
USOO5974427A

United States Patent (19) 11 Patent Number: 5,974,427
Reiter (45) Date of Patent: *Oct. 26, 1999

54 METHOD AND COMPUTER SYSTEM FOR 5,170,480 12/1992 Mohan et al. 707/201
IMPLEMENTING CONCURRENT ACCESSES 5,280,612 1/1994 Lorie et al. 707/8
OF A DATABASE RECORD BY MULTIPLE 5,369,757 11/1994 Spiro et al. 395/182.17
USERS 5,404,502 4/1995 Warner et al. 395/182.18

5,410,697 4/1995 Baird et al. 711/152
5,414,840 5/1995 Rangarajan et al. 707/201

75 Inventor: Allen Reiter, Haifa, Israel 5,642,503 6/1997 Reiter .. 707/8
73 Assignee: Microsoft Corporation, Redmond, 5,742,343 4/1998 Haskell 348/415

Wash. Primary Examiner Paul V. Kulik
c: - - - is- Attorney, Agent, Or Firm-Schwegman, Lundberg,
* Notice: Rplent is Subject to a terminal dis Woessner & Kluth, PA.

57 ABSTRACT
21 Appl. No.: 08/856,494 A method and computer System for implementing concur
22 Filed: May 14, 1997 rent edits of a database record by a plurality of users is

O O provided. The preferred embodiment allocates a fixed
Related U.S. Application Data amount of Storage Space in the computer System's main

memory for each of the plurality of users. The fixed amount
63 Continuation of application No. 08/168,808, Dec. 15, 1993, of Storage Space is for Storing versions of the record created

Pat. No. 5,642,503. as a result of the user modifying the record. In response to
51 Int. Cl. G06F 17/30 an acceSS request for the record by one of the plurality of
52 U.S. Cl. .. 7071203 users, the preferred embodiment determines whether the
58) Field of Search 707/202, 203, user Should be given access to the record itself or to one of

707/201; 395/712 the versions of the record, if any exist. When the user
modifies the record to create a version of the record, the

56) References Cited preferred embodiment stores the version of the record within
the fixed amount of Storage Space allocated to the user.

U.S. PATENT DOCUMENTS

5,151,988 9/1992 Yamagishi 707/8 36 Claims, 12 Drawing Sheets

Start

00

00S

Set Correct wersion =
PRRccard)

Set current Record =
PTRON.cxlversion)

vSet Correct versioi =
Current Record

Rcturi Set Current Record =
PTR (Next Wersion)

U.S. Patent Oct. 26, 1999 Sheet 1 of 12 5,974,427

100

Database Server

Version Store

Secondary Memory

Fig. I

U.S. Patent Oct. 26, 1999 Sheet 2 of 12 5,974,427

106

201 105

Version 4

Version 2
Version 1

Fig. 2

301

Address of Commit Forward Backward

30

Fig. 3

U.S. Patent Oct. 26, 1999 Sheet 3 of 12 5,974,427

400

201

Node 2 - User 1 - T?
Data

Node 2 - User 2 - T7
Data

Node 2 - User 3 - T6
Data

20

Node 2 - User 2 - Tl
Data

204

5

Fig. 4

5,974,427 U.S. Patent

Z J9S(n - Z apoN.

ç (81)

9 (81,1

5,974,427 Sheet S of 12 U.S. Patent Oct. 26, 1999

1% (SN
Yoo

2ny

[09

as Nd

[02

U.S. Patent Oct. 26, 1999 Sheet 6 of 12 5,974,427

704

502

203

Node 2 - User 2 - T7-Data
602

Node 6 - User 2 - T6-Dat Oce Se 22 604

Node 6- 2 - T4 -Dat OC User 2 605

Node 6 - User 2 - T3-Data
606

705 Node 6 - User 2 - T2 -Data
205

D- 700

Node 2 - User 2 - T1 -Data

Backward Forward Youngest
s Link 9 Link Version

701 703
706

Fig. 7

5,974,427 Sheet 7 of 12 Oct. 26, 1999 U.S. Patent

`s | eieci-91 - græsn-zºpoN

— !

U.S. Patent Oct. 26, 1999 Sheet 8 of 12 5,974,427

T = Begin Time of
901

Requesting
Transaction

902 Determine
Location of

Correction Version
for this

Transaction

903

Correct version
in database?

904

ommit time
of correct version

before T?
Return(No)

N

Y

Return(Yes)

Fig. 9

U.S. Patent Oct. 26, 1999 Sheet 9 of 12 5,974,427

1001
Access Selected

Record in Database

Set Correct Version =
PTR(Record) Version Flag Set?

1007

Set Current Record =
PTR(Record)

Access Hash Table

1007

Fig. 10A

U.S. Patent Oct. 26, 1999 Sheet 10 of 12 5,974,427

Set Current Record =
PTRONext Version)

10 15
Access PTR Stored in

Current Record
Bookmark of
C R Matches?

Set Correct Version =
Current Record

Set Current Record =
PTR (Next Version)

User ID

of C R = User ID
of Trans?

C R Commit
Time > Trans.
Start Time?

Fig. 10B

U.S. Patent Oct. 26, 1999 Sheet 11 of 12 5,974,427

Scan UIBS to
Determine Begin
Time of Oldest
Uncommitted
Transaction

1 101

Select Next UIB,
Starting With the First

Follow Pointer
Stored In UIB to
Current Bucket

Set Current Version =
Oldest Version. In
Current Bucket

Fig. IIA

U.S. Patent Oct. 26, 1999 Sheet 12 of 12 5,974,427

Commit
Time of Update Doubly Linked

CurrentVersion < Pointers. In Version Begin Time
Oldest Chain To Bypass

Uncommitted
Transactio

Discarded Versions

Free Current Bucket;
Mark Current Version Update Doubly-Linked

As Discarded Bucket Chain

Follow Current
Versions Backward
Link to Next Younger

Version; Version. In Current

Current
Version's

Backward Link =
Null? Set Current Version =

NextVersion

Update Doubly Linked 1125
Pointers. In Version
Chain to Bypass

Discarded Versions

Fig. IIB

5,974,427
1

METHOD AND COMPUTER SYSTEM FOR
IMPLEMENTING CONCURRENT ACCESSES
OF A DATABASE RECORD BY MULTIPLE

USERS

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation of U.S. patent applica
tion Ser. No. 08/168,808, filed Dec. 15, 1993, now U.S. Pat.
No. 5,642,503.

TECHNICAL FIELD

This invention relates generally to file management, and
more particularly, to the management of database records
that are accessible to multiple users.

BACKGROUND OF THE INVENTION

A database is a collection of related records Stored on a
computer System. Often times, these records are accessible
to multiple users (both people and computer programs) at
the same time. A data integrity problem occurs when mul
tiple users are concurrently attempting to access or modify
a particular database record. If a database report is run while
users are executing update transactions on records in the
database, then the update transactions may cause the data to
change, resulting in inconsistencies in the database report.
For example, if database records are used to represent
accounts at a bank and a user has multiple accounts at the
bank, when the user transferS funds from one account to
another account, a Subtraction of funds from one record and
an addition of funds to the other record must occur. If the
bank is running an account balance report at the same time
the user is transferring funds, and the report reads one record
before the Subtraction occurs and the other record after the
addition occurs, then the user's total account value will be
Wrong.

There are several prior art solutions to this problem. One
Solution is to Simply lock the database and not allow any
updates while the report is being generated. This Solution is
inadequate because it limits the accessibility of the records
in the database. Another prior art Solution is to record the
Start time of the report and the time of each record's last
update. If the report encounters a record with an update time
that is after the start time of the report, then the report aborts
and Starts over. This Solution is undesirable because it
restricts reports to being generated when there is no activity
in the database. Yet another Solution maintains versions of
records. A version is a copy of a record made immediately
before the start of a modification of that record. Versions of
records are maintained in case the record itself is inacces
Sible for Some reason (e.g., Someone is currently editing the
record). Thus, a report may run to completion because the
report may access a version instead of the record. One
disadvantage of this Solution is that all of the versions for a
record are Stored with the database record. Because the
number of versions a particular record may have is
unbounded, the database may become too large and cause
performance of the database to Suffer.

SUMMARY OF THE INVENTION

A preferred embodiment of the present invention provides
a computer System for managing records accessible to a
plurality of entities. The computer System includes a main
memory, a Secondary memory, and a central processing unit.
The records are Stored in the Secondary memory and Ver

15

25

35

40

45

50

55

60

65

2
Sions of the record are Stored in the main memory. In the
preferred embodiment, the main memory is logically Sub
divided into a plurality of fixed size Storage blockS Such that
one Storage block is allocated for each of the plurality of
entities So that versions created by an entity are Stored
together in the Storage block allocated to the entity. Each
record Stored in the Secondary memory includes a version
indicator for indicating whether versions of the record are
Stored in the main memory. The database Server determines
in response to an access request for one of the records by one
of the plurality of entities whether the entity should have
access to the record as Stored in the Secondary memory or to
a version of the record as Stored in the main memory.

In the preferred embodiment, each version Stored in the
main memory includes an address field for Storing the
location in the Secondary Storage of the record for which the
version was created, an entity identification field for Storing
an identifier of the entity that created the version, a commit
time field for Storing when the version was committed, a
forward link field for Storing a location in the main memory
of a next version that has the Same value in the address field
as the version, a backward link field for Storing a location in
the main memory of a previous version that has the same
value in the address filed as the version, and a data field for
Storing a copy of the record.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a computer System for
practicing the preferred embodiment of the present
invention, including a main memory, a central processing
unit, and a Secondary memory, the Secondary memory
Storing a database Server, and the main memory Storing a
version Store and a database.

FIG. 2 is a block diagram of the database and the version
store of FIG. 1 in accordance with the preferred embodiment
of the present invention.

FIG. 3 is a block diagram of an entry in the version store
of FIG. 1, the entry including an address field, a user
identification field, a commit time field, a forward link field,
a backward link field, and a data field in accordance with the
preferred embodiment of the present invention.

FIG. 4 is a block diagram of a version chain, including a
node and multiple versions in accordance with the preferred
embodiment of the present invention.

FIG. 5 is a block diagram of the database and the version
store of FIG. 1, the version store being logically divided into
a plurality of buckets in accordance with the preferred
embodiment of the present invention.

FIG. 6 is a block diagram of the database and the version
store of FIG. 1, the database including two nodes and the
version Store being logically divided into a plurality of
buckets and including a version chain for each of the two
nodes in accordance with the preferred embodiment of the
present invention.

FIG. 7 is a block diagram of one of the buckets of FIG.
6 in accordance with the preferred embodiment of the
present invention.

FIG. 8 is a block diagram of a hash table and a user
identification table, in addition to the database and version
store as shown in FIG. 6.

FIG. 9 is a flow diagram of a method used in the preferred
embodiment of the present invention to determine whether
a user is permitted to modify a particular record in the
database.

FIGS. 10A-10B comprise a detailed flow diagram of the
method used in the preferred embodiment to access the
correct version of a Selected record.

5,974,427
3

FIGS. 11A-11B comprise a detailed flow diagram of the
method used in the preferred embodiment to remove unnec
essary versions and buckets Stored in the version Store of
FIG. 1.

DETAILED DESCRIPTION OF THE
INVENTION

A preferred embodiment of the present invention provides
a method and computer System for implementing concurrent
accesses to a database record by multiple users. Either a
perSon or a computer program may be considered a user. In
the preferred embodiment, versions of a record are main
tained apart from the database on a per user basis. In other
words, all versions created by a particular user are grouped
together, rather than all versions for a particular record being
grouped together. Each version contains, among other
things, a "before’ image of a record. The before image is a
copy of the record before the Start of a modification trans
action.

FIG. 1 is a block diagram of a computer system 100 for
practicing the preferred embodiment of the present inven
tion. This computer system 100 is merely illustrative and
should not be viewed as restricting the present invention.
Those skilled in the art will know other suitable computer
System configurations for practicing the present invention.
The computer system 100 comprises a main memory 101, a
central processing unit (CPU) 102, and a secondary memory
103 such as a disk storage system. A database server 104 and
a version store 105 reside in the main memory 101. A
plurality of users 110, 111, 112, and 113 interact with the
computer system 100. A database 106 is stored in the
secondary memory 103. Records in the database 106 are
typically Stored as nodes on a page. When access to a
particular record is needed, a common optimization is to
transfer an entire page of records to the main memory 101.

FIG. 2 is a block diagram of the database 106 and a
portion of the version store 105. As mentioned previously,
records in the database 106 are stored as nodes in the
secondary memory 103 (FIG. 1). A bit in the data structure
of each node alerts the database server 104 (FIG. 1) to the
possible existence of different versions. The version store
105 keeps track of versions of a record. The version store
105 may be considered a stack-like structure in which
versions are added to the top of the Stack. For example, the
node 201 has a first version 202, a second version 203, a
third version 204, and a fourth version 205 stored in the
version Store 105.

There are essentially two kinds of entries in the version
store 105: committed and uncommitted. Committed entries
represent a version of data which has been changed in the
database. The version is temporarily maintained in the
version Store 105 in case an existing transaction needs to
look at it. An existing transaction is one that began before the
data was updated. Committed entries are eventually dis
carded by a clean-up process. The clean-up proceSS used by
the preferred embodiment of the present invention is
described below in more detail with reference to FIGS.
11A-11B.

Uncommitted entries represent data that is in the proceSS
of being changed. Because the entries have not yet been
committed, they form in effect an “undo' log. If a user aborts
a modification transaction, the uncommitted entry may be
copied back to the database. When an uncommitted entry
exists for a particular user, that user Sees the data as it exists
in the database, but all other users see entries Stored in the
version Store. Data in an entry in the version Store may not
be modified; only data in a record in the database may be
modified.

15

25

35

40

45

50

55

60

65

4
FIG. 3 is a block diagram of an entry 301 in the version

store 105. The entry 301 comprises an address field 302, a
user identification field 303, a commit time field 304, a
forward link field 305, a backward link field 306, and a data
field 307. The address field 302 contains the location of a
corresponding record in the database 106. Preferably, the
location of any record is represented by a page identifier and
an offset to indicate the location of the record on the page.
The user identification field 303 indicates which user caused
the version to be created. The commit time field 304
indicates when the entry was committed. A user may undo
or roll back an entry at any point in time before commit time.
The forward link field 305 and the backward link field 306
contain pointers to other entries (i.e. versions) for the same
record. The forward link field 305 contains a pointer to the
next older entry (according to commit time) and the back
ward link field 306 contains a pointer to the next youngest
entry (according to commit time). This linked list of entries
in the version store 105 is referred to as a version chain. The
data field 306 contains a copy of the record before begin
time of the modification transaction.

FIG. 4 is a block diagram of a version chain 400,
including the node 201 and the versions 202, 203, 204, and
205. As described with reference to FIG. 2, the node 201 is
stored in the database 106 in the secondary memory 103,
while the versions 202, 203, 204, and 205 are entries in the
version store 105 stores in the main memory 101. Version
202 was created by “USER 1” and is uncommitted
(designated in FIG. 4 as “T”); version 203 was created by
“user 2 and was committed at time “T7'; version 204 was
created by “USER 3” and was committed at time “T6”;
version 205 was created by “USER 2' and was committed
at time “T1'. The versions 202, 203, 204, 205 are ordered
within the version chain 400 by their commit time. Because
version 202 is uncommitted, it is treated as the youngest
version in the version chain.

In the preferred embodiment of the present invention,
version chains for different nodes are Stored in the version
store 105 on a per user basis. FIG. 5 is a block diagram of
the database 106 and the version store 105, the version store
105 being logically divided into a plurality of buckets 501,
502, and 503. In the preferred embodiment, a bucket is a
contiguous set of pages (e.g., four pages, or 16 KB). A
bucket logically corresponds to a segment in 286
architecture, and may be implemented as Such. Although
Some operating Systems may treat pages of a bucket
individually, for purposes of this detailed description, a
bucket is a unit which is either all in memory or all paged
out. One skilled in the art will appreciate that a bucket may
consist of any number of pages.

In FIG. 5, three buckets are shown for illustrative pur
poses only. The amount of buckets are restricted only by the
amount of available main memory and the number of users
accessing the database 106. The version indicator 206 stored
in the node 201 contains a value of “1” to indicate that
versions of node 201 may exist in the version store 105.
Version 202, created by USER 1, is stored in the bucket 501
allocated to USER 1. Versions 203 and 205, created by
USER 2, are stored in the bucket 502 allocated to USER 2.
Version 204, created by USER3, is stored in he bucket 503
allocated to USER3.
When versions exist for multiple nodes, the versions are

Stored in the appropriate bucket as they are created. FIG. 6
is a block diagram of the database 106 including nodes 201
and 601, and the version store 105 including version chains
for the nodes 206 and 601. The version chain for node 601
includes versions 602, 603, 604, 605, and 606. Version 602

5,974,427
S

was created by “USER 2' and was committed at time “T6';
version 603 was created by “USER 3' and was committed
at time “T5”; version 604 was created by “USER 2' and was
committed at time “T4'; version 605 was created by “USER
2” and was committed at time "T3'; version 606 was created
by “USER2” and was committed at time “T2". Note that the
versions are ordered in each bucket based upon the commit
time of the version, with the oldest version being stored at
the bottom of the bucket and the youngest version being
Stored at the top.

The preferred embodiment manages space within a bucket
as a combination of a Stack and a linear queue. Versions are
always added to the top of the bucket like a Stack. Space may
be freed from the top of the bucket like in a stack or from
the bottom of the bucket like in a queue. Occasionally, free
Space may develop in the middle of a bucket, but only free
Space at the top of a bucket is ever reused. When a bucket
has no more free Space, a new bucket is allocated for the user
and added to the top of the bucket chain. Entirely empty
buckets are released from the bucket chain to the free bucket
chain.

Versions created by a user are kept together in one or more
buckets. Versions for different concurrent users are kept in
different buckets. This enables entire buckets to be freed for
old committed transactions and maintain a degree of locality
of reference. A version is created whenever a record is
modified for the first time in a transaction. Space for the
version is allocated from the top of a user's current bucket
and the version is formatted and added to the version chain
for the record.

Storing versions in the version store 105 in the main
memory 101 may potentially take up a considerable amount
of Space. Keeping this in mind, it is desirable to keep
processing overhead for version management to a minimum.
The preferred embodiment uses the underlying operating
System's normal paging Strategy and memory mapping
hardware to manage the version Store.

FIG. 7 is a block diagram of bucket 502 allocated to
USER 2 in accordance with the preferred embodiment of the
present invention. In addition to versions 203,205, 602, 604,
605, and 606, the bucket 502 contains a header area 700. The
header area 700 contains a backward link area 701, a
forward link area 702, and a youngest version area 703. The
backward link area 701 contains a pointer to a previous
bucket allocated to USER 2. For purposes of this example,
the bucket 502 is the first bucket assigned to USER 2,
therefore the backward link area 701 contains a null value.
The forward link area 702 contains a pointer 705 to another
bucket 704. The bucket 704 is shown with dashed lines
because it has not yet been allocated. The youngest version
area 703 contains a pointer 706 to the youngest version
stored in the bucket 502. In this example, version 203 with
a commit time of “T7 is the youngest version stored in
bucket 502.

Initially, all buckets may be linked together in a “free
bucket” list. A bucket is taken from the free bucket list and
assigned to a user as individual buckets are filled with
versions. The number of buckets in the free bucket list may
be specified as a System initialization parameter.

In the preferred embodiment, two methods exits for
searching the version store 105. The version store may be
searched by the bookmark of a node, or by the user identifier
of the user who modified the node. A bookmark in this
context is Some Sort of location indicator. In the preferred
embodiment of the present invention, a bookmark consists
of five bytes: one byte to Store a database location, three

15

25

35

40

45

50

55

60

65

6
bytes to Store a page location within the database, and one
byte to Store a node location within the page. To facilitate
Searching by the bookmark, the preferred embodiment uti
lizes a hash table containing pointers to the youngest version
in each version chain. To facilitate Searching by the user
identifier, the preferred embodiment utilizes a user identifi
cation table containing pointers to the beginning of a bucket
chain for each user.

FIG. 8 is a block diagram of a hash table 801 and a user
identification table 802, in addition to the database 106 and
version store 105 as shown in FIG. 6. As mentioned
previously, each node in the database 106 contains a version
indicator to indicate whether the versions may exist for a
node. In the preferred embodiment, the version indicator is
not an absolute indicator as to whether versions may exist,
rather, it only indicates the possibility of versions. When the
version indicator indicates that a record may have versions,
an entry in the hash table 801 corresponding to the record is
accessed.

To access an entry in the hash table 801, the low order
byte of a node's page identifier is XORed to the offset of the
node in the page. This hash algorithm is used because using
the page offset itself as an indeX to the hash table makes poor
use of randomization as most pages contain relatively few
records. Conversely, using the page identifier for hashing is
not efficient for routines which require access to many
records on the same page. Note that different records from
the same page always appear in different version chains.
The user information table 802 contains three user infor

mation blocks 803, 804, and 805. Each of these user
information blocks contain a begin time for the oldest
uncommitted transaction for a user, and a pointer to the first
bucket in the user's bucket chain. For example, the user
information block 803 contains a begin time “T4” and a
pointer to the bucket 501 assigned to USER 1.

Referring to FIG. 8, the node 201 in the database 106
contains a version indicator 206. Because the version indi
cator 206 is set to “1”, the bookmark for the record 201 is
hashed to access the entry 802 in the hash table 801. The
entry 802 in the hash table 801 contains a pointer 803 to the
youngest version 202 for the node 201. Because the young
est version 202 was created by USER 2, the version 202 is
Stored in the bucket 501 allocated to USER 2. The version
202 contains a pointer to a next older version 203, which
contains a pointer to a next older version 204, which in turn
contains a pointer to an oldest version 205.
The data structures shown in FIGS. 2-8 are used by the

database server 104 (FIG. 1) to determine whether a user is
permitted to modify a record and to determine which version
of a record a read-only transaction should use.

FIG. 9 is a flow diagram of a method used in the preferred
embodiment of the present invention to determine whether
a user may modify a particular record in the database. A user
may modify a record only if the “correct version” of the
record is currently stored in the database. In step 901 a
variable To is Set equal to the begin time of the user's
modification transaction. Note that the begin time of the
modification transaction is when the entire transaction
begins, not merely when a particular record is accessed. For
a transaction that accesses many different records, the begin
time is the same for each access. In step 902, the database
Server determines the location (i.e., in the database or in the
version Store) of the correct version for the user attempting
to modify the record. The correct version depends upon the
identity of the user and the commit time of the version. The
method used in the preferred embodiment to determine the

5,974,427
7

location of the correct version is explained in detail below
with reference to FIGS. 10A and 10B.

If the correct version is not stored in the database (step
903), then the database server determines that the requesting
user may not edit the record. If the correct version is Stored
in the database (step 903), then the database server deter
mines in step 904 whether the commit time of the correct
version is before To, the begin time of the modification
transaction. If the correct version is Stored in the database
(step 903), and the commit time of the correct version is
before To (step 904), then the database server determines
that the requesting user may edit the record. If the correct
version is stored in the database (step 903), but the commit
time of the correct version is after T (step 904), then the
database Server determines that the requesting user may not
edit the record.

FIGS. 10A-10B comprise a detailed flow diagram of the
method used in the preferred embodiment to access the
correct version of a selected record. In step 1001 the
database Server accesses the Selected record in the database.
In step 1003, the database server determines whether the
version indicator Stored in the Selected record indicates that
the Selected record may have one or more versions. In the
preferred embodiment, the version indicator is a bit that is
Set to 1 to indicate versions may exist, and is Set to 0 to
indicate that versions do not exist. If the database Server
determines in step 1003 that the selected record does not
have any versions, then in step 1005 the database server sets
a variable CORRECT VERSION equal to the database
record. The variable CORRECT VERSION may contain a
pointer to the record Stored in the database, or it may contain
Some indication that the correct version of the record is
Stored in the database.

If the database server determines in step 1003 that ver
sions may exist for the selected record, then in step 1007 the
database server sets a variable CURRENT RECORD equal
to the database record. Similar to the variable CORRECT
VERSION, the variable CURRENT RECORD may con
tain a pointer or Some indicator to keep track of which
record/version in the version chain is currently being exam
ined. In step 1009 the database server accesses an entry in
the hash table corresponding to the Selected record. If the
accessed entry in the hash table contains a null pointer (Step
1011 in FIG. 10B), then in step 1015 the database server sets
the variable CORRECTVERSION equal to the value stored
in the variable CURRENT RECORD.

If the database Server determines that the accessed entry
in the hash table contains Something other than a null pointer
(step 1011), then in step 1013, the database server follows
the pointer Stored in the accessed entry to a version Stored in
the version store. This version is known as "CURRENT
RECORD" (or “C R”). The version pointed to by the
pointer Stored in the hash table is the youngest version
corresponding to the Selected record. Because of the hashing
Scheme used, multiple records may hash to the same version.
In step 1017, the database server determines whether the
bookmark of version pointed to by CURRENTRECORD is
equivalent to the bookmark of the selected record. If the
bookmark of the version pointed to by CURRENT
RECORD is not the same as the bookmark of the selected
record, then in step 1025 the database server follows the
forward pointer stored in the version pointed to by
CURRENT RECORD to the next oldest version in the
version chain. Steps 1011, 1013, 1017, and 1025 are
repeated until either the end of the version chain is found, or
a version is located that has the same bookmark as the
Selected record.

15

25

35

40

45

50

55

60

65

8
If the bookmark of the accessed version is the same as the

bookmark of the Selected record in the database, then in Step
1019 the database server determines whether the user ID of
the acceSS version is equivalent to the user ID of the
requesting user. If the user ID of the accessed version is the
same as the user ID of the requesting user, then in step 1015
the database Server Sets the variable correct version equal to
the value of the variable current record. If the database
server determines that the user ID of the accessed version is
not equivalent to the user ID of the requesting user (Step
1019), then in step 1021 the database server determines
whether the commit time of the accessed version is greater
than the begin time of the modification transaction. This
begin time was previously defined as To. If the database
Server determines that the commit time of the accessed
version is greater than To, then in step 1015 the database
Server Sets the variable correct version equal to the value of
the variable current record. If the database server determines
that the commit time of the accessed version is less than To,
then in step 1023 the database serversets the variable current
record equal to the accessed version. In step 1025 the
database Server examines the forward link Stored in the
accessed version. The proceSS loops back to Step 1011.

FIGS. 11A-11B comprise a detailed flow diagram of the
method used in the preferred embodiment to “clean-up”
unnecessary versions and buckets Stored in the version Store.
In step 1101 the database server scans the user information
table to determine the begin time of the oldest uncommitted
transaction Stored in the version Store. The general idea of
the clean-up process is to discard any versions that have a
commit time that is before the begin time of the oldest
uncommitted transaction for any user. Any versions having
a commit time before the begin time of the oldest uncom
mitted transaction no longer need to be stored in the version
store. The user information blocks stored in the user infor
mation table are accessed one by one and versions are
discarded on a per user basis.

In step 1103 the clean-up routine determines whether any
user information blocks need to be examined. If all user
information blocks have previously been examined, then the
clean-up routine ends. If all user information blockS Stored
in the user information area have not been examined, then in
step 1105 the clean-up routine selects the next user infor
mation block, Starting with the first user information block.

In step 1107, the clean-up routine follows the pointer
Stored in the Selected user information block to a bucket
designated as the current bucket. In step 1109, the clean-up
routine sets a variable (current version) equal to the oldest
version in the current bucket. The oldest version in the
current bucket is stored in the “bottom' of the current
bucket. Continuing on to step 1111 in FIG. 11B, the clean-up
routine determines whether the commit time of the current
version is less than the begin time of the oldest uncommitted
transaction. If the commit time of the current version is leSS
than the begin time of the oldest uncommitted transaction,
then in step 1115 the cleanup routine marks the current
version as discarded. In Step 1117, the clean-up routine
determines whether the current version's backward link
contains a null pointer. If the clean-up routine determines
that the current version's backward link contains a null
pointer, then in Step 1125 the clean-up routine updates the
doubly linked pointers in the version chain to bypass Ver
Sions marked as discarded.

If the clean-up routine determines that the current Ver
Sion's backward link does not contain a null value (Step
1117), then in step 1119 the clean-up routine follows the
current version's backward link to the next version in the

5,974,427
9

version chain, and Sets the variable current version equal to
the next version. In Step 1121 the clean-up routine deter
mines whether the current version is Stored in the current
bucket. If the current version is not stored in the current
bucket, then in Step 1123 the clean-up routine marks the
current bucket as discarded and updates the doubly linked
pointers in the bucket chain. Steps 1111 through 1123 are
repeated until either the commit time of a version is found
to be less than the begin time of the oldest uncommitted
transaction or the end of the version chain is reached.

Although the methods and Systems of the present inven
tion have been described in terms of a preferred
embodiment, it is not intended that the innovation be limited
to this embodiment. Modifications within the spirit of the
invention will be apparent to those skilled in the art. The
Scope of the present invention is defined only by the claims
that follow.

I claim:
1. A method in a computer System for Storing versions of

a record in Storage Space wherein the record is accessible to
a plurality of users, the method comprising the Steps of

a) for each of the plurality of users, allocating a portion of
Storage Space,

b) in response to an update of the record by a first user,
Storing a first version of the record in the portion of the
Storage Space allocated to the first user, the first version
comprising a copy of the record before the record was
updated by the first user; and

c) in response to a Subsequent update of the record by a
Second user, Storing a Second version of the record in
the portion of Storage Space allocated to the Second
user, the Second version comprising a copy of the
record after the record was updated by the first user and
before the record was updated by the Second user.

2. The method of claim 1 wherein the computer system
includes a main memory and wherein the Step of allocating
a portion of Storage Space includes allocating a portion of
memory Space in the main memory.

3. The method of claim 1 wherein the step of storing a first
version of the record includes storing the first version of the
record in a linked list, and wherein the Step of Storing a
Second version of the record includes Storing the Second
version of the record in the linked list, such that the position
of the first and second version within the linked list is
determined by time of update.

4. The method of claim 1 wherein the step of storing a first
version of the record includes storing the first version of the
record in a doubly linked list, and wherein the Step of Storing
a Second version of the record includes Storing the Second
version of the record in the doubly linked list, such that the
position of the first and second versions within the doubly
linked list is determined by time of update.

5. The method of claim 1 including maintaining a user
information table in the Storage Space, the user information
table Storing a pointer to each of the portions of Storage
allocated to the plurality of users.

6. The method of claim 3 wherein the linked list has a
beginning and including maintaining a hash table as an
indeX to the beginning of the linked list.

7. The method of claim 4 wherein the doubly linked list
has a beginning and including maintaining a hash table as an
index to the beginning of the doubly linked list.

8. In a computer System having a storage space, a method
for managing records Stored in a first portion of the Storage
Space and accessible to a plurality of users, the method
comprising the Steps of:

a) allocating respective parts of a second portion of
Storage Space to each of the plurality of users, the

15

25

35

40

45

50

55

60

65

10
respective parts of Storage Space being distinct from
each other and from the first portion;

b) in response to a request for an update of a first record
by a first user, Storing a first version of the record in one
of the parts of the Second portions of Storage space that
is allocated to the first user, the first version including
a copy of the first record at the time of the request;

c) in response to completion of the update of the first
record, replacing the first record with an updated first
record and Storing a time of completion for the update
of the first record in the first version;

d) in response to a request for an update of a second record
by the first user, Storing a Second version of the Second
record in the Second part of the portion of Storage Space
that is allocated to the first user, the Second version
including a copy of the Second record before the Second
record is updated; and

e) in response to completion of the update of the Second
record, replacing the Second record with an updated
Second record and Storing a time of completion for the
update of the Second record in the Second version.

9. The method of claim 8 wherein the step of storing a first
version includes Storing the first version in a linked list and
wherein the Step of Storing a Second version includes Storing
the Second version in the linked list in Such a way that the
first and second versions are ordered within the linked list by
time of completion.

10. A computer System for managing access to a record by
a user comprising:

a Secondary memory for Storing the record;
a version Store for Storing versions of the record edited by

the user, the versions being linked together to form a
Version chain, and each version containing a commit
time indicating when the version was committed;

a hash table containing an entry corresponding to the
record, the entry containing a pointer to the version
chain; and

a database Server for, in response to an acceSS request for
the record at a time To, accessing the entry in the hash
table corresponding to the record, retrieving the pointer
to the version chain from the entry in the hash table, and
traversing the version chain pointed to by the pointer to
locate a version of the record having a commit time
prior to the time To.

11. The computer system of claim 10 wherein a version
indicator is Stored within each record to indicate to the
database Server whether versions of the record are Stored in
the version Store.

12. The computer system of claim 10 wherein the position
of the versions within the version chain is determined by the
commit time of the version.

13. The computer system of claim 10 wherein the version
additionally comprises an address field for Storing the loca
tion in the Secondary Storage of the record, an entity iden
tification field for Storing an identifier of the entity, a link
field for Storing a location in the version Store of a next
version in the version chain, and a data field for Storing a
copy of the record.

14. A computer System for managing access to a record by
a user comprising:

a Secondary memory containing the record;
a version Store containing versions for the user that are

linked together to form a version chain, each version
containing a commit time indicating when the version
was committed to the version Store;

5,974,427
11

a user information block containing an entry correspond
ing to the user, the entry containing a pointer to the
version Store, and

a database Server for, in response to an acceSS request for
a record at a time To, accessing the entry in the user
information block, retrieving a pointer Stored in the
accessed entry in the user information block, and
traversing the versions Stored in the version Store
pointed to by the pointer to locate a version having a
commit time prior to the time To.

15. The computer system of claim 14 wherein a version
indicator is Stored within each record to indicate to the
database Server whether versions of the record are Stored in
the version Store.

16. The computer system of claim 14 wherein the position
of the versions within the version chain is determined by
commit time.

17. The computer system of claim 14 wherein the version
additionally comprises an address field for Storing the loca
tion in the Secondary Storage of the record, a user identifi
cation field for Storing an identifier of the user, a link field
for Storing a location in the version Store of a next version
in the version chain, and a data field for Storing a copy of the
record.

18. In a computer System having a Secondary memory, a
method for managing access to a record by a user, the record
being Stored in the Secondary memory, the method compris
ing the Steps of

Storing versions of the record for the user in a version
Store in Such a way that the versions are linked together
to form a version chain, each version containing a
commit time indicating when the version was commit
ted to the version store;

Storing a pointer to the version Store in an entry corre
sponding to the user in a user information block, and

in response to an access request for the record at a time To,
accessing the entry in the user information block,
retrieving a pointer Stored in the accessed entry in the
user information block, and traversing the versions
Stored in the version Store pointed to by the pointer to
locate a version having a commit time prior to the time
To.

19. The method of claim 18 wherein the step of storing
versions includes Storing a version indicator in the record to
indicate whether versions of the record are stored in the
version Store.

20. The computer system of claim 18, wherein the step of
Storing versions of the record for the user in a version Store
in Such a way that the versions are linked together to form
a version chain includes positioning the versions within the
version chain by commit time.

21. In a computer System having a Secondary memory, a
method for managing access to a record Stored in the
Secondary memory by a user, the method comprising the
Steps of:

Storing versions of the record for the user in a version
Store in Such a way that the versions are linked together
to form a version chain, each version containing a
commit time indicating when the version was commit
ted to the version Store,

Storing a pointer to the version chain in an entry corre
sponding to the record in a hash table; and

in response to an access request for the record at a time To,
accessing the entry in the hash table, retrieving a
pointer Stored in the accessed entry in the hash table,
and traversing the version chain pointed to by the

15

25

35

40

45

50

55

60

65

12
pointer to locate a version having a commit time prior
to the time To.

22. The method of claim 21 wherein the step of storing
versions includes Storing a version indicator in the record to
indicate whether versions of the record are stored in the
version Store.

23. The computer system of claim 21 wherein the step of
Storing versions of the record for the entity in a version Store
in Such a way that the versions are linked together to form
a version chain includes positioning the versions within the
version chain by commit time.

24. A computer-readable medium holding computer
executable instructions for performing a method in a com
puter System for Storing versions of a record in Storage Space
wherein the record is, the method comprising the Steps of

a) for each of the plurality of users, allocating a portion of
Storage Space,

b) in response to an update of the record by a first user,
Storing a first version of the record in the portion of the
Storage Space allocated to the first user, the first version
comprising a copy of the record before the record was
updated by the first user; and

c) in response to a Subsequent update of the record by a
Second user, Storing a Second version of the record in
the portion of Storage Space allocated to the Second
user, the Second version comprising a copy of the
record after the record was updated by the first user and
before the record was updated by the Second user.

25. The computer-readable medium of claim 24 wherein
the Step of Storing a first version of the record includes
Storing the first version of the record in a linked list, and
wherein the Step of Storing a Second version of the record
includes Storing the Second version of the record in the
linked list, Such that the position of the first and Second
version within the linked list is determined by time of
update.

26. The computer-readable medium of claim 25 wherein
the linked list has a beginning and including maintaining a
hash table as an indeX to the beginning of the linked list.

27. The computer-readable medium of claim 24 wherein
the Step of Storing a first version of the record includes
storing the first version of the record in a doubly linked list,
and wherein the Step of Storing a Second version of the
record includes Storing the Second version of the record in
the doubly linked list, such that the position of the first and
second versions within the doubly linked list is determined
by time of update.

28. The computer-readable medium of claim 27 wherein
the doubly linked list has a beginning and including main
taining a hash table as an indeX to the beginning of the
doubly linked list.

29. In a computer System having a storage Space, a
computer-readable medium holding computer-executable
instructions for performing a method for managing records
Stored in a first portion of the Storage Space and accessible
to a plurality of users, the method comprising the Steps of:

a) allocating respective parts of a second portion of
Storage Space to each of the plurality of users, the
respective parts of Storage Space being distinct from
each other and from the first portion;

b) in response to a request for an update of a first record
by a first user, Storing a first version of the record in one
of the parts of the Second portions of Storage space that
is allocated to the first user, the first version including
a copy of the first record at the time of the request;

c) in response to completion of the update of the first
record, replacing the first record with an updated first

5,974,427
13

record and Storing a time of completion for the update
of the first record in the first version;

d) in response to a request for an update of a second record
by the first user, Storing a Second version of the Second
record in the Second part of the portion of Storage Space
that is allocated to the first user, the Second version
including a copy of the Second record before the Second
record is updated; and

e) in response to completion of the update of the Second
record, replacing the Second record with an updated
Second record and Storing a time of completion for the
update of the Second record in the Second version.

30. The computer-readable medium of claim 29 wherein
the Step of Storing a first version includes Storing the first
version in a linked list and wherein the Step of Storing a
Second version includes Storing the Second version in the
linked list in Such a way that the first and Second versions are
ordered within the linked list by time of completion.

31. In a computer System having a Secondary memory, a
computer-readable medium holding computer-executable
instructions for performing a method for managing access to
a record by a user, the record being Stored in the Secondary
memory, the method comprising the Steps of:

Storing versions of the record for the user in a version
Store in Such a way that the versions are linked together
to form a version chain, each version containing a
commit time indicating when the version was commit
ted to the version Store,

Storing a pointer to the version Store in an entry corre
sponding to the user in a user information block, and

in response to an access request for the record at a time To,
accessing the entry in the user information block,
retrieving a pointer Stored in the accessed entry in the
user information block, and traversing the versions
Stored in the version Store pointed to by the pointer to
locate a version having a commit time prior to the time
To.

5

15

25

35

14
32. The computer-readable medium of claim 31 wherein

the Step of Storing versions includes Storing a version
indicator in the record to indicate whether versions of the
record are Stored in the version Store.

33. The computer-readable medium of claim 31 wherein
the Step of Storing versions of the record for the user in a
version Store in Such a way that the versions are linked
together to form a version chain includes positioning the
versions within the version chain by commit time.

34. In a computer System having a Secondary memory, a
method for managing access to a record Stored in the
Secondary memory by a user, the method comprising the
Steps of

Storing versions of the record for the user in a version
Store in Such a way that the versions are linked together
to form a version chain, each version containing a
commit time indicating when the version was commit
ted to the version Store;

Storing a pointer to the version chain in an entry corre
sponding to the record in a hash table; and

in response to an access request for the record at a time To,
accessing the entry in the hash table, retrieving a
pointer Stored in the accessed entry in the hash table,
and traversing the version chain pointed to by the
pointer to locate a version having a commit time prior
to the time To.

35. The computer-readable medium of claim 34 wherein
the Step of Storing versions includes Storing a version
indicator in the record to indicate whether versions of the
record are Stored in the version Store.

36. The computer-readable medium of claim 34 wherein
the Step of Storing versions of the record for the entity in a
version Store in Such a way that the versions are linked
together to form a version chain includes positioning the
versions within the version chain by commit time.

