
</tr>
<tr>
<td>L-アラビノース</td>
<td>-</td>
</tr>
<tr>
<td>D-マンノース</td>
<td>-</td>
</tr>
<tr>
<td>D-マンニトール</td>
<td>-</td>
</tr>
<tr>
<td>N-アセチル-D-グルコサミン</td>
<td>-</td>
</tr>
<tr>
<td>マルトース</td>
<td>-</td>
</tr>
<tr>
<td>グルコン酸カリウム</td>
<td>+</td>
</tr>
<tr>
<td>n-カプリン酸</td>
<td>-</td>
</tr>
<tr>
<td>アジピン酸</td>
<td>+</td>
</tr>
<tr>
<td>dL-リンゴ酸</td>
<td>+</td>
</tr>
<tr>
<td>クエン酸</td>
<td>+</td>
</tr>
<tr>
<td>酢酸フェニル</td>
<td>-</td>
</tr>
</tbody>
</table>
なお、ブレプンディモナス・ディミニュータ（Brevundimonas diminuta）MR-E001株は、独立行政法人産業技術総合研究所 特許生物寄託センター（茨城県つくば市東1丁目1番地1 中央第6）にFERM BP-08677として2003年2月5日付けで寄託されている。

5以下、本発明を実施例によりさらに具体的に説明する。しかしながら、実施例は本発明の具体的な認識を得る一助とみなすべきものであり、本発明の範囲を何等限定するものではない。

【実施例1】MR-E001株由来野生型エチレンジアミン-N,N'-ジコハク酸：エチレンジアミンリアーゼ遺伝子の取得

10（1）MR-E001株染色体DNAの調製

MR-E001株を100mlのEDDS培地（0.2%エチレンジアミン-N,N'-ジコハク酸、0.2%グルコース、0.1%パクトイーステキス、0.05%ポリペプトン、0.1%硫酸マグネシウム・7水塩、25%（v/v）磷酸緩衝液（1M、pH7.0）、0.5%（v/v）金属塩混合物溶液（硫酸ナトリウム56g、塩化マグネシウム・6水塩8g、塩化カルシウム8g、硫酸マンガン・4水塩0.6g、塩化第二鉄・6水塩0.12g、硫酸亜鉛0.06g/100ml）中、30℃にて4日間振盪培養した後に集菌し、この菌体をSaline-EDTA溶液（0.1M EDTA、15M NaCl、pH8.0）4mlに懸濁し、リソチーム8mgを加えて37℃で1時間振盪した後凍結した。次に、10mlのTris-SDS液（1%SDS、0.1M NaCl、0.1M Tris、pH9.0）を順次に振盪しながら加え、さらにプロテイナーゼK（メルク社製）（終濃度1mg）を加え37℃で1時間振盪した。次に、等量のTE飽和フェノール（TE:10mM Tris、1mM EDTA、pH8.0）を加えて撹拌後遠心し、上層を探り2倍量のエタノールを加えた後ガラス棒でDNAを巻き取り、90%、80%、70%のエタノールで順次フェノールを取り除いた。次に、DNAを3mlのTE緩衝液に溶解させ、リポスクリアーゼA溶液（100℃、15分間の熱処理済み）を10mg/mlの終濃度となるように加え37℃で30分間振盪した。さらにプロテイナーゼKを加え37℃で30分間振盪した後、等量のTE飽和フェノールを加え遠心し、上層と下層に分離させ上層を採取した（以後この操作をフェノール抽出と呼ぶ）。フェノール抽出を2回繰り返した後、同量のクロロホルム（4%イソアミルアルコール含有）を加え同様の抽出操作を繰り返した（以後この操作をクロロホルム抽出と呼ぶ）。その後上層に2倍量のエタノールを加えガラス棒でDNAを巻き取り回収し、

-20-
染色体 DNA 標品を得た。
(2) プローブの調製
本出願人らは先に、ブレプディモナス (Brevundimonas) sp. TN-3 株よりエチレンジアミン-N, N'-ジホ酸: エチレンジアミンリアーゼ遺伝子の単離に成功し、そのアミノ酸配列および遺伝子配列を初めて明らかにしている（特開平 10-210984 号公報記載）。該公報において用いられたデジェネレートプライマー、すなわち、配列番号 3 および配列番号 4 に示されるような配列を有する合成 DNA（それぞれ、プライマー#1 および #2 とする）を用い、工程(1)で得られた MR-E001 株の染色体 DNA を銅型として PCR を行った。
プライマー#1: ATGACICCIC AYAAYCCIGA YGC（配列番号 3）
プライマー#2: CCDATYTGCAT YYTICCIGC RACIGAICCD ATYTC（配列番号 4）
すなわち、MR-E001 株染色体 DNA 1 μl、10 倍濃度の反応緩衝液 10 μl、10mM dNTP 4 μl、プライマー#1 および#2 各々1 μl（100pmol 濃度相当）、ExTaq（宝酒造社製）1 μl を加えて 100 μl とした。この溶液について、95℃、30 秒間（デナチュレーション過程）、55℃、30 秒間（アニリング過程）、72℃、2 分間（エクステンション過程）のインキュベーションを 30 サイクル行った。反応終了後、フェノール抽出およびクロロホルム抽出を行い、エタノール沈殿により増幅された DNA を回収した。これを 1.0%アガロースゲル電気泳動で分離後、MR-E001 株のエチレンジアミン-N, N'-ジホ酸: エチレンジアミンリアーゼ遺伝子の一部をコードすると考えられる約 300bp の DNA 断片を得た。こうして得られた DNA 断片を DIG DNA Labeling kit（ロシュ・ダイアグノスティックス社製）を用いて標識し、プローブとした。
(3) DNA ライブラリーの作製
MR-E001 株染色体 DNA 10 μl に 10 倍濃度制限酵素反応用緩衝液 5 μl、滅菌水 33 μl、制限酵素 KpnI 2 μl を加え、37℃にて 16 時間反応させた後エタノール沈殿により DNA を回収した。アガロースゲル電気泳動を行い、6.5Kb から 5.5Kb の DNA 断片をゲルから切り出し、DNA PREP（ダイアトロン社製）を用いて回収した。この DNA 断片を DNA Ligation Kit Ver.1（宝酒造社製）を用いて遺伝子ベクター pUC18 の KpnI 部位に挿入し、組換え DNA ライブラリーを作製した。ライゲーションに用いた pUC18 断片は次のように作製した。pUC18 保存液 2 μl に対し、
10 倍濃度制限酵素用緩衝液 5 μl、滅菌水 40 μl、制限酵素 KpnI 3 μl を加え、37°C で 2 時間反応後、フェノール抽出およびクロロホルム抽出を行い、エタノール沈殿させた後乾燥して 50 μl の滅菌水に溶解させた。さらにアルカリフオースファターゼ（宝酒造社製）1 μl、10 倍濃度緩衝液 10 μl、滅菌水 39 μl を加え 6
5°C で反応後、フェノール抽出およびクロロホルム抽出を行い、エタノール沈殿後乾燥して滅菌水に溶解させた。

（4）大腸菌形質転換体の作製および組換え DNA の選別

大腸菌 JM109 株を LB 培地 (1% パクトトリプトン、0.5% パクトイーストエキス、0.5% NaCl) 1 ml に接種し 37°C、5 時間好気的前培養し、この培養物 0.4 ml を
SOB 培地 40 ml (2% パクトトリプトン、0.5% パクトイーストエキス、10 mM NaCl、2.
5 mM KCl、1 mM MgSO₄、1 mM MgCl₂) に加え、18°C で 20 時間培養した。この培養物を遠心分離により集菌した後、冷 TF 溶液 (20 mM PIPES-KOH (pH 6.0)、200 mM KCl、10 mM CaCl₂、40 mM MnCl₂) を 13 ml 加え、0°C で 10 分間放置した。その後、再度遠心し、上澄を除いた後、沈殿した大腸菌を冷 TF 溶液 3.2 ml に懸濁し、0.2
2 ml のジメチル硫酸と KCl を 0°C で 10 分間放置した。こうして作製したコンビテントセル 200 μl に工程（3）で作製した組換えプラスミド DNA を含有する
溶液 (DNA ライブラリー) を 10 μl 加え、0°C で 30 分放置後、42°C で 30 秒間ヒートショックを与えた。0°C で 2 分間冷却後、SOC 培地 (20 mM グルコース、2% パクトトリプトン、0.5% パクトイーストエキス、10 mM NaCl、2.5 mM KCl、1 mM MgSO₄、
1 mM MgCl₂) 1 ml を添加して 37°C にて 1 時間振盪培養した。これを 200 μl ずつ LB 培地 (アンビシリン 100 mg/L、1.5% 寒天を含有する LB 培地）にまき、37°C で培養した。寒天培地上に生育した形質転換体コロニーについて、コロニー
ハイブリダイゼーション法によりエチレンアミン-N,N'-ジクロマイ酸：エチレンアミンリアーゼ遺伝子を保有すると考えられる形質転換体を選別した。すなわ
ち、寒天培地上に生育した形質転換体をナイロンメンブレン（バイオダイナム A：
日本ポール社製）に移し、菌体を溶かして DNA を固定した後、これを工程（2）
で作製したプロープ（約 300 bp）で処理し、DIG Luminescent Detection Kit（ロ
ッシュ・ダイアグノスティックス社製）を用い、目的の組換え DNA 拡大を連続した。
(5) 組換えプラスミドの調製

工程(4) で選択した形質転換体を 100ml の LB Amp 培地（アンピシン 100mg/L を含有する LB 培地）にて 37℃で一晩培養し、集菌後、Flexi Prep（アマシャムバイオサイエンス社製）を用いてプラスミド DNA を回収した。得られた組換えプラスミド DNA を pEDS9001 と名付けた。

(6) 制限酵素地図の作製およびエチレンジアミン-N,N’-ジホハク酸：エチレンジアミンリアーゼ遺伝子領域の特定

工程(5) で得られたプラスミド pEDS9001 を数種の制限酵素を用いて切断し制限酵素地図を作製した（図 1）。さらに、通常行われるようにサブクローニングを行った。すなわち、pEDS9001 を制限酵素 BamHI で切断した後アガロースゲル電気泳動を行い、約 5.3Kb の DNA 断片をゲルから切り出し、DNA PREP（ダイアトリオン社製）を用いて自己連続反応を行った後、大腸菌 JM109 株を形質転換することにより、エチレンジアミン-N,N’-ジホハク酸：エチレンジアミンリアーゼ遺伝子を含むと考えられる約 2.6Kb の断片が挿入されたプラスミド (pEDS9003)（図 2）を得た。

(7) 塩基配列の決定

工程(6) で特定された領域周辺の塩基配列を蛍光シーケンサ ALFII（アマシャムバイオライツ製）を用いて決定した。その結果、配列番号 1 に示されるアミノ酸配列から成るオープンリーディングフレームをコードする塩基配列（配列番号 2）が見出された。

[実施例 2] MR-E001 株由来野生型エチレンジアミン-N,N’-ジホハク酸：エチレンジアミンリアーゼ遺伝子を導入した形質転換体の活性評価 実施例 1 の工程(6)で得られたエチレンジアミン-N,N’-ジホハク酸：エチレンジアミンリアーゼ遺伝子を有する組換えプラスミド pEDS9003 2µ1 に対し、10 倍濃度制限酵素用緩衝液 2µ1、滅菌水 15µ1、制限酵素 KpnI 1µ1 を添加し、37℃にて 2 時間反応させた。エタノール沈殿によりプラスミド DNA を回収し、乾燥後 17µ1 の滅菌水、2µ1 の 10 倍濃度制限酵素緩衝液、制限酵素 BamHI 1µ1 を添加して 37℃にて 2 時間反応させた。この反応液からアガロースゲル電気泳動により約 2.6Kb の断片を調製し、大腸菌ベクター pUC119 に挿入した。作製したライゲーション溶液を用いて大腸菌 JM109 を形質転換して目的のプラスミドを得た。ここでも作製したプ
プラスミドを pEDS9020 (図 3) と名付け、また形質転換体を JM109/ pEDS9020 と名付けた。JM109/ pEDS9020 およびコントロールとして JM109/ pEDS020 （特定平 10-210984 号公報記載）を、それぞれ LBAm 培地 1ml に接種して 37℃にて 8 時間振盪培養後、1mM isopropyl-β-thiogalactoside を含有する 40ml の LBAm 培地で 37℃、30 時間培養した。得られた培養物を 10mM リン酸ナトリウム緩衝液 (pH 8.0) で洗浄後、2ml の同緩衝液に懸濁した。得られた菌体懸濁液の一部を 342mM フマル酸と 171mM エチレンジアミンを含む pH 8.0 の水溶液 50ml に懸濁し 30℃で反応させた。時間間隔を空けて反応混合液の一部を (0.1ml) を取り出し、0.4 2N の NaOH 水溶液 0.9ml 中に加え反応を停止した。菌体を遠心分離により除いた後、HPLC を用いて生成した S,S-エチレンジアミン-N,N'-ジコハク酸を分析した (WAKOSIL5CG (和光純薬社製) [溶出液; 10mM 水酸化ナトリウム-プロピルアルコキシムと 0.4mM CuSO₄ 含む 50mM リン酸; pH 2])。上記測定条件下において 1 分間に 1μmol の S,S-エチレンジアミン-N,N'-ジコハク酸を生成させる酵素量を酵素単位 (U) として、JM109/ pEDS9020 および JM109/ pEDS020 の菌体あたり (OD630 あたり) の活性を求めたところ、それぞれ 1.22 mLU/ODml、0.89mLU/ODml であり、MR-E001 株由来エチレンジアミン-N,N'-ジコハク酸:エチレンジアミンリアーゼが高い酵素活性を有することが確認された。なお、pEDS9020 は、独立行政法人産業技術総合研究所 特許生物寄託センター（茨城県つくば市東 1 丁目 1 番地 1 中央第 6）に FERM BP-08676 として、2003 年 2 月 5 日付で寄託されている。
プライマー:

ED-01: CGCCATGGCC CGGCATAACC CAGATGCCAC C（配列番号5）
（下線部分は制限酵素NcoI切断認識部位）

ED-02: AAACGAGCTT CGTCATGGCT ATCCCTC（配列番号6）
（下線部分は制限酵素HindIII切断認識部位）

反応液組成:

- 鉱型DNA（上記工程で調製したpEDS9020）1μl
- 10×PCRBuffer(GIBCO社製)10μl
- 50mM MgCl₂(GIBCO社製)3μl

プライマー-ED-011μl
プライマー-ED-021μl
2.5mM dNTP各2μl
10mM dITP2μl
10mM dBraUTP2μl

減菌水71μl

TaqDNAポリメラーゼ(GIBCO社製)1μl

上記反応液に対し、94℃、30秒（デナチュレーション過程）、68℃、180秒（アニーリング過程・エクステンション過程）のインキュベーションを30サイクル行った。上記PCR終了後、反応液10μlを0.7%アガロースゲルにより電気泳動を行い、約1.5kbの増幅断片の検出を行った。また、耐熱性評価のコントロールとして用いるため、通常のPCRにて野生型エチレンジアミン-N,N'-ジコハク酸：エチレンジアミンリアーゼ遺伝子を増幅した。すなわち、以下のような組成のPCR反応液100μlを調製した。

- 鉱型DNA(pEDS9020)1μl
- 10×PyrobestBuffer（宝酒造社製）10μl
- プライマー-ED-011μl
- プライマー-ED-021μl
- 5mM dNTP各2μl
- 減菌水78μl
Pyrobest™ DNA ポリメラーゼ（宝酒造社製） 1μl

上記反応液に対し、94℃、30 秒（デナチュレーション過程）、68℃、180 秒（アニーリング過程・エクステンション過程）のインキュベーションを 30 サイクル行った。上記 PCR 終了後、反応液 10μl を 0.7% アガロースゲルにより電気泳動を行って、約 1.5kb の増幅断片の検出を行った。

プライマー ED-01 および ED-02 中には、制限酵素 NcoI 切断認識部位および制限酵素 HindIII 切断認識部位がそれぞれ導入されており（プライマー ED-01 及び ED-02 の塩基配列の下線部分）、増幅 DNA 産物を両制限酵素で切断することにより、後述する発現ベクター pFY529V の NcoI 部位－HindIII 部位間に容易に挿入することが可能となる。

(2) 発現ベクターの構築

後述のスクリーニング工程において、熱処理後のエチレンジアミン-N,N'-ジコハク酸；エチレンジアミンリアーゼ残存活性を効率よく検出するため、コピー数と発現効率の高い大腸菌発現ベクター pFY529V を作製した（図 4）。trc プロモーターを有する発現ベクター pKK233-2（アマシャム社製）5μl に制限酵素 NaeI 1μl、ScaI 1μl、10 倍濃度制限酵素反応用緩衝液 1μl、滅菌水 2μl を加え、37℃にて 12 時間切断反応を行った。切断後、0.7% アガロースゲルにより電気泳動を行い、該プラスミドの複製開始点を含まない NaeI−ScaI 断片（1.2kb）を切り出し、DNA PREP（ダイアトロン社製）を用いて、該 DNA 断片を含む TE 溶液（10mM Tris、1mM EDTA、pH8.0）3μl を回収した。この操作と並行して、高コピー数ベクターである pUC18 2μl に制限酵素 PvuII 1μl、ScaI 1μl、10 倍濃度制限酵素反応用緩衝液 1μl、滅菌水 5μl を加え、37℃にて 12 時間切断反応を行った。切断後、0.7% アガロースゲルにより電気泳動を行い、該プラスミドの複製開始点を含む PvuII−ScaI 断片（1.6kb）を切り出し、DNA PREP（ダイアトロン社製）を用いて、該 DNA 断片を含む TE 1μl を回収した。こうして得られた両 DNA 断片を DNA Ligation Kit Ver.1（宝酒造社製）により連結させた。pKK233-2 由来 NaeI−ScaI 断片溶液 3μl、pUC18 由来 PvuII−ScaI 断片溶液 1μl、キット中の A 液 16μl、キット中の B 液 4μl を混合し、16℃にて 16 時間連結反応を行った。連結反応後の反応液を用い、実施例 1（4）記載の方法により大腸菌 JM109 を形質転換した。

得られた形質転換体コロニーより約 10 クローンを LBamp 培地 1.5ml に接種し、3
7℃で12時間振盪培養した。培養後、この培養物を遠心分離により集菌した後、Flexi Prep（アマシャムバイオサイエンス社製）を用いることにより、プラスミドDNAを抽出した。得られたプラスミドDNAを制限酵素ScaIで切断後、0.7％アガロースゲルにより電気泳動を行い、pKK233-2由来NaeI-ScaI断片（1.2kb）とpUC18由来PvuII-ScaI断片（1.6kb）が正しく連結されているクローンを選んでpFY529Vと命名し、変異ライブラリーの発現ベクターとして用いた。

(3) 変異ライブラリーの作製

工程(1)のPCRで得られた変異導入エチレンジアミン-N,N’-ジホル酸:エチレンジアミンリアーゼ遺伝子を含む反応液を、常法に従ってエタノール沈殿により精製を行い、沈殿物を70μlの滅菌水に再懸濁した。10倍濃度制限酵素反応用緩衝液10μl、制限酵素NcoI10μl、HindIII10μlを加え、37℃にて12時間切断反応を行った。切断後、フェノール抽出およびクロロホルム抽出を行った後、エタノール沈殿を行い、沈殿物を100μ1の滅菌水に再懸濁して変異DNA断片溶液とした。この操作と並行して、工程(2)で作製した発現ベクターpFY529V3μlに、滅菌水67μl、10倍濃度制限酵素反応用緩衝液10μl、制限酵素NcoI10μl、HindIII10μlを加え、37℃にて12時間切断反応を行った。切断後、フェノール抽出およびクロロホルム抽出を行い、エタノール沈殿により精製した後、沈殿物を10μ1の滅菌水に再懸濁して切断済みpFY529V溶液とした。変異DNA断片と発現ベクターpFY529Vの連結は、DNA Ligation Kit Ver.1（宝酒造社製）を用いて行った。上記の変異DNA断片溶液3μl、切断済みpFY529V溶液1μl、キット中のA液16μl、キット中のB液4μlを混合し、16℃にて16時間連結反応を行った。連結反応後の反応液を用いて、実施例1（工程(4)）記載の方法により大腸菌JM109を形質転換し、種々の変異導入EDDSase遺伝子を保有する形質転換体を得た。また、以上と同様の操作を、工程(1)で増幅した野生型エチレンジアミン-N,N’-ジホル酸:エチレンジアミンリアーゼ遺伝子を挿入断片として行った。得られた形質転換体コロニーよりプラスミドを抽出し、蛍光シークエンサーALP II（アマシャムバイオサイエンス社製）を用いて塩基配列を確認した結果、実施例1（工程(7)）で決定した野生型エチレンジアミン-N,N’-ジホル酸:エチレンジアミンリアーゼの塩基配列（配列番号2）と同一であった（但し、プライマーED-01のNcoI部位導入による、4番目の塩基変化（A→G）は除く）。このプラスミドをpEDT
rc9003 と命名し、該プラスミドを含む大腸菌、すなわち JM109/ pEDTrc9003 を、後述する(4)の耐熱性向上エチレンジアミン-N, N'-ジコハク酸:エチレンジアミンリーゼのスクリーニング工程におけるコントロールとして用いた。なお、pEDTrc9003 は、独立行政法人産業技術総合研究所 特許生物寄託センター（茨城県つくば市東1丁目1番地1 中央第6）に FERM BP-08675 として 2003 年 2 月 5 日付けで寄託されている。

(4)耐熱性向上エチレンジアミン-N, N'-ジコハク酸:エチレンジアミンリーゼのスクリーニング

工程(3)で得られた変異エチレンジアミン-N, N'-ジコハク酸:エチレンジアミンリーゼ遺伝子を含む JM109 形質転換体およびコントロールとする JM109/ pEDTrc9003 を、48 穴マルチディッシュに 1.5ml ずつ分注した LB-Amp 培地にそれぞれ接種し、37℃にて 12 時間液体培養した。得られた培養物を、50℃の温度下、30 分間の熟処理に供した後、実施例 2 記載の方法により、残存エチレンジアミン-N, N'-ジコハク酸:エチレンジアミンリーゼ活性の測定を行った。工程(3)で得られた形質転換体約 10000 株についてスクリーニングを行った結果、野生型エチレンジアミン-N, N'-ジコハク酸:エチレンジアミンリーゼを保有する JM109/ pEDTrc9003 がもはや完全にその活性を消失していたのに対し、該酵素活性が残存している株が 4 株得られた。

(5)変異の同定

工程(4)で得られた 4 株の耐熱性向上候補株に含有される変異導入エチレンジアミン-N, N'-ジコハク酸:エチレンジアミンリーゼ遺伝子について、どの部位にどのような変異が導入されたのかを確認すべく以下のように解析を行った。4 株の耐熱性向上候補株に含まれる組換えプラスミド DNA を、Flexi Prep（アマシャムバイオサイエンス社製）を用いて精製し、得られた組換えプラスミド DNA をそれぞれ pEDTrcI-2, pEDTrcI-23, pEDTrcJ-05, pEDTrcK-01 と命名した。また、それぞれのプラスミドに含まれる変異酵素自体を I-2, I-23, J-05, K-01 と命名した。これらの組換えプラスミド DNA に含まれる変異エチレンジアミン-N, N'-ジコハク酸:エチレンジアミンリーゼ遺伝子の塩基配列を、蛍光シークエンサー A LF II（アマシャムバイオサイエンス社製）を用いて決定した。決定した各変異エチレンジアミン-N, N'-ジコハク酸:エチレンジアミンリーゼ遺伝子の塩基配列
と野生型エチレンジアミン-N, N'-ジコハク酸：エチレンジアミンリアーゼの塩基配列（配列番号2）を比較解析した結果、pEDTrcI-2では166番目のイソロイシン残基（ATC）がスレオニン（ACC）に、pEDTrcI-23では120番目のリジン残基（AAA）がグルタミン酸（GAA）に、pEDTrcJ-05では166番目のイソロイシン残基（ATC）がセリン（AGC）に、pEDTrcK-01では365番目のアラニン残基（GCC）がパリン（GTC）にそれぞれ置換されている単変異体であることが明らかになった[]内は、各々のアミノ酸をコードする塩基配列の変化を示す]。

(6) 単変異体の耐熱性評価

工程（5）で同定された4種類の単変異体エチレンジアミン-N, N'-ジコハク酸：エチレンジアミンリアーゼ（I-2, I-23, J-05, K-01）の耐熱性をより詳細に調べた。単変異体エチレンジアミン-N, N'-ジコハク酸：エチレンジアミンリアーゼを保有する大腸菌4株（JM109/pEDTrcI-2, JM109/pEDTrcI-23, JM109/pEDTrcJ-05, JM109/pEDTrcK-01）、および野生型エチレンジアミン-N, N'-ジコハク酸：エチレンジアミンリアーゼを保有する大腸菌JM109/pEDTrc9003を、LBAMP培地1.5mlに接種して30℃にて8時間振盪培養した後、それぞれの培養液を500ml容器の三角フラスコに調製したLBAMP培地40mlに400μlずつ接種し、37℃にて12時間振盪培養した。得られた培養物より1.5mlを採取し、遠心分離により集菌した後、50mMホウ酸緩衝液（pH9.0）で洗浄した後、1.5mlの同緩衝液に懸濁することにより菌体懸濁液を調製した。この菌体懸濁液に対して超音波破碎を行い、粗酵素抽出液を得た。得られた粗酵素抽出液を40℃、45℃、50℃、55℃、60℃、65℃の各温度下、それぞれ30分間熱処理した後、直ちに4℃に冷却した。熱処理後、実施例2記載の方法により、エチレンジアミン-N, N'-ジコハク酸：エチレンジアミンリアーゼ活性の測定を行い、熱処理を行わずに4℃で保冷したものをそれぞれの相対活性値のコントロール（100%）として、残存相対活性を求めた。

結果を図5に示す。図5において、縦軸は残存エチレンジアミン-N, N'-ジコハク酸：エチレンジアミンリアーゼ活性を、横軸は処理温度を示す。野生型エチレンジアミン-N, N'-ジコハク酸：エチレンジアミンリアーゼは50℃で完全に酵素活性が消失していたのに対し、単変異体I-2, I-23, J-05, K-01はそれぞれ50℃で75%, 50℃で85%, 60℃で12%, 55℃で12%の残存相対活性を保持しており、野生型と比較してこれらの単変異体の耐熱性が向上していることが確認された。
[実施例4] 多重変異体の作製と耐熱性評価

(1) 多重変異体の作製

実施例3で耐熱性の向上が確認された4種類の単変異体におけるアミノ酸残基の置換を組み合わせることにより、多重変異体を作製した。単変異体 I-2、I-23、J-05、K-01の変異個所は、それぞれ166番目のイソロイシン残基、120番目のリジン残基、166番目のイソロイシン残基、366位のアラニン残基であり、エチレンジアミン-N,N'-ジホル酸：エチレンジアミンリアーゼ遺伝子DNA断片を制限酵素EcoT22I、AccI、ClaIで切断することにより、これらの変異個所を個々につつ含むDNA断片が得られる（図6）。切断した単変異体のDNA断片を、異なる単変異体由来の対応するDNA断片と置き換えて再連結することにより、二重変異あるいは三重変異を持つキメラ酵素遺伝子を作製した（図6）。例えば、二重変異体Ch-4の作製は、先ず、単変異体I-23をコードする遺伝子を含むpEDTrcI-23を制限酵素NcoIおよびAccIで切断し、切断の結果生じた短いほうのDNA断片（約0.5kb）をアガロースゲル電気泳動により切り出した。同時に、単変異体J-05をコードする遺伝子を含むpEDTrcJ-05を制限酵素NcoIおよびAccIで切断し、切断の結果生じた長いほうのDNA断片（約3.8kb、ベクター含む）をアガロースゲル電気泳動により切り出した。両DNA断片を、DNA PREP（ダイアトロン社製）を用いて回収し、DNA Ligation Kit Ver.1（宝酒造社製）を用いて連結した後、薬剤に従って大腸菌JM109を形質転換した。得られた形質転換体よりプラスミドを抽出し、制限酵素NcoIおよびAccIで切断した後、アガロースゲル電気泳動により正しく連結されていることを確認し、このプラスミドDNAをpEDTrcCh-4、キメラ酵素をCh-4と命名した。同様に、単変異体I-23由来NcoI-AccI断片（約0.5kb）と、単変異体I-2由来NcoI-AccI断片（約3.8kb、ベクター含む）を連結して得られるプラスミドDNAをpEDTrcCh-6、キメラ酵素をCh-6と命名した。同様な手法により、単変異体J-05由来NcoI-ClaI断片（約1kb）と、単変異体K-01由来NcoI-ClaI断片（約3.3kb、ベクター含む）を連結して得られるプラスミドDNAをpEDTrcCh-1、キメラ酵素をCh-1とし、単変異体I-2由来NcoI-ClaI断片（約1kb）と、単変異体K-01由来NcoI-ClaI断片（約3.3kb、ベクター含む）を連結して得られるプラスミドDNAをpEDTrcCh-2、キメラ酵素をCh-2とした。また、三重変異体についても、単変異体I-23由来NcoI-AccI断片（約0.5kb）と単変異体J-0
5 由来 AccI-ClaI 断片（約 0.5kb）および単変異体 K-01 由来 NcoI-ClaI 断片（約 3.3kb、ベクター含む）を連結して得られるプラスミド DNA を pEDTrCh-8、キメラ酵素を Ch-8 とし、単変異体 I-23 由来 NcoI-AccI 断片（約 0.5kb）と単変異体 I-2 由来 AccI-ClaI 断片（約 0.5kb）および単変異体 K-01 由来 NcoI-ClaI 断片（約 3.3kb、ベクター含む）を連結して得られるプラスミド DNA を pEDTrCh-10、キメラ酵素を Ch-10 とした。かくして得られたキメラ酵素の構造を図 6 に示す。

(2) 多重変異体の耐熱性評価

工程(1)で作製した 6 種類の多重変異体エチレンジアミン-N,N’-ジコハク酸:エチレンジアミンリアーゼ（Ch-4, Ch-6, Ch-1, Ch-2, Ch-8, Ch-10）の耐熱性を調べた。多重変異体エチレンジアミン-N,N’-ジコハク酸:エチレンジアミンリアーゼを保持する大腸菌 6 株（JM109/ pEDTrCh-4、JM109 /pEDTrCh-6、JM109/pEDTrCh-1、JM109/pEDTrCh-2、JM109 /pEDTrCh-8、JM109 /pEDTrCh-10）、および野生型エチレンジアミン-N,N’-ジコハク酸:エチレンジアミンリアーゼを保有する大腸菌 JM109/pEDTr9003 を、LBamp 培地 1.5ml に接種して 30℃にて 8 時間振盪培養した後、それぞれの培養液を 500ml 容の三角フラスコに調製した LBamp 培地 40ml に 400 μl ずつ接種し、37℃にて 12 時間振盪培養した。得られた培養物より 1.5ml を採取し、遠心分離により菌体を除去した後、50mM ホウ酸緩衝液（pH9.0）で洗浄し、1.5ml の同緩衝液に懸濁することにより菌体懸濁液を調製した。この菌体懸濁液に対して超音波破砕を行い、粗酵素抽出液を得た。得られた粗酵素抽出液を 40℃、45℃、50℃、55℃、60℃、65℃の各温度下、それぞれ 30 分間熟処理した後、直ちに 4℃に冷却した。熟処理後、実施例 2 記載の方法により、エチレンジアミン-N,N’-ジコハク酸:エチレンジアミンリアーゼ活性の測定を行い、熟処理を行わずに 4℃で保冷したものをそれぞれの相対活性値のコントロールとして、残存相対活性を求めた。結果を図 7 に示す。図 7 において、縦軸は残存エチレンジアミン-N,N’-ジコハク酸:エチレンジアミンリアーゼ活性、横軸は処理温度を示す。野生型エチレンジアミン-N,N’-ジコハク酸:エチレンジアミンリアーゼは 50℃で完全に該酵素活性が消失していたのに対し、多重変異体 Ch-4, Ch-6, Ch-1, Ch-2, Ch-8, Ch-10 はそれぞれ 60℃で 72%、55℃で 89%、60℃で 56%、55℃で 25%、60℃で 90%、55℃で 97%の残存相対活性を保持しており、野生型および単変異体と比較してこれら多重変異体の耐熱性が向上していることが確認される。
れた。

本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として
本明細書とり入れるものとする。

産業上の利用の可能性

本発明により、ブレプンディモナス・ディミニュータ（Brevundimonas diminuta）
MR-E001 株由来野生型エチレンジアミン-N,N'-ジコハク酸：エチレンジアミンリ
アーゼの塩基配列およびアミノ酸配列が提供される。また、野生型エチレンジア
ミン-N,N'-ジコハク酸：エチレンジアミンリアーゼより誘導された変型型エチレ
ンジアミン-N,N'-ジコハク酸：エチレンジアミンリアーゼの塩基配列およびアミ
ノ酸配列が提供される。さらには、野生型および変型型エチレンジアミン-N,N'-
ジコハク酸：エチレンジアミンリアーゼ遺伝子を含む組換え DNA、該組換え DNA
を含む形質転換体または形質導入体、該形質転換体または形質導入体を用いたジ
アミノアルキレン-N,N'-ジコハク酸の製造法が提供される。本発明により、効率
よくジアミノアルキレン-N,N'-ジコハク酸を製造することが可能となる。

配列列表フリーテキスト
配列番号 1 : Xaa は Met 又は欠失を表す
配列番号 3 : 合成 DNA
配列番号 4 : 合成 DNA
配列番号 5 : 合成 DNA
配列番号 6 : 合成 DNA
請求の範囲

1. 配列番号1記載のアミノ酸配列から成り、且つ、エチレンジアミン-N,N’-ジコハク酸：エチレンジアミンリアーゼ活性を有するタンパク質。

2. 配列番号1記載のアミノ酸配列において、1又は複数のアミノ酸残基が欠失、置換又は付加されたアミノ酸配列から成り、且つ、エチレンジアミン-N,N’-ジコハク酸：エチレンジアミンリアーゼ活性を有するタンパク質。

3. 配列番号1記載のアミノ酸配列において、120番目のリジン残基、166番目のイソロイシン残基及び365番目のアラニン残基のうち少なくとも1つアミノ酸残基が他のアミノ酸残基に置換されたアミノ酸配列から成り、且つ、エチレンジアミン-N,N’-ジコハク酸：エチレンジアミンリアーゼ活性を有するタンパク質。

4. 配列番号1記載のアミノ酸配列において、少なくとも120番目のリジン残基がグルタミン酸に置換されたアミノ酸配列から成り、且つ、エチレンジアミン-N,N’-ジコハク酸：エチレンジアミンリアーゼ活性を有するタンパク質。

5. 配列番号1記載のアミノ酸配列において、少なくとも166番目のイソロイシン残基がセリンに置換されたアミノ酸配列から成り、且つ、エチレンジアミン-N,N’-ジコハク酸：エチレンジアミンリアーゼ活性を有するタンパク質。

6. 配列番号1記載のアミノ酸配列において、少なくとも166番目のイソロイシン残基がスレオニンに置換されたアミノ酸配列から成り、且つ、エチレンジアミン-N,N’-ジコハク酸：エチレンジアミンリアーゼ活性を有するタンパク質。

7. 配列番号1記載のアミノ酸配列において、少なくとも365番目のアラニン残基がパリンに置換されたアミノ酸配列から成り、且つ、エチレンジアミン-N,N’-ジコハク酸：エチレンジアミンリアーゼ活性を有するタンパク質。

8. 配列番号1記載のアミノ酸配列において、少なくとも120番目のリジン残基がグルタミン酸に、166番目のイソロイシン残基がセリンにそれぞれ置換されたアミノ酸配列から成り、且つ、エチレンジアミン-N,N’-ジコハク酸：エチレンジアミンリアーゼ活性を有するタンパク質。

9. 配列番号1記載のアミノ酸配列において、少なくとも120番目のリジン残基がグルタミン酸に、166番目のイソロイシン残基がスレオニンにそれぞれ置
換されたアミノ酸配列から成り、且つ、エチレンジアミン-N,N'-ジコハク酸：エチレンジアミンリアーゼ活性を有するタンパク質。

10. 配列番号1記載のアミノ酸配列において、少なくとも166番目のイソロイシン残基がセリンに、365番目のアラニン残基がバリニにそれぞれ置換されたアミノ酸配列から成り、且つ、エチレンジアミン-N,N'-ジコハク酸：エチレンジアミンリアーゼ活性を有するタンパク質。

11. 配列番号1記載のアミノ酸配列において、少なくとも166番目のイソロイシン残基がスレオニンに、365番目のアラニン残基がバリニにそれぞれ置換されたアミノ酸配列から成り、且つ、エチレンジアミン-N,N'-ジコハク酸：エチレンジアミンリアーゼ活性を有するタンパク質。

12. 配列番号1記載のアミノ酸配列において、少なくとも120番目のリジン残基がグルタミン酸に、166番目のイソロイシン残基がセリンに、365番目のアラニン残基がバリニにそれぞれ置換されたアミノ酸配列から成り、且つ、エチレンジアミン-N,N'-ジコハク酸：エチレンジアミンリアーゼ活性を有するタンパク質。

13. 配列番号1記載のアミノ酸配列において、少なくとも120番目のリジン残基がグルタミン酸に、166番目のイソロイシン残基がスレオニンに、365番目のアラニン残基がバリニにそれぞれ置換されたアミノ酸配列から成り、且つ、エチレンジアミン-N,N'-ジコハク酸：エチレンジアミンリアーゼ活性を有するタンパク質。

14. 請求項1に記載されたタンパク質をコードする遺伝子DNA。

15. 以下の(a)又は(b)の遺伝子DNA。

(a) 配列番号2記載の塩基配列から成る遺伝子DNA。

(b) 配列番号2記載の塩基配列又はその一部の配列からなるDNAと相補的な配列からなるDNAとストリングジャントな条件下でハイブリダイズし、かつ、エチレンジアミン-N,N'-ジコハク酸：エチレンジアミンリアーゼ活性を有するタンパク質をコードする遺伝子DNA。

16. 請求項2に記載されたタンパク質をコードする遺伝子DNA。

17. 配列番号2記載の塩基配列において、1又は複数の塩基が欠失、置換又は付加された塩基配列から成る請求項16記載の遺伝子DNA。
18. 請求項3に記載されたタンパク質をコードする遺伝子DNA。

19. 配列番号2記載の塩基配列において、358番目から360番目、496番目から498番目及び1093番目から1095番目の塩基のうち少なくとも1つの塩基が他の異なる塩基に置換された塩基配列から成る請求項18記載の遺伝子DNA。

20. 請求項4に記載されたタンパク質をコードする遺伝子DNA。

21. 配列番号2記載の塩基配列において、358番目から360番目の塩基AがGAA又はGAGに置換された塩基配列から成る請求項20記載の遺伝子DNA。

22. 配列番号2記載の塩基配列において、358番目の塩基アデニンがグアニンに置換された塩基配列から成る請求項20記載の遺伝子DNA。

23. 請求項5に記載されたタンパク質をコードする遺伝子DNA。

24. 配列番号2記載の塩基配列において、496番目から498番目の塩基ATCがAGC、AGT又はTCN（NはA、G、C又はTを表す。）に置換された塩基配列から成る請求項23記載の遺伝子DNA。

25. 配列番号2記載の塩基配列において、497番目の塩基チミンがグアニンに置換された塩基配列から成る請求項23記載の遺伝子DNA。

26. 請求項6に記載されたタンパク質をコードする遺伝子DNA。

27. 配列番号2記載の塩基配列において、496番目から498番目の塩基ATCがACN（NはA、G、C又はTを表す。）に置換された塩基配列から成る請求項26記載の遺伝子DNA。

28. 配列番号2記載の塩基配列において、497番目の塩基チミンがシトシンに置換された塩基配列から成る請求項26記載の遺伝子DNA。

29. 請求項7に記載されたタンパク質をコードする遺伝子DNA。

30. 配列番号2記載の塩基配列において、1093番目から1095番目の塩基GCCがGTN（NはA、G、C又はTを表す。）に置換された塩基配列から成る請求項29記載の遺伝子DNA。

31. 配列番号2記載の塩基配列において、1094番目の塩基シトシンがチミンに置換された塩基配列から成る請求項29記載の遺伝子DNA。

32. 請求項8に記載されたタンパク質をコードする遺伝子DNA。

33. 配列番号2記載の塩基配列において、358番目から360番目の塩基AAがGAA又はGAGに、496番目から498番目の塩基ATCがAGC、AGT又はTCN（Nは
A、G、C又はTを表す。）にそれぞれ置換された塩基配列から成る請求項32記載の遺伝子DNA。

3.4. 配列番号2記載の塩基配列において、358番目の塩基アデニンがガアニニ、497番目の塩基チミンがガアニニにそれぞれ置換された塩基配列から成る請求項32記載の遺伝子DNA。

3.5. 請求項9に記載されたタンパク質をコードする遺伝子DNA。

3.6. 配列番号2記載の塩基配列において、358番目から360番目の塩基AAがGAA又はGAGに、496番目から498番目の塩基ATCがACN（NはA、G、C又はTを表す。）にそれぞれ置換された塩基配列から成る請求項35記載の遺伝子DNA。

3.7. 配列番号2記載の塩基配列において、358番目の塩基アデニンがガアニニ、497番目の塩基チミンがシトシンにそれぞれ置換された塩基配列から成る請求項35記載の遺伝子DNA。

3.8. 請求項10に記載されたタンパク質をコードする遺伝子DNA。

3.9. 配列番号2記載の塩基配列において、496番目から498番目の塩基ATCがAGC、AGT又はTCN（NはA、G、C又はTを表す。）に、1093番目から1095番目の塩基GCCがGTN（NはA、G、C又はTを表す。）にそれぞれ置換された塩基配列から成る請求項38記載の遺伝子DNA。

4.0. 配列番号2記載の塩基配列において、497番目の塩基チミンがガアニニに、1094番目の塩基シトシンがチミンにそれぞれ置換された塩基配列から成る請求項38記載の遺伝子DNA。

4.1. 請求項11に記載されたタンパク質をコードする遺伝子DNA。

4.2. 配列番号2記載の塩基配列において、496番目から498番目の塩基ATCがACN（NはA、G、C又はTを表す。）に、1093番目から1095番目の塩基GCCがGTN（NはA、G、C又はTを表す。）にそれぞれ置換された塩基配列から成る請求項41記載の遺伝子DNA。

4.3. 配列番号2記載の塩基配列において、497番目の塩基チミンがシトシンに、1094番目的塩基シトシンがチミンにそれぞれ置換された塩基配列から成る請求項41記載の遺伝子DNA。

4.4. 請求項12に記載されたタンパク質をコードする遺伝子DNA。

4.5. 配列番号2記載の塩基配列において、358番目から360番目の塩基AA
A が GAA 又は GAG に、496 番目から 498 番目の塩基 ATC が AGC、AGT 又は TCN (N は A、G、C 又は T を表す。) に、1093 番目から 1095 番目の塩基 GCC が GTN (N は A、G、C 又は T を表す。) にそれぞれ置換された塩基配列から成る請求項 44 記載の遺伝子 DNA。

46. 配列番号 2 記載の塩基配列において、358 番目の塩基アデニンがグアニンに、497 番目の塩基チミンがグアニンに、1094 番目の塩基シトシンがチミンにそれぞれ置換された塩基配列から成る請求項 44 記載の遺伝子 DNA。47. 請求項 13 に記載されたタンパク質をコードする遺伝子 DNA。

48. 配列番号 2 記載の塩基配列において、358 番目から 360 番目の塩基 AA A が GAA 又は GAG に、496 番目から 498 番目の塩基 ATC が ACN (N は A、G、C 又は T を表す。) に、1093 番目から 1095 番目の塩基 GCC が GTN (N は A、G、C 又は T を表す。) にそれぞれ置換された塩基配列から成る請求項 47 記載の遺伝子 DNA。

49. 配列番号 2 記載の塩基配列において、358 番目の塩基アデニンがグアニンに、497 番目の塩基チミンがシトシンに、1094 番目の塩基シトシンがチミンにそれぞれ置換された塩基配列から成る請求項 47 記載の遺伝子 DNA。

50. 請求項 14 ～ 49 いずれか 1 項に記載の遺伝子 DNA をベクター-DNA に挿入した組換え DNA。

51. 請求項 50 記載の組換え DNA を含む形質転換体又は形質導入体。

52. 請求項 51 記載の形質転換体又は形質導入体を培養し、得られる培養物からエチレンジアミン-N, N'-ジコハク酸：エチレンジアミンリアーゼを採取することを特徴とするエチレンジアミン-N, N'-ジコハク酸：エチレンジアミンリアーゼの製造方法。

53. フマル酸とジアミンを、請求項 51 記載の形質転換体又は形質導入体の存在下で反応させ、得られる反応産物からジアミノアルキレン-N, N'-ジコハク酸を採取することを特徴とするジアミノアルキレン-N, N'-ジコハク酸の製造方法。
図5

処理温度(℃)

相対活性(%)
図7

処理温度（℃）

相対活性（%）

- Ch-4
- Ch-6
- Ch-1
- Ch-2
- Ch-8
- Ch-10
- 野生型
SEQUENCE LISTING

MITSUBISHI RAYON CO., LTD.

MODIFIED ETHYLENEDIAMINE-N',N'-DISUCCINIC ACID:ETHYLENEDIAMINE LYASE

PH-2151-PCT

6

PatentIn Ver. 2.0

1

495

PRT

Brevundimomas diminuta

VARIANT

1

Xaa represents Met or deletion

1

Xaa Thr Pro His Asn Pro Asp Ala Thr Arg Ile Gly Arg Ala Ser Gly

1 5 10 15

Ala Lys Ala Pro Glu Phe Gln Glu Leu Tyr Asp Phe Glu Ala Ala Ala

1/12
<table>
<thead>
<tr>
<th></th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leu</td>
<td>Thr</td>
<td>Leu</td>
<td>Thr</td>
</tr>
<tr>
<td></td>
<td>Ser</td>
<td>Ala</td>
<td>Val</td>
</tr>
<tr>
<td></td>
<td>Phe</td>
<td>Pro</td>
<td>Tyr</td>
</tr>
<tr>
<td></td>
<td>Asp</td>
<td>Ser</td>
<td>Lys</td>
</tr>
<tr>
<td></td>
<td>Ile</td>
<td>His</td>
<td>Arg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>His</td>
<td>Val</td>
<td>Val</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Ala</td>
<td>Ser</td>
<td>Ile</td>
</tr>
<tr>
<td></td>
<td></td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>Asp</td>
<td>Ala</td>
<td>Ala</td>
</tr>
<tr>
<td></td>
<td>85</td>
<td></td>
<td>90</td>
</tr>
<tr>
<td>Arg</td>
<td>Glu</td>
<td>Ile</td>
<td>Gly</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td></td>
<td>105</td>
</tr>
<tr>
<td>Asn</td>
<td>Asp</td>
<td>Leu</td>
<td>Ala</td>
</tr>
<tr>
<td></td>
<td>115</td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>Leu</td>
<td>Arg</td>
<td>Thr</td>
<td>Val</td>
</tr>
<tr>
<td></td>
<td>130</td>
<td></td>
<td>135</td>
</tr>
<tr>
<td>Lys</td>
<td>Ala</td>
<td>Ala</td>
<td>Asp</td>
</tr>
<tr>
<td></td>
<td>145</td>
<td></td>
<td>150</td>
</tr>
<tr>
<td>Lys</td>
<td>Glu</td>
<td>Ala</td>
<td>Gln</td>
</tr>
<tr>
<td></td>
<td>165</td>
<td></td>
<td>170</td>
</tr>
</tbody>
</table>
Glu Asn Leu Gly Lys Asn Leu Ala Arg Tyr Arg Glu Leu His Pro Arg
 180 185 190

Ile Asn Gln Cys Pro Leu Gly Ala Ala Ala Thr Ala Gly Thr Gly Trp
 195 200 205

Pro Leu Asp Arg Asp Arg Thr Ala Ala Leu Leu Gly Phe His Gly Leu
 210 215 220

Val Val Asn Ser Ile Glu Gly Val Ala Gly Trp Asp His Val Ala Glu
 225 230 235 240

Phe Ala Phe Asp Asn Ala Val Phe Leu Ser Gly Leu Ser Arg Leu Ala
 245 250 255

Ser Glu Ile Gln Leu Trp Ser Thr Asp Glu Tyr Gln Met Ala Glu Leu
 260 . 265 270

Asp Ser Ala Phe Ala Gly Thr Ser Ser Ile Met Pro Gln Lys Lys Asn
 275 280 285

Pro Asp Ser Leu Glu Arg Ser Arg Lys Ala Ala Phe Ala Ala Met Gly
 290 295 300

Pro Leu Val Ala Ile Leu Thr Ser Leu Asn Gly Ile Glu Tyr Gln Tyr
 305 310 315 320

Ser Ala Ala Arg Val Glu Leu Glu Pro Arg Ser Ile Asp Ala Leu Ile
 325 330 335

3/12
Ala Ala Thr His Ala Met Thr Gly Val Val Arg Thr Leu His Pro Asn
 340 345 350
Lys Glu Gln Met Leu Arg Tyr Ala Ala Glu Asn Tyr Ala Thr Met Thr
 355 360 365
Asp Leu Thr Asp Leu Leu Val Arg Arg Ile Gly Ile Asp Tyr Arg Glu
 370 375 380
Ala His Glu Ile Val Ala Arg Val Val Met Thr Ala Ile Glu Arg Gly
 385 390 395 400
Ile Lys Ala Asn Ala Ile Gly Leu Asp Leu Val Gln Glu Ala Ala Val
 405 410 415
Ala Gln Thr Gly Asn Arg Ile Glu Ile Gly Ala Ala Asp Ile Ala Asp
 420 425 430
Ala Leu Asp Pro Val Gln Asn Val Ala Arg Arg Lys Gly Arg Gly Met
 435 440 445
Pro Ala Pro Glu Ser Val Arg Ala Ala Ile Ala Glu Ala Arg Gln Glu
 450 455 460
Leu Asp Ala Asp Lys Ala Trp Leu Glu Asp Arg Arg Ala Gly Leu Ala
 465 470 475 480
Asp Ala Asp Ala Ala Leu Glu Glu Ala Val Ala Gly Ile Thr Thr
 490
<210> 2
<211> 1488
<212> DNA
<213> Brevundimonas diminuta

<220>
<221> CDS
<222> (1)..(1485)

<400> 2
atg acc ccg cat aac cca gat gcc acc cgt atc ggc cgt gcc agc ggc 48
Met Thr Pro His Asn Pro Asp Ala Thr Arg Ile Gly Arg Ala Ser Gly
1 5 10 15

gcg aag gcg ccg gaa ttc cag gaa ctc tat gac ttc gaa gca gcg gca 96
Ala Lys Ala Pro Glu Phe Gln Glu Leu Tyr Asp Phe Glu Ala Ala Ala
20 25 30

ctc acc ctg aca gac gcc gtc ttt cct tac gac agc aag att cat cgt 144
Leu Thr Leu Thr Ser Ala Val Phe Pro Tyr Asp Ser Lys Ile His Arg
35 40 45

gct cac gtc gtc atg ctg gct gaa cag gac atc ctc cgg gac gac 192
Ala His Val Val Met Leu Ala Glu Gln Asp Ile Leu Thr Arg Asp Glu
50 55 60
gct gcc agc atc ctg aac ggg ctg gcc aag gcg gat gaa ctg gcg gga
Ala Ala Ser Ile Leu Asn Gly Leu Ala Lys Ala Asp Glu Leu Ala Gly
65 70 75 80

aag gac gcg ggc ctg cgc acc tac ctg ccc tat ggc ggc gtc gtc aaa
Lys Asp Ala Ala Leu Arg Thr Tyr Leu Pro Tyr Glu Ala Ala Leu Lys
85 90 95

cgc gag atc ggc tcc gtt gcc ggg aag atg cat atc ggg cgc agt cgc
Arg Glu Ile Gly Ser Val Ala Gly Lys Met His Ile Gly Arg Ser Arg
100 105 110

aac gac ctc gcc aat gcc ggt aaa cgc atg ttc ctg gct gac cag ctg
Asn Asp Leu Ala Asn Ala Gly Lys Arg Met Phe Leu Arg Asp Gln Leu
115 120 125

ctg cgc acc gtc gag gct gtg atc gca ttg cgc gag gca gtc gtc acc
Leu Arg Thr Val Glu Ala Val Ile Ala Leu Arg Glu Ala Val Val Thr
130 135 140

aag gcc gcc gac cat ctc gac aac gtg atg gtc gtc tac acc cag cgc
Lys Ala Ala Asp His Leu Asp Thr Val Met Val Val Tyr Thr Gln Arg
145 150 155 160

aag gag gcc cag ctc gtc aac cgc cat tac cta atg gcg atc agc
Lys Glu Ala Gln Pro Ile Thr Leu Gly His Tyr Leu Met Ala Ile Ser
165 170 175

gaa aat ctg ggc aag aac ctc gcc cgc tat cgc gag ctc cat ccg cgc
576
Glu Asn Leu Gly Lys Asn Leu Ala Arg Tyr Arg Glu Leu His Pro Arg
 180 185 190

atc aac caa tgt ccc ctc ggc gcc gct gcc acg ggc acg ggc tgg
 Ile Asn Gln Cys Pro Leu Gly Ala Ala Ala Thr Ala Gly Thr Gly Trp
 195 200 205

ccg ctc gat cgc gac cgc acc gca gca ctc ctg gac gac ctg ggt ttc cac ggg ctc
 Pro Leu Asp Arg Asp Arg Thr Ala Ala Leu Leu Gly Phe His Gly Leu
 210 215 220

gtc gtc aac agc atc gag ggc gtg gcc ggc tgg gac cac gtc ggc gag Val Val Asn Ser Ile Glu Gly Val Ala Gly Val Ala Glu
 225 230 235 240

ttc gcc ttc gac aat ggc gtc ttc ctc agc ggc ctc agc cgc ctg gct
 Phe Ala Phe Asp Ala Val Phe Leu Ser Gly Leu Ser Arg Leu Ala
 245 250 255

tcc gag atc cag ctc tgg agc acg gac gag tat cag atg ggc gaa ctc
 Ser Glu Ile Gln Leu Trp Ser Thr Asp Glu Tyr Gln Met Ala Glu Leu
 260 265 270

gac tcc gcc ttc gcc ggc acc agc agc atc atg ccg cag aag aaa aac
 Asp Ser Ala Phe Ala Gly Thr Ser Ser Ile Met Pro Glu Gln Lys Lys Asn
 275 280 285

ccg gat tcc ctg gag cgc agc cgg aag gcc gcc ttc ggc ggc atg ggg
 Pro Asp Ser Leu Glu Arg Ser Arg Lys Ala Ala Phe Ala Al a Met Glay
 912

7/12
<table>
<thead>
<tr>
<th></th>
<th>290</th>
<th>295</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ccg ctg gtc gcc atc ctc acc tct ctc aat ggt atc gag tac cag tac</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pro Leu Val Ala Ile Leu Thr Ser Leu Asn Gly Ile Glu Tyr Gln Tyr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>305</td>
<td>310</td>
<td>315</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td>agc gcc gcc agg gtc gag ctc gaa ccg cga tcc atc gat gcg ctg atc</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ser Ala Ala Arg Val Glu Leu Glu Pro Arg Ser Ile Asp Ala Leu Ile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>325</td>
<td>330</td>
<td>335</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gcg gcc acc cac gcg atg acg ggc gtc gtg cgg acg ctt cat ccc aac</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ala Ala Thr His Ala Met Thr Gly Val Val Arg Thr Leu His Pro Asn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>345</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td></td>
<td>aag gag cag atg ctg cgc tat gcg gca gag aac tac gcc acc atg acc</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lys Glu Gln Met Leu Arg Tyr Ala Ala Glu Asn Tyr Ala Thr Met Thr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>355</td>
<td>360</td>
<td>365</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gac ctg acc gac ctg ctc gtc cgt cgc atc ggc atc gac tat cgc gag</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Asp Leu Thr Asp Leu Leu Val Arg Arg Ile Gly Ile Asp Tyr Arg Glu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>370</td>
<td>375</td>
<td>380</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gcc cat gag atc gtg gcc cgc gtc gtg atg acg gcg atc gag cgc gcc</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ala His Glu Ile Val Ala Arg Val Val Met Thr Ala Ile Glu Arg Gly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>385</td>
<td>390</td>
<td>395</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>atc aag gcc aac gcc atc gga ctg gag ctc gtc gag cag gag gcc gcg gtc</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ile Lys Ala Asn Ala Ile Gly Leu Asp Leu Val Gln Glu Ala Ala Val</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.405</td>
<td>.410</td>
<td>.415</td>
<td></td>
</tr>
</tbody>
</table>

8/12
gag cag acg ggc aac cgg atc gag atc ggt gcc gac atc gcc gat Ala Gln Thr Gly Asn Arg Ile Glu Ile Gly Ala Ala Asp Ile Ala Asp 420 425 430

gcg ctc gat ccg gtt cag aac gtc gcc cgt cgc aag gcc agg gcc atg Ala Leu Asp Pro Val Gln Asn Val Ala Arg Arg Lys Gly Arg Gly Met 435 440 445

ccc gcg ccc gaa tcc gtc agg gcc gcc atc gcg gac ggc cgt cag gaa Pro Ala Pro Glu Ser Val Arg Ala Ala Ile Ala Glu Ala Arg Gln Glu 450 455 460

ttg gag gcc gcg aag gcc tgt cta gag gcg gag cgg cgc gcc ggg ctg gcc Leu Asp Ala Asp Lys Ala Trp Leu Glu Asp Arg Arg Ala Gly Leu Ala 465 470 475 480

gat gcg gat gcg ggc ctg gag gag gcg gtt gcc gcg atc gcc acc tga Asp Ala Asp Ala Ala Leu Glu Glu Ala Val Ala Gly Ile Thr Thr 485 490 495

<210> 3
<211> 23
<212> DNA
<213> Artificial Sequence

<220>

9/12
Description of Artificial Sequence: synthetic DNA

modified base
6
i

modified base
9
i

modified base
18
i

3
atgacnccnc ayaayccnga ygc

4

35

DNA

Artificial Sequence

modified base
15
i
modified base
18
i

modified base
24
i

modified base
27
i

ccdatytgca tytnccngc racnganccd atytc

5
31
DNA
Artificial Sequence

Description of Artificial Sequence:synthetic DNA

cgccatggcc ccgataacc cagatccac
6
28
DNA
Artificial Sequence

Description of Artificial Sequence: synthetic DNA

6
aaacaagctt cgctatggct atcccttc 28
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
 Int.Cl: C12N15/00, C12P13/02, C12N9/80, C12N1/15, C12N1/19, C12N1/21, C12N5/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 Int.Cl: C12N15/00, C12P13/02, C12N9/80, C12N1/15, C12N1/19, C12N1/21, C12N5/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
 SwissProt/PIR/Geneseq, Genbank/EMBL/DDBJ/GenSeq,
 CAPLUS/MEDLINE/BIOSIS/WPIDS (STR)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 845536 A2 (Nitto Chemical Industry Co., Ltd.), 03 June, 1998 (03.06.98),</td>
<td>1,2,14-17, 50-53</td>
</tr>
<tr>
<td>A</td>
<td>Cited in the description; particularly, claims, Seq.ID.No.1, 2 & JP 10-210984 A & US 6168940 B1</td>
<td>3-13,18-49</td>
</tr>
<tr>
<td>X</td>
<td>EP 927762 A2 (Mitsubishi Rayon Co., Ltd.), 07 July, 1999 (07.07.99),</td>
<td>1,2,14-17, 50-53</td>
</tr>
<tr>
<td>A</td>
<td>Cited in the description; particularly, claims, Seq.ID.No.1, 2 & JP 11-196882 A & US 6403508 A</td>
<td>3-13,18-49</td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of Box C. ☐ See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"&" document member of the same patent family

Date of the actual completion of the international search 17 June, 2004 (17.06.04)

Date of mailing of the international search report 06 July, 2004 (06.07.04)

Name and mailing address of the ISA/Telephone No.
 Japanese Patent Office: Authorized officer

Facsimile No.

Form PCT/ISA/210 (second sheet) (January 2004)
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
国際調査報告

国際出願番号 PCT/JP2004/007226

A. 発明の属する分野の分類（国際特許分類（IPC））
 Int.Cl. C12N15/00, C12P13/02, C12N9/80, C12N1/15, C12N1/19, C12N1/21, C12N5/00

B. 調査を行った分野
 調査を行った最小限資料（国際特許分類（IPC））
 Int.Cl. C12N15/00, C12P13/02, C12N9/80, C12N1/15, C12N1/19, C12N1/21, C12N5/00

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）
SwissProt/PIR/Geneseq
Genbank/EMBL/DDBJ/GeneSeq
CAPLUS/MEDELINE/BIOSIS/WPIDS(STN)

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリー＊</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 845536 A2 (Nitto Chemical Industry Co., Ltd.)</td>
<td>1, 2, 14-17, 50-53</td>
</tr>
<tr>
<td>-</td>
<td>1998.06.03, 明細書中に引用、特に請求の範囲及びSEQ ID NO 1, 2参照</td>
<td>3-13, 18-49</td>
</tr>
<tr>
<td>A</td>
<td>& JP 10-210984 A & US 6168940 B1</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>EP 927762 A2 (Mitsubishi Rayon Co., Ltd.)</td>
<td>1, 2, 14-17, 50-53</td>
</tr>
<tr>
<td>-</td>
<td>1999.07.07, 明細書中に引用、特に請求の範囲及びSEQ ID NO 1, 2参照</td>
<td>3-13, 18-49</td>
</tr>
</tbody>
</table>

C欄の続きにも文献が挙げられている。

パテントファミリーに関する別紙を参照。

＊ 引用文献のカテゴリー
 「A」：特に関連のある文献ではなく、一般的な技術水準を示すもの
 「B」：国際出願前の公開または特許であるが、国際出願日後、しくは特許を取得する際に引用される文献（理由付）
 「C」：国際出願前の出願または特許であるが、国際出願日後、しくは特許を取得する際に引用される文献（理由付）
 「D」：国際出願前の出願または特許であるが、国際出願日後、しくは特許を取得する際に引用される文献（理由付）
 「E」：国際出願前の出願または特許であるが、国際出願日後、しくは特許を取得する際に引用される文献（理由付）
 「F」：団体の名称、使用、展示等に言及する文献
 「G」：国際出願前の出願または特許であるが、国際出願日後、しくは特許を取得する際に引用される文献（理由付）
 「H」：国際出願前の出願または特許であるが、国際出願日後、しくは特許を取得する際に引用される文献（理由付）
 「I」：国際出願前の出願または特許であるが、国際出願日後、しくは特許を取得する際に引用される文献（理由付）
 「J」：国際出願前の出願または特許であるが、国際出願日後、しくは特許を取得する際に引用される文献（理由付）
 「K」：国際出願前の出願または特許であるが、国際出願日後、しくは特許を取得する際に引用される文献（理由付）
 「L」：国際出願前の出願または特許であるが、国際出願日後、しくは特許を取得する際に引用される文献（理由付）
 「M」：国際出願前の出願または特許であるが、国際出願日後、しくは特許を取得する際に引用される文献（理由付）
 「N」：国際出願前の出願または特許であるが、国際出願日後、しくは特許を取得する際に引用される文献（理由付）
 「O」：国際出願前の出願または特許であるが、国際出願日後、しくは特許を取得する際に引用される文献（理由付）
 「P」：国際出願前の出願または特許であるが、国際出願日後、しくは特許を取得する際に引用される文献（理由付）

国際調査を完了した日 17. 06. 2004

国際調査報告の発送日 06. 7. 2004

国際調査機関の名称及び住所
日本国特許庁（ISA／JP）
東京都千代田区霞が関三丁目4番2号

特許庁審査官（権限のある職員）
新留 豊

電話番号 03-3581-1101 内線 3448

様式 PCT/ISA/210（第2ページ）（2004年1月）
<table>
<thead>
<tr>
<th>ページ</th>
<th>名前</th>
<th>件名</th>
<th>要約</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Giver, L. et al.</td>
<td>"Directed evolution of a thermostable esterase"</td>
<td>要約参照</td>
</tr>
</tbody>
</table>