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SYSTEMS AND METHODS FOR TREATING, DIAGNOSING AND
PREDICTING THE OCCURRENCE OF A MEDICAL CONDITION

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This claims priority to U.S. Provisional Application Nos. 61/135,926, filed July
25,2008, 61/135,925, filed July 25, 2008, 61/190,537, filed August 28, 2008,
61/204,606, filed January 7, 2009, and 61/217,832, filed June 4, 2009, all of which are
hereby inborporated by reference herein in their entireties.

FIELD OF THE INVENTION

[0002] Embodiments of the present invention relate to methods and systems for
predicting the occurrence of a medical condition such as, for example, the presence,
recurrence, or progression of disease (e.g., cancer), responsiveness or unresponsiveness
to a treatment for the medical condition, or other outcome with respect to the medical
condition. For example, in some embodiments of the present invention, systems and
methods are provided that use clinical information, molecular information, and/or
computer-generated morphometric information in a predictive model that predicts the risk
of disease progression in a patient. The morphometric information used in a predictive
model according to some embodiments of the present invention may be generated based
on image analysis of tissue (e.g., tissue subject to multiplex immunofluorescence (IF))
and may include morphometric information pertaining to a minimum spanning tree
(MST) and/or a fractal dimension (FD) observed in the tissue or images of such tissue.

BACKGROUND OF THE INVENTION

[0003] Physicians are required to make many medical decisions ranging from, for
example, whether and when a patient is likely to experience a medical condition to how a
. patient should be treated once the patient has been diagnosed with the condition.
Determining an appropriate course of treatment for a patient may increase the patient’s
chances for, for example, survival, recovery, and/or improved quality of life. Predicting
the occurrence of an event also allows individuals to plan for the event. For example,
predicting whether a patient is likely to experience occurrence (e.g., presence, recurrence,
or progression) of a disease may allow a physician to recommend an appropriate course

of treatment for that patient.
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[0004] When a patient is diagnosed with a medical condition, deciding on the most
appropriate therapy is often confusing for the patient and the physician, especially when
no single option has been identified as superior for overall survival and quality of life.
Traditionally, physicians rely heavily on their expertise and training to treat, diagnose and
predict the occurrence of medical conditions. For example, pathologists use the Gleason
scoring system to evaluate the level of advancement and aggression of prostate cancer, in
which cancer is graded based on the appearance of prostate tissue under a microscope as
perceived by a physician. Higher Gleason scores are given to samples of prostate tissue
that are more undifferentiated. Although Gleason grading is widely considered by
pathologists to be reliable, it is a subjective scoring system. Particularly, different
pathologists viewing the same tissue samples may make conflicting interpretations.
[0005] Current preoperative predictive tools have limited utility for the majority of
contemporary patients diagnosed with organ-confined and/or intermediate risk disease.
For example, prostate cancer remains the most commonly diagnosed non-skin cancer in
American men and causes approximately 29,000 deaths each year [1]. Treatment options
include radical prostatectomy, radiotherapy, and watchful waiting; there is, however, no
consensus on the best therapy for maximizing disease control and survival without over-
treating, especially for men with intermediate-risk prostate cancer (prostate-specific

- antigen 10-20 ng/mL, clinical stage T2b-c, and Gleason score 7). The only completed,
randomized clinical study has demonstrated lower rates of overall death in men with T1
or T2 disease treated with radical prostatectomy; however, the results must be weighed
against quality-of-life issues and co-morbidities [2, 3]. It is fairly well accepted that
aggressive prostate-specific antigen (PSA) screening efforts have hindered the general
utility of more traditional prognostic models due to several factors including an increased
(over-diagnosis) of indolent tumors, lead time (clinical presentation), grade inflation and
a longer life expectancy [4-7]. As a result, the reported likelihood of dying from prostate
cancer 15 years after diagnosis by means of prostate-specific antigen (PSA) screening is
lower than the predicted likelihood of dying from a cancer diagnosed clinically a decade
or more ago further confounding the treatment decision process [8].
[0006] Several groups have developed methods to predict prostate cancer outcomes

based on information accumulated at the time of diagnosis. The recently updated Partin
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tables [9] predict risk of having a particular pathologic stage (extracapsular extension,
seminal vesicle invasion, and lymph node invasion), while the 10-year preoperative
nomogram [10] provides a probability of being free of biochemical recurrence within 10
years after radical prostatectomy. These approaches have been challenged due to their
lack of diverse biomarkers (other than PSA), and the inability to accurately stratify
patients with clinical features of intermediate risk. Since these tools rely on subjective
clinical parameters, in particular the Gleason grade which is prone to disagreement and
potential error, having more objective measures would be advantageous for treatment
planning. Furthermore, biochemical or PSA recurrence alone generally is not a reliable
predictor of clinically significant disease [11]. Thus, it is believed by the present
inventors that additional variables or endpoints are required for optimal patient
counseling.
[0007] In view of the foregoing, it would be desirable to provide systems and methods
for treating, diagnosing and predicting the occurrence of medical conditions, responses,
and other medical phenomena with improved predictive power. For example, it would be
desirable to provide systems and methods for predicting disease (e.g., cancer) progression
at, for example, the time of diagnosis prior to treatment for the disease.

SUMMARY OF THE INVENTION

[0008] Embodiments of the present invention provide automated systems and methods
for predicting the occurrence of medical conditions. As used herein, predicting an
occurrence of a medical condition may include, for example, predicting whether and/or
when a patient will experience an occurrence (e.g., presence, recurrence or progression)
of disease such as cancer, predicting whether a patient is likely to respond to one or more
therapies (e.g., a new pharmaceutical drug), or predicting any other suitable outcome with
respect to the medical condition. Predictions by embodiments of the present invention
may be used by physicians or other individuals, for example, to select an appropriate
course of treatment for a patient, diagnose a medical condition in the patient, and/or
predict the risk of disease progression in the patient.

[0009] In some embodiments of the present invention, systems, apparatuses, methods,
and computer readable media are provided that use clinical information, molecular

information and/or computer-generated morphometric information in a predictive model
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for predicting the occurrence of a medical condition. For example, a predictive model
according to some embodiments of the present invention may be provided which is based
on one or more of the features listed in Tables 1-5 and 9 and Figures 9 and 11 and/or
other features.

[0010] For example, in an embodiment, a predictive model is provided predicts a risk
of prostate cancer progression in a patient, where the model is based on one or more (e.g.,
all) of the features listed in Figure 11 and optionally other features. For example, the
predictive model may be based on features including one or more (e.g., all) of
preoperative PSA, dominant Gleason Grade, Gleason Score, at least one of a
measurement of expression of AR in epithelial and/or stromal nuclei (e.g., tumor
epithelial and/or stromal nuclei) and a measurement of expression of Ki67-positive
epithelial nuclei (e.g., tumor epithelial nuclei), a morphometric measurement of average
edge length in the minimum spanning tree (MST) of epithelial nuclei, and a
morphometric measurement of area of non-lumen associated epithelial cells relative to
total tumor area. In some embodiments, the dominant Gleason Grade comprises a
dominant biopsy Gleason Grade. In some embodiments, the Gleason Score comprises a
biopsy Gleason Score.

[0011] In some embodiments of the present invention, two or more features (e.g.,
clinical, molecular, and/or morphometric features) may be combined in order to construct
a combined feature for evaluation within a predictive model. For example, in the
embodiment of a predictive model predictive of prostate cancer progression described
above, the measurement of the expression of androgen receptor (AR) in nuclei (e.g.,
epithelial and/or stromal nuclei) may form a combined feature with the measurement of
the expression of Ki67-positive epithelial nuclei. When a dominant Gleason Grade for
the patient is less than or equal to 3, the predictive model may evaluate for the combined
feature the measurement of the expression of androgen receptor (AR) in epithelial and
stromal nuclei. Conversely, when the dominant Gleason Grade for the patient is 4 or 5,
the predictive model may evaluate for the combined feature the measurement of the
expression of Ki67-positive epithelial nuclei.

[0012] Additional examples of combined features according to some embodiments of

the present invention are described below in connection with, for example, Figure 9. For
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example, in the embodiment of a predictive model predictive of prostate cancer
progression described above, the morphometric measurement of average edge length in
the minimum spanning tree (MST) of epithelial nuclei may form a combined feature with
dominant Gleason Grade. When the dominant Gleason Grade for the patient is less than
or equal to 3, the predictive model may evaluate for the combined feature the
measurement of average edge length in the minimum spanning tree (MST) of epithelial
nuclei. Conversely, when the dominant Gleason Grade for the patient is 4 or 5, the
predictive model may evaluate the dominant Gleason Grade for the combined feature.
[0013] In some embodiments of the present invention, a model is provided which is
predictive of an outcome with respect to a medical condition (e.g., presence, recurrence,
or progression of the medical condition), where the model is based on one or more
computer-generated morphometric features generated from one or more images of tissue
subject to multiplex immunofluorescence (IF). For example, due to highly specific
identification of molecular components and consequent accurate delineation of tissue
compartments attendant to multiplex IF (e.g., as compared to the stains used in light
microscopy), multiplex IF microscopy may provide the advantage of more reliable and
accurate image segmentation. The model may be configured to receive a patient dataset
for the patient, and evaluate the patient dataset according to the model to produce a value
indicative of the patient’s risk of occurrence of the outcome. In some embodiments, the
predictive model may also be based on one or more other morphometric features, one or
more clinical features, and/or one or more molecular features. '
[0014] For example, in some embodiments of the present invention, the predictive
model may be based on one or more computer-generated morphometric feature(s)
including one or more measurements of the minimum spanning tree (MST) (e.g., the
MST of epithelial nuclei) identified in the one or more images of tissue subject to
multiplex immunofluorescence (IF). For example, the one or more measurements of the
minimum spanning tree (MST) may include the average edge length in the MST of
epithelial nuclei. Other measurements of the MST according to some embodiments of
the present invention are described below in connection with, for example, Figure 9.
[0015] In some embodiments of the present invention, the predictive model may be

based on one or more computer-generated morphometric feature(s) including one or more



WO 2010/011356 PCT/US2009/004364

s

measurements of the fractal dimension (FD) (e.g., the FD of one or more glands)
measured in the one or more images of tissue subject to multiplex immunofluorescence
(IF). For example, the one or more measurements of the fractal dimension (FD) may
include one or more measurements of the fractal dimension of gland boundaries between
glands and stroma. In another example, the one or more measurements of the fractal
dimension (FD) may include one or more measurements of the fractal dimension of gland
boundaries between glands and stroma and between glands and lumen.

[0016] In an aspect of embodiments of the present invention, systems and methods are
provided for segmenting and classifying objects in images of tissue subject to multiplex
immunofluorescence (IF). For example, such segmentation and classification may
include initial segmentation into primitives, classification of primitives into nuclei,
cytoplasm, and background, and refinement of the classified primitives to obtain the final
segmentation, in the manner described below in connection with Figure 6.

[0017] In some embodiments, an apparatus is provided for identifying objects of
interest in images of tissue, where the apparatus includes an image analysis tool
configured to segment a tissue image into pathological objects comprising glands.
Starting with lumens in the tissue image identified as seeds, the image analysis tool is
configured to perform controlled region growing on the image including initiating growth
around the lumen seeds in the tissue image thus encompassing epithelial cells identified
in the image through the growth. The image analysis tool continues growth of each gland
around each lumen seed so long as the area of each successive growth ring is larger than
the area of the preceding growth ring. The image analysis tool discontinues the growth of
the gland when the area of a growth ring is less than the area of the preceding growth ring
for the gland.

[0018]) In some embodiments, an apparatus is provided for measuring the expression of
one or more biomarkers in images of tissue subject to immunofluorescence (IF), where
the apparatus includes an image analysis tool configured to measure within an IF image
of tissue the intensity of a biomarker (e.g., AR) as expressed within a particular type of
pathological object (e.g., epithelial nuclei). Specifically, a plurality of percentiles of the
intensity of the biomarker as expressed within the particular type of pathological object

are determined. The image analysis tool identifies one of the plurality of percentiles as
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the percentile corresponding to a positive level of the biomarker in the pathological
object. For example, the image analysis tool may identify the percentile correspond to a
positive level of the biomarker based at least in part on an intensity in a percentile of
another pathological object (e.g., stroma nuclei). In some embodiments, the image
analysis tool is further configured to measure one or more features from the image of
tissue, wherein the one or moré features includes a difference of intensities of the
percentile values (e.g., percentiles 90 and 10 of AR in epithelial nuclei). Forexample,
the one or more features may include a difference of intensities of the percentile values
normalized by an image threshold or another difference in intensities of percentile values
(e.g., percentiles 90 and 10 in stroma nuclet).

[0019] In some embodiments, an apparatus is provided for identifying objects of
interest in images of tissue, where the apparatus includes an image analysis tool
configured to detect the presence of CD34 in an image of tissue subject to
immunofluorescence (IF). Based on the detection, the image analysis tool is further
configured to detect and segment blood vessels which are in proximity to the CD34.
[0020] In another aspect of embodiments of the present invention, systems and methods
are provided in which data for a patient is measured at each of a plurality of points in
time and evaluated by a predictive model of the present invention. A diagnosis or
treatment of the patient may be based on a comparison of the results from each
evaluation. Such a comparison may be summarized in, for example, a report output by a
computer for use by a physician or other individual. For example, systems and methods
may be provided for screening for an inhibitor compound of a medical condition. A first
dataset for a patient may be evaluated by a predictive model, where the model is based on
clinical data, molecular data, and computer-generated morphometric data. A test
compound may be administered to the patient. Following administering of the test
compound, a second dataset may be obtained from the patient and evaluated by the
predictive model. The results of the evaluation of the first dataset may be compared to
the results of the evaluation from the second dataset. A change in the results for the
second dataset with respect to the first dataset may indicate that the test compound is an

inhibitor compound.
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[0021] In still another aspect of embodiments of the present invention, a test kit is
provided for treating, diagnosing and/or predicting the occurrence of a medical condition.
Such a test kit may be situated in a hospital, other medical facility, or any other suitable
location. The test kit may receive data for a patient (e.g., including clinical data,
molecular data, and/or computer-generated morphometric data), compare the patient’s
data to a predictive model (e.g., programmed in memory of the test kit) and output the
results of the comparison. In some embodiments, the molecular data and/or the
computer-generated morphometric data may be at least partially generated by the test kit.
For example, the molecular data may be generated by an analytical approach subsequent
to receipt of a tissue sample for a patient. The morphometric data may be generated by
segmenting an electronic image of the tissue sample into one or more objects, classifying
the one or more objects into one or more object classes (e.g., epithelial nuclei, epithelial
cytoplasm, stroma, lumen, red blood cells, etc.), and determining the morphometric data
by taking one or more measurements for the one or more object classes. In some
embodiments, the test kit may include an input for receiving, for example, updates to the
predictive model. In some embodiments, the test kit may include an output for, for
example, transmitting data, such as data useful for patient billing and/or tracking of
usage, to another device or location.

BRIEF DESCRIPTION OF THE DRAWINGS

[0022] For a better understanding of embodiments of the present invention, reference is
made to the following detailed description, taken in conjunction with the accompanying
drawings, in which like reference characters refer to like parts throughout, and in which:
[0023] Figures 1A and 1B are block diagrams of systems that use a predictive model to
treat, diagnose or predict the occurrence of a medical condition according to some
embodiments of the present invention;

[0024] Figure 1C is a block diagram of a system for generating a predictive model
according to some embodiments of the present invention;

[0025] Figure 2 is a graph illustrating the probability that a patient will experience an
outcome with respect to a medical condition (e.g., disease progression) as indicated by
the value or score output by a predictive model according to some embodiments of the

present invention;
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[0026] Figure 3 is a flowchart of illustrative stages involved in image segmentation and
object classification in, for example, digitized images of H&E-stained tissue according to
some embodiments of the present invention;

[0027] Figure 4A is an image of prostate tissue obtained via a needle biopsy and subject
to staining with hematoxylin and eosin (H&E) according to some embodiments of the
present invention;

[0028] Figure 4B is a segmented and classified version of the image in Figure 4A
according to some embodiments of the present invention, in which gland unit objects are
formed from seed lumen, epithelial nuclei, and epithelial cytoplasm, and in which
isolated/non—gland-associated tumor epithelial cells are also identified in the image;
[0029] Figure 5A is an image of tissue subject to multiplex immunofluorescence (IF) in
accordance with some embodiments of the present invention;

[0030] Figure SB shows a segmented and classified version of the image in Figure 4A,
in which the objects epithelial nuclei, cytoplasm, and stroma nuclei have been identified
according to some embodiments of the present invention;

[0031] Figure 6 is a flowchart of illustrative stages involved in image segmentation and
object classification in images of tissue subject to multiplex immunofluorescence (IF)
according to some embodiments of the present invention;

[0032] Figure 7 is a flowchart of illustrative stages involved in constructing the
minimum spanning tree (MST) of objects within an image of tissue subject to multiplex
immunofluorescence (IF) according to some embodiments of the present invention;
[0033] Figure 8A is an image of tissue subject to multiplex immunofluorescence (IF) in
which the minimum spanning tree (MST) of epithelial nuclei (EN) is identified in
accordance with some embodiments of the present invention;

[0034] Figure 8B is an image of tissue subject to multiplex immunofluorescence (IF) in
which the boundaries of glands with stroma and the boundaries of glands with lumen are
identified according to some embodiments of the present invention;

[0035] Figure 9 is a listing of minimum spanning tree (MST) features, fractal
dimension (FD) features, combined features, and their respective two-sided p-values and

values of the concordance index, which were identified in images of tissue subject to
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multiplex immunofluorescence (IF) and which may be used in predictive models
according to some embodiments of the present invention;
[0036] Figure 10 is a flowchart of illustrative stages involved in screening for an
inhibitor compound in accordance with an embodiment of the present invention;
[0037] Figure 11 is a listing of clinical, molecular, and computer-generated
morphometric features used by a model to predict disease progression in a patient
according to an embodiment of the present invention;
[0038] Figure 12 are Kaplan-Meier curves illustrating the ability of a feature used in the
predictive model of Figure 11 to accurately stratify patients into low and high risk
groups, namely the morphometric feature of area of isolated (non-lumen associated)
tumor epithelial cells relative to total tumor area;
[0039] Figure 13 is a graph of a Kaplan-Meier curve illustrating the ability of another
feature used in the predictive model of Figure 11 to accurately stratify patients into low
and high risk groups, namely the morphometric feature of mean edge length in the
minimum spanning tree (MST) of all edges connecting epithelial nuclei centroids (for
dominant biopsy Gleason grade (bGG) < 3) in combination with the clinical feature of
Gleason grade (for bGG =4 or 5);
[0040] Figure 14 is a graph of a Kaplan-Meier curve illustrating the ability of yet
another feature used in the predictive model of Figure 11 to accurately stratify patients
into low and high risk groups, namely the molecular feature of AR dynamic range (for
bGG < 3) in combination with the molecular feature of total Ki67 (for bGG = 4 or 5);
[0041] Figure 15 is a graph of a Kaplan-Meier curve illustrating the ability of the value
or score output by the predictive model of Figure 11 to stratify patients in the training set
according to risk; and
[0042] Figure 16 is a graph of a Kaplan-Meier curve illustrating the ability of the value
or score output by the predictive model of Figure 11 to stratify patients in the validation
set according to risk.

DETAILED DESCRIPTION OF THE INVENTION

[0043] Embodiments of the present invention relate to methods and systems that use
computer-generated morphometric information, clinical information, and/or molecular

information in a predictive model for predicting the occurrence of a medical condition.
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For example, in some embodiments of the present invention, clinical, molecular and
computer-generated morphometric information are used to predict the likelihood or risk
of progression of a disease such as, for example, prostate cancer. In other embodiments,
the teachings provided herein are used to predict the occurrence (e.g., presence,
recurrence, or progression) of other medical conditions such as, for example, other types
of disease (e.g., epithelial and mixed-neoplasms including breast, colon, lung, bladder,
liver, pancreas, renal cell, and soft tissue) and the responsiveness or unresponsiveness of
a patient to one or more therapies (e.g., pharmaceutical drugs). These predictions may be
used by physicians or other individuals, for example, to select an appropriate course of
treatment for a patient, diagnose a medical condition in the patient, and/or predict the risk
or likelihood of disease progression in the patient.

[0044] In an aspect of the present invention, an analytical tool such as, for example, a
module configured to perform support vector regression for censored data (SVRc), a
support vector machine (SVM), and/or a neural network may be provided that determines
correlations between clinical features, molecular features, computer-generated
morphometric features, combinations of such features, and/or other features and a
medical condition. The correlated features may form a model that can be used to predict
an outcome with respect to the condition (e.g., presence, recurrence, or progression). For
example, an analytical tool may be used to generate a predictive model based on data for
a cohort of patients whose outcomes with respect to a medical condition (e.g., time to
recurrence or progression of cancer) are at least partially known. The model may then be
used to evaluate data for a new patient in order to predict the risk of occurrence of the
medical condition in the new patient. In some embodiments, only a subset of clinical,
molecular, morphometric, and/or other data (e.g., clinical and morphometric data only)
may be used by the analytical tool to generate the predictive model. Illustrative systems
and methods for treating, diagnosing, and predicting the occurrence of medical conditions
are described in commonly-owned U.S. Patent No. 7,461,048, issued December 2, 2008,
U.S. Patent No. 7,467,119, issued December 16, 2008, and PCT Application No.
PCT/US2008/004523, filed April 7, 2008, which are hereby incorporated by reference

herein in their entireties.
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[0045] The clinical, molecular, and/or morphometric data used by embodiments of the
present invention may include any clinical, molecular, and/or morphometric data that is
relevant to the diagnosis, treatment and/or prediction of a medical condition. For
example, features analyzed for correlations with progression of prostate cancer in order to
generate a model predictive of prostate cancer progression are described below in
connection with Tables 1-5 and 9 and Figure 9. It will be understood that at least some of
these features (e.g., epithelial and mixed-neoplasms) may provide a basis for developing
predictive models for other medical conditions (e.g., breast, colon, lung, bladder, liver,
pancreas, renal cell, and soft tissue). For example, one or more of the features in Tables
1-5 and 9 and Figure 9 may be assessed for patients having some other medical condition
and then input to an analytical tool that determines whether the features correlate with the
medical condition. Generally, features that increase the ability of the model to predict the
occurrence of the medical condition (e.g., as determined through suitable univariate
and/or multivariate analyses) may be included in the final model, whereas features that do
not increase (e.g., or decrease) the predictive power of the model may be removed from
consideration. By way of example only, illustrative systems and methods for selecting
features for use in a predictive model are described below and in commonly-owned U.S.
Publication No. 2007/0112716, published May 17, 2007 and entitled “Methods and
Systems for Feature Selection in Machine Learning Based on Feature Contribution and
Model Fitness,” which is hereby incorporated by reference herein in its entirety.

[0046] Using the features in Tables 1-5 and 9 and Figure 9 as a basis for developing a
predictive model may focus the resources of physicians, other individuals, and/or
automated processing equipment (e.g., a tissue image analysis system) on obtaining
patient data that is more likely to be correlated with outcome and therefore useful in the
final predictive model. Moreover, the features determined to be correlated with
progression of prostate cancer are shown in Table 9 and Figure 11 . It will be understood
that these features may be included directly in final models predictive of progression of
prostate cancer and/or used for developing predictive models for other medical
conditions.

[0047] The morphometric data used in predictive models according to some

embodiments of the present invention may include computer-generated data indicating
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various structural, textural, and/or spectral properties of, for example, tissue specimens.
For example, the morphometric data may include data for morphometric features of
stroma, cytoplasm, epithelial nuclei, stroma nuclei, lumen, red blood cells, tissue
artifacts, tissue background, glands, other objects identified in a tissue specimen or a
digitized image of such tissue, or a combination thereof.

[0048] In an aspect of the present invention, a tissue image analysis system is provided
for measuring morphometric features from tissue specimen(s) (e.g., needle biopsies
and/or whole tissue cores) or digitized image(s) thereof. The system may utilize, in part,
the commercially-available Definiens Cellenger software. For example, in some
embodiments, the image analysis system may receive image(s) of tissue stained with
hematoxylin and eosin (H&E) as input, and may output one or more measurements of
morphometric features for pathological objects (e.g., epithelial nuclei, cytoplasm, etc.)
and/or structural, textural, and/or spectral properties observed in the image(s). For
example, such an image analysis system may include a light microscope that captures
images of H&E-stained tissue at 20X magnification. Illustrative systems and methods for
measuring morphometric features from images of H&E-stained tissue according to some
embodiments of the present invention are described below in connection with, for
example, Figure 3 and the illustrative study in which aspects of the present invention
were applied to prediction of prostate cancer progression. Computer-generated
morphometric features (e.g., morphometric features measurable from digitized images of
H&E-stained tissue) which may be used in a predictive model for predicting an outcome
with respect to a medical condition according to some embodiments of the present
invention are summarized in Table 1.

[0049] In some embodiments of the present invention, the image analysis system may
receive image(s) of tissue subject to multiplex immunofluorescence (IF) as input, and
may output one or more measurements of morphometric features for pathological objects
(e.g., epithelial nuclei, cytoplasm, etc.) and/or structural, textural, and/or spectral
properties observed in the image(s). For example, such an image analysis system may
include a multispectral camera attached to a microscope that captures images of tissue
under an excitation light source. Computer-generated morphometric features (e.g.,

morphometric features measurable from digitized images of tissue subject to multiplex
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IF) which may be used in a predictive model for predicting an outcome with respect to a
medical condition according to some embodiments of the present invention are listed in
Table 2. Illustrative examples of such morphometric features include characteristics of a
minimum spanning tree (MST) (e.g., MST connecting epithelial nuclei) and/or a fractal
dimension (FD) (e.g., FD of gland boundaries) measured in images acquired through
multiplex IF microscopy. Illustrative systems and methods for measuring morphometric
features from images of tissue subject to multiplex IF according to some embodiments of
the present invention are described below in connection with, for example, Figures 4B-9
and the illustrative study in which aspects of the present invention were applied to the
prediction of prostate cancer progression.

[0050] Clinical features which may be used in predictive models according to some
embodiments of the present invention may include or be based on data for one or more
patients such as age, race, weight, height, medical history, genotype and disease state,
where disease state refers to clinical and pathologic staging characteristics and any other
clinical features gathered specifically for the disease process under consideration.
Generally, clinical data is gathered by a physician during the course of examining a
patient and/or the tissue or cells of the patient. The clinical data may also include clinical
data that may be more specific to a particular medical context. For example, in the
context of prostate cancer, the clinical data may include data indicating blood
concentration of prostate specific antigen (PSA), the result of a digital rectal exam,
Gleason score, and/or other clinical data that may be more specific to prostate cancer.
Clinical features which may be used in a predictive model for predicting an outcome with
respect to a medical condition according to some embodiments of the present invention
are listed in Table 3.

[0051}] Molecular features which may be used in predictive models according to some
embodiments of the present invention may include or be based on data indicating the
presence, absence, relative increase or decrease or relative location of biological
molecules including nucleic acids, polypeptides, saccharides, steroids and other small
molecules or combinations of the above, for example, glycoroteins and protein-RNA
complexes. The locations at which these molecules are measured may include glands,

tumors, stroma, and/or other locations, and may depend on the particular medical context.
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Generally, molecular data is gathered using molecular biological and biochemical
techniques including Southern, Western, and Northern blots, polymerase chain reaction
(PCR), immunohistochemistry, and/or immunofluorescence (IF) (e.g., multiplex IF).
Molecular features which fnay be used in a predictive model for predicting an outcome
with respect to a medical condition according to some embodiments of the present
invention are listed in Table 4. Additional details regarding multiplex
immunofluorescence according to some embodiments of the present invention are
described in commonly-owned U.S. Patent Application Publication No. 2007/0154958,
published July 5, 2007 and entitled "Multiplex In Situ Immunohistochemical Analysis,"
which is hereby incorporated by reference herein in its entirety. Further, in situ
hybridization may be used to show both the relative abundance and location of molecular
biological features. Illustrative methods and systems for in situ hybridization of tissue
are described in, for example, commonly-owned U.S. Patent No. 6,995,020, issued
February 7, 2006 and entitled “Methods and compositions for the preparation and use of
fixed-treated cell-lines and tissue in fluorescence in situ hybridization,” which is hereby
incorporated by reference herein in its entirety.

[0052] Generally, when any clinical, molecular, and/or morphometric features from any
of Tables 1-5 and 9 and/or Figures 9 and 11 are applied to medical contexts other than the
prostate, features from these Tables and/or Figures that are more specific to the prostate
may not be considered. Optionally, features more specific to the medical context in
question may be substituted for the prostate-specific features. For example, other
histologic disease-specific features/manifestations may include regions of necrosis (e.g.,
ductal carcinoma in situ for the breast), size, shape and regional pattern/distribution of
epithelial cells (e.g., breast, lung), degree of differentiation (e.g., squamous
differentiation with non-small cell lung cancer NSCLC, mucin production as seen with
various adenocarcinomas seen in both breast and colon)), morphological/microscopic
distribution of the cells (e.g., lining ducts in breast cancer, lining bronchioles in NSCLC),
and degree and type of inflammation (e.g., having different characteristics for breast and
NSCLC in comparison to prostate).

[0053] Figures 1A and 1B show illustrative systems that use a predictive model to

predict the occurrence (e.g., presence, recurrence, or progression) of a medical condition
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in a patient. The arrangement in Figure 1A may be used when, for example, a medical
diagnostics lab provides support for a medical decision to a physician or other individual
associated with a remote access device. The arrangement in Figure 1B may be used
when, for example, a test kit including the predictive model is provided for use in a
-facility such as a hospital, other medical facility, or other suitable location.
[0054] Referring to Figure 1A, predictive model 102 is located in diagnostics
facility 104. Predictive model 102 may include any suitable hardware, software, or
combination thereof for receiving data for a patient, evaluating the data in order to predict
the occurrence (e.g., presence, recurrence, or progression) of a medical condition for the
patient, and outputting the results of the evaluation. In another embodiment, model 102
may be used to predict the responsiveness of a patient to particular one or more therapies.
Diagnostics facility 104 may receive data for a patient from remote access device 106 via
Internet service provider (ISP) 108 and communications networks 110 and 112, and may
input the data to predictive model 102 for evaluation. Other arrangements for receiving
and evaluating data for a patient from a remote location are of course possible (e.g., via
another connection such as a telephone line or through the physical mail). The remotely
located physician or individual may acquire the data for the patient in any suitable
manner and may use remote access device 106 to transmit the data to diagnostics
facility 104. In some embodiments, the data for the patient may be at least partially
generated by diagnostics facility 104 or another facility. For example, diagnostics facility
104 may receive a digitized image of H&E-stained tissue from remote access device 106
or other device and may generate morphometric data for the patient based on the image.
In another example, actual tissue samples may be received and processed by diagnostics
facility 104 in order to generate morphometric data, molecular data, and/or other data. In
other examples, a third party may receive a tissue sample or image for a new patient,
generate morphometric data, molecular data and/or other data based on the image or
tissue, and provide the morphometric data, molecular data and/or other data to
diagnostics facility 104. Illustrative embodiments of suitable image processing tools for
generating morphometric data and/or molecular data from tissue images and/or tissue
samples according to some embodiments of the present invention are described below in

connection with Figures 3-8.

16



WO 2010/011356 PCT/US2009/004364

[0055] Diagnostics facility 104 may provide the results of the evaluation to a physician
or individual associated with remote access device 106 through, for example, a
transmission to remote access device 106 via ISP 108 and communications networks 110
and 112 or in another manner such as the physical mail or a telephone call. The results
may include a value or “score” (e.g., an indication of the likelihood that the patient will
experience one or more outcomes related to the medical condition such as the presence of
the medical condition, predicted time to recurrence of the medical condition, or risk or
likelihood of progression of the medical condition in the patient), information indicating
one or more features analyzed by predictive model 102 as being correlated with the
medical condition, image(s) output by the image processing tool, information indicating
the sensitivity and/or specificity of the predictive model, explanatory remarks, other
‘suitable information, or a combination thereof. For example, Figure 2 shows at least a
portion of a report for a fictional patient that may be output by, or otherwise generated
based on the output of, the predictive model. As shown, the report may indicate that
based on the data for the patient input to the predictive model, the predictive model
output a value of 40 corresponding to a 19% probability of disease progression (as
indicated by castrate PSA rise, metastasis and/or prostate cancer mortality) within eight
years after radical prostatectomy, which may place the patient in a high-risk category.
(Conversely, as indicated by the vertical line in the embodiment shown in Figure 2, a
values of less than 30.19 output by the predictive model may place the patient in a low-
risk category.) Such a report may be used by a physician or other individual, for
example, to assist in determining appropriate treatment option(s) for the patient. The
report may also be useful in that it may help the physician or individual to explain the
patient’s risk to the patient.

[0056] Remote access device 106 may be any remote device capable of transmitting
and/or receiving data from diagnostics facility 104 such as, for example, a personal
computer, a wireless device such as a laptop computer, a cell phone or a personal digital
assistant (PDA), or any other suitable remote access device. Multiple remote access
devices 106 may be included in the system of Figure 1A (e.g., to allow a plurality of
physicians or other individuals at a corresponding plurality of remote locations to

communicate data with diagnostics facility 104), although only one remote access device
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106 has been included in Figure 1A to avoid over-complicating the drawing. Diagnostics
facility 104 may include a server capable of receiving and processing communications to
and/or from remote access device 106. Such a server may include a distinct component
of computing hardware and/or storage, but may also be a software application or a
combination of hardware and software. The server may be implemented using one or
more computers.

[0057] Each of communications links 110 and 112 may be any suitable wired or
wireless communications path or combination of paths such as, for example, a local area
network, wide area network, telephone network, cable television network, intranet, or
Internet. Some suitable wireless communications networks may be a global system for
mobile communications (GSM) network, a time-division multiple access (TDMA)
network, a code-division multiple access (CDMA) network, a Bluetooth network, or any
other suitable wireless network.

[0058] Figure 1B shows a system in which test kit 122 including a predictive model in
accordance with an embodiment of the present invention is provided for use in facility
124, which may be a hospital, a physician’s office, or other suitable location. Test kit
122 may include any suitable hardware, software, or combination thereof (e.g., a personal
computer) that is adapted to receive data for a patient (e.g., at least one of clinical,
morphometric and molecular data), evaluate the patient’s data with a predictive model
(e.g., programmed in memory of the test kit), and output the results of the evaluation.
For example, test kit 122 may include a computer readable medium encoded with
computer executable instructions for performing the functions of the predictive model.
The predictive model may be a predetermined model previously generated (e.g., by
another system or application such as the system in Figure 1C). In some embodiments,
test kit 122 may optionally include an image processing tool capable of generating data
corresponding to morphometric and/or molecular features from, for example, a tissue
sample or image. Illustrative embodiments of suitable image processing tools according
to some embodiments of the present invention are described below in connection with
Figures 3-8. In other embodiments, test kit 122 may receive pre-packaged data for the
morphometric features as input from, for example, an input device (e.g., keyboard) or

another device or location. Test kit 122 may optionally include an input for receiving, for
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example, updates to the predictive model. The test kit may also optionally include an
output for transmitting data, such as data useful for patient billing and/or tracking of
usage, to a main facility or other suitable device or location. The billing data may
include, for example, medical insurance information for a patient evaluated by the test kit
(e.g., name, insurance provider, and account number). Such information may be useful
when, for example, a provider of the test kit charges for the kit on a per-use basis and/or
when the provider needs patients’ insurance information to submit claims to insurance
providers.

[0059] Figure 1C shows an illustrative system for generating a predictive model. The
system includes analytical tool 132 (e.g., including a module configured to perform
support vector regression for censored data (SVRc), a support vector machine (SYM),
and/or a neural network) and database 134 of patients whose outcomes are at least
partially known. Analytical tool 132 may include any suitable hardware, software, or
combination thereof for determining correlations between the data from database 134 and
a medical condition. The system in Figure 1C may also include image processing tool
136 capable of generating, for example, morphometric data based on H&E-stained tissue
or digitized image(s) thereof, morphometric data and/or molecular data based on tissue
acquired using multiplex immunofluorescence (IF) microscopy or digitized image(s) of
such tissue, or a combination thereof. Tool 136 may generate morphometric data and/or
molecular data for, for example, the known patients whose data is included in database
134. Tllustrative embodiments of suitable image processing tools according to some |
embodiments of the present invention are described below in connection with Figures 3-
8.

[0060] Database 134 may include any suitable patient data such as data for clinical
features, morphometric features, molecular features, or a combination thereof. Database
134 may also include data indicating the outcomes of patients such as whether and when
the patients have experienced a disease or its recurrence or progression. For example,
database 134 may include uncensored data for patients (i.e., data for patients whose
outcomes are completely known) such as data for patients who have experienced a
medical condition or its recurrence or progression. Database 134 may alternatively or

additionally include censored data for patients (i.e., data for patients whose outcomes are
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not completely known) such as data for patients who have not shown signs of a disease or
its recurrence or progression in one or more follow-up visits to a physician. The use of
censored data by analytical tool 132 may increase the amount of data available to
generate the predictive model and, therefore, may advantageously improve the reliability
and predictive power of the model. Examples of machine learning approaches, namely
support vector regression for censored data (SVRc) and a particular implementation of a
neural network (NNci) that can make use of both censored and uncensored data are
described below.

[0061] In one embodiment, analytical tool 132 may perform support vector regression
on censored data (SVRc) in the manner set forth in commonly-owned U.S. Patent No.
7,505,948, issued March 17, 2009, which is hereby incorporated by reference herein in its
entirety. SVRc uses a loss/penalty function which is modified relative to support vector
machines (SVM) in order to allow for the utilization of censored data. For example, data
including clinical, molecular, and/or morphometric features of known patients from
database 134 may be input to the SVRc to determine parameters for a predictive model.
The parameters may indicate the relative importance of input features, and may be
adjusted in order to maximize the ability of the SVRc to predict the outcomes of the
known patients.

[0062] The use of SVRc by analytical tool 132 may include obtaining from database
134 multi-dimensional, non-linear vectors of information indicative of status of patients,
where at least one of the vectors lacks an indication of a time of occurrence of an event or
outcome with respect to a corresponding patient. Analytical tool 132 may then perform
regression using the vectors to produce a kernel-based model that provides an output
value related to a prediction of time to the event based upon at least some of the
information contained in the vectors of information. Analytical tool 132 may use a loss
function for each vector containing censored data that is different from a loss function
used by tool 132 for vectors comprising uncensored data. A censored data sample may
be handled differently because it may provide only “one-sided information.” For
example, in the case of survival time prediction, a censored data sample typically only
indicates that the event has not happened within a given time, and there is no indication

of when it will happen after the given time, if at all.
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[0063] The loss function used by analytical tool 132 for censored data may be as

follows:

C.(e-¢.) e>e,
Loss(f(x),y,s=1)= 0 £, <e<e,,
C.(e,—e) e<-¢,
where e = f(x)—y;and
f(x)= W' d(x)+b
is a linear regression function on a feature space F. Here, W is a vector in F, and ®(x)
maps the input x to a vector in F.
[0064] In contrast, the loss function used by tool 132 for uncensored data may be:
C(e-¢) e>¢,
Loss(f(x),y,s=0)= 0 £, <e<g,,
C.(g,—e) e<-g,
where e= f(x)—y
and ¢, <¢, and C, 2C, .
[0065] In the above description, the W and 4 are obtained by solving an optimization
problem, the general form of which is:

min

st.  y,—(W'e(x)+b)<e
W g(x)+b)-y, <€

This equation, however, assumes the convex optimization problem is always feasible,
which may not be the case. Furthermore, it is desired to allow for small errors in the
regression estimation. It is for these reasons that a loss function is used for SVRc. The
loss allows some leeway for the regression estimation. Ideally, the model built will
exactly compute all results accurately, which is infeasible. The loss function allows for a
range of error from the ideal, with this range being controlled by slack variables & and g,

and a penalty C. Errors that deviate from the ideal, but are within the range defined by &
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and §', are counted, but their contribution is mitigated by C. The more erroneous the
instance, the greater the penalty. The less erroneous (closer to the ideal) the instance is,
the less the penalty. This concept of increasing penalty with error results in a slope, and
C controls this slope. While various loss functions may be used, for an epsilon-

insensitive loss function, the general equation transforms into:

{
min P= %w’wwz (&+ET)
i=1

Ww.b
st. y,—(WIo(x,)+b)<e+¢
(WO(x,)+b)—y, Se+¢&
£.620, =11

For an epsilon-insensitive loss function in accordance with the invention (with different

loss functions applied to censored and uncensored data), this equation becomes:

. _1 T [ * »
min  F=-W W+§(Cf§f+0,cfi )

st. y,—(W'd(x,)+b) < ¢, +¢,
(W O(x,)+b)—y, <& +&
EO >0, i=1--1
where CO =5CO +(1-s5,)C"
£V =560 +(1-5)el”
[0066] The optimization criterion penalizes data points whose y-values differ from f(x)
by more than ¢. The slack variables, £and & * correspond to the size of this excess
deviation for positive and negative deviations respectively. This penalty mechanism has
two components, one for uncensored data (i.e., not right-censored) and one for censored
data. Here, both components are represented in the form of loss functions that are
referred to as e-insensitive loss functions.
[0067] In another embodiment, analytical tool 132 may include a neural network. In
such an embodiment, tool 132 preferably includes a neural network that is capable of
utilizing censored data. Additionally, the neural network preferably uses an objective
function substantially in accordance with an approximation (e.g., derivative) of the
concordance index (CI) to train an associated model (NNci). Though the CI has long

been used as a performance indicator for survival analysis [12], the use of the CI to train
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a neural network was proposed in commonly-owned U.S. Patent No. 7,321,881, issued
January 22, 2008, which is hereby incorporated by reference herein in its entirety. The
difficulty of using the CI as a training objective function in the past is that the CI is non-
differentiable and cannot be optimized by gradient-based methods. As described in
above-incorporated U.S. Patent No. 7,321,881, this obstacle may be overcome by using
an approximation of the CI as the objective function.

[0068] For example, when analytical tool 132 includes a neural network that is used to
predict prostate cancer progression, the neural network may process input data for a
cohort of patients whose outcomes with respect to prostate cancer progression are at least
partially known in order to produce an output. The particular features selected for input
to the neural network may be selected through the use of the above-described SVRc (e.g.,
implemented with analytical tool 132) or any other suitable feature selection process. An
error module of tool 132 may determine an error between the output and a desired output
corresponding to the input data (e.g., the difference between a predicted outcome and the
known outcome for a patient). Analytical tool 132 may then use an objective function
substantially in accordance with an approximation of the CI to rate the performance of
the neural network. Analytical tool 132 may adapt the weighted connections (e.g.,
relative importance of features) of the neural network based upon the results of the
objective function.

[0069] The concordance index may be expressed in the form:

. 1:£,>1¢,
I(t,-,tj)z ! s
0: otherwise

and may be based on pair-wise comparisons between the prognostic estimates 7, and
f ; for patients i and j, respectively. In this example, Q consists of all the pairs of patients

{ij} who meet the following conditions:
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o both patients i and j experienced recurrence, and the recurrence
time 4 of patient i is shorter than patient j’s recurrence time #; or
. only patient i experienced recurrence and ¢ is shorter than patient j’s
follow-up visit time ¢
The numerator of the CI represents the number of times that the patient predicted to recur
earlier by the neural network actually does recur earlier. The denominator is the total
number of pairs of patients who meet the predetermined conditions.
[0070] Generally, when the CI is increased, preferably maximized, the model is more
accurate. Thus, by preferably substantially maximizing the CI, or an approximation of
the CI, the performance of a model is improved. In accordance with some embodiments

of the present invention, an approximation of the CI is provided as follows:

C= Z(i,j)en R(ii ’;j)
2

where

R@,t )={(‘(t,- -t =yt -t <7},

2t .
0: otherwise

~

and where0 <y <landn>1. R(,,f ;) can be regarded as an approximation to
I(1,,~1)).
[0071] Another approximation of the CI provided in accordance with some

embodiments of the present invention which has been shown empirically to achieve

improved results is the following:

C = Do~ =1) o R,
w D ,

where
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D= Y ~(-)

(i,/)eQ

is a normalization factor. Here each R(f,,f ;) is weighted by the difference between {,and
¢ ;- The process of minimizing the C,, (or C) seeks to move each pair of samples in Q to
satisfy7, — 7, >y and thus to make /(7,,7,) = 1.

[0072] When the difference between the outputs of a pair in Q is larger than the margin
v, this pair of samples will stop contributing to the objective function. This mechanism
effectively overcomes over-fitting of the data during training of the model and makes the
optimization preferably focus on only moving more pairs of samples in Q to satisfy

t, —t; >v. The influence of the training samples is adaptively adjusted according to the

pair-wise comparisons during training. Note that the positive margin y in R is preferable
for improved generalization performance. In other words, the parameters of the neural
network are adjusted during training by calculating the CI after all the patient data has
been entered. The neural network then adjusts the parameters with the goal of
minimizing the objective function and thus maximizing the CI. As used above, over-
fitting generally refers to the complexity of the neural network. Specifically, if the
network is too complex, the network will react to “noisy” data. Overfitting is risky in
that it can easily lead to predictions that are far beyond the range of the training data.

[0073] Morphometric Data Obtained from H&E-Stained Tissue

[0074] As described above, an image processing tool (e.g., image processing tool 136)
in accordance with some embodiments of the present invention may be provided that
generates digitized images of tissue specimens (e.g., H&E-stained tissue specimens)
and/or measures morphometric features from the tissue images or specimens. For
example, in some embodiments, the image processing tool may include a light
microscope that captures tissue images at 20X magnification using a SPOT Insight QE
Color Digital Camera (KAI2000) and produces images with 1600 x 1200 pixels. The
images may be stored as images with 24 bits per pixel in Tiff format. Such equipment is
only illustrative and any other suitable image capturing equipment may be used without

departing from the scope of the present invention.
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[0075] In some embodiments, the image processing tool may include any suitable
hardware, software, or combination thereof for segmenting and classifying objects in the
captured images, and then measuring morphometric features of the objects. For example,
such segmentation of tissue images may be utilized in order to classify pathological
objects in the images (e.g., classifying objects as cytoplasm, lumen, nuclei, epithelial
nuclei, stroma, background, artifacts, red blood cells, glands, other object(s) or any
combination thereof). In one embodiment, the image processing tool may include the
commercially-available Definiens Cellenger Developer Studio (e.g., v. 4.0) adapted to
perform the segmenting and classifying of, for example, some or all of the various
pathological objects described above and to measure various morphometric features of
these objects. Additional details regarding the Definiens Cellenger product are described
in [13].

[0076] For example, in some embodiments of the present invention, the image
processing tool may classify objects as background if the objects correspond to portions
of the digital image that are not occupied by tissue. Objects classified as cytoplasm may
be the cytoplasm of a cell, which may be an amorphous area (e.g., pink area that
surrounds an epithelial nucleus in an image of, for example, H&E stained tissue).
Objects classified as epithelial nuclei may be the nuclei present within epithelial
cells/luminal and basal cells of the glandular unit, which may appear as round objects
surrounded by cytoplasm. Objects classified as lumen may be the central glandular space
where secretions are deposited by epithelial cells, which may appear as enclosed white
areas surrounded by epithelial cells. Occasionally, the lumen can be filled by prostatic
fluid (which typically appears pink in H&E stained tissue) or other “debris” (e.g.,
macrophages, dead cells, etc.). Together the lumen and the epithelial cytoplasm and
nuclei may be classified as a gland unit. Objects classified as stroma may be the
connective tissue with different densities that maintains the architecture of the prostatic
tissue. Such stroma tissue may be present between the gland units, and may appear as red
to pink in H&E stained tissue. Objects classified as stroma nuclei may be elongated cells
with no or minimal amounts of cytoplasm (fibroblasts). This category may also include
endothelial cells and inflammatory cells, and epithelial nuclei may also be found

scattered within the stroma if cancer is present. Objects classified as red blood cells may
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be small red round objects usually located within the vessels (arteries or veins), but can
also be found dispersed throughout tissue.

[0077] In some embodiments, the image processing tool may measure various
morphometric features of from basic relevant objects such as epithelial nuclei, epithelial
cytoplasm, stroma, and lumen (including mathematical descriptors such as standard
deviations, medians, and means of objects), spectral-based characteristics (e.g., red,
green, blue (RGB) channel characteristics such as mean values, standard deviations, etc.),
texture, wavelet transform, fractal code and/or dimension features, other features
representative of structure, position, size, perimeter, shape (e.g., asymmetry,
compactness, elliptic fit, etc.), spatial and intensity relationships to neighboring objects
(e.g., contrast), and/or data extracted from one or more complex objects generated using
said basic relevant objects as building blocks with rules defining acceptable neighbor
relations (e.g., ‘gland unit’ features). In some embodiments, the image processing tool
may measure these features for every instance of every identified pathological object in
the image, or a subset of such instances. The image processing tool may output these
features for, for example, evaluation by predictive model 102 (Figure 1A), test kit 122
(Figure 1B), or analytical tool 132 (Figure 1C). Optionally, the image processing tool
may also output an overall statistical summary for the image summarizing each of the
measured features.

[0078] Figure 3 is a flowchart of illustrative stages involved in image segmentation and
object classification (e.g., in digitized images of H&E-stained tissue) according to some
embodiments of the present invéntion.

[0079] Initial Segmentation. In a first stage, the image processing tool may segment an
image (e.g., an H&E-stained needle biopsy tissue specimen, an H&E stained tissue
microarray (TMA) image or an H&E of a whole tissue section) into small groups of
contiguous pixels known as objects. These objects may be obtained by a region-growing
method which finds contiguous regions based on color similarity and shape regularity.
The size of the objects can be varied by adjusting a few parameters [14]. In this system,
an object rather than a pixel is typically the smallest unit of processing. Thus, some or all
of the morphometric feature calculations and operations may be performed with respect

to objects. For example, when a threshold is applied to the image, the feature values of
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the object are subject to the threshold. As a result, all the pixels within an object are
assigned to the same class. In one embodiment, the size of objects may be controlled to
be 10-20 pixels at the finest level. Based on this level, subsequent higher and coarser
levels are built by forming larger objects from the smaller ones in the lower level.

[0080] Background Extraction. Subsequent to initial segmentation, the image
processing tool may segment the image tissue core from the background (transparent
region of the slide) using intensity threshold and convex hull. The intensity threshold is
an intensity value that separates image pixels in two classes: “tissue core” and
“background.” Any pixel with an intensity value greater than or equal the threshold is
classified as a “tissue core” pixel, otherwise the pixel is classified as a “background”
pixel. The convex hull of a geometric object is the smallest convex set (polygon)
containing that object. A set S is convex if, whenever two points P and Q are inside S,
then the whole line segment PQ is also in S.

[0081] Coarse Segmentation. In a next stage, the image processing tool may re-
segment the foreground (e.g., TMA core) into rough regions corresponding to nuclei and
white spaces. For example, the main characterizing feature of nuclei in H&E stained
images is that they are stained blue compared to the rest of the pathological objects.
Therefore, the difference in the red and blue channels (R-B) intensity values may be used
as a distinguishing feature. Particularly, for every image object obtained in the initial
segmentation step, the difference between average red and blue pixel intensity values
may be determined. The length/width ratio may also be used to determine whether an
object should be classified as nuclei area. For example, objects which fall below a (R-B)
feature threshold and below a length/width threshold may be classified as nuclei area.
Similarly, a green channel threshold can be used to classify objects in the tissue core as
white spaces. Tissue stroma is dominated by the color red. The intensity difference d,
“red ratio” r= R/(R+G + B) and the red channel standard deviation o, of image objects
may be used to classify stroma objects.

[0082) White Space Classification. In the stage of coarse segmentation, the white space
regions may correspond to both lumen (pathological object) and artifacts (broken tissue

areas) in the image. The smaller white space objects (area less than 100 pixels) are
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usually artifacts. Thus, the image processing tool may apply an area filter to classify
them as artifacts.

[0083] Nuclei De-fusion and Classification. In the stage of coarse segmentation, the
nuclei area is often obtained as contiguous fused regions that encompass several real
nuclei. Moreover, the nuclei region might also include surrounding misclassified
cytoplasm. Thus, these fused nuclei areas may need to be de-fused in order to obtain
individual nuclei.

[0084] The image processing tool may use two different approaches to de-fuse the
nuclei. The first approach may be based on a region growing method that fuses the
image objects constituting nuclei area under shape constraints (roundness). This
approach has been determined to work well when the fusion is not severe.

[0085] In the case of severe fusion, the image processing tool may use a different
approach based on supervised learning. This approach involves manual labeling of the
nuclei areas by an expert (pathologist). The features of image objects belonging to the
labeled nuclei may be used to design statistical classifiers.

[0086] In some embodiments, the input image may include different kinds of nuclei:
epithelial nuclei, fibroblasts, basal nuclei, endothelial nuclei, apoptotic nuclei and red
blood cells. Since the number of epithelial nuclei is typically regarded as an important
feature in grading the extent of the tumor, it may be important to distinguish the epithelial
nuclei from the others. The image processing tool may accomplish this by classifying the
detected nuclei into two classes: epithelial nuclei and “the rest” based on shape
(eccentricity) and size (area) features.

[0087] In one embodiment, in order to reduce the number of feature space dimensions,
feature selection may be performed on the training set using two different classifiers: the
Bayesian classifier and the k nearest neighbor classifier [12]. The leave-one-out method
[13] may be used for cross-validation, and the sequential forward search method may be
used to choose the best features. Finally, two Bayesian classifiers may be designed with
number of features equal to 1 and 5, respectively. The class-conditional distributions
may be assumed to be Gaussian with diagonal covariance matrices.

[0088] The image segmentation and object classification procedure described above in

connection with Figure 3 is only illustrative and any other suitable method or approach
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may be used to measure morphometric features of interest in tissue specimens or images
in accordance with the present invention. For example, in some embodiments, a digital
masking tool (e.g., Adobe Photoshop 7.0) may be used to mask portion(s) of the tissue
image such that only infiltrating tumor is included in the segmentation, classification,
and/or subsequent morphometric analysis. Alternatively or additionally, in some
embodiments, lumens in the tissue images are manually identified and digitally masked
(outlined) by a pathologist in an effort to minimize the effect of luminal content (e.g.,
crystals, mucin, and secretory concretions) on lumen object segmentation. Additionally,
these outlined lumens can serve as an anchor for automated segmentation of other
cellular and tissue components, for example, in the manner described below.

[0089] In some embodiments of the present invention, the segmentation and
classification procedure identifies gland unit objects in a tissue image, where each gland
unit object includes lumen, epithelial nuclei, and epithelial cytoplasm. The gland unit
objects are identified by uniform and symmetric growth around lumens as seeds. Growth
proceeds around these objects through spectrally uniform segmented epithelial cells until
stroma cells, retraction artifacts, tissue boundaries, or other gland unit objects are
encountered. These define the borders of the glands, where the accuracy of the border is
determined by the accuracy of differentiating the cytoplasm from the remaining tissue. In
this example, without addition of stop conditions, uncontrolled growth of connected
glands may occur. Thus, in some embodiments, firstly the small lumens (e.g., very much
smaller than the area of an average nucleus) are ignored as gland seeds. Secondly, the
controlled region-growing method continues as long as the area of each successive
growth ring is larger than the preceding ring. Segments of non-epithelial tissue are
excluded from these ring area measurements and therefore effectively dampen and halt
growth of asymmetric glands. The epithelial cells (including epithelial nuclei plus
cytoplasm) thus not captured by the gland are classified as outside of, or poorly
associated with, the gland unit. In this manner, epithelial cells (including epithelial nuclei
plus cytoplasm) outside of the gland units are also identified.

[0090] In some embodiments, an image processing tool may be provided that classifies
and clusters objects in tissue, which utilitzes biologically defined constraints and high

certainty seeds for object classification. In some embodiments, such a tool may rely less
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on color-based features than prior classification approaches. For example, a more
structured approach starts with high certainty lumen seeds (e.g., based on expert outlined
lumens) and using them as anchors, and distinctly colored object segmented objects. The
distinction of lumens from other transparent objects, such as tissue tears, retraction
artifacts, blood vessels and staining defects, provides solid anchors and object neighbor
information to the color-based classification seeds. The probability distributions of the
new seed object features, along with nearest neighbor and other clustering techniques, are
used to further classify the remaining objects. Biological information regarding of the cell
organelles (e.g., their dimensions, shape and location with respect to other organelles)
constrains the growth of the classified objects. Due to tissue-to-tissue irregularities and
feature outliers, multiple passes of the above approach may be used to label all the
segments. The results are fed back to the process as new seeds, and the process is
iteratively repeated until all objects are classified. In some embodiments, since at 20x
magnification the nuclei and sub-nuclei objects may be too coarsely resolved to
accurately measure morphologic features, measurements of nuclei shape, size and nuclei
sub-structures (chromatin texture, and nucleoli) may be measured at 40x magnification
(see e.g., Table 1). To reduce the effect of segmentation errors, the 40x measurements
may differentiate the feature properties of well defined nuclei (based on strongly defined
boundaries of elliptic and circular shape) from other poorly differentiated nuclei.

[0091] Figure 4A is an image of typical H&E-stained prostate tissue obtained via a
needle biopsy. Figure 4B is a segmented and classified version of the image in Figure 4A
according to some embodiments of the present invention, showing gland units 402
formed from seed lumen 404, epithelial nuclei 406, and epithelial cytoplasm 408. Also
segmented and classified in the processed image are isolated/non—gland-associated tumor
epithelial cells 410, which include epithelial nuclei and epithelial cytoplasm. Although
in the original image the seed lumen 404, epithelial nuclei 406, and epithelial cytoplasm
408 of the gland units are red, dark blue, and light blue, respectively, and the epithelial
nuclei and epithelial cytoplasm of the isolated/non—gland-associated tumor epithelial
cells are green and clear, respectively, the image is provided in gray-scale in FIG. 4B for
ease of reproducibility. Black/gray areas represent benign elements and tissue artifacts

which have been digitally removed by the pathologist reviewing the case.
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[0092] [llustrative computer-generated morphometric features measurable from, for

example, digitized images of H& E-stained tissue, are listed in Table 5. As described in

greater detail below, all of the features listed in Table 5 were found to be correlated with

prostate cancer progression in univariate analysis. Each feature denoted “IF/H&E” is a

combined feature formed by mathematically combining one or more features measured

from image(s) of H&E-stained tissue with one or more features measured from image(s)

of tissue subject to multiplex immunofluorescence (IF).

Table 5. H&E Morphometric Features

Feature

Feature Name Domain Description

HE02 Lum_Are Median H&E Median area of lumens

orig_approximation_4 H&E Variance of pixel values in the
approximation sub-band after applying
4 stages of undecimated wavelet
transform to a mask of glands

orig_diag_detail_6 H&E Variance of pixel values in the
diagonal detail sub-band after
applying 6 stages of undecimated
wavelet transform to a mask of glands

HEx2 nta Lum_Are_Tot H&E Relative area of lumens to total total
tumor area outlined or otherwise
identified

HEx2_EpiNucAre2LumMeanAre H&E Ratio of the total epithelial nuclear
area to the average size of lumens

HEx2 nrm_ENWinGU_Are_Tot H&E Relative area of epithelial nuclei that
are inside (within) gland units

HEx2 nrm_ENOutGU_Are_Tot H&E Relative area of epithelial nuclei that
are outside of gland units

HEx2 nrm_CytWinGU_Are_Tot H&E Relative area of epithelial cytoplasm
inside (within) gland units

HEx2 nrm_CytOutGU_Are_Tot H&E Relative area of epithelial cytoplasm
outside of gland units

HEx2 RelArea_EpiNuc_Out2WinGU H&E Ratio of the area of epithelial nuclei
outside of gland units to the area of
epithelial nuclei inside gland units

HEx2 RelArea_Cyt_Out2WinGU H&E Ratio of the area of epithelial
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cytoplasm outside of gland units to the
area of epithelial cytoplasm within
(inside) gland units
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HEx2 RelArea ENCyt Out2WinGU

HEx2 ntaENCYtOutGU2Tumor

HEx2 nrmLUM_ENOutGU_Are Tot

HEx2 nrmLUM_CytWinGU_Are Tot

HEx2 nrmLUM_CytOutGU_Are_Tot

HEx2 nrmLUM_EpiNucCytOutGU

HEx2 nrm_ENCytWinGULum_Are_Tot

HEx2 RelArea ENCytLum_Out2WinGU

HEx2 RelArea EpiNucCyt_Lum

HEx2 ntaLumContentArea

HEx2 nrmEpiNucBand5Sminus3

H&E

H&E
H&E
H&E
H&E
H&E

H&E

H&E

H&E
H&E

H&E
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Ratio of the area of epithelial cells
(nuclei + cytoplasm) outside of gland
units to the area of epithelial cells
(nuclei + cytoplasm) inside of gland
units

Area of epithelial cells (nuclei plus
cytoplasm) not associated with lumens
normalized to the total tumor area

Relative area of epithelial nuclei
outside of gland units to the total area
of lumens

Relative area of epithelial cytoplasm
within gland units to the total lumen
area

Relative area of epithelial cytoplasm
outside of gland units to the total
lumen area

Relative area of epithelial cells (nuclei
+ cytoplasm) to the total area of
lumens

Ratio of the area of epithelial cells
(nuclei + cytoplasm) within gland
units and the total area of lumens to
the tumor area

Relative area of epithelial cells (nuclei
+ cytoplasm) outside of gland units to
the glandular area, calculated as the
sum of epithelial cell (nuclei +
cytoplasm) area within gland units and
the total area of lumens

Ratio of the area of epithelial cells
(nuclei + cytoplasm) to the area of
lumens

Relative area of luminal content, i.e.,
non-whitespace constrained within the
luminal mask

Measures the areas of epithelial nuclei
distributed away from gland units.
Calculated by measuring the areas of
epithelial nuclei with centers that are
in a band a certain distance away from
lumen borders. The band includes all
epithelial nuclei that are at least three
units away from the lumen border but
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min_orig_L_detail5

RelAreaKi67post_2Lumen

RelAreapAKTpos_2Lumen

RelArealFM2EpiNuc_2Lumen

RelAreARpAMACR p2Lumen

(v 7]

H&E

IF/ H&E

IF/ H&E

IF/ H&E

IF/ H&E
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within S units of the lumen border; a
unit is a fixed number set to be
approximately the diameter of one
epithelial nucleus.

Minimum of the variances of pixel
values in the horizontal and vertical
detail sub-bands after applying 5
stages of undecimated wavelet
transform to a mask of lumens

Ratio of the relative area of Ki67
positive epithelial nuclei in IF images
to the relative area of lumens in H&E
images

Ratio of the relative area of pAKT
positive epithelial nuclei in IF images
to the relative area of lumens in H&E
images

Ratio of the relative area of epithelial
nuclei in IF images to the relative area
of lumens in H&E images

Ratio of the relative area of AR
positive and AMACR positive
epithelial nuclei in IF images to the
relative area of lumens in H&E
images

[0093] It will be understood that the computer-generated morphometric features listed

in Table 5 are only illustrative and that any suitable computer-generated morphometric

features may be utilized without departing from the scope of the present invention. For

example, additional computer-generated morphometric features (e.g., morphometric

features measurable from digitized images of H&E-stained tissue) which may be used in

a predictive model for predicting an outcome with respect to a medical condition are

listed in Table 1. It is believed that additional experimentation in the field of prostate

cancer, its recurrence, progression, or other outcome with respect to prostate cancer, may
provide additional insight regarding the types of features which may be more likely to
correlate with outcome. The inventors expect that continued experimentation and/or the

use of other suitable hardware, software, or combination thereof will yield various other
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sets of computer-generated features (e.g., a subset of the features in Tables 1 and 5) that
may correlate with these and other medical conditions.

[0094] Additional details regarding image segmentation and measuring morphometric
features of the classified pathological objects according to some embodiments of the
present invention are described in above-incorporated U.S. Patent No. 7,461,048, issued
December 2, 2008, U.S. Patent No. 7,467,119, issued December 16, 2008, and PCT
Application No. PCT/US2008/004523, filed April 7, 2008, as well as commonly-owned
U.S. Publication No. 2006/0064248, published March 23, 2006 and entitled “Systems and
Methods for Automated Grading and Diagnosis of Tissue Images,” and U.S. Patent No.
7,483,554, issued January 27, 2009 and entitled “Pathological Tissue Mapping,” which
are hereby incorporated by reference herein in their entireties. '

[0095] Morphometric Data And/or Molecular Data Obtained from Multiplex IF

[0096] In some embodiments of the present invention, an image processing tool (e.g.,
image processing tool 136) is provided that generates digitized images of tissue
specimens subject to immunofluorescence (IF) (e.g., multiplex IF) and/or measures
morphometric and/or molecular features from the tissue images or specimens. In
multiplex IF microscopy [15], multiple proteins in a tissue specimen are simultaneously
labeled with different fluorescent dyes conjugated to antibodies specific for each
particular protein. Each dye has a distinct emission spectrum and binds to its target
protein within a tissue compartment such as nuclei or cytoplasm. Thus, the labeled tissue
is imaged under an excitation light source using a multispectral camera attached to a
microscope. The resulting multispectral image is then subjected to spectral unmixing to
separate the overlapping spectra of the fluorescent labels. The unmixed multiplex IF
images have multiple components, where each component represents the expression level
of a protein in the tissue.

[0097] In some embodiments of the present invention, images of tissue subject to
multiplex IF are acquired with a CRI Nuance spectral imaging system (CRI, Inc., 420-
720 nm model) mounted on a Nikon 90i microscope equipped with a mercury light
source (Nikon) and an Opti Quip 1600 LTS system. In some embodiments, DAPI
nuclear counterstain is recorded at 480 nm wavelength using a bandpass DAPI filter

(Chroma). Alexa 488 may be captured between 520 and 560 nm in 10 nm intervals using
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an FITC filter (Chroma). Alexa 555, 568 and 594 may be recorded between 570 and 670
nm in 10 nm intervals using a custom-made longpass filter (Chroma), while Alexa 647
may be recorded between 640 and 720 nm in 10 nm intervals using a second custom-
made longpass filter (Chroma). Spectra of the pure dyes were recorded prior to the
experiment by diluting each Alexa dye separately in SlowFade Antifade (Molecu.lar
Probes). In some embodiments, images are unmixed using the Nuance software Version
1.4.2, where the resulting images are saved as quantitative grayscale tiff images and
submitted for analysis.

[0098] For example, Figure 5A shows a multiplex IF image of a tissue specimen
labeled with the counterstain 4'-6-diamidino-2-phenylindole (DAPI) and the biomarker
cytokeratin 18 (CK18), which bind to target proteins in nuclei and cytoplasm,
respectively. Although the original image was a pseudo-color image generally exhibiting
blue and green corresponding to DAPI and CK 18, respectively, the image is provided in
gray-scale in FIG. SA for ease of reproducibility.

[0099] In some embodiments of the present invention, as an alternative to or in addition
to the molecular features which are measured in digitized images of tissue subject to
multiplex IF, one or more morphometric features may be measured in the IF images. IF
morphometric features represent data extracted from basic relevant histologic objects
and/or from graphical representations of binary images generated from, for example, a
specific segmented view of an object class (e.g., a segmented epithelial nuclei view may
be used to generate minimum spanning tree (MST) features as described below).

Because of its highly specific identification of molecular components and consequent
accurate delineation of tissue compartments—as compared to the stains used in light
microscopy—multiplex IF microscopy offers the advantage of more reliable and accurate
image segmentation. In some embodiments of the present invention, multiplex IF
microscopy may replace light microscopy altogether. In other words, in some
embodiments (e.g., depending on the medical condition under consideration), all
morphometric and molecular features may be measured through IF image analysis thus
eliminating the need for, for example, H&E staining (e.g., some or all of the features

listed in tables 1 and 2 could be measured through IF image analysis).
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[0100] In an immunofluorescence (IF) image, objects are defined by identifying an area
of fluorescent staining above a threshold and then, where appropriate, applying shape
parameters and neighborhood restrictions to refine specific object classes. In some
embodiments, the relevant morphometric IF object classes include epithelial objects
(objects positive for cytokeratin 18 (CK138)) and complementary epithelial nuclei (DAPI
objects in spatial association with CK18). Specifically, for IF images, the process of
deconstructing the image into its component parts is the result of expert thresholding
(namely, assignment of the ‘positive’ signal vs. background) coupled with an iterative
process employing machine learning techniques. The ratio of biomarker signal to
background noise is determined through a process of intensity thresholding. For the
purposes of accurate biomarker assignment and subsequent feature generation, supervised
learning is used to model the intensity threshold for signal discrimination as a function of
image background statistics. This process is utilized for the initial determination of
accurate DAPI identification of nuclei and then subsequent accurate segmentation and
classification of DAPI objects as discrete nuclei. A similar process is applied to capture
and identify a maximal number of CK18+ epithelial cells, which is critical for associating
and defining a marker with a specific cellular compartment. These approaches are then
applied to the specific markers of interest, resulting in feature generation which reflects
both intensity-based and area-based attributes of the relevant protein under study.
Additional details regarding this approach, including sub-cellular compartment co-
localization strategies, are described in above-incorporated PCT Application No.
PCT/US2008/004523, filed April 7, 2008.

[0101] Multiplex IF Image Segmentation. In some embodiments of the present
invention, the image processing tool performs multiplex IF image segmentation as
follows. To enable feature extraction, epithelial nuclei (EN) and cytoplasm are
segmented from IF images using the Definiens image analysis platform [16, 17]. Figure
6 is a flowchart 600 of illustrative stages involved in segmenting and classifying
multiplex IF images according to some embodiments of the present invention. The
segmentation method performed by the image processing tool may consist of three stages
of initial segmentation into primitives 602; classification of primitives into nuclei,

cytoplasm, and background 604; and refinement of classified primitives to obtain the
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final segmentation 606. In some embodiments, the segmentation and feature extraction
operations may be applied to regions of interest (ROI’s) in the image. In some
embodiments, these ROI’s may be identified by a pathologist and may be free of non-
tumor tissue and artifacts. In other embodiments, these regions may be identified
automatically. Figure SB shows the image in Figure SA segmented into epithelial nuclei
(EN) 502, cytoplasm 504, and stroma nuclei 506. Although in the original, segmented
and classified image the segmented EN 502 are shown in blue, the segmented cytoplasm
504 are shown in green, and the segmented stroma nuclei 506 are shown in purple, the
image is provided in gray-scale in Figure 5B for ease of reproducibility.

[0102] Referring to FIG. 6, in a first stage of segmentation 602 image pixels are
grouped into small primitive objects. This grouping is based on the similarity of intensity
values and shape characteristics of the resulting objects. To obtain the initial primitives,
the quad-tree procedure is first applied to the image. The resulting primitives are then
grouped further using a multiresolution segmentation procedure [16]. The quad-tree
procedure uses color similarity to group pixels, and the multiresolution method uses color
similarity and shape regularity to form primitives. A scale parameter controls the average
size of the primitives in both methods.

[0103] At stage 604, the primitives in the CK18 image are classified into cytoplasm and
background prototype objects, where background consists of autofluorescence and non-
specific binding of the fluorescent dye to the tissue. This is accomplished via intensity
thresholding, wherein the average intensities of primitives are compared to thresholds
computed from the intensity statistics of all primitives in the CK18 image. If the average

intensity of a primitive is below a threshold T, it is classified as a background prototype

ow 2

object. If the average intensity of the primitive is above a threshold 7, , it is classified as

a cytoplasm prototype object. Thresholds 7,

low

and 7, are derived from a threshold 7 as

T,

low

=a,Tand T, =a,,T. Threshold T is modeled as a linear function 7=A"X +b,
where A =[a,,...,a,]” and X =[x,,..,x,]" are model parameters and intensity statistics of all
image primitives, respectively, and & is a constant. Parameters {A, b} are obtained by

fitting the model to a set of reference thresholds selected by two pathologists on a

training image set. To avoid model over-fitting, feature selection is performed on X and
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thus very few elements of A” are non-zero. Parameters «,, and a,, control the

classification accuracy for the resulting class prototypes. In an illustrative example,

conservative values «,, =0.33 and a,,, =1.5 were used to obtain reliable class prototypes.

[0104] The class prototypes obtained using thresholding drive the classification of the
rest of the primitives using the nearest neighbor (NN) classification rule. The NN rule
classifies each primitive as being a cytoplasm or background object if the closest
prototype object to it is a cytoplasm or background object, respectively. The metric for

the NN rule is the Euclidean distance and objects are represented using the vector
[m s]T, where m and s denote the average and standard deviation of the intensity of the

object.

[0105] At stage 606, the class labels of the cytoplasm and background objects are
further refined using neighborhood analysis. Background objects smaller than, for
example, 12 pixels in area whose border length with cytoplasm relative to their total
border length is 0.6 or more are reclassified as cytoplasm.

[0106] Referring back to stage 604, in the first stage of EN segmentation nuclei
prototype objects are identified via intensity thresholding. The intensity threshold model
is constructed using a similar procedure to that described for classifying cytoplasm
prototype oﬁjects. Next, background objects whose relative border length to nuclei is
0.66 or more are reclassified as nuclei prototype objects. Moreover, isolated background
objects smaller than, for example, 50 pixels in area are reassigned as nuclei prototype
objects.

[0107] To build individual nuclei, nuclei prototype objects are subjected to two stages
of region growing, a multiresolution segmentation stage, and a final cleanup stage.
Generally, region growing consists of using brighter prototype objects as seeds and
merging the darker neighboring objects with the seeds to form individual nuclei. In the
following example, the super-object for a given object is obtained by merging the object
with all of its connected neighbors. In the first stage of region growing, prototype objects
whose average brightness relative to the brightness of their super-object is 0.66 or more
are identified as seeds. These objects are classified as nuclei if they meet certain shape

criteria (e.g., width and length < 25 pixels, elliptic fit > 0.6, 35 pixels < area < 350
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pixels), where elliptic fit [16] measures the similarity of the object to a perfect ellipse.
Each identified nucleus is then grown by merging the darker neighboring objects with it.
The above process is repeated on the remaining prototype objects using objects with a
relative brightness of 0.9 or more as seeds. Following the above region growing stages,
multi-resolution segmentation is applied to the remaining prototype objects to build more
nuclei. In the cleanup stage, the remaining prototype objects are merged with the
individual nuclei identified in previous stages if possible, or otherwise classified as
background. Finally, nuclei whose area has an overlap of, for example, 50% or more
with cytoplasm are classified as EN. Otherwise, they are classified as stroma nuclei.
[0108] In some embodiments of the present invention, morphometric features for
evaluation or use within a predictive model are provided which are derived from (i) the
minimum spanning tree (MST) connecting the epithelial nuclei (EN) in multiplex IF
image(s) and/or (ii) the fractal dimension (FD) of gland boundaries in multiplex IF
image(s). Such features have been determined by the present inventors to be effective for
the quantification of tissue architecture and morphology. Fluorescent labels utilized in
multiplex IF microscopy enable more reliable and accurate segmentation of tissue
compartments over conventional stains used in light microscopy, thus allowing for more
robust feature extraction. By way of example only, using univariate analysis and
multivariate modeling, the efficacy and robustness of the MST and FD features were
demonstrated in the large-scale, multi-institution study described below.

[0109] In some embodiments, two or more features (e.g., clinical, molecular, and/or
morphometric features) may be combined in order to construct a combined feature for
evaluation within a predictive model. For example, a morphometric feature such as, for
example, a minimum spanning tree (MST) feature and/or a fractal dimension (FD)
feature, may be combined with a clinical feature to form a combined feature. Inone
embodiment, a combined feature constructed using the mean edge length of the MST (a
morphometric feature) and the patient’s Gleason grade (a clinical feature) was selected in
a multivariate model for the prediction of disease progression. Other suitable
combinations of features are of course possible and are fully contemplated as being
within the scope of embodiments of the present invention. Additional examples of

combined features are described below in connection with, for example, Figure 9.
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[0110] Minimum Spanning Tree (MST) Features. In some embodiments of the
present invention, one or more morphometric features used in a predictive model may
include or be based on characteristic(s) of a minimum spanning tree (MST) observed in
digitized image(s) of tissue subject to multiplex immunofluorescence (IF). As described
above, generally IF microscopy offers the advantage of more reliable and accurate image
segmentation when compared to traditional light microscopy. For example, features
characterizing tissue architecture may be extracted from the MST connecting the
centroids of all epithelial nuclei (EN) in a tissue specimen. In some embodiments, after
segmentation of an IF image into CK18-positive DAPI objects, this segmented image
may be used to create a graph for the derivation of all MST features. The MST of a
graph is defined as the tree connecting all vertices (here, EN centroids) such that the sum
of the lengths of the lines (edges) connecting the vertices is minimized. Several methods
exist for constructing the MST of a graph. In some embodiments of the present
invention, Prim’s method may be used [35]. In other embodiments of the present
invention, other methods of constructing the MST may be utilized.

[0111] Figure 7 is a flowchart 700 of illustrative stages involved in constructing a
minimum spanning tree (MST) of objects within a digitized image of tissue subject to
multiplex immunofluorescence (IF) in accordance with some embodiments of the present

invention. Let G={V, E} denote a graph with vertices ¥ and edges E, and let
Gyt = (Vust» Ewsr} denote the MST of G. Such a procedure may be performed by an
image processing tool (e.g., image processing tool 136) or any other suitable hardware,
software, or combination thereof. The method starts at stage 702 by adding an arbitrary

verteX v in ¥ 10 V¢, thatis, Ve ={v} . Then, at stage 704, the method determines the
nearest vertex in the rest of the graph to the current G,,. That is, the shortest edge e
connecting the vertices » and v is found such that » e ¥,,; and ve V.. Insome

embodiments, the length of each edge is the Euclidean distance between the pair of

vertices (e.g., EN centroids) that it connects. Then, at stage 706, G, is updated by
adding v to ¥, and adding e to E, . The process of adding vertices is continued at
stage 608 until all of them are included in ¥, . As indicated at stage 710, the MST is

complete once all of the vertices in the graph have been included.
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[0112] Figure 8A shows an instance of the MST of epithelial nuclei (EN) identified in
an image of tissue subject to multiplex immunofluorescence (IF) according to some
embodiments of the present invention. As shown, the MST includes vertices (here, EN
centroids) 802. The MST also includes intra-gland MST edges 804 and inter-gland edges
806. Although in the original, segmented and classified image the EN centroids 802 and
intra-gland MST edges 804 are marked in yellow, the inter-gland edges 806 are marked
in red, and the segmented EN and cytoplasm are marked in dark and light gray,
respectively (with degree 1 and 3 EN outlined in green and red, respectively, as described
below), the image is provided in gray-scale in Figure 8A for ease of reproducibility.
Other compartments in the image are masked out for clarity.

[0113] A number of characteristics of the MST of EN have been considered in the
literature for cancer diagnosis and prognosis [19-23]; however, a fundamental limitation
of the studies was that image analysis was performed on light microscopy images of
tissue specimens stained using conventional stains such as hematoxylin and eosin (H&E).
In an illustrative example according to some embodiments of the present invention, five
MST characteristics from images of tissue subject to multiplex immunofluorescence (IF)
were selected for potential use as features within a predictive model. Alternatively or
additionally, in other embodiments of the present invention, other MST characteristics
can be selected for evaluation or use within a model predictive of a medical condition.
The five MST features selected were the mean and standard deviation of edge lengths,
and the degree distribution for vertices with degrees 1, 2 and 3 (see Figure 9). The
degree of a vertex refers to the number of edges incident on the vertex. For example, the
degree of vertex (EN centroid) 802 in Figure 8A is 3. Vertex 808 in Figure 8A has a
degree of 1. Here, the degree distribution of an MST, 4,, is defined as d, =n,/n , where

n, denotes the number of vertices with degree i, and » is the total number of vertices. In

this example, the degree distribution up to degree 3 was considered as vertices with
higher degrees were rare and thus estimates of their proportions were unreliable. In other
embodiments of the present invention, degrees of 4 and higher can be selected as features
for evaluation or use within a predictive model.

[0114] In the illustrative embodiment shown in Figure 8A, the MST edges connect
epithelial nuclei (EN) within glands (e.g., edge 704) as well as across glands (e.g., edge
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706). The present inventors have determined that these intra- and inter-gland edges
quantify different tissue characteristics. While the lengths of the intra-gland edges
characterize the degree to which the EN are invading the stroma surrounding the gland,
inter-gland edges measure the separation between glands, which, for a given Gleason
grade, is in part due to the biochemical response of the stroma to cancer resulting in the
formation of scar tissue. To decouple these two characteristics, the edges of the MST
were classified as being intra- or inter-glandular, and the mean and standard deviation of
the edge lengths were separately obtained for each of the two classes of edges. In this
illustrative study, the degree distribution for vertices connecting inter-gland edges was
uninformative and thus was not considered, although it could be considered in other
embodiments. To classify MST edges, connected component analysis was performed on
gland regions, where gland regions consisted of the union of EN and cytoplasm regions.
Edges connecting EN belonging to the same connected component were classified as
intra-glandular. The remaining edges were classified as being inter-glandular. The inter-
glandular mean edge length was able to distinguish good and poor outcome patients. In
addition, it was correlated with the outcome in the same direction as the MST mean edge
length obtained from all EN.

[0115] In some embodiments, the MST approach as described above is a graph-based
method that operates on a binary mask. For example, such an approach can be applied to
binary masks from lumens identified (e.g., in H&E-stained images) or DAPI/CK18
objects in tissue images subject to immunofluorescence (IF). In other embodiments of
the present invention, any other suitable graph-based approach(es) and/or mask(s) could
be used in connection with measuring features of interest in tissue or image(s) thereof. -
[0116] Fractal Dimension of Gland Boundaries. The present inventors have
determined that the fractal dimension (FD) of the boundaries between the glands and the
surrounding stroma provides a quantitative measure of the irregularity of the shape of the
boundary. In general, the FD is a measure of the space-filling capacity of an object. The
FD of a straight line is one, whereas the FD of a more irregular planar curve is between 1
and 2. Gland boundaries with lumen and stroma are defined as pixels that have at least
one non-gland and one gland pixel among their 4-connected neighbors (Figure 8B). As

lumens and stroma can appear similar in multiplex [F images, morphological operations
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were used to distinguish them. Lumens were defined as pixels belonging to holes in the
gland regions, namely, pixels that cannot be reached by flood-filling the non-gland region
starting from pixels on the edge of the image. Two FD features were considered in an
illustrative study: the FD of gland-stroma boundaries, and the FD of gland boundaries
with both stroma and lumens (see Figure 9). Figure 8B shows boundaries of the glands
with stroma 810 and boundaries of the glands with lumen 812 as identified in an image of
tissue subject to multiplex immunofluorescence (IF) according to some embodiments of
the present invention. Although in the image processed by the image processing tool the
boundaries of the glands with stroma 810 and the boundaries of the glands with lumen
812 were shown in yellow and red, respectively, the image is provided in gray-scale in
Figure 8B for ease of reproducibility. The FD was estimated using the box-counting
algorithm described below.

[0117] Inbox counting, grids of varying size are placed on the curve of interest and for
each grid the grid cells occupied by the curve are counted. For each grid size, the grid is
shifted to find the covering of the curve with the smallest number of occupied cells. Let

the pair (s, N,), i=1,.., p , denote the grid size and the corresponding cell count,
respectively, where p is the number of pairs. The relationship between log(¥) and log(s)
is modeled as a linear function log(N) = alog(s) +b via least squares, where a and b
denote the slope and intercept of the line. The FD f is then obtained as f =-a.

[0118] A practical consideration in the estimation of FD is the choice of the range of s.
In the present study, due to the finite resolution of digital images, a small s tends to
underestimate the FD. On the other hand, because of the finite extent of images, large s
values result in few occupied grid cells, causing the FD estimate to have a large variance.
Determination of the optimal s is also confounded by the fact that in some instances
tumor boundaries may not exhibit fractal behavior at all or do so over a finite range of
scales.

[0119] The range of s was selected based on the constraints imposed by the finite
resolution and size of the images, as well as the predictive power of the resulting feature.
Initially, the minimum and maximum box size was set to 2 and 64, respectively, where

the choice of maximum size was made empirically to ensure that N was at least 50 for
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most images. Next, the box sizes were set to s {2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64}, roughly
following a power law. Then, for each pair of consecutive box sizes (i.e., (2,3), (3,4),
..., (48, 64)), the FD was estimated. The predictive power of the FD estimates was then

assessed via univariate analysis as described below. The optimal range of s was selected
as the range over which the predictive power of the FD remained statistically significant.
The final FD feature was obtained based on this range of s.

[0120] Analysis of MST and FD Features in IF Images. Biopsy specimens of tissue
were labeled with the DAPI counterstain and multiple biomarkers, including the CK18
biomarker, and were imaged using a CRI Nuance multispectral imaging system yielding
12-bit 1280x 1024-pixel images. Multiple (typically three) regions of interest (ROI"s)
were imaged for each patient. Biomarker images obtained from spectral unmixing were
segmented and the MST and FD features were extracted from the segmented images.
Finally, feature values extracted from the patient’s multiple ROI’s were aggregated into a
single value per feature by taking their median.

[0121] The predictive value of the proposed MST and FD features was first established
via univariate analysis. This was accomplished by training a univariate Cox proportional
hazards model [24] on each feature and testing the significance of the coefficient of the

trained model using the Wald 3 test. Figure 8 shows the two-sided p-values and CI’s of

the minimum spanning tree (MST) and fractal dimension (FD) features on the training
set, where the concordance index (CI) values range from 0 to 1. A CI of 0.5 indicates no
relationship between the feature and outcome, whereas CI values below and above 0.5
correspond to negative and positive relationships with outcome, respectively. As the
table indicates, except for 4,, a larger feature value corresponds to a shorter time to
clinical failure (CF). Moreover, the present inventors have determined that both FD
features and the MST degree distribution for degree 3 ( 4,) were highly effective for
predicting CF in terms of both »* test p-value and CI. It is noted that the two FD

features had similar performance. It is believed that the same carcinogenesis process
underlying the uninhibited proliferation of epithelial cells drives the irregularity of gland
boundaries with both stroma and lumen, resulting in similar feature performance.

[0122] The intra-gland and overall mean edge length of the MST also had comparable
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predictive power. This is believed to be because both features are dominated by intra-
gland edges whose number is far larger than that of inter-gland edges. On the other hand,
the correlation between the inter-gland mean edge length and CF was not significant in
this example. To evaluate whether the inter-gland feature would be useful when
considered within a group of patients with similar Gleason grades, particularly Grade 3,
the correlation within the grade 3 patient group was evaluated. This correlation was
insignificant as well in this example. It is suspected that the relatively small number of
inter-gland distances that drive the feature is insufficient for obtaining a stable feature.
Thus, larger ROI’s or a larger number of ROI’s may be needed.

[0123] The present inventors have determined that MST degree distribution has an
intuitive interpretation in terms of tumor architecture. As shown in Figure 8A, degree 1
vertices typically occur when an epithelial nuclei (EN) is fairly isolated from other EN.
This usually is the case for EN invading the surrounding stroma. Degree 2 vertices, on
the other hand, typically correspond to EN regularly arranged within the gland. Finally,
degree 3 (and higher degree) vertices usually belong to clusters of EN resulting from

uninhibited proliferation. Thus, ¢, and 4, are both expected to be negatively correlated
with the time to clinical failure (CF), whereas the opposite is expected of 4,.

[0124] Combined Features. The present inventors noted that the fractal dimension
(FD) features were the most effective for patients with Gleason grades 3 and lower (CI =
0.395). This was the motivation for creating a combined feature. For Gleason grades 4
or higher, the combined feature was set to the Gleason grade. Otherwise, it was set to the
FD feature linearly scaled to the range O to 3. The mean edge length of the MST and the
degree distribution for degree 3 were also most effective for Gleason grades 3 and lower
(C1=0.415 and 0.434, respectively). Thus, a combined feature was constructed for each
of these two features by setting the combined feature to the Gleason grade for grades 4
and higher, and setting it to the MST feature scaled linearly to the range O to 3 for grades
3 and lower. The univariate CI’s for these combined features are also shown in Figure 9.
In other embodiments in accordance with the present invention, any other suitable
combined features may be utilized such as, for example, any combination of features
listed in Tables 1-5 and 9 and Figure 9 which is correlated with an outcome of interest

(e.g., correlated with the outcome in univariate analysis).
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[0125] In an aspect of the present invention, systems and methods are provided for
screening for an inhibitor compound of a medical condition (e.g., disease). Figure 10isa
flowchart of illustrative stages involved in screening for an inhibitor compound in
accordance with an embodiment of the present invention. At stage 1002, a first dataset
for a patient may be obtained that includes one or more of clinical data, morphometric
data and molecular data (e.g., morphometric data and/or clinical data corresponding to
one or more of the features listed in Figure 9). A test compound may be administered to
the patient at stage 1004. Following stage 1004, a second dataset may be obtained from
the patient at stage 1006. The second dataset may or may not include the same data types
(i.e., features) included in the first dataset. At stage 1008, the second dataset may be
compared to the first dataset, where a change in the second dataset following
administration of the test compound indicates that the test compound is an inhibitor
compound. Stage 1008 of comparing the datasets may include, for example, comparing
an output generated by a predictive model according to an embodiment of the present
invention responsive to an input of the first dataset with an output generated by the
predictive model responsive to an input of the second dataset, where the predictive model
is predictive of the medical condition under consideration. For example, the inhibitor
compound may be a given drug and the present invention may determine whether the
drug is effective as a medical treatment for the medical condition.

[0126] EXAMPLE: Prediction of Prostate Cancer Progression

[0127] Inaccordance with an illustrative embodiment of the present invention, a
predictive model was developed for use on diagnostic biopsy cores of prostate tissue,
where the model predicts the likelihood of advanced prostate cancer progression even
after a curative-intent radical prostatectomy. This predictive model was developed from
data on a multi-institutional patient cohort followed for a median of 8 years. Features
evaluated in connection with generating the model included morphometric features
extracted from the diagnostic prostate needle biopsy, molecular features corresponding to
an expanded in-situ biomarker profile, and several clinical features. The predictive
model may be utilized, for example, at the time of diagnosis of prostate cancer and before
treatment, to provide an objective assessment of the patient’s risk of prostate cancer

progression. It is believed that the model resulting from this study, which accurately
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predicts outcome, will assist in identifying patients who, for example, may benefit from
risk-adjusted therapies.

[0128] A prospectively designed method was applied retrospectively to a cohort of
patients with clinically localized or locally advanced prostate cancer. The study subjects
consisted of 1027 men treated with radical prostatectomy between 1989 and 2003 at 5
university hospitals. The model predictive of clinical progression (distant metastasis,
androgen-independent recurrence, and/or prostate cancer mortality) was derived from
features selected through supervised multivariate learning. Performance of the predictive
model was measured by the concordance index.

[0129] A risk stratification model was developed using a training set of 686 patients
with 87 clinical failure events. Generally, the predictive model includes androgen
receptor and Ki67 levels, preoperative PSA, biopsy Gleason score, predominant Gleason
grade, and 2 quantitative histomorphometric characteristics of the prostate tissue
specimen. The model had a concordance index of 0.74, sensitivity of 78%, specificity of
69%, and hazard ratio 5.12 for predicting clinical progression within 8 years after
prostatectomy. Validation on an independent cohort of 341 patients with 44 clinical
failure events yielded a concordance index of 0.73, sensitivity 76%, specificity 64%, and
hazard ratio 3.47. This was significantly higher than the accuracy (concordance index of
0.69) of the commonly used pre-operative nomogram.

[0130] Asdemonstrated by the present study, the incorporation of morphometry and
space-related biomarker data is superior to clinical variables alone (including clinical
stage, biopsy Gleason score and PSA) for, for example, predicting disease progression
within 8 years after prostatectomy. Biopsy assessment of androgen receptor signaling
and proliferative activity is important for accurate patient stratification. Significantly,
this study also demonstrated the predictive power of a characteristic of the minimum
spanning tree (MST) as obtained from digitized images of tissue subject to multiplex
immunofluorescence (IF).

[0131] Patients and Samples. Information was compiled on 1487 patients treated with
radical prostatectomy between 1989 and 2003 for localized or locally advanced prostate
cancer for whom tissue samples were available. Patients were excluded who were treated

for prostate cancer before prostatectomy. The cohort (67%-33%) was randomized and
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split between training and validation sets with similar proportions of clinical failure
events and balanced demographically.

[0132] Clinical failure (CF) was pre-specified as any of three events: 1) unequivocal
radiographic or pathologic evidence of metastasis, castrate or non-castrate (including
skeletal disease or soft tissue disease in lymph nodes or solid organs); 2) rising PSA in a
castrate state; or 3) death attributed to prostate cancer. The time to clinical failure was
defined as the time from radical prostatectomy to the first of these events. If a patient did
not experience clinical failure as of his last visit, or his outcome at the time of his most
recent visit was unknown, then the patient’s outcome was considered censored.

[0133] Dominant biopsy Gleason grade (bGG) and Gleason score were obtained from
re-evaluation of the primary diagnostic biopsy sections obtained from paraffin block(s)
selected by the pathologist. Clinical stage was assessed by retrospective review of
clinical records.

[0134] Only patients with complete clinicopathologic, morphometric, and molecular
data, as well as non-missing outcome information, were further studied; evaluable
patients totaled 686 in the training set and 341 in the validation set (See Table 6 below).
The characteristics of these 1027 patients were similar to those of the 1487 in the original
cohort. 340 (33%) of 1027 patients had PSA recurrence and 338 (33%) had received
secondary therapy. 12 of 1027 (1%) died of disease and 157 (15%) died of other causes.
Patients were excluded due to poor quality of the biopsy specimen and/or incomplete
clinical data. Table 7 below provides a complete review of patient accounting.

Table 6. Characteristics of patients in the training and validation cohorts.

Training Validation

Characteristic n=686 n=341
Mean age, years 63.6 64
Pre-operative PSA :

<10 ng/ml 460 (67.1%) 231 (67.7%)

>10 ng/ml 226 (32.9%) 110 (32.3%)
Dominant Gleason grade

2 25 (3.6%) 8 (2.3%)

3 524 (76.4%) 246 (72.1%)

4 130 (19.0%) 85 (24.9%)

5 7 (1.0%) 2 (0.6%)
Gleason Score

4 5(0.7%) 4 (1.2%)
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5 31 (4.5%) 7 (2.1%)
6 294 (42.9%) 159 (46.6%)
7 287 (41.8%) 137 (40.2%)
8 46 (6.7%) 25 (7.3%)
9 17 (2.5%) 8 (2.3%)
10 6 (0.9%) 1 (0.3%)

Clinical Stage
Tla 6 (0.9%) 3(0.9%)
Tlc 263 (38.3%) 116 (34.0%)
T2 374 (54.5%) 198 (58.1%)
T3 27 (3.9%) 15 (4.4%)
Missing 16 (2.3%) 9 (2.6%)

Clinical failure events 87 (12.7%) 44 (12.9%)
Castrate rise in PSA 77 (11.2%) 40 (11.7%)
Bone scan positive 9 (1.3%) 4 (1.2%)
Death of prostate cancer 1 (0.1%) 0

Table 7. Patients in full and final cohorts, and clinical failure events in the final cohort.

Institution
Patients 1 2 3 4 5 Total
Full Cohort 74 501 600 233 79 1487
Final Cohort 50 267 565 131 14 1027
% Included 67.6 53.3 94.2 56.2 17.7 69.1
Training Set
Number of Patients 50 182 359 87 8 686
Number of CF Events 9 26 41 11 0 87
% Events 18.0 14.3 11.4 12.6 0 12.7
Validation Set
Number of Patients 0 85 206 44 6 341
Number of CF Events 0 10 27 6 1 44
% CF Events 0 11.8 13.1 13.6 16.7 12.9

[0135] Up to 7 unstained slides and/or paraffin blocks were obtained for each patient.
Slides and sections obtained from blocks were stained with hematoxylin and eosin
(H&E). Sections with maximum tumor content and representative of the patient’s
Gleason score, including areas of the patient’s highest Gleason grade, were selected for
further analysis.

[0136] Image Analysis of H&E-Stained Tissue. Up to three digitized H&E images
were acquired from whole-section biopsy specimens and independently assessed for

overall tumor content, Gleason grade, and quality (staining properties, morphological
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detail, and artifacts) by three pathologists. Using a digital masking tool (here, Adobe
Photoshop 7.0), only infiltrating tumor was included for morphometric analysis. The
outline of the lumen of individual tumor-glands was used to accurately reflect overall
gland architecture. An image analysis tool was used to generate morphometric features,
specifically including quantitative histologic features based on cellular properties of the
prostate cancer (e.g., relationship of epithelial nuclear area to gland lumen area.) For a
given patient, the final value for each morphometric feature was the median value across
a patient’s entire tumor available for study.

[0137] In the morphometric analysis of H&E-stained tissue, although the “gland unit”
object approximates a true gland unit, it is perhaps a misnomer. The intended
relationship captured in this object is that between lumens and closely associated
epithelial nuclei. Defining such object and therefore a nuclear subclass (here, those
closely associated with lumens) allows one, by subtraction, to study nuclei not closely
associated with or distant from lumens. It is the variety of possible relationships between
the described objects, nuclear subclasses (by extension epithelial cytoplasm subclasses),
and total tumor area that comprise features associated (directly or indirectly) with the
gland unit. Gland unit objects according to some embodiments of the present invention
are created by uniform and symmetric growth around lumens as seeds in the manner
described above, which identifies not only gland units but also epithelial cells not
captured by the gland, namely, epithelial cells outside of or poorly associated with the
gland unit.

[0138] The specific H&E feature selected in the multivariate model described in this
example (Figure 11) represents the relative area of the epithelial cells which are poorly
associated with the gland units. Specifically, this feature is defined as the area of
epithelial cells (nuclei plus cytoplasm) not associated with lumens normalized to the total
tumor area. Pathophysiologically this feature as well as most of its variants capture a
progression in prostate tumor grade. Most intuitive is the simple progression from a low-
grade Gleason pattern 3, in which the majority of epithelial nuclei are closely associated
with lumens, to a high-grade Gleason pattern 5, in which most epithelial nuclei are not
associated with lumens. Slightly more subtle is the progression of a simple Gleason

pattern 3 to a pattern 4. In pattern 4, increased numbers of glands will have very small or
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no lumens, with epithelial cancer cells either as ‘lumen-less’ nests or asymmetrically
surrounding small lumens, both leading to an increased feature value.

[0139] A distinct feature targeting similar tumor characteristics as the gland unit
features is the ‘epithelial nuclear band 5 minus 3’ feature. This feature measures
epithelial nuclear area within static concentric rings (bands) around lumens. Subtracting
the content of the innermost rings from the outermost rings gives area of nuclei distant
from lumens. As expected, the direction of univariate correlation changes for epithelial
nuclear area closely associated with lumens (band 1) vs. area more distant from lumens
(band 5 minus 3). What differentiates ‘band 5 minus 3’ from the ‘gland unit’ feature
previously described is that ‘band 5 minus 3’ includes only epithelial nuclear area
associated with a lumen whereas the gland unit includes nuclear area quite distant from or
completely unassociated with lumens. These two features therefore overlap, particularly
in Gleason pattern 4.

[0140] Quantitative Multiplex Immunofluorescence. Multiple antigens were
quantified in single tissue sections by immunofluorescence. Two multiplex assays were
performed on prostate needle biopsies with Alexa-fluorochrome—labeled antibodies for
the following antigens: a) Multiplex 1: androgen receptor (AR), racemase (AMACR),
cytokeratin 18 (CK18), TP73L (p63), and high molecular weight keratin; b) Multiplex 2:
Ki67, phosphorylated AKT, CD34, CK18 and AMACR (Table 8). Both multiplexes
contained 4'-6-diamidino-2-phenylindole (DAPI) to stain nuclei. Based on the distinctive
spectral profiles of the fluorochromes, antigen-specific gray-scale images were acquired.
An image analysis tool was used to localize the individual antigens. Utilizing antigen
distribution and pixel-based intensity maps, the image analysis tool identified cell types
and cellular compartments (e.g. luminal epithelial cells, epithelial/stromal nuclei) and
quantified AR, Ki67, phosphorylated AKT, CD34, and AMACR in prostate tumor,
benign glands, and stroma. Machine learning statistical modeling was employed to
determine optimal thresholds for fluorescence intensity and assign classification schemes
for positive and negative profiles. For a given patient, the final value for each
immunofluorescence feature was the median value across a patient’s entire tumor

available for study.
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[0141] Prior to incorporation into immunofluorescent multiplexes, all antibodies were
titrated using both immunohistochemical and immunofluorescent standard operating
procedures.

[0142] De-paraffinization and re-hydration of tissue samples were performed per
standard operating proceddres. Antigen retrieval was performed by boiling the slides in a
microwave oven for 7.5 minutes in 1X Reveal Solution (BioCare Medical). The slides
were allowed to cool for 20 minutes at room temperature and then were rinsed under

running dHO. All subsequent steps were performed on a Nemesis 7200 Automated

Slide Stainer (BioCare Medical).

[0143] The tissue samples underwent the following pre-hybridization treatment steps.
To help permeate the cellular structures of the tissue, the samples were incubated in PBT
(PBS + 0.2% Triton-X 100) at room temperature for thirty minutes, followed by a three
minute rinse in TBS. To help reduce tissue auto-fluorescence, the samples were
incubated in acid alcohol (1% HCI in 70% ethanol) at room temperature for twenty
minutes, followed by a three minute rinse in TBS. Blocking of non-specific binding sites
was performed by incubating the slides in IF Blocking Reagent (0.5mg/ml BSA in PBS)
at room temperature for twenty minutes. No washes were performed between the
blocking step and the subsequent hybridization step.

[0144] Two sets of 5 antibodies each (Table 8) were combined with DAPI into
multiplex ‘quintplex’ assays. The “Multiplex-1” analysis includes a cocktail of anti-
racemase (AMACR; clone 13H4, Zeta Corporation) at a 1:50 dilution with high
molecular weight cytokeratin (HMW CK; clone 34BE12, Dako) at a 1:50 dilution and
p63 (clone BC4A4, BioCare Medical) at a 1:10 dilution made in 1% Blocking Reagent.
400 pl of this antibody mixture was applied to the tissue sample, and the antibodies were
allowed to bind at room temperature for one hour. Incubation was followed by one rinse
of three minutes in TBS.

[0145] For the labeling step, a cocktail of Zenon Alexa Fluor 488 anti-Rabbit IgG Fab
fragment, Zenon Alexa Fluor 555 anti-mouse IgG1 Fab fragment, and Zenon Alexa Fluor
594 anti-mouse 1gG2a Fab fragment was made in 1% Blocking Reagent at twice the
concentrations recommended by the manufacturer (1:50 dilution for each Fab fragment).

Approximately 400 pl of this labeling cocktail was applied to the tissue samples, and the
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tissue samples were incubated at room temperature for 30 minutes. The labeling reaction
was followed by one rinse of three minutes in TBS.

[0146] The tissue samples were then treated to a second round of antibody binding and
labeling. A cocktail of anti-CK-18 (synthetic peptide, CalBiochem) at a 1:1250 dilution
and anti-Androgen Receptor (AR, clone AR441, Fisher (LabVision)) at a 1:10 dilution
was made in 1% Blocking Reagent. Approximately 400 pl of this antibody cocktail was
applied to the tissue sample, and the antibodies were allowed to bind at room temperature
for one hour. Hybridization was followed by one rinse of three minutes in TBS.

[0147] For the second labeling step, a cocktail of Zenon Alexa Fluor 647 anti-Rabbit
IgG Fab fragment and Zenon Alexa Fluor 568 anti-mouse IgG1 Fab fragment was made
in 1% Blocking Reagent at twice the concentrations recommended by the manufacturer
(1:50 dilution for each Fab fragment). Approximately 400 pl of this labeling cocktail was
applied to the tissue samples, and the tissue samples were incubated and rinsed as
described for the first labeling step.

[0148] The “Multiplex-2” analysis includes a cocktail of anti-racemase (AMACR;
clone 13H4, Zeta Corporation) at a 1:50 dilution and Ki67 (clone K2, Ventana) ata 1:2
dilution made in 1% Blocking Reagent. 400 pl of this antibody mixture was applied to
the tissue sample, and the antibodies were allowed to bind at room temperature for one
hour. Incubation was followed by one rinse of three minutes in TBS.

[0149] For the labeling step, a cocktail of Zenon Alexa Fluor 488 anti-Rabbit IgG Fab
fragment and Zenon Alexa Fluor 555 anti-mouse IgG1 Fab fragment was made in 1%
Blocking Reagent at twice the concentrations recommended by the manufacturer (1:50
dilution for each Fab fragment). Approximately 400 pl of this labeling cocktail was
applied to the tissue samples, and the tissue samples were incubated at room temperature
for 30 minutes. The labeling reaction was followed by one rinse of three minutes in TBS.
[0150] The tissue samples were then treated to a second round of antibody binding and
labeling. A cocktail of anti-CK-18 (synthetic peptide, CalBiochem) at a 1:1250 dilution
and anti-CD34 (clone QBEnd-10, Dako) at a 1:100 dilution was made in 1% Blocking
Reagent. Approximately 400 pul of this antibody cocktail was applied to the tissue
sample, and the antibodies were allowed to bind at room temperature for one hour.

Hybridization was followed by one rinse of three minutes in TBS.
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[0151] For the second labeling step, a cocktail of Zenon Alexa Fluor 647 anti-Rabbit
IgG Fab fragment and Zenon Alexa Fluor 568 anti-mouse 1gG1 Fab fragment was made
in 1% Blocking Reagent at twice the concentration recommended by the manufacturer
(1:50 dilution for the anti-Rabbit IgG Fab fragment) or at the manufacturer’s
recommended concentration (1:100 dilution for the anti-Mouse IgG1 fragment).
Approximately 400 pl of this labeling cocktail was applied to the tissue samples, and the
tissue samples were incubated and rinsed as described for the first labeling step.

[0152] The tissue samples were then treated to a third round of antibody binding and
labeling. Phospho-AKT (clone 736E11, Cell Signaling) was diluted at 1:100 in 1%
Blocking Reagent. Approximately 400 pl of this antibody dilution was applied to the
tissue sample, and the antibody was allowed to bind at room temperature for one hour.
Hybridization was followed by one rinse of three minutes in TBS.

[0153] For the third labeling step, Zenon Alexa Fluor 594 anti-Rabbit IgG Fab
fragment was made in 1% Blocking Reagent at the manufacturer’s recommended
concentration (1:100 dilution for the anti-Rabbit IgG fragment). Approximately 400 pl of
this labeling cocktail was applied to the tissue samples, and the tissue samples were
incubated and rinsed as described for the first labeling step.

[0154] A fixation step was performed on all tissue samples by incubating the samples
in 10% formalin at room temperature for 10 minutes, followed by one rinse of three
minutes in TBS. Samples were then incubated in 0.15 pg/ml DAPI dilactate (Invitrogen)
at room temperature for 10 minutes, followed by one rinse of three minutes in TBS.
[0155] Approximately 30.0ul of SlowFade Gold antifade reagent mounting solution
(Invitrogen) was applied to the samples, which were then cover slipped. Samples were
stored at -20°C until analysis could be performed.

[0156] Images were acquired with the CRI Nuance spectral imaging system (CR], Inc.,
420-720 nm model) described above. Spectra of the pure dyes were recorded prior to the
experiment by diluting each Alexa dye separately in SlowFade Antifade (Molecular
Probes). The diluted dye was then spread out on a glass slide, covered with a coverslip
and scanned with the same range and interval as the respective dye in the tissue
experiment. Representative regions of background fluorescence were allocated in order

to complete the spectral libraries for the spectral unmixing process.
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Table 8. Antibodies used for quintplex-immunofluorescent multiplexes.

Multiplex Antibody Vendor Catalog # Clone Isotype Dilution

Synthetic
Multiplex-1 CK-18 CalBiochem  AP1021 peptide RlgG 1:1250
AMACR Zeta Corp. 72001 13H4 RIgG 1:50
HMW CK Dako MO0630 34BE12  MIgGl 1:50
Biocare
p63 Medical CM163 BC4A4  MlgG2a 1:10
AR Fisher (LV) MS-443-P  AR441 MIgGl 1:10
Synthetic
Multiplex-2 CK-18 CalBiochem  AP1021 peptide RIgG 1:1250
AMACR Zeta Corp. 722001 13H4 RIgG 1:50
Ki67 Ventana 790-2910 | K2 MIgG1 1:2
- CD34 Dako M7165 QBEnd- MlIgGl 1:100
10
Phospho- Cell
AKT Signaling 3787 736E11 RlIgG 1:100

[0157] From the IF images, the concentration and distribution of biomarkers in tissue
can be evaluated by measuring brightness of the elements of the images. Evaluation of IF
images allows for objective, automatic evaluation of biomarkers for, for example,
prognosis and diagnostics purposes. One of the challenges encountered with IF images is
that measured intensity can be associated not only with the particular biomarker for _
which the antibody is intended, but with nonspecific binding, which often can be stronger
that specific binding. For example, nuclei biomarkers are located in epithelial nuclei. In
this example, binding of antibody of the nuclear biomarker in stroma would be
nonspecific binding. Nonspecific binding of nuclear biomarker can be observed non only
outside, but inside nuclei as well, which can cause the measured intensity of biomarker
within nuclei to be contaminated by noise.

[0158] The measurement of the biomarker within, for example, epithelial nuclei can be

presented as sum of two components: noise and signal. “Noise” is the part of the
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measured intensity attributable to nonspecific binding. “Signal” is the part of intensity in,
for example, epithelial nuclei attributable to specific binding and related with the medical
condition under consideration. All intensity observed outside of, for example, the
epithelial nuclei can be considered “noise” as well. For example, based on observations
regarding the AR biomarker, the following hypotheses are made: 1. the noise in the
epithelial nuclei is proportional to the noise outside of epithelial nuclei; 2. the same
factors affect nonspecific binding in epithelial and stroma nuclei; 3. it is assumed that, for
each image, there is a threshold value of intensity of biomarker in the epithelial nuclei
such that most of epithelial nuclei with intensity above the threshold contain some excess
of the biomarker (even though, nuclei with measured intensity may have some biomarker
as well, its level is hard to evaluate, because the measurement is affected by random
noise); 4. the excess of the biomarker in epithelial nuclei is related with the progression
of the disease, while the noise is not. These hypotheses were supported by analyses on
data.

[0159] Two types of thresholds were considered: 1. low threshold: nuclei with intensity
above this threshold have various levels of concentration of biomarker. To evaluate
abundance of biomarker with the low threshold, it is better to use features which take into
account variability of the intensity across nuclei. For example, average intensity may be
used for this purpose; and 2. high threshold: nuclei with the intensity above this threshold
have similar intensity, close to the highest observed. Proportion of nuclei with intensity
above the high threshold may be used for estimate abundance of AR in epithelial nuclei.
Based hypothesis 2 above, it is proposed to find these thresholds using the values of noise
in stroma nuclei.

[0160] On each image, a series of percentiles of intensity of biomarker in stroma nuclei
were calculated. Usually, the second percentile, all percentiles from fifth to ninety fifth
are calculated with the step 5 and the 99th percentile. The goal is to select the same
stroma nuclei percentile on all images, as a low threshold (high threshold) for separation
of epithelial nuclei with excess of biomarker. To achieve this goal, for each percentile of
the intensity in stroma nuclei, all epithelial nuclei are determined having the intensity
above the threshold. For these nuclei, their average intensity and relative area are

evaluated. Correlation of these characteristics with, for example, the disease progression
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on our training data is also evaluated. The percentile of stroma nuclei whish produce the
most strongly correlated average intensity is selected as low threshold, the percentile
which produces the most strongly correlated relative are feature is selected as high
threshold.

[0161] In various embodiments of the present invention, different approaches may be
used to measure features of interest from the IF images and/or to prepare the images for
such measurements. For example, in some embodiments, artifacts in tissue images may
be outlined by a pathologist or automatically to exclude them from segmentation (e.g., for
Mplex-1 described above). In some embodiments, tumor area to segment may be
outlined by a pathologist or automatically (e.g., for Mplex-2 described above). In some
embodiments, no artifacts or tumor mask may be used (e.g., segmentation may be
performed on the entire image). In some embodiments, initial segmentation may be done
with a quad-tree approach (e.g., for Mplex-1 and/or Mplex-2 described above) which
may result in faster initial segmentation. In other embodiments, a multi-resolution
approach to initial segmentation may be used.

[0162] In some embodiments, an image-derived CK-18 threshold may be used to
classify cytoplasm (e.g., Mplex-1). In other embodiments, an image-derived CK-18
threshold may be used to seed nearest neighbor classification (e.g., Mplex-2), which may
make cytoplasm detection more robust across a variety of images.

[0163] In some embodiments, an image-derived DAPI threshold, ration of DAPI signal
to super-object, multiple passes of multi-resolution segmentation and growing of nuclei
may be used to segment nuclei (e.g., Mplex-1 and/or Mplex-2), which may result in, for
example, improved nuclei segmentation. In other embodiments, only an image-derived
DAPI threshold and multiple passes of multi-resolution segmentation may be used to
segment nuclei.

[0164] In some embodiments, HMWCK and P63 may be used to find basal cells and
exclude them measuring AR in epithelial measurements, which may improve
measurement accuracy. In some embodiments, gland units and non-gland units
associated epithelial nuclei may be detected (e.g., Mplex-1 and/or Mplex-2). In some
embodiments, AMACR association may be evaluated on gland units (e.g., Mplex-1

and/or Mplex-2) or small CK-18 objects.
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[0165] In some embodiments, epithelial nuclei AR positive classification may be based
on a stromal nuclei AR percentiles derived AR threshold (e.g., Mplex-1). In other
embodiments, epithelial nuclei AR positive classification may be based on presence of
small and bright AR positive sub-objects found using an image-derived threshold. In
some embodiments, epithelial nuclei Ki67 positive classification may be performed based
on an image Ki67 percentiles derived threshold.

[0166] In some embodiments, multiple percentiles of AR signal in epithelial and
stromal nuclei are determined for analysis (e.g., Mplex-1 and Mplex-2). In some
embodiments, individual nuclei measurements may include area, position and AR mean
of each nuclei (e.g., Mplex-1). In some embodiments, individual nuclei measurements
may include area, position and Ki67 mean of each nuclei (e.g., Mplex-2) for use in, for
example, determining the MST in the image(s).

[0167] In some embodiments, epithelial nuclei are binned by AR intensity and nuclei
density (e.g., Mplex-1). In some embodiments, blood vessels are detected using CD34
(e.g., Mplex-2). In some embodiments, multiple biomarkers per nuclei may be detected,
for example, nuclei expressing Ki67 and pAKT simultaneously (e.g., Mplex-2).

[0168] Statistical Analysis. In this example, the predictive model was constructed
using support vector regression for censored data (SVRc), which is an approach that takes
advantage of the ability of support vector regression to handle high dimensional data but
is adapted for use with censored data. This approach can increase a model’s predictive
accuracy over that of the Cox model.

[0169] In conjunction with SVRc, a Bootstrap Feature Selection was employed which
was developed specifically for SVRc. In the SVRc with Bootstrap Feature Selection
method, an initial filtering step removes features which do not univariately correlate with
the outcome of interest. Next, N different splits are made of the training data; in each
split approximately two-thirds of the total training instances are randomly assigned to a
training subset and approximately one-third of the total training instances are randomly
assigned to a testing subset. In this study, N=25 splits were generated.

[0170] The method begins with a “greedy-forward” feature selection process starting
with all the features which passed the initial filter. Models are built by increasing the

number of features, such that the first model is built on a single feature. For each feature,
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N models are built using this feature on the training subsets across all the splits, then
tested on the N respective testing subsets. The overall performance for each feature is
averaged across the N runs. The feature with the best overall performance is selected. In
the next step, each feature is added to the selected feature and again N models are built
and tested across the splits. The feature whose addition resulted in the best overall
performance is selected. The method continues in this fashion until there are no more
features which will improve the performance.

[0171] Subsequently, a “greedy-backward” feature selection approach is employed.
Each feature is removed, and N models without that feature across the splits are built and
tested. The feature whose removal results in the best overall performance is removed,
and the procedure is repeated until the model’s performance ceases to improve due to the
removal of features. This step simplifies model complexity and removes features which
may have initially been significant, but their information contribution is encapsulated
within a feature added subsequently.

[0172] Finally, the complete SVRc model is trained using all the selected features on
the complete training cohort. The weight of each feature within the final model is a
measure of the relative contribution of that feature’s information in predicting a patient’s
outcome. A positive weight implies a positive correlation with outcome (increasing
values of the feature are associated with longer survival time) whereas a negative weight
implies a negative correlation with outcome (increasing values of the feature are
associated with shortened time to event).

[0173] Four metrics were employed to assess a model’s performance: the concordance
index (c-index), sensitivity, and specificity, and hazard ratio. The c-index estimates the
probability that, of a pair of randomly chosen comparable patients, the patient with the
higher predicted time to clinical failure (CF) from the model will experience CF within a
shorter time than the other patient. The concordance index is based on pairwise
comparisons between two randomly selected patients who meet either of the following
criteria: 1) both patients experienced the event and the event time of one patient is shorter
than that of the other patient, or 2) only one patient experienced the event and his event

time is shorter than the other patient’s follow-up time. The concordance index for a
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multivariable model ranges from 0.5 (model performs the same as a coin toss) to 1.0
(model has perfect ability to discriminate).

[0174] In order to estimate sensitivity and specificity, typically evaluated for binary
output, a clinically meaningful timeframe (CF within 8 years) was selected to separate
early from late events. Patients whose outcome was censored before 8 years were
excluded from this estimation. The model’s output was inversely scaled to a score
between 0 and 100 (longer CF-free times having a lower score and shorter survival times
having a higher score). Thereafter every value of the model’s score was taken one after
another as a potential cut point of the prediction. For each of these potential cut points,
the sensitivity and specificity of the classification were evaluated. Sensitivity was
defined as the percentage of patients who experienced CF within 8 years that were
correctly predicted; specificity was defined as the percentage of patients who did not
experience CF within 8 years that were correctly predicted. Every cut point was
evaluated by the product of its sensitivity and specificity. The cut point with the highest
value of the product was selected as the predictive cut point, and its sensitivity and
specificity were considered to be the sensitivity and specificity of the model. In this
model, a cut-point of 30.195 was selected, indicating that, if patients with a scaled score
above 30.195 are considered as experiencing CF within 8 years post radical-
prostatectomy, and patients with a scaled score below 30.195 are considered as being CF-
free for 8 years, the model will have a sensitivity and specificity of 78% and 69% in
training and 76% and 64% in validation.

[0175] The hazard ratio was also calculated to compare stratification for patients at low
risk/high risk for CF within 8 years using the same cut-point employed for
sensitivity/specificity. The hazard ratio in training was 5.12 and in validation was 3.47.
[0176] The c-index was also used to measure univariate correlation with CF for each
predictive feature. The interpretation of the c-index for univariate correlation is similar to
that for the aforementioned model c-indexes. For univariate correlation, a c-index of 0.5
indicates random correlation. Values between 0.5 and 0 indicate negative correlation
with outcome; the closer to 0 the better the predictive power. Values between 0.5 and 1
indicate positive correlation with outcome; the closer to 1 the better the predictive power.

A heuristic rule used was that features with a concordance index above 0.6 (for positively
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correlating features) or below 0.4 (for negatively correlating features) are significant.
Values of 0.4 and 0.6 approximate a p-value of 0.05.

[0177] A probability for each SVRc model score was generated by analyzing the
probability of CF within 8 years in each percentile of the SVRc model scores in the
training data. A probability function was then computed to generate a probability of CF
within 8 years for each model score.

[0178] RESULTS

[0179] Patient characteristics in the training set. In the training set of 686 patients,
87 (12.7%) had clinical failure after prostatectomy: 9 with a positive bone scan, 77 with a
castrate rise in PSA, and 1 with death from prostate cancer. These 686 patients were
followed for a median of 96 months after prostatectomy. Patient characteristics are
detailed in Table 6 above. In univariate analyses, preoperative PSA, biopsy Gleason
score, and dominant biopsy Gleason grade (bGG) were the only clinical variables
associated with clinical failure (concordance index <0.4 or >0.6; Table 9). In Table 9, the
features listed in bold were ultimately selected in the final predictive model. The H&E
and IF/H&E features are described above in connection with Table 5. The MST/IF
features are described above in connection with Figure 9. In addition, feature
“CombIFEpiNucMeanEdgeLengthlnter” is a combined feature representing the mean
edge length of epithelial nuclei for inter-gland edges for Gleason grades 3 and lower, and
the Gleason grade itself for Gleason grades 4 and 5. The MST/IF feature
“CombIFEpiNucMeanEdgeLengthIntra” is a combined feature representing the mean
edge length of epithelial nuclei for intra-gland edges for Gleason grades 3 and lower, and
the Gleason grade itself for Gleason grades 4 and 5. The IF feature

“IFx]1_RelAreEpi_ ARpAMACRP2EN” is a normalized area and intensity feature
representing proportion of epithelial nuclei that express positive levels of both AR and
AMACR. The feature “CombinedIF_ARepinucnormint” is a combined feature
representing the normalized level of AR intensity in epithelial nuclei for Gleason grades
3 and lower, and the Gleason grade itself for Gleason grades 4 and 5. The feature
“CombinedIFx1_RelAreNGA2Cyt_4lowGl” is a combined feature representing the
relative area of non-gland associated content to cytoplasm for Gleason grades 3 and

lower, and the Gleason grade itself for grades 4 and 5. The feature
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“CombLowGleARpAMACRplum_HighGLKi67” is a combined feature which is
different depending on the relative area of lumens in a patient’s tissue or image thereof
(e.g., image of H&E-stained tissue). An optimal cutpoint is derived for the relative area
of lumens. For patients with a value less than or equal to the cutpoint, the IF feature
representing the relative area of AR positive and AMACR positive epithelial nuclei is
used. For patients with a value greater than the cutpoint, the IF feature representing the
proportion of Ki67 positive epithelial nuclei is used.

Table 9. Features used as input for model development. Inclusion was based on
concordance index for predicting clinical failure in the training cohort in univariate
analysis.

Feature Concordance

Feature Domain Index
Preoperative PSA clinical 0.373
Dominant biopsy Gleason grade clinical 0.371
Biopsy Gleason score clinical 0.336
IFx1_RelAreEpi ARpAMACRp2EN IF 0.375
proportion_edge 2_epinuc MST/IF 0.606
proportion_edge 3_epinuc MST/F 0.364
HE02_Lum_Are_Median H&E 0.654
orig_approximation_4 H&E 0.637
orig_diag_detail 6 H&E 0.654
HEx2 nta Lum_Are_Tot H&E 0.635
HEx2 EpiNucAre2LumMeanAre H&E 0.388
HEx2_nrm_ENWinGU_Are_Tot H&E 0.645
HEx2_nrm_ENOutGU_Are_Tot H&E 0.355
HEx2 nrm_CytWinGU_Are_Tot H&E 0.638
HEx2_nrm_CytOutGU_Are_Tot H&E 0.362
HEx2_RelArea_EpiNuc_Out2WinGU H&E 0.353
HEx2_RelArea_Cyt_Out2WinGU H&E 0.360
HEx2_RelArea ENCyt_Out2WinGU H&E 0.348
HEx2_ntaENCY tOutGU2Tumor H&E 0.347
HEx2_nrmLUM_ENOutGU_Are_Tot H&E 0.353
HEx2_nrmLUM_CytWinGU_Are_Tot H&E 0.341
HEx2_nrmLUM_CytOutGU_Are_Tot H&E 0.340
HEx2_nrmLUM_EpiNucCytOutGU H&E 0.343
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HEx2_nrm_ENCytWinGULum_Are_Tot H&E 0.610
HEx2_RelArea ENCytLum_Out2WinGU H&E 0.345
HEx2_RelArea_EpiNucCyt_Lum H&E 0.341
HEx2 ntaLumContentArea H&E 0.643
HEx2_nrmEpiNucBand5minus3 H&E 0.378
min_orig_L_detail5 H&E 0.646
CombinedIFEpiNucMeanEdgeLength MST/IF 0.330
CombinedIF_ARepinucnormint IF 0.324
CombLowGIleAR_HighGLKi67 IF 0.306
CombinedIFx1_RelAreNGA2Cyt_4lowGl IF 0.331
RelAreaKi67post_2Lumen IF/H&E 0.315
RelAreapAKTpos_2Lumen IF/H&E 0.344
RelArealFM2EpiNuc_2Lumen IF/ H&E 0.383
RelAreARpPAMACRp2Lumen IF/ H&E 0.342
CombLowGleARpAMACRplum_HighGLKi67 IF 0313
CombIFEpiNucMeanEdgeLengthInter MST/IF 0.349
ComblIFEpiNucMeanEdgeLengthlntra MST/IF 0.328

[0180] Histologic image analysis. From areas of tumor in digitized images of each
patient’s H&E-stained biopsy cores, a series of morphometric features were generated,
reflecting overall tissue architecture, including distribution of tumor cells and their
relationship to glandular structures. Twenty-seven histologic features displayed
significant association with clinical failure in univariate analyses (concordance index
<0.4 or >0.6; see Table 9).

[0181] Quantitative immunofluorescence. AMACR as a marker can be used to
identify and characterize individual tumor cells [25]. In the current study, AR, Ki67, and
phosphorylated AKT were quantified in AMACR-positive and AMACR-negative
epithelial tumor cells, and then multiple features related to levels of AR, Ki67,
phosphorylated AKT, and AMACR were generated. An endothelial marker, CD34, was
also used to assess overall vascularity within the prostate cancer stroma and constructed
features of total vessel area and features that related vessel distribution to glandular and
epithelial objects. Finally, DAPI and CK18 immunofluorescence were used to quantify

tumor morphometry by minimum spanning tree (MST) functions. Generally, the MST
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characteristics represent proximity between tumor cells and their distribution with respect
to glands and each other. For MST characteristics, AR, and Ki67, a series of compound
features were constructed that incorporate a clinical trigger, dominant bGG, for
determination of marker assessment (e.g. if bGG<3 use AR feature; bGG >3 use Ki67
feature). One goal was to identify subtle changes in the morphology and biology
between dominant bGG 3 and 4 turﬁors that may affect outcome.

[0182] Intraining, 10% of non-censored patients (36 of 303) with a bGG <3 had
clinical progression within 8 years of prostatectomy. Of this group, 19 of 36 cases (52%)
had high levels of AR suggesting that AR expression importantly discriminates
significant from indolent disease, especially in low-grade cancers. By comparison, 31
out of 55 non-censored patients (36%) with bGG >3 had clinical progression within 8
years of prostatectomy. In this group, increasing levels of Ki67 were determined to be
additive with bGG regarding shortened time to clinical progression.

[0183] Model Development. A SVRc model to predict clinical failure was developed
from the data on the 686 training-set patients. The modeling began with the 40 variables
that displayed association with clinical failure in univariate analyses (Table 9).
Supervised multivariate learning resulted in an optimized model containing 6 features
(shown in bold in Table 9), which are listed in Figure 11 in the order of their importance
in the final predictive model.

[0184] The clinical features selected by the model were preoperative PSA, biopsy
Gleason score, and dominant bGG. Generally, the two imaging features, single
infiltrating cells and cellular topology, reflect cellular and tissue architecture at the
transition between a dominant Gleason pattern 3 and 4. The first, based on H&E in this
example, quantifies the proportion of tumor epithelial cells that are not directly associated
with an intact gland structure. The second is an MST combined feature, which relies on
the dominant bGG as a trigger (< 3 use MST function; > 3 use actual Gleason grade
(dominant bGG)) and quantifies proximity between tumor cells as affected by degree of
differentiation and stromal content. When bGG is evaluated the combined feature it has a
negative weight, whereas the standalone bGG feature evaluated in the model has a
positive weight.

[0185] Figures 12 and 13 are Kaplan-Meier curves for the two imaging features which
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illustrate their ability to accurately stratify patients. Figure 12 shows the Kaplan-Meier
curves for the morphometric feature of area of isolated (non-lumen associated) tumor
epithelial cells relative to total tumor area (cut-point 0.31, p<0.00001), as measured in an
images of needle biopsy tissue specimens after H&E staining. Figure 13 shows the
Kaplan-Meier curves for the morphometric feature of mean edge length in the minimum
spanning tree (MST) of all edges connecting epithelial nuclei centroids, in combination
with the clinical feature of Gleason grade (cut-point 3.93, p<0.00001), as measured in an
images of needle biopsy tissue specimens subject to multiplex immunofluorescence (IF).
In both instances, the optimal cut-point values were calculated using the log rank test.
[0186] From the biomarker-based features, the SVRc bootstrap method selected only
the combined immunofluorescence (IF) feature of dynamic range of AR and total Ki67
content. Shorter time to clinical failure was predicted by increasing proportion of tumor
cells with high AR expression in specimens with clinical bGG <3, and high Ki67 levels
in specimens with bGG 4-5. For AR, the feature calculates the ratio between the 90" and
10™ intensity percentiles of AR in epithelial and stromal nuclei, respectively. It was
demonstrated that intensity values of stromal nuclei within the entire tumor compartment
were not associated with outcome and represent a good measure of background, namely
non-specific fluorescence in the images. This allows for the identification of a true
positive signal as well as the distribution of that signal in the epithelial compartment.
The AR value is scaled between 0 and 3. Greater values were associated with a shorter
time to progression in patients with dominant biopsy Gleason grade of <3. For Ki67, the
relative area of epithelial nuclei was measured that contains a positive Ki67 signal
relative to the total number of epithelial nuclei in the tumor-only area of the needle
biopsy. The Ki67 ‘positive’ assignment was based on machine learning models which
incorporate mean intensity values for Ki67 in epithelial nuclei followed by thresholding
using the stromal nuclei as a baseline for the background fluorescent signal. This Ki67
feature is scaled between 3 and 5. Increasing values in patients with dominant biopsy
Gleason grade 4 and 5 were associated with a shortened time to disease progression. In
this embodiment, the infiltrative tumor area as denoted for both AR and Ki67 was
previously identified and outlined by the pathologist during initial image processing. In

other embodiments, such tumor area may be identified automatically.
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[0187] Figure 14 shows the Kaplan-Meier curves for patients stratified according to this
combined AR-Ki67 molecular feature, where the combined feature cut-point was 0.943
calculated using the log rank test (p<0.00001). Typical immunofluorescence results (e.g.,
viewed at magnification X200) for AR show AR in epithelial nuclei with increasing
intensity from blue (least), red (moderate) to yellow (high), gold corresponding to
AMACR+, green corresponding to AMACR-, and purple corresponding to stromal
nuclei. Typical immunofluorescence results (e.g., viewed at magnification X200) for
Ki67 show Ki67 (yellow) in tumor epithelial nuclei (blue) and purple corresponding to
stromal nuclei.

[0188] The training model had a concordance index of 0.74. When patients were
stratified by model score below vs. above 30.19 (corresponding to a 13.82% model-
predicted probability of clinical failure), the hazard ratio was 5.12, sensitivity 78%, and
specificity 69% for correctly predicting clinical failure within 8 years. Figure 15 shows
the Kaplan-Meier curves for patients in the training set stratified by the value or score
output by the predictive model, which illustrates the ability of the model to separate
patients from the training set according to risk (hazard ratio 5.12). Low risk was
predicted for model scores <30.19, whereas high risk was predicted for model scores >
30.19. The probability of remaining free of clinical progression is provided by the y-axis
and follow-up time (in months) is given by the x-axis. The p-value (<0.0001) was
estimated using the log-rank test.

[0189] Validation. The model was validated using data from 341 patients with a
median follow-up of 72 months. Forty-four patients (12.9%) had clinical failure, 4 with a
positive bone scan, and 40 with a castrate rise in PSA. The model’s performance resulted
in a concordance index of 0.73, hazard ratio 3.47, sensitivity 76%, and specificity 64%
for predicting clinical failure. Separate Kaplan-Meier curves were generated for patients
whose model scores were above or below 30.19 (Figure 16; hazard ratio 3.47). These
two patient groups differed significantly in time to clinical failure (log-rank test
P<0.0001).

[0190] DISCUSSION

[0191] One of the major challenges in the management of patients diagnosed with

localized prostate cancer is determining whether a given patient is at high risk for dying
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of his disease. To address this issue, a predictive tool according to some embodiments of
the present invention is provided that can be used at the time of diagnosis: a pre-treatment
model using clinical variables and features of prostate needle biopsy specimens to predict
the objective end-point of clinical failure after prostatectomy. The model performed in
validation with a concordance index of 0.73, hazard ratio 3.47 (p<0.0001), sensitivity
76%, and specificity 64%. By comparison, the 10-year biochemical preoperative
recurrence nomogram [9] when applied to the same cohort yielded a concordance index
of 0.69, and hazard ratio of 2.34 (p= 0.01), demonstrating the improved accuracy with a
more clinically relevant end-point, obtained with the systems approach. Furthermore, the
model, as compared with the 10-year postoperative PSA recurrence nomogram [26], was
able to identify twice the number of high-risk patients classified by traditional clinical
criteria as intermediate risk group. It is believed that a systems pathology model
employing multiple robust tumor characteristics will yield a more objective risk
assessment of contemporary patients, particularly in a community practice, where
selected pathologic variables are prone to subjectivity.

[0192] A strength of the approach was the use of a large cohort from 5 centers in the
United States and Europe, which should confer broad applicability. In addition, the
features selected in the final model performed uniformly across all cohorts, thus
constituting a robust patient profile that should be useful for assessing probable disease
course at a time crucial for treatment decisions. _

[0193] The clinical variables selected in the model were pretreatment PSA, biopsy
Gleason score, and dominant bGG. Both PSA and biopsy Gleason score were found to
be important predictors for overall survival in an untreated, conservatively managed
population-based cohort from the U.K.[27, 28]. In that study, clinical stage also
predicted survival, albeit more weakly. In the example presented above, clinical stage
was not found to be a significant parameter in univariate analysis, and therefore it was not
included in the multivariate model.

[0194] Higher bGG was associated with worse outcome in univariate analysis;
however, it was associated with better outcome in the multivariate model. This
phenomenon illustrates the “reversal paradox” known in statistics; the variable is acting

as a control for other factors during modeling [29-32]. It is believed that the reversal in
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the disease progression model described herein resulted primarily from the impact of the
two combined features, which contain the dominant bGG as a trigger (i.e., if bGG < 3 use
MST or AR values). Interestingly, several studies have questioned the utility of
dominant bGG, especially for 3+4 and 4+3 patterns, given that the associated
probabilities of biochemical recurrence overlap substantially, and that bGG is often
down-graded upon analysis of the radical prostatectomy specimen [33-35].

[0195] A key component for the current study described above is the morphometric and
image analysis strategies to assess tissue architecture and cellular distribution. The MST
feature in the model (Figure 11) reflects the spatial distribution of tumor epithelial nuclei
in a stromal matrix. It was optimized for bGG < 3 patterns to identify subtle morphologic
changes that may relate to properties of de-differentiation. The H&E feature evaluates
tumor organization where intact gland structures and cell-to-cell boundaries begin to
deteriorate, as identified in progression of Gleason grade 3 to 4 tumors. In the final
model, increasing levels for both features were associated with a shortened time to
clinical progression, suggesting a more aggressive phenotype capable of invasion within
the prostate. By comparison, in this example, morphometric features that were
significant in a previous, post-prostatectomy model for clinical failure (e.g., lumen size,
tumor cell composition) [36] were not selected by the biopsy model.

[0196] A central role has been demonstrated for both AR and Ki67 in prostate cancer
growth and progression [25, 36, 37-42]. The current model reveals the importance of AR
and Ki67 specifically in specimens of low and high Gleason grade, respectively. It is
believed that this differential assessment of AR and Ki67 constitutes a biologic tumor
grade that is important for understanding behavior, and that utilizing the dominant bGG
as a classifier for feature annotation allows for discrimination of disease progression risk
among intermediate-grade cancers. It is further believed that the aberrant activation of
AR, possibly combined with an early chromosomal translocation (e.g., TMPRSS2:ERG)
may affect downstream signaling pathways, thereby contributing to the evolution of
castrate metastatic disease [43].

[0197] Prior evidence in both biopsy and prostatectomy specimens has linked Ki67
labeling index with bGG and outcome. However, as with AR, clinical adoption has been

challenged due primarily to lack of reproducibility, lack of standardized laboratory
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practices, and the need for determination of an accurate and generalizable cut-point. The
approach of incorporating quantitative immunofluorescence standards and machine
learning to normalization and choice of threshold(s) may well have circumvented these
limitations.

[0198] Finally, although associated with outcome, phosphorylated AKT was not
selected in the multivariate model. In addition, the features derived from the CD34
vessel content did not reach univariate statistical significance, although trends were
noted. Several studies have demonstrated involvement of phosphorylated AKT in
proliferation and survival pathways in prostate cancer, and have linked increased
phosphorylated AKT with Ki-67, activated AR, and a hormone-refractory phenotype [44-
47]. The role of CD34 is more controversial, primarily due to differing methods for
identifying and counting vessels in various sample types {48-50]. In other embodiments,
phosphorylated AKT and CD34 could be included as having prognostic and predictive
significance in prostate cancer progression and/or with respect to other medical
conditions.

[0199] To address the robustness of our current model results, the model (generated
based on SVRc and systems integration of clinicopathologic data with quantitative H&E
image and immunofluorescence analyses) was compared with the traditional
clinicopathologic factors, independently and in the Kattan nomograms. There are no
available tools for predicting clinical disease progression at the time of diagnosis, thus for
comparison the Kattan pre-operative nomograms were used, which predict PSA
recurrence at 5- and 10-year intervals. Table 10 illustrates the performance of each
method for predicting CF in the validation cohort. Hazard ratios were calculated by
identifying the optimal cut-point in the training set and applying it to the validation set, as
described above. Additionally, a sensitivity and specificity analysis of the nomograms
versus the systems method according to an embodiment of the present invention in low-
and intermediate-risk groups (as defined by AUA criteria) indicates that the systems
method is twice as effective at identifying patients who are at high risk for CF within 8

years but appear to be low to intermediate risk based on clinical profiles.

70



WO 2010/011356 PCT/US2009/004364

Table 10. Univariate and Multivariate Results for Predicting CF within 8 years in the
validation cohort.

Predictor C-Index Hazard Ratio Hazard Ratio p-value
Age at biopsy 0.47 0.81 0.521
Pre-Operative PSA 0.67 1.93 0.030

Clinical Stage 0.53 1.19 0.769

Dominant Gleason Grade 0.60 2.29 0.007

Gleason Score 0.68 2.92 0.002

Kattan 5-year PSA 0.69 234 0.0053

Recurrence Nomogram

Kattan 10-year PSA 0.69 2.62 0.0098
Recurrence Nomogram

SVRc-based Systems 0.73 3.47 <0.0001
Pathology Model

[0200] In conclusion, a highly accurate, robust tool for predicting disease progression at
the time of initial diagnosis was provided as a result of this study. It is believed that the
biologic and morphologic attributes within the model represent a phenotype that will
supplement current practice in determining appropriate treatment options and patient
follow-up.

[0201] Additional Embodiments

[0202] Thus it is seen that methods and systems are provided for treating, diagnosing
and predicting the occurrence of a medical condition such as, for example, prostate
cancer progression. Although particular embodiments have been disclosed herein in
detail, this has been done by way of example for purposes of illustration only, and is not
intended to be limiting with respect to the scope of the appended claims, which follow.
In particular, it is contemplated by the present inventors that various substitutions,
alterations, and modifications may be made without departing from the spirit and scope
of the invention as defined by the claims. Other aspects, advantages, and modifications
are considered to be within the scope of the following claims. The claims presented are

representative of the inventions disclosed herein. Other, unclaimed inventions are also
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contemplated. The present inventors reserve the right to pursue such inventions in later
claims.

[0203] Insofar as embodiments of the invention described above are implementable, at
least in part, using a computer system, it will be appreciated that a computer program for
implementing at least part of the described methods and/or the described systems is
envisaged as an aspect of the present invention. The computer system may be any
suitable apparatus, system or device. For example, the computer system may be a
programmable data processing apparatus, a general purpose computer, a Digital Signal
Processor or a microprocessor. The computer program may be embodied as source code
and undergo compilation for implementation on a computer, or may be embodied as
object code, for example.

[0204] It is also conceivable that some or all of the functionality ascribed to the
computer program or computer system aforementioned may be implemented in hardware,
for example by means of one or more application specific integrated circuits.

[0205] Suitably, the computer program can be stored on a carrier medium in computer
usable form, which is also envisaged as an aspect of the present invention. For example,
the carrier medium may be solid-state memory, optical or magneto-optical memory such
as a readable and/or writable disk for example a compact disk (CD) or a digital versatile
disk (DVD), or magnetic memory such as disc or tape, and the computer system can
utilize the program to configure it for operation. The computer program may also be
supplied from a remote source embodied in a carrier medium such as an electronic signal,
including a radio frequency carrier wave or an optical carrier wave.

[0206] All of the following disclosures are hereby incorporated by reference herein in
their entireties: PCT Application No. PCT/US08/004523, filed April 7, 2008, which
claims priority from U.S. Provisional Patent Application Nos. 60/922,163, filed April 5,
2007, 60/922,149, filed April 5, 2007, 60/923,447, filed April 13,2007, and 61/010,598,
filed January 9, 2008; U.S. Patent Application No. 11/200,758, filed August 9,2005; U.S.
Patent Application No. 11/581,043, filed October 13, 2006; U.S. Patent Application No.
11/404,272, filed April 14, 2006; U.S. Patent Application No. 11/581,052, filed October
13, 2006, which claims priority from U.S. Provisional Patent Application No.
60/726,809, filed October 13, 2005; and U.S. Patent Application No. 11/080,360, filed
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March 14, 2005, which is: a continuation-in-part of U.S. Patent Application No.
11/067,066, filed February 25, 2005 (now U.S. Patent No. 7,321,881, issued January 22,
2008), which claims priority from U.S. Provisional Patent Application Nos. 60/548,322,
filed February 27, 2004, and 60/577,051, filed June 4, 2004; a continuation-in-part of
U.S. Patent Application No. 10/991,897, filed November 17, 2004, which claims priority
from U.S. Provisional Patent Application No. 60/520,815, filed November 17, 2003; a
continuation-in-part of U.S. Patent Application No. 10/624,233, filed July, 21, 2003 (now
U.S. Patent No. 6,995,020, issued February 7, 2006); a continuation-in-part of U.S.
Patent Application No. 10/991,240, filed November 17, 2004, which claims priority from
U.S. Prbvisional Patent Application No. 60/520,939 filed November 18, 2003; and claims
priority from U.S. Provisional Patent Application Nos. 60/552,497, filed March 12, 2004,
60/577,051, filed June 4, 2004, 60/600,764, filed August 11, 2004, 60/620,514, filed
October 20, 2004, 60/645,158, filed January 18, 2005, and 60/651,779, filed February 9,
2005.
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Table 1. Morphometric Features (e.g., measurable in images of H&E-stained tissue)

In some embodiments, features in Table 1 having a prefix of “HE03” or “HEx3” are measured
in tissue images at 40x magnification. HEO3 features may be measured directly from the
images, whereas HEX3 features are derived/calculated from the HEQ3 features. In some

embodiments, features in Table 1 having a prefix of “HE02” or “HEx2” are measured in tissue
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images at 20x magnification. HE02 features may be measured directly from the images,

whereas HEx2 features are derived/calculated from the HEQ2 features.

Feature

Description

HEO02 Art Are Mean

Color and morphometric features of identified
artifacts

HEQ02 Art Are Std

HEQO2 Art Are Tot

HEO02 Art ElpFit Mean

HEO02 Art ElpFit_Std

HEQ02 Art LOW Mean

HE02 Art LOW Sud

HE(02 Art Num

HEQ2 Art OrgBri Mean

HEO02 Art OrgBri_Std

HEO2 Art Ptr Mean

HEO02 Art Ptr Std

HEO02 CluNuc Are Mean

Color and morphometric features of clustered nuclei

HEQ2 CluNuc Are Std

HEQ2 CluNuc Are Tot

HEQ02 CluNuc_ Num

HEOQO2 Cra Are Mean

Color and morphometric features of luminal content

HEQ2 Cra Are Std

HEO2 Cra Are Tot

HEQ2 Cra Num

HEQO2 Cra OrgBlu MeanMean

HEQ2 Cra OrgBlu MeanStd

HEQ2 Cra OrgBri_Mean

HEQ2 Cra OrgBri_Std

HEQ2 Cra OrgGre MeanMean

HEQ2 Cra OrgGre MeanStd

HEO2 Cra

OrgH Mean

HEO2 Cra

OrgH Std

HEO2 Cra

Orgl Mean

HEO2 Cra

Orgl Std

HEO2 Cra

OrgQ_Mean

HEO2 Cra

OrgQ Std

HEO2 Cra

OrgRed MeanMean

HEO2 Cra

OrgRed MeanStd

HEO2 Cra

OrgS Mean

HEO2 Cra

OrgS_Std

HEO2 Cra

OrgV_Mean

HEO2 Cra

OrgV Std
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HE02

Cra OrgY_Mean

HE02

Cra OrgY_ Std

PCT/US2009/004364

HEO02

CytOGU_Are Tot

Morphometric and color features of cytoplasm within
and outside of gland units.

HEO02

CytOutGU Are Tot

HEQ2

CytOutGU OrgBlu MeanMean

HE02

CytOutGU OrgBlu_MeanStd

HEO02

CytOutGU OrgGre MeanMean

HE02

CytOutGU_OrgGre_MeanStd

HEO02

CytOutGU OrgRed MeanMean

HE02

CytOutGU OrgRed MeanStd

HE02

CytWIGU Are Tot

HEO02

CytWinGU Are Tot

HEO02

CytWinGU OrgBlu_MeanMean

HE02

CytWinGU OrgBlu_MeanStd

HE02

CytWinGU OrgGre MeanMean

HEO02

CytWinGU OrgGre MeanStd

HEO02

CytWinGU_OrgRed MeanMean

HE02_

CytWinGU OrgRed MeanStd

HE02 Cyt Are Mean

Morphometric and color properties of cytoplasm

HE02 Cyt Are Std

HE02 Cyt Are Tot

HE02 Cyt Num

HE02 Cyt OrgBlu MeanMean

HE02 Cyt OrgBlu_MeanStd

HE02 Cyt OrgBri_Mean

HE02 Cyt OrgBri_Std

HE02 Cyt OrgGre MeanMean

HE02 Cyt OrgGre MeanStd

HE02 Cyt OrgH Mean

HE02 Cyt OrgH Std

HE02 Cyt Orgl Mean

HE02 Cyt Orgl Std

HE02 Cyt OrgQ_Mean

HE(02 Cyt OrgQ Std

HE02 Cyt OrgRed MeanMean

HE02 Cyt OrgRed MeanStd

HE02 Cyt OrgS Mean

HEO2 Cyt OrgS_Std

HE02 Cyt OrgV_Mean

HE02 Cyt OrgV_Std

HE02 Cyt OrgY Mean

HE02 Cyt OrgY Std

HEO02 DStr Are _Mean

Morphometric and color properties of dark stroma

HE02 DStr Are Std
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HEO02 DStr

Are Tot

HEOQ2 DStr

Num

HE02 DStr

OrgBlu MeanMean

HEO02_DStr

OrgBlu MeanStd

HEO02 DStr

OrgBri Mean

HEQ02 DStr

OrgBri Std

HEQ2 DStr

OrgGre MeanMean

HEO2 DStr

OrgGre MeanStd

HE02 DStr

OrgH Mean

HEQ02 DStr

OrgH Std

HE02 DStr Orgl Mean

HEO02 DStr

Orgl Std

HEO02 DStr

OrgQ Mean

HEO02 DStr

OrgQ Std

HE02_DStr

OrgRed MeanMean

HEO02 DStr OrgRed MeanStd

HEO02 DStr

OrgS Mean

HEO2 DStr OrgS_Std

HEQ02 DStr

OrgV Mean

HEO02 DStr

OrgV Std

HEO02 DStr

OrgY Mean

HEQ2 DStr

OrgY_Std

PCT/US2009/004364

HEO02 DarNucBin0 1 Are Mean

Morphometric properties of dark nuclei divided into
bins, and also of different combinations of those bins.

HEO02 DarNucBin0 1 Are Tot

HEQ02 DarNucBin0 1 Num

HEO02 DarNucBin0 2 Are Mean

HEO02 DarNucBin0 2 Are Tot

HEO2 DarNucBin0 2 Num

HE02 DarNucBin0 3 Are Mean

HEO02 DarNucBin0 3 Are_Tot

HEO02 DarNucBin0 3 Num

HE02 DarNucBin0 4 Are Mean

HE02 DarNucBin0 4 Are Tot

HEO02

DarNucBin0

4 Num

HEOQ2

DarNucBin0

5 Are Mean

HEO02

DarNucBin0

5 Are Tot

HEQ02

DarNucBin0

5 Num

HEQ02

DarNucBin0

6 Are Mean

HEQ02

DarNucBin0

6 Are Tot

HEO02

DarNucBin0

6 Num

HEO02

DarNucBin0

7 Are Mean

HEO02

DarNucBin0

7 Are Tot

HEO02

~DarNucBin0

7 Num

HEO02 DarNucBin0 8 Are Mean
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HEO02 DarNucBin0

8 Are Tot

HEO2 DarNucBin0

8 Num

HEO2 DarNucBin0

Are Mean

HEO2 DarNucBin0

Are Tot

HEO2 DarNucBin0

Num

HEO02 DarNucBinl

2 Are Mean

HEO2 DarNucBinl

Are Tot

HEO2 DarNucBinl

Num

HEO2 DarNucBinl
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HE02 EpiNucSizBin4

Bri Mean

HE02 EpiNucSizBin4

Gre Mean
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HEO02 EpiNucSizBin4

Blu Mean
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HEO02 EpiNucSizBin5

Num

HEO2 EpiNucSizBin3

Red Mean

HEO2 EpiNucSizBin5
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Average area of epithelial nuclei within gland units
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Total area of epithelial nuclei within gland units
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Color and morphometric features of isolated
epithelial nuclei
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HEO02 IsoEpiNuc_ElpFit_Std

HE02 IsoEpiNuc LOW_ Mean

HE02 IsoEpiNuc_LOW_Median

HE02 IsoEpiNuc_LOW_Std

HE02 IsoEpiNuc_OrgBlu_MeanMean

HE(02 IsoEpiNuc_OrgBlu_MeanStd

HE02 IsoEpiNuc_OrgBlu_StdMean

HEO02 IsoEpiNuc_OrgBri_Mean

HE02 IsoEpiNuc_OrgBri_Std

HE02 IsoEpiNuc_OrgGre_MeanMean

HE02 IsoEpiNuc_OrgGre MeanStd

HE02 IsoEpiNuc_OrgGre_StdMean

HE02 IsoEpiNuc_OrgRed_MeanMean

HEO02 lsoEpiNuc_OrgRed_MeanStd

97



WO 2010/011356

HEQ2

IsoEpiNuc_OrgRed StdMean

HEO02

IsoEpiNuc_Shalnd Mean

HE02

IsoEpiNuc_Shalnd_Std

HEO02

[soNuc Are Mean

HE02_

IsoNuc Are Std

HE02

IsoNuc Are Tot

HE02

IsoNuc Num

HEO02

IsoStrNuc Are Mean

HE02

IsoStrNuc Are Std

HEQ2

[soStrNuc Are Tot

HEQ2

[soStrNuc Num

PCT/US2009/004364

HE02
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3
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4
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LigNucBin2

5 Num
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6 Are Tot
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LigNucBin2_8 Num
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LigNucBin3 4 Are _Mean

HEO2

LigNucBin3_4_ Are Tot

HEOQ2

LigNucBin3 4 Num

HEOQ2

LigNucBin3_5_Are_Mean

HEOQ2

LigNucBin3_5_Are Tot

HE02 LigNucBin3 5 Num

HEO02 LigNucBin3_6_Are Mean

HE02 LigNucBin3_6_Are Tot

HEO02 LigNucBin3_6 Num

HE02 LigNucBin3_7_Are_Mean

HE02 LigNucBin3_7_ Are Tot

HEO02 LigNucBin3_7 Num

HE02 LigNucBin3_8_ Are Mean

HE02 LigNucBin3_8 Are Tot

HEO02 LigNucBin3_8 Num

HEO02 LigNucBin3_Are Mean

HE02 LigNucBin3_Are_Tot

HEO02 LigNucBin3_Num

HE02 LigNucBin4 5 _Are Mean

HE02 LigNucBin4 5 Are Tot

HEO02 LigNucBin4 5 Num

HE02 LigNucBin4 6 Are Mean

HEOQ2

LigNucBin4_6_Are Tot

HEOQ2

LigNucBin4_6_Num

HE02 LigNucBin4 7 Are_Mean

HE02 LigNucBin4 7 Are_Tot

HEO02 LigNucBin4 7 Num
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LigNucBin4 8 Are Tot
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HEOQ2
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LigNucBin5S_8 Are Mean

HEO02

LigNucBin5_8 Are Tot

HEO02

LigNucBin5_8 Num
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LigNucBin5_Are_Mean

HEO02

LigNucBin5_Are_Tot

HE02

LigNucBin5 Num

HEQ2

LigNucBin6_7_Are_Mean

HEO02

LigNucBin6_7 Are_Tot

HEO02

LigNucBin6_7 Num

HEQ2

LigNucBin6 8 Are_Mean

HEO02

LigNucBin6_8 Are_Tot

HEO02

LigNucBin6 8 Num

HE02

LigNucBin6_Are_Mean

HE02

LigNucBin6_Are_Tot

HEOQ2

LigNucBin6_Num

HE02 LigNucBin7 _8_Are_Mean

HEO02

LigNucBin7_8 Are_Tot

HEO02

LigNucBin7_8 Num

HE02

LigNucBin7_Are_Mean

HEO02

LigNucBin7_Are_Tot

HEO02

LigNucBin7_Num

HEO02

LigNucBin8_Are_Mean

HEO02

LigNucBin8_Are_Tot

HEOQ2

LigNucBin8 Num

HEO02

Lum Are Mean Luminal morphometric features

HEO02

Lum Are Median

HE02

Lum Are Std

HE02

Lum Are Tot

HEOQ2

Lum_ ElpFit Mean

HEQ2

Lum ElpFit_Std

HEQ2

Lum LOW Ave

HE02

Lum LOW Mean

HEOQ2

Lum LOW_Std
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HE02 Lum Num

HEQ02 Lum Ptr Mean

HE02 Lum Ptr Std

Morphometric and color features of the manually
HE02 MDTumor Are_Tot defined tumor area.

HE02 MDTumor Num

HE02 MDTumor OrgBlu MeanMean

HE02 MDTumor OrgBlu MeanStd

HE02 MDTumor OrgBri_Mean

HE02 MDTumor_OrgBri_Std

HE02 MDTumor OrgGre_MeanMean
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HE02 MDTumor OrgRed MeanStd
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HE02 MDTumor_OrgS Std

HE02 MDTumor OrgV_Mean

HE02 MDTumor OrgV_Std
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HE02 MDTumor OrgY_Std

HE02 Nuc Are Mean Nuclear features

HE02 Nuc Are Std

HE02 Nuc Are Tot

HEO02 Nuc Num

Morphometric and color features of poorly defined
HE02 PDNuc Are Mean nuclei

HE02 PDNuc Are Std
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HE02 PDNuc_ElpFit_Std
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Morphometric and color features of stroma nuclei
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HEO02

StrNuc_Orgl_Std

HE02

StrNuc OrgQQ_Mean

HE02

StrNuc_OrgQ _Std

HE(2

StrNuc OrgRed MeanMean

HE02

StrNuc OrgRed MeanStd

HE02

StrNuc OrgS_Mean

HE02

StrNuc OrgS_Std

HE02

StrNuc_OrgV_Mean

HE02

StrNuc OrgV_Std

HE02

StrNuc OrgY Mean

HE02

StrNuc_ OrgY Std

HE02

StrPla Are Mean

Morphometric features of a combined stroma and
cytoplasm object

HE02

StrPla Are Tot

HE02

StrPla Num

HE02

StrPla OrgBlu_MeanMean

HE02

StrPla_OrgBlu MeanStd

HE02

StrPla OrgBlu_StdMean
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HE02 StrPla_OrgGre_MeanMean

HE02 StrPla OrgGre_MeanStd

HE02 StrPla OrgGre_StdMean

HEO02 StrPla OrgH_ Mean

HEO02 StrPla OrgH Std

HEO02 StrPla Orgl Mean

HEO02 StrPla Orgl Std

HEO02 StrPla OrgQ Mean

HEQ2 StrPla_OrgQ_Std

HEO02 StrPla OrgRed_MeanMean

HEO02 StrPla OrgRed_MeanStd

HEO02 StrPla OrgRed_StdMean

HE02 StrPla OrgS Mean

HE02 StrPla_OrgS_Std

HE02 StrPla OrgV_Mean

HE02 StrPla OrgV_Std

HEO02 StrPla OrgY Mean

HE02 StrPla OrgY_Std

HE02 Str Are_Mean Morphometric and color features of stroma

HEO02 Str Are Std

HE02 Str Are Tot

HE02 Str Num

HE02 Str OrgBlu_MeanMean

HE02 Str OrgBlu MeanStd

HEO02 Str OrgBri_Mean

HEO02 Str OrgBri_Std

HEO02 Str OrgGre_MeanMean

HEO02 Str OrgGre MeanStd

HEO02 Str OrgH Mean

HEO02 Str OrgH_Sud

HEO02 Str Orgl Mean

HE02 Str Orgl Std

HEO02 Str OrgQ Mean

HE02 Str OrgQ Std

HE02 Str OrgRed MeanMean

HEO02 Str OrgRed MeanStd

HEO02 Str OrgS Mean

HE02 Str OrgS Std

HEO02 Str OrgV_Mean

HEO02 Str OrgV_Std

HEO02 Str OrgY_Mean

HEO02 Str_OrgY_Std

Morphometric and color features of the tumor area
HE02 TumorWoWS Are_Tot without white space

HEO02 TumorWoWS Num
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HE02 TumorWoWS

OrgBlu_MeanMean

HE02 TumorWoWS

OrgBlu_MeanStd

HEO02 TumorWoWS

OrgBri_Mean

HE02 TumorWoWS

OrgBri Std

HE02 TumorWoWS

OrgGre MeanMean

HE02 TumorWoWS

OrgGre_MeanStd

HE02 TumorWoWS

OrgH Mean

HE02 TumorWoWS

OrgH Std

HE02 TumorWoWS

Orgl Mean

HE02 TumorWoWS

Orgl_Std

HE02 TumorWoWS_OrgQ_Mean

HE02 TumorWoWS

OrgQ_Std

HE02 TumorWoWS

OrgRed MeanMean

HE02 TumorWoWS

OrgRed MeanStd

HE02 TumorWoWS

OrgS Mean

HE02 TumorWoWS

OrgS Std

HE02 TumorWoWS

OrgV_Mean

HE02 TumorWoWS

OrgV_Sud

HE02

TumorWoWS OrgYIQBri_Mean

HEO2

TumorWoWS OrgYIQBri_Std

HEO02

TumorWoWS OrgY Mean

HE02

TumorWoWS OrgY Std

PCT/US2009/004364

HEOQ2

WDEpiNuc

Are Mean

Morphometric and color features of well defined

epithelial nuclei

HE02

WDEpiNuc

Are Median

HEO02

WDEpiNuc

Are Std

HE02

WDEpiNuc

Are Tot

HE02

WDEpiNuc

ElpFit Mean

HEO02

WDEpiNuc

ElpFit_Median

HEO02

WDEpiNuc

ElpFit_Std

HEO2

WDEpiNuc

LOW Mean

HEQ2

WDEpiNuc

LOW Median

HEQ2

WDEpiNuc

LOW_Std

HEQ2

WDEpiNuc

Num

HEQ2

WDEpiNuc

OrgBlu MeanMean

HE02

WDEpiNuc

OrgBlu_MeanStd

HE02

WDEpiNuc

OrgBlu_StdMean

HEOQ2

WDEpiNuc

OrgBri_Mean

HEO02

WDEpiNuc

OrgBri Std

HEO2

WDEpiNuc

OrgGre_MeanMean

HEO02

WDEpiNuc

OrgGre_MeanStd

HEO2

WDEpiNuc

OrgGre_StdMean

HEO2

WDEpiNuc

OrgRed MeanMean

HEO2

WDEpiNuc

OrgRed MeanStd

HEOQ2

WDEpiNuc

OrgRed StdMean
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HE02_WDEpiNuc_Shalnd_Mean

HE02_ WDEpiNuc_Shalnd_Std

HE02 WSAlginTumAre Are_Tot

PCT/US2009/004364

'mst_mean length _lum'

Average MST edge length of lumens

'mst_std length lum’

Standard deviation of the MST edge length between
lumens

'proportion_edge 1 _lum'

Proportion of lumens with one MST connecting edge

'proportion_edge_2_lum’

Proportion of lumens with two MST connecting
edges.

'proportion_edge 3 lum'

Proportion of lumens with three MST connecting
edges

'proportion_edge 4 lum'

Proportion of lumens with four MST connecting
edges

'proportion_edge 5_lum'

Proportion of lumens with five MST connecting
edges

'HE02 CytOGU_Are_Tot'

Cytoplasm and epithelial features within and outside
fo gland units

'HE02 CytOutGU_Are_Tot'

'HE02 CytWIGU_Are Tot'

'HE02 CytWinGU_Are_Tot'

'HE02 EpiNucOGU_Are_Mean'

'HE02 EpiNucOGU_Are_Tot'

'HE02 EpiNucWIGU_Are Mean'

'HE02 EpiNucWIGU_Are Tot'

'HEx2 RelNumlsoEpiNuc2AreaEpiNuc'

Normalized morphometric features of various tissue
components

'HEx2

RelNumIsoEpiNuc2MDTumor'

'HEx2

RelNum WellDe fEpiNuc2MDTumor'

'HEx2

RelNumlIsoEpiNuc2NumEpiNuc'

'HEx2

RelAre EpilsoNuc2EpiNucArea’

'HEx2RelNum_EpilsoNuc2EpiNucArea’

'HEx2

nta Cyt Are_Tot'

'HEx2

nta EpiNuc_Are_Tot'

'HEx2

nta Lum Are Tot'

'HEX2

nta StrNuc Are Tot'

'HEX2

nta Str Are Tot'

'HEx2

nta LStr Are Tot'

'HEx2

nta DStr Are Tot'

'HEx2

nta Cra Are Tot'

'HEx2

nta IsoNuc Are Tot'

'HEx2

nta Nuc Are Tot'

'HEx2

nta EpilsoNuc_Are_ Tot'

'HEx?2

nta IsoStrNuc Are Tot'

'HEx2

nta WDEpiNuc_Are_Tot'

'HEX2

RelAre IsoNuc2EpiNucArea'
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'HEx2RelAre EpilsoNuc2EpiNucArea'

'HEx2 RelAre WDEpiNuc2EpiNucArea'

'HEx2 EpiNucAre2LumMeanAre'

'HEx2 nrm ENWinGU Are Tot'

'HEx2 nrm_ ENOutGU_Are Tot'

'HEx2 nrm_ CytWinGU_Are_Tot'

'HEx2 nrm_ CytOutGU_Are Tot'

'HEx2 RelArea EpiNuc_Out2WinGU'

'HEx2 RelArea Cyt Out2WinGU'

'HEx2 RelArea ENCyt Out2WinGU'

'HEx2 ntaENCytWinGU2Tumor'

'HEx2 ntaENCYtOutGU2Tumor'

'HEx2 ntaWhiteSpace'

'HEx2 nrmMDT ENWinGU Are Tot' Normalized to the tumor area

'HEx2 nrmMDT_ENOutGU_Are_Tot'

'HEx2 nrmMDT CytWinGU_Are_Tot'

'HEx2 nrmMDT CytOutGU_Are_Tot'

'HEx2 nrmLUM ENWinGU Are Tot' Normalized to luminal area

'HEx2 nrmLUM ENOutGU Are Tot'

'HEx2 nrmLUM CytWinGU_Are_Tot’

'HEx2 nrmLUM CytOutGU_Are Tot'

"HEx2 nrmLUM _EpiNucCytWinGU'

'HEx2 nrmLUM EpiNucCytOutGU'

'HEx2 nrm_ ENCytWinGULum_Are_Tot'

'HEx2 RelArea ENCytLum_Out2WinGU'

'HEx2 LumenDensity'

'HEx2 RelArea EpiNucCyt Lum'

'HEx2 RelArea IsoEpiNuc_Lumen’

'HEx2 RelArea Artifact Lumen'

'HEx2 RelArea EpiNuc_Lumen'

'HEx2 RelArea Nuc Lumen'

'HEx2 RelArea EpiNuc_Cyt'

'HEx2 RelArea LumContent Lumen'

'HEx2 ntaLumContentArea'

'HEx2 nrm Cyt OrgRed_MeanStd'

'HEx2 nrm Cyt OrgGre_MeanStd'

'HEx2 nrm Cyt OrgBlu_MeanStd'

'HEx2 CytOrgSumRGBMeanStd'

'HEx2_CytNrmSumRGBMeanStd'

'HEx2 nrm! CytOutGU_OrgRedMeanStd' Normalized color features

'HEx2 nrm1 CytOutGU_OrgGreMeanStd'

'HEx2 nrm1 CytOutGU_OrgBluMeanStd'

'HEx2 nrm2 CytOutGU_OrgRedMeanStd'

'HEx2 nrm2 CytOutGU_OrgGreMeanStd'

'HEx2 nrm2 CytOutGU_OrgBluMeanStd'
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'HEx2 CytOutGUOrgSumRGBMeanStd'

'HEx2 CytOutGUNrm1SumRGBMeanStd'

'HEx2 CytOutGUNrm2SumRGBMeanStd'

'HEx2 nrm1 CytWinGU OrgRedMeanStd'

'HEx2 nrm1 CytWinGU_OrgGreMeanStd'

'HEx2 nrm1 CytWinGU_OrgBluMeanStd'

'HEx2 nrm2 CytWinGU_OrgRedMeanStd'

'HEx2 nrm2 CytWinGU_OrgGreMeanStd'

'HEx2 nrm2 CytWinGU_OrgBluMeanStd'

'HEx2 CytWinGUOrgSumRGBMeanStd'

'HEx2 CytWinGUNrm1SumRGBMeanStd'

'HEx2 CytWinGUNrm2SumRGBMeanStd'

'HEx2 nrm EpiNucOrgRed MeanStd'

'HEx2 nrm EpiNucOrgGre MeanStd'

'HEx2 nrm EpiNucOrgBlu_MeanStd'

'HEx2 nrmSN_EpiNucOrgRed MeanStd'

"HEx2 nrmSN EpiNucOrgGre_MeanStd'

'HEx2 nrmSN_EpiNucOrgBlu_MeanStd'

'HEx2 EpiNucOrgSumRGBMeanStd'

'HEx2 EpiNucNrmSumRGBMeanStd'

'HEx2 EpiNucNrmSNSumRGBMeanStd'

'HEx2 nrm1 ENOutGU_OrgRedMeanStd'

'HEx2 nrm1 ENOutGU OrgGreMeanStd'

'HEx2 nrm1_ENOutGU_OrgBluMeanStd'

'HEx2 nrm2 ENOutGU_OrgRedMeanStd'

'HEx2 nrm2 ENOutGU_OrgGreMeanStd'

'"HEx2 nrm2_ENOutGU_OrgBluMeanStd'

'HEx2 ENOutGUOrgSumRGBMeanStd'

"HEx2 ENOutGUnrm1SumRGBMeanStd'

'HEx2_ENOutGUnrm2SumRGBMeanStd'

'HEx2 nrm! ENWinGU_OrgRedMeanStd'

'HEx2 nrml ENWinGU OrgGreMeanStd'

'HEx2 nrm1 ENWinGU_OrgBluMeanStd'

"HEx2 nrm2 ENWinGU OrgRedMeanStd'

'HEx2 nrm2 ENWinGU_OrgGreMeanStd'

'HEx2 nrm2 ENWinGU OrgBluMeanStd'

'HEx2 ENWinGUOrgSumRGBMeanStd'

'HEx2 ENWinGUnrm1SumRGBMeanStd'

'HEx2 ENWinGUnrm2SumRGBMeanStd'

'HEx2 nrm EpiNucDen0Ol Are_Tot' Density bins normalized by total of all bins

'HEx2 nrm EpiNucDen02_Are Tot'

'HEx2 nrm EpiNucDen03_Are_Tot'

'HEx2 nrm EpiNucDen04_Are Tot'

'HEx2 nrm EpiNucDen05_Are_Tot'

'HEx2 nrm EpiNucDen06_Are_Tot'
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'HEx2

nrm_EpiNucDen(07 Are Tot'

'HEx2

nrm_ EpiNucDen08 Are Tot'

'HEx2

nrm_EpiNucDen(09 Are Tot'

'HEx2

nrm_EpiNucDenl10 Are Tot'

'HEx2

sub_EpiNucDenl 3 Lum'

'HEXx2

RelAreHi2Lo EpiNucDen

10to2'

'HEx2

RelAreHi2Lo EpiNucDen

10to3'

'HEx2

RelAreHi2Lo EpiNucDen

10to4'

'HEX2

RelAreHi2Lo EpiNucDen

10to5'

'HEx2

RelAreHi2Lo EpiNucDen

10to6'

'HEx2 RelAreHi2Lo EpiNucDen

10to7'

'‘HEx2

RelAreHi2Lo EpiNucDen

10to8'

'HEx2 sub EpiNucDen8 10_Lum'

'HEx2

nrm EpiNucAtlDia_Are_Tot'

'HEx2 nrm_EpiNucAt2Dia_Are Tot

'HEx2

nrm_EpiNucAt3Dia_Are Tot'

'HEx2

nrm_EpiNucAt4Dia_Are_Tot'

'HEx2 nrm_EpiNucAt5Dia_Are_Tot

'HEX2

nrm_ EpiNucAt1Dia2MDT"

'HEX2

nrm_ EpiNucAt2Dia2MDT"

'HEx2

nrm EpiNucAt3Dia2MDT"

'HEx2

nrm EpiNucAt4Dia2MDT"

'HEx2

nrm_EpiNucAt5Dia2MDT"

'HEx2

EpiNucBand5minus4'

'HEx2_EpiNucBand4minus3'

"HEx?2

EpiNucBand3minus2'

"HEx2 EpiNucBand2minusl’

'HEx2

nrmEpiNucBandSminus4'

'HEx2

nrmEpiNucBandSminus3'

'HEx2

nrmEpiNucBandSminus2'

'HEx2

nrmEpiNucBand4minus3'

'HEx2

nrmEpiNucBand4minus2'

'HEx2

nrmEpiNucBand3minus2'

'HEx2

nrmEpiNucBand2minus!’

'HEx2

nrmMDT EpiNucBandSminus4'

'HEx2

nrmMDT EpiNucBandSminus3'

'HEx2

nrmMDT_EpiNucBandSminus2'

'HEx2

nrmMDT_EpiNucBand4minus3'

'HEx2

nrmMDT_EpiNucBand4minus2'

'HEx2

nrmMDT EpiNucBand3minus2'

'"HEx?2

nrmMDT EpiNucBand2minusl'

'HEx2

EpiNuc_Numl 8

"HEx2

EpiNuc_Arel_8'

'"HEx2

nrmEpiNucSizBinl Num'

'"HEx?2

nrmEpiNucSizBin2_Num'
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'HEx2 nrmEpiNucSizBin3_Num'

'HEx2 nrmEpiNucSizBin4_Num'

'HEx2 nrmEpiNucSizBin5_Num'

'HEx2 nrmEpiNucSizBin6 Num'

'HEx2 nrmEpiNucSizBin7_Num'

'HEx2_nrmEJ)iNucSizBin8 Num'

'HEx2 nrmEpiNucSizBinl

Are'

'HEx2 nrmEpiNucSizBin2

Are'

'HEx2 nrmEpiNucSizBin3

Are'

'HEx2 nrmEpiNucSizBin4

Are'

'HEx2 nrmEpiNucSizBin5

Are'

'HEx2 nrmEpiNucSizBin6

Are'

'HEx2 nrmEpiNucSizBin7

Are'

'HEx2 nrmEpiNucSizBin8

Are'

PCT/US2009/004364

'min_orig L detaill’

Minimum of the variances in the horizontal and
vertical detail sub-bands after applying 1 stage of
undecimated wavelet transform to a mask of lumens.

'min orig L detail2'

Minimum of the variances in the horizontal and
vertical detail sub-bands after applying 2 stages of
undecimated wavelet transform to a mask of lumens.

'min_orig L _detail3'

Minimum of the variances in the horizontal and
vertical detail sub-bands after applying 3 stages of
undecimated wavelet transform to a mask of lumens.

'min_orig_L _detail4'

Minimum of the variances in the horizontal and
vertical detail sub-bands after applying 4 stages of
undecimated wavelet transform to a mask of lumens.

'min orig L detail5'

Minimum of the variances in the horizontal and
vertical detail sub-bands after applying 5 stages of
undecimated wavelet transform to a mask of lumens.

'min orig L detail6'

Minimum of the variances in the horizontal and
vertical detail sub-bands after applying 6 stages of
undecimated wavelet transform to a mask of lumens.

'min_orig L _detail7'

Minimum of the variances in the horizontal and
vertical detail sub-bands after applying 7 stages of
undecimated wavelet transform to a mask of lumens.

'max orig L detaill'

Maximum of the variances in the horizontal and
vertical detail sub-bands after applying 1 stage of
undecimated wavelet transform to a mask of lumens.

'max orig L detail2'

Maximum of the variances in the horizontal and
vertical detail sub-bands after applying 2 stages of
undecimated wavelet transform to a mask of lumens.

'max_orig L detail3’

Maximum of the variances in the horizontal and
vertical detail sub-bands after applying 3 stages of
undecimated wavelet transform to a mask of lumens.
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max

orig L detail4'

Maximum of the variances in the horizontal and
vertical detail sub-bands after applying 4 stages of
undecimated wavelet transform to a mask of lumens.

max

orig L detail$'

Maximum of the variances in the horizontal and
vertical detail sub-bands after applying 5 stages of
undecimated wavelet transform to a mask of lumens.

max

orig L detail6’

Maximum of the variances in the horizontal and
vertical detail sub-bands after applying 6 stages of
undecimated wavelet transform to a mask of lumens.

max

orig L detail7'

Maximum of the variances in the horizontal and
vertical detail sub-bands after applying 7 stages of
undecimated wavelet transform to a mask of lumens.

sum

orig L detail I’

Sum of the variances in the horizontal and vertical
detail sub-bands after applying 1 stage of
undecimated wavelet transform to a mask of lumens.

'sum_orig_L_detail2'

Sum of the variances in the horizontal and vertical
detail sub-bands after applying 2 stages of
undecimated wavelet transform to a mask of lumens.

sum

orig L detail3'

Sum of the variances in the horizontal and vertical
detail sub-bands after applying 3 stages of
undecimated wavelet transform to a mask of lumens.

sum

orig L detail4'

Sum of the variances in the horizontal and vertical _
detail sub-bands after applying 4 stages of
undecimated wavelet transform to a mask of lumens.

sum

orig L detail5'

Sum of the variances in the horizontal and vertical
detail sub-bands after applying 5 stages of
undecimated wavelet transform to a mask of lumens.

sum

orig L _detail6'

Sum of the variances in the horizontal and vertical
detail sub-bands after applying 6 stages of
undecimated wavelet transform to a mask of lumens.

sum

orig L detail7’

Sum of the variances in the horizontal and vertical
detail sub-bands after applying 7 stages of
undecimated wavelet transform to a mask of lumens.

'WaveletRatio Lumendiag_6_5'

Ratio of the variances in the diagnoal detail sub-
bands after applying 6 and 5 stages of undecimated
wavelet transform to a mask of lumens.

HEO03 CluNuc_Are_Mean

Measurements on Clustered Nuclei

HEO3

CluNuc Are Std

HEO03

CluNuc Are Tot

HEO03

CluNuc Num

HEO03

Cyt Are_Mean

Morphometric and color measurements on cytoplasm

HEOQ3

Cyt Are_Std

HEOQ3

Cyt Are Tot

HEOQ3

Cyt Num

HEOQ3

Cyt OrgBlu_MeanMean
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HEO3_Cyt OrgBlu_MeanStd

HEQ3

Cyt

OrgBri_Mean

HEO3

Cyt

OrgBri_Std

HEQO3

Cyt

OrgGre MeanMean

HEO3 Cyt

OrgGre MeanStd

HEO3

Cyt

OrgH Mean

HEO3

Cyt

OrgH Std

HEO3

Cyt

Orgl Mean

HEQ3

Cyt

Orgl Std

HEO3

Cyt

OrgQQ Mean

HEQ3

Cyt OrgQ _Std

HEQ3

Cyt OrgRed

MeanMean

HEQ3

Cyt OrgRed

MeanStd

HEQ3

Cyt OrgS_Mean

HEQ3

Cyt OrgS Std

HEQ3

Cyt OrgV_Mean

HEO03 Cyt OrgV_Std

HEO03 Cyt OrgY_Mean

HEQ3

Cyt OrgY_Std
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HEOQ3

DarNucBin0

3 Are Mean

Morphometric and color measurements on Dark
Nuclei

HEO03 DarNucBin0

3 Are Tot

HEQO3

DarNucBin0

3 Num

HEQ3

DarNucBin0

S Are Mean

HEOQ3

DarNucBin0

5 Are Tot

HE03 DarNucBin0

5 Num

HEOQ3

DarNucBin0

7 Are Mean

HEO3

DarNucBin0

7 Are Tot

HEO03

DarNucBin0

7 Num

HEQ3

DarNucBin0

Are Mean

HEO03

DarNucBin0

Are Tot

HE(03

DarNucBin0

Num

HEO03

DarNucBinl

3 Are Mean

HEQ3

DarNucBinl

3 Are Tot

HEQ3

DarNucBinl

3 Num

HEO3

DarNucBinl

5 Are Mean

HEO3

DarNucBinl

5 Are Tot

HEO03

DarNucBinl

S Num

HEQ3

DarNucBinl

7 Are Mean

HEQ03

DarNucBinl

7 Are Tot

HEO(3

DarNucBinl

7 Num

HEQ03

DarNucBinl

Are Mean

HEQ3

DarNucBinl

Are Tot

HEQ3

DarNucBinl

Num

HEO03 DarNucBin2 3 Are Mean
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HEO3

DarNucBin2

3 Are Tot

HEO3

DarNucBin2

3 Num

HEO03

DarNucBin2

5 Are Mean

HEO3

DarNucBin2

5 Are Tot

HEO3

~DarNucBin2_5 Num

HEO3

DarNucBin2

7 Are Mean

HEO3

DarNucBin2

7 Are Tot

HEO3

DarNucBin2

7 Num

HEO3

DarNucBin2

Are Mean

HEO3

DarNucBin2

Are Tot

HEO3

DarNucBin2

Num

HEO3

DarNucBin3

5 Are Mean

HEO3

DarNucBin3

5 Are Tot

HEO3

DarNucBin3

5 Num

HEO3

DarNucBin3

7 Are Mean

HEO3

DarNucBin3

7 Are Tot

HEOQ3

DarNucBin3

7 Num

HEOQ3

DarNucBin3

Are Mean

HEO3

DarNucBin3

Are Tot

HEO3

DarNucBin3

Num

HEOQ3

DarNucBin4

5 Are Mean

HEO3

DarNucBin4

5 Are Tot

HEO3

DarNucBin4

5 Num

HEO3

DarNucBin4

7 Are Mean

HEOQ3

DarNucBin4

7 Are Tot

HEQ3

DarNucBin4

7 Num

HEO3

DarNucBin4

Are Mean

HEQ3

DarNucBin4

Are Tot

HEOQ3

DarNucBin4

Num

HEOQ3

DarNucBin5

7 Are Mean

HEOQ3

DarNucBin5

7 Are Tot

HEQ3

DarNucBin5

7 Num

HEOQ3

DarNucBin5

Are Mean

HEQ3

DarNucBin5

Are Tot

HEQ3

DarNucBin5

Num

HEQ3

DarNucBin6

7 Are Mean

HEQ3

DarNucBin6

7 Are Tot

HEQ3

DarNucBin6

7 Num

HEO3

DarNucBin6

Are Mean

HEQ3

DarNucBin6

Are Tot

HEQ3

DarNucBin6

Num

HEO3

DarNucBin7

Are Mean

HEO3

DarNucBin7

Are Tot

HEQ3

DarNucBin7

Num

HEOQ3

DarNucBin8

Are Mean
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HEO3 DarNucBin8 Are Tot

HEO3 DarNucBin8 Num
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HEO3 EpiCluNuc_Are_Mean

Measurements on epithelial clustered nuclei

HEO03 EpiCluNuc_Are Std

HEO03 EpiCluNuc_Are Tot

HEO03 EpiCluNuc_Num

HEO03 EpilsoNuc_Are_Mean

Measurements on epithelial isolated nuclei

HEO3 EpilsoNuc_Are Median

HEO3 EpilsoNuc_Are Std

HEO03 EpilsoNuc_Are_Tot

HEO03 EpilsoNuc_Num

HEO03 EpiNucErol Blu_MeanStd

Color measurements of eroded epithelial nuclei

HEO03 EpiNucErol Blu_StdMean

HE03 EpiNucErol Bri_MeanStd

HEO03 EpiNucErol Bri_StdMean

HEO3 EpiNucErol Gre_MeanStd

HEO03 EpiNucErol Gre_StdMean

HEO3 EpiNucErol Red MeanStd

HEO03 EpiNucErol Red_StdMean

HE03 EpiNucEro2_Blu_MeanStd

HEO3 EpiNucEro2_Blu_StdMean

HEO3 EpiNucEro2_Bri_MeanStd

HE03 EpiNucEro2_Bri_StdMean

HEO3 EpiNucEro2_Gre_MeanStd

HEO03 EpiNucEro2 Gre_StdMean

HE03 EpiNucEro2_Red_MeanStd

HEO3 EpiNucEro2 Red_StdMean

HEO3 EpiNucSizBin0_|_Are_Mean

Color and area measurements of epithelial nuclei
divided into different bins based on size.

HEO3 EpiNucSizBin0_2_Are_Mean

HEO03 EpiNucSizBin0_3_Are_Mean

HEO3 EpiNucSizBin0_3_Blu_Mean

HEO03 EpiNucSizBin0_3_Blu_MeanStd

HEO3 EpiNucSizBin0 3 Blu RA
HEO03 EpiNucSizBin0_3_Blu_RAStd
HEO3 EpiNucSizBin0_3 Blu_StdMean
HEO03 EpiNucSizBin0_3_Bri_Mean
HEO03 EpiNucSizBin0_3_Bri_MeanStd
HEO03 EpiNucSizBin0_3 Bri_RA
HEO03 EpiNucSizBin0_3_Bri_StdMean
HEO03 EpiNucSizBin0_3_Gre Mean .
HE03 EpiNucSizBin0_3_Gre_MeanStd
HEO3 EpiNucSizBin0_3_Gre RA
HE03 EpiNucSizBin0_3_Gre RAStd
HEO03 EpiNucSizBin0_3 Gre StdMean
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HEO3 EpiNucSizBin0_3_Red_Mean
HEO3 EpiNucSizBin0_3_Red MeanStd
HEO3 EpiNucSizBin0_3_ Red RA
HEO3 EpiNucSizBin0_3_Red RAStd
HEO03 EpiNucSizBin0_3_Red StdMean
HEO3 EpiNucSizBin0_4_Are Mean
HEO03 EpiNucSizBin0_5_Are_Mean
HEO3 EpiNucSizBin0_5_Blu_Mean
HEO3 EpiNucSizBin0_5_Blu_MeanStd
HEO3 EpiNucSizBin0_5 Blu RA
HEO3 EpiNucSizBin0_5_Blu_RAStd
HEO03 EpiNucSizBin0_5_Blu_StdMean
HEO03 EpiNucSizBin0_5_Bri_Mean
HEO3 EpiNucSizBin0_5_Bri_MeanStd
HEO03 EpiNucSizBin0_5 Bri RA
HEO3 EpiNucSizBin0_5_Bri_StdMean
HEO03 EpiNucSizBin0_5_Gre_Mean
HEO03 EpiNucSizBin0_5_Gre_MeanStd
HEO03 EpiNucSizBin0_5 Gre RA
HEO03 EpiNucSizBin0_5_Gre_RAStd
HEO03 EpiNucSizBin0_5_Gre_ StdMean
HE03 EpiNucSizBin0 5_Red Mean
HEO03 EpiNucSizBin0_5_Red MeanStd
HEO03 EpiNucSizBin0_5 Red RA
HE03 EpiNucSizBin0_5_Red RAStd
HEO03 EpiNucSizBin0_5_Red_StdMean
HEO03 EpiNucSizBin0_6_Are_Mean
HE03 EpiNucSizBin0_7_Are Mean
HE03 EpiNucSizBin0_7_Blu_Mean
HE03 EpiNucSizBin0_7_Blu MeanStd
HE03 EpiNucSizBin0_7_Blu_RA
HEO03 EpiNucSizBin0_7 Blu_RAStd
HEO03 EpiNucSizBin0_7_Blu_StdMean
HE03 EpiNucSizBin0_7 Bri_Mean
HEO03 EpiNucSizBin0_7_Bri_MeanStd
HEO03 EpiNucSizBin0_7 Bri_RA
HE03 EpiNucSizBin0_7_Bri_StdMean
HE03 EpiNucSizBin0_7_Gre _Mean
HEO03 EpiNucSizBin0_7_Gre_MeanStd
HEO03 EpiNucSizBin0_7_Gre RA
HE03 EpiNucSizBin0_7_Gre_RAStd
HE03 EpiNucSizBin0_7_Gre_StdMean
HE03 EpiNucSizBin0_7_Red Mean
HE03 EpiNucSizBin0_7_Red MeanStd
HEO03 EpiNucSizBin0_7_Red RA
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HEO03 EpiNucSizBin0_7 Red RAStd

HEO03 EpiNucSizBin0_7 Red_StdMean

HE03 EpiNucSizBin0_8 Are_Mean

HE03 EpiNucSizBin0_Are_Mean

HEO03 EpiNucSizBin0_Are_Tot

HEO03 EpiNucSizBin0_Blu_Mean

HEO03 EpiNucSizBin0_Blu_MeanStd

HEO3 EpiNucSizBin0_Bri_Mean

HE03 EpiNucSizBin0_Gre_Mean

HEO03 EpiNucSizBin0_Gre_MeanStd

HEO03 EpiNucSizBin0_Num

HEO03 EpiNucSizBin0_Red Mean

HEO03 EpiNucSizBin0_Red MeanStd

HEO03 EpiNucSizBinl_2

Are Mean

After dividing epithelial nuclei into different bins

based on size, color and area measurements of
various combinations of the bins.

HEO3 EpiNucSizBinl_3

Are Mean

HEO03 EpiNucSizBinl 3

Blu Mean

HEO03 EpiNucSizBinl_3

Blu MeanStd

HEO3 EpiNucSizBinl_3

Blu RA

HEO3 EpiNucSizBinl_3

Blu RAStd

HEO3 EpiNucSizBinl_3

Blu StdMean

HEO03 EpiNucSizBinl_3

Bri Mean

HEO03 EpiNucSizBinl 3

Bri MeanStd

HEO03 EpiNucSizBinl_3

Bri RA

HEO03 EpiNucSizBinl_3

Bri StdMean

HEO03 EpiNucSizBinl_3

Gre Mean

HEO3 EpiNucSizBinl_3

Gre MeanStd

HEO03 EpiNucSizBinl_3

Gre RA

HEO03 EpiNucSizBinl_3

Gre RAStd

HEO3 EpiNucSizBinl_3

Gre StdMean

HEO3 EpiNucSizBinl_3

Red Mean

HEO3 EpiNucSizBinl_3

Red MeanStd

HEO3 EpiNucSizBinl_3

Red RA

HEO03 EpiNucSizBinl 3

Red RAStd

HEO03 EpiNucSizBinl_3

Red StdMean

HEO03 EpiNucSizBinl_4

Are Mean

HEOQ3 EpiNucSizBinl_3

Are Mean

HEO3 EpiNucSizBinl 5

Bilu Mean

HEO3 EpiNucSizBinl_5

Blu MeanStd

HEO03 EpiNucSizBinl_5

Blu RA

HE03 EpiNucSizBinl_5

Blu_RAStd

HEO3 EpiNucSizBinl_35

Blu StdMean

HEO3 EpiNucSizBinl_5

Bri Mean

HEO3_EpiNucSizBinl_5

Bri MeanStd
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HEO3 EpiNucSizBinl 5 Bri_RA

HEO03 EpiNucSizBinl 5 Bri_StdMean

HEO3 EpiNucSizBinl 5 Gre_Mean

HEO3 EpiNucSizBinl 5 Gre_MeanStd

HEO03 EpiNucSizBinl_5_Gre RA

HEQ3

EpiNucSizBinl 5

Gre RAS

HEOQ3

EpiNucSizBinl 5

Gre StdMean

HEOQ3

EpiNucSizBinl 5

Red Mean

HEQ3

EpiNucSizBinl 5

Red MeanStd

HEOQ3

EpiNucSizBinl 5

Red RA

HEOQ3

EpiNucSizBinl 5

Red RAStd

HEOQ3

EpiNucSizBinl 3

Red StdMean

HEOQ3

EpiNucSizBinl 6

Are Mean

HEOQ3

EpiNucSizBinl 7

Are Mean

HE03 EpiNucSizBinl 7

Blu Mean

HEO3 EpiNucSizBinl 7 Blu_MeanStd

HEQ3

EpiNucSizBinl_7

Blu RA

HEO3

EpiNucSizBinl 7

Blu RAStd

HEOQ3

EpiNucSizBinl_7

Blu StdMean

HEOQ3

EpiNucSizBinl_7

Bri Mean

HEO03 EpiNucSizBinl_7

Bri MeanStd

HEO3 EpiNucSizBinl_7_Bri_RA

HEO3

EpiNucSizBinl _7

Bri StdMean

HEOQ3

EpiNucSizBinl_7

Gre Mean

HEO3

EpiNucSizBinl_7

Gre MeanStd

HEO3

EpiNucSizBinl_7

Gre RA

HEOQ3

EpiNucSizBinl_7

Gre RAStd

HEO3

EpiNucSizBinl 7

Gre StdMean

HEO3

EpiNucSizBinl_7

Red Mean

HEO3

EpiNucSizBinl_7

Red MeanStd

HEO03

EpiNucSizBinl_7

Red RA

HEO03 EpiNucSizBinl_7

Red RAStd

HEOQ3

EpiNucSizBinl_7

Red StdMean

HEO3

EpiNucSizBinl_8

Are Mean

HE03 EpiNucSizBinl_Are Mean

HEO03 EpiNucSizBinl_Are Tot

HEO03 EpiNucSizBinl_Blu_Mean

HE03 EpiNucSizBinl_Blu_MeanStd

HEO3

EpiNucSizBinl_Bri_Mean

HEOQ3

EpiNucSizBinl_Gre Mean

HEO3

EpiNucSizBinl_Gre_MeanStd

HEOQ3

EpiNucSizBinl_Num

HEOQ3

EpiNucSizBinl_Red_Mean

HEQ3

EpiNucSizBinl_Red MeanStd

HEO03

EpiNucSizBin2_3

Are Mean
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HEO3

EpiNucSizBin2

3 Blu Mean

HEO03

EpiNucSizBin2

3 Blu MeanStd

HEOQ3

EpiNucSizBin2

3 Blu RA

HEO3

EpiNucSizBin2

3 Blu RAStd

HEOQ3

EpiNucSizBin2

3 Blu StdMean

HEO03

EpiNucSizBin2

3 Bri Mean

HEO3

EpiNucSizBin2

3 Bri MeanStd

HEOQ3

EpiNucSizBin2

3 Bri RA

HEOQ3

EpiNucSizBin2

3 Bri StdMean

HEQ3

EpiNucSizBin2

3 Gre Mean

HEOQ3

EpiNucSizBin2

3 Gre MeanStd

HEOQ3

EpiNucSizBin2

3 Gre RA

HEQ3

EpiNucSizBin2

3 Gre RAStd

HEQ3

EpiNucSizBin2

3 Gre StdMean

HEQ3

EpiNucSizBin2

3 Red Mean

HEOQ3

EpiNucSizBin2_3_Red_MeanStd

HEQ3

EpiNucSizBin2

3 Red RA

HEO3

EpiNucSizBin2

3 Red RAStd

HEQ3

EpiNucSizBin2

3 Red StdMean

HEQ3

EpiNucSizBin2

4 Are Mean

HEO03 EpiNucSizBin2_5_Are_Mean
HEO03 EpiNucSizBin2_5_Blu_Mean
HEO03 EpiNucSizBin2_5_Blu_MeanStd
HEO03 EpiNucSizBin2_5_Blu RA
HEO03 EpiNucSizBin2_5_Blu RAStd
HEO03 EpiNucSizBin2_5_Blu_StdMean
HEO03 EpiNucSizBin2_5_Bri_Mean
HEO03 EpiNucSizBin2_5_Bri_MeanStd
HEO03 EpiNucSizBin2_5_Bri_RA
HEO3 EpiNucSizBin2_5_Bri_StdMean
HEO03 EpiNucSizBin2_5_Gre_Mean
HEO03 EpiNucSizBin2_5_Gre_MeanStd
HE03 EpiNucSizBin2 5 Gre RA
HEO03 EpiNucSizBin2_5_Gre RAStd
HEO3 EpiNucSizBin2_5_Gre_StdMean
HEO03 EpiNucSizBin2_5_Red Mean
HEO03 EpiNucSizBin2_5_Red_MeanStd
HEO3 EpiNucSizBin2_5_Red RA
HEO03 EpiNucSizBin2_5_Red RAStd
HEO3 EpiNucSizBin2_5_Red StdMean
HEO03 EpiNucSizBin2_6_Are_Mean
HEO03 EpiNucSizBin2_7_Are_Mean
HEO03 EpiNucSizBin2_7_Blu_Mean
HE03 EpiNucSizBin2_7_Blu_MeanStd
HEO03 EpiNucSizBin2_7_Blu RA
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HEO03 EpiNucSizBin2_7

Blu RAStd

HEO03_EpiNucSizBin2_7

Blu StdMean

HEO03_EpiNucSizBin2_7

Bri Mean

HE03 EpiNucSizBin2_7

Bri MeanStd

HEO03 EpiNucSizBin2_7_Bri_RA

HEO03 EpiNucSizBin2

Bri StdMean

HEO03_EpiNucSizBin2

Gre Mean

Gre MeanStd

HE03 EpiNucSizBin2

Gre RA

7
7
HE03 EpiNucSizBin2_7
7
7

HE03 EpiNucSizBin2

Gre RAStd

HEO03 EpiNucSizBin2_7

Gre StdMean

HE03 EpiNucSizBin2_7

Red Mean

HE03 EpiNucSizBin2_7

Red MeanStd

HE03 EpiNucSizBin2_7

Red RA

HE03 EpiNucSizBin2 7

Red RAStd

HEO03 EpiNucSizBin2_7

Red StdMean

HE03 EpiNucSizBin2_8

Are Mean

HEO03 EpiNucSizBin2_Are Mean

HEO03 EpiNucSizBin2_Are_Tot

HE03 EpiNucSizBin2_Blu_Mean

HE03 EpiNucSizBin2_Blu_MeanStd

HE03 EpiNucSizBin2_Bri_Mean

HE03 EpiNucSizBin2_Gre_Mean

HE03 EpiNucSizBin2_Gre MeanStd

HEO03 EpiNucSizBin2_Num

HEO03 EpiNucSizBin2_Red Mean

HE03 EpiNucSizBin2_Red_MeanStd

HEO03 EpiNucSizBin3_4

Are Mean

HEO03 EpiNucSizBin3 5

Are Mean

HEO03 EpiNucSizBin3_5

Blu Mean

HEO03 EpiNucSizBin3 5

Blu MeanStd

HEO03 EpiNucSizBin3_35

Blu RA

HEO03 EpiNucSizBin3_5

Blu_RAStd

HE03 EpiNucSizBin3_5

Blu StdMean

HEO03 EpiNucSizBin3_5

Bri Mean

HEO03 EpiNucSizBin3_5

Bri MeanStd

HEO03 EpiNucSizBin3 5

Bri RA

HEO03 EpiNucSizBin3 5

Bri StdMean

HE03 EpiNucSizBin3_3

Gre Mean

HE03 EpiNucSizBin3 5

Gre MeanStd

HEO03 EpiNucSizBin3 5

Gre RA

HEO03 EpiNucSizBin3_35

Gre RAStd

HE03 EpiNucSizBin3_5

Gre StdMean

HE03 EpiNucSizBin3_ 5

Red Mean

HEO03 EpiNucSizBin3_35

Red MeanStd
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HEO3 EpiNucSizBin3 5 Red RA

HEQ3 EpiNucSizBin3_S Red RAStd

HEO03 EpiNucSizBin3_S Red_StdMean

HEO03 EpiNucSizBin3 6 _Are_Mean

HEO03 EpiNucSizBin3_7_Are_Mean

HEO3

EpiNucSizBin3

7 Blu Mean

HEO3

EpiNucSizBin3

7 Blu MeanStd

HEO03

EpiNucSizBin3

7 Blu RA

HEO3

EpiNucSizBin3

7 Blu_RAStd

HEO3

EpiNucSizBin3

7 Blu StdMean

HEO3

EpiNucSizBin3_

7 Bri Mean

HEO3

EpiNucSizBin3

Bri MeanStd

HEO3

EpiNucSizBin3

Bri RA

HEO3

EpiNucSizBin3

Bri StdMean

HEO3

EpiNucSizBin3

Gre Mean

HEO3

EpiNucSizBin3

Gre MeanStd

HEO3

EpiNucSizBin3

Gre RA

HEO3

EpiNucSizBin3

HEO3

EpiNucSizBin3

Gre StdMean

HEO3

EpiNucSizBin3

Red Mean

HEO3

EpiNucSizBin3

Red MeanStd

HEO3

EpiNucSizBin3

Red RA

HEO3

EpiNucSizBin3

Red RAStd

HEO3

EpiNucSizBin3

7
7
7
7
7
7
7 Gre RAStd
7
7
7
7
7
7

Red StdMean

HEOQ3

EpiNucSizBin3—8 Are_Mean

HEQ3

EpiNucSizBin3

Are Mean

HEO3

EpiNucSizBin3

Are Tot

HEO3

EpiNucSizBin3

Blu Mean

HEOQ3

EpiNucSizBin3

Blu MeanStd

HEOQ3

EpiNucSizBin3

Bri Mean

HEO3

EpiNucSizBin3

Gre Mean

HEQ3

EpiNucSizBin3

Gre MeanStd

HEOQ3

EpiNucSizBin3

Num

HEO3

EpiNucSizBin3

Red Mean

HEO03

EpiNucSizBin3

Red MeanStd

HEO3

EpiNucSizBin4

Are Mean

HEO3

EpiNucSizBin4

Blu Mean

HEQ3

EpiNucSizBin4

Blu MeanStd

HEQ3

EpiNucSizBin4

Blu RA

HEO3

EpiNucSizBin4

HEO3

EpiNucSizBin4

Blu StdMean

HEO3

EpiNucSizBin4

Bri Mean

HEO3

EpiNucSizBin4

Bri MeanStd

HEOQ3

EpiNucSizBin4

Bri RA

HEQ3

EpiNucSizBin4

5
5
5
5
5 Blu_ RAStd
5
5
5
5
5

Bri StdMean
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HEO3_EpiNucSizBin4

5 Gre Mean

HE03 EpiNucSizBin4

5 Gre MeanStd

HEO03 EpiNucSizBin4

5 Gre RA

HEO3 EpiNucSizBin4_5 Gre RAStd

HEO03 EpiNucSizBin4

5 Gre StdMean

HEO3 EpiNucSizBin4

5 Red Mean

HE03 EpiNucSizBin4

5 Red MeanStd

HEO3 EpiNucSizBin4

5 Red RA

HE03 EpiNucSizBin4

5 Red RAStd

HEO03 EpiNucSizBin4

5 Red StdMean

HEO03 EpiNucSizBin4

6 Are Mean

HEO03 EpiNucSizBin4

7 Are Mean

HEO03 EpiNucSizBin4

7 Blu Mean

HEO03 EpiNucSizBin4

7 Blu MeanStd

HEO3 EpiNucSizBin4

7 Blu RA

HEO03 EpiNucSizBin4

7 Blu RASW

HEO03 EpiNucSizBin4

7 Blu StdMean

HEO03 EpiNucSizBin4

7 Bri Mean

HEO3 EpiNucSizBin4

7 Bri MeanStd

HEO3 EpiNucSizBin4

7 Bri RA

HEO03 EpiNucSizBin4

7 Bri StdMean

~HEO3 EpiNucSizBin4

7 Gre Mean

HEO3 EpiNucSizBin4

7 Gre MeanStd

HEO03 EpiNucSizBin4 7 _Gre RA

HEO03 EpiNucSizBin4

7 Gre RAStd

HEO03 EpiNucSizBin4

7 Gre StdMean

HE03 EpiNucSizBin4

7 Red Mean

HEO03 EpiNucSizBin4

7 Red MeanStd

HEO03 EpiNucSizBin4

7 Red RA

HE03 EpiNucSizBin4

7 Red RASt

HEO03 EpiNucSizBin4

7 Red StdMean

HEO03 EpiNucSizBin4

8 Are Mean

HEO3_EpiNucSizBin4_Are_Mean

HEO3 EpiNucSizBin4

Are Tot

HEO03 EpiNucSizBin4

Blu Mean

HEO03 EpiNucSizBin4

Blu MeanStd

HEO03 EpiNucSizBin4

Bri Mean

HEO03 EpiNucSizBin4

Gre Mean

HEO03 EpiNucSizBin4

Gre MeanStd

HEO3 EpiNucSizBin4

Num

HEO3 EpiNucSizBin4

Red Mean

HEO03 EpiNucSizBin4

Red MeanStd

HEO03 EpiNucSizBin5

6 Are Mean

HEO03 EpiNucSizBin3

7 Are Mean

HEO03 EpiNucSizBin5

7 Blu Mean
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HE03_EpiNucSizBin5

Blu MeanStd

HEO3 EpiNucSizBin5

Blu RA

HEO3 EpiNucSizBin5

Blu RAStd

HEO03 EpiNucSizBin5

Blu StdMean

HEO03 EpiNucSizBin5

_Bri Mean

HEO03 EpiNucSizBin5

Bri RA

HEO03 EpiNucSizBin5

Bri StdMean

HEO03 EpiNucSizBin5

Gre Mean

HEO03 EpiNucSizBin5

Gre MeanStd

HEO03 EpiNucSizBin5

Gre RA

HEO03 EpiNucSizBin5

7
7
7
7
7
HE03 EpiNucSizBin5_7 Bri_MeanStd
7
7
7
7
7
7

_Gre RAStd

HEO03 EpiNucSizBin5

Gre StdMean

HEO03 EpiNucSizBin5

Red Mean

Red MeanStd

HEO03 EpiNucSizBin5

Red RA

7
7
HEO03 EpiNucSizBin5_7
7
7

HEO03 EpiNucSizBin5

Red RAStd

HEO03 EpiNucSizBin5 7

~Red StdMean

HE03 EpiNucSizBin3

8 Are Mean

HEO03 EpiNucSizBin5_Are_Mean

HEO03 EpiNucSizBin5_Are_Tot

HEO03 EpiNucSizBin5_Blu_Mean

HEO03 EpiNucSizBin5_Blu_MeanStd

HEO03 EpiNucSizBin5_Bri_Mean

HEO03 EpiNucSizBin5_Gre_Mean

HE03 EpiNucSizBin5

Gre MeanStd

HE03 EpiNucSizBin5_Num

HE03 EpiNucSizBin5_Red_Mean

HEO03 EpiNucSizBin5

Red MeanSid

HEO3 EpiNucSizBin6

7

Are Mean

HE03 EpiNucSizBin6_

Blu Mean

HEO3 EpiNucSizBin6

Blu MeanStd

HEO03 EpiNucSizBiné

Blu RA

HEO03 EpiNucSizBin6

Blu RAStd

HEO3 EpiNucSizBin6

Blu StdMean

HEO03 EpiNucSizBin6

Bri Mean

HEO03 EpiNucSizBin6é

Bri MeanStd

HEO03 EpiNucSizBin6

HEO03 EpiNucSizBin6

Bri StdMean

HEO03 EpiNucSizBin6

Gre Mean

HEO03 EpiNucSizBiné

Gre MeanStd

HEO03 EpiNucSizBin6

Gre RA

HEO03 EpiNucSizBin6

Gre RAStd

HEO03 EpiNucSizBin6

Gre StdMean

HEO03 EpiNucSizBin6

7
7
7
7
7
7
7
7 Bri RA
7
7
7
7
7
7
7

Red Mean
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HEO03 EpiNucSizBin6_7 Red_MeanStd

HEO03 EpiNucSizBin6_7 Red_RA

HEO03 EpiNucSizBin6_7 Red_RAStd

HEO3 EpiNucSizBin6_7 Red StdMean

HEOQ3 EpiNucSizBin6_8 Are_Mean

HEO3 EpiNucSizBin6_Are_Mean

HEO03 EpiNucSizBin6_Are_Tot

HEO03 EpiNucSizBin6_Blu_Mean

HEO3 EpiNucSizBin6_Blu_MeanStd

HEO3 EpiNucSizBin6_Bri_Mean

HEO03 EpiNucSizBin6_Gre_Mean

HEO3 EpiNucSizBin6_Gre_MeanStd

HEO3 EpiNucSizBin6_Num

HEO03 EpiNucSizBin6_Red_Mean

HEO03 EpiNucSizBin6_Red MeanStd

HEO03 EpiNucSizBin7_8 Are_Mean

HEO03 EpiNucSizBin7_Are_Mean

HEO03 EpiNucSizBin7

Are Tot

HEO03 EpiNucSizBin7

Blu Mean

HE03 EpiNucSizBin7

Blu MeanStd

HEO3 EpiNucSizBin7

Bri Mean

HEO03 EpiNucSizBin7

Gre Mean

HEO03 EpiNucSizBin7

Gre MeanStd

HEO03 EpiNucSizBin7

Num

HEO03 EpiNucSizBin7

Red Mean

HEO03 EpiNucSizBin7

Red MeanStd

HEO03 EpiNucSizBin8

Are Mean

HEO03 EpiNucSizBin8

Are Tot

HEO03 EpiNucSizBin8

Blu Mean

HE03 EpiNucSizBin8_Blu_MeanStd

HE03 EpiNucSizBin8

Bri Mean

HEO03 EpiNucSizBin8

Gre Mean

HEO03 EpiNucSizBin8

Gre MeanStd

HEO03 EpiNucSizBin8

Num

HEO03 EpiNucSizBin8

Red Mean

HEO03 EpiNucSizBin8

Red MeanStd

HE03 EpiNuc_Are_Mean

Morphometric, color and area measurements of

epithelial nuclei

HE03 EpiNuc_Are Median

HE03 EpiNuc_Are_Std

HE03 EpiNuc_Are_Tot

HE03 EpiNuc_EIlpFit

Mean

HEO03 EpiNuc_ElpFit

Median

HE03 EpiNuc_ElpFit

Std

HE03 EpiNuc_LOW

Mean

123



WO 2010/011356

HEO3 EpiNuc

LOW Median

HEOQ3 EpiNuc

LOW_Sud

HEQ3 EpiNuc Num

HEOQ3 EpiNuc

OrgBlu MeanMean

HEO03 EpiNuc OrgBlu_MeanStd

HEO3 EpiNuc

OrgBri_Mean

HEO3 EpiNuc

OrgBri_Std

HEOQ3 EpiNuc

OrgGre_MeanMean

HEO3 EpiNuc

OrgGre MeanStd

HEO3 EpiNuc

OrgH Mean

HEOQ3 EpiNuc

OrgH Std

HEQ3 EpiNuc

Orgl Mean

HEO3 EpiNuc

Orgl Std

HEO03 EpiNuc

OrgQ_Mean

HEO03 EpiNuc

OrgQ Std

HEQO3 EpiNuc

OrgRed MeanMean

HEO3 EpiNuc

OrgRed MeanStd

HEO03 EpiNuc

OrgS Mean

HEO03 EpiNuc

OrgS_Std

HEO03 EpiNuc

OrgV_Mean

HEO03 EpiNuc

OrgV Std

HEO03 EpiNuc

OrgY Mean

HEO03 EpiNuc

OrgY_Std

PCT/US2009/004364

HE03 IsoEpiNuc_ElpFit_Mean

Morphometric, color and area measurements of
isolated epithelial and stroma nuclei

HEO03 IsoEpiNuc_ElpFit_Median

HEO03 IsoEpiNuc_ElpFit_Std

HEO03 IsoEpiNuc LOW_Mean

HEO03 IsoEpiNuc LOW_Median

HEO03 IsoEpiNuc_LOW_Std

HEO03 IsoEpiNuc_OrgBlu MeanMean

HEO03 IsoEpiNuc_OrgBlu_MeanStd

HEO03 IsoEpiNuc OrgBlu_StdMean

HE03 IsoEpiNuc_OrgBri_Mean

HEO03 IsoEpiNuc OrgBri_Std

HEO03 IsoEpiNuc_OrgGre _MeanMean

HE03 IsoEpiNuc_OrgGre_MeanStd

HEO03 IsoEpiNuc_OrgGre StdMean

HE03 IsoEpiNuc_OrgRed MeanMean

HE03 IsoEpiNuc_OrgRed MeanStd

HE03 IsoEpiNuc_OrgRed_StdMean

HEO03 IsoEpiNuc_Shalnd_Mean

HE03 IsoEpiNuc_Shalnd_Std

HE03 IsoNuc Are_Mean

HEO3 IsoNuc Are Std
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HEO3 IsoNuc Are Tot

HEQ3 I[soNuc Num

HEO3 IsoStrNuc Are Mean

HEO3 IsoStrNuc Are Std

HEO3 IsoStrNuc_Are_Tot

HEQ03 IsoStrNuc Num

PCT/US2009/004364

HEO3 LENSizBin0 Are Mean

Color and morphometric measurements of likely
epithelial nuclei

HEO03 LENSizBinO Are Tot

HE03 LENSizBin0_Num

HEO03 LENSizBinl Are Mean

HEO03 LENSizBinl Are Tot

HE03 LENSizBinl_Num

" HEO3 LENSizBin2 Are Mean

HEO03 LENSizBin2_Are_Tot

HE03 LENSizBin2_Num

HEO03 LENSizBin3_Are_Mean

HEO03 LENSizBin3 Are Tot

HE03 LENSizBin3_Num

HEO3 LENSizBind4 Are Mean

HEO03 LENSizBind Are Tot

HEO03 LENSizBin4 Num

HEO03 LENSizBinS Are Mean

HEO03 LENSizBin5_Are_Tot

HE03 LENSizBin5_Num

HEO03 LENSizBin6 Are Mean

HEO03 LENSizBin6_Are_Tot

HEO03 LENSizBin6 Num

HEO3 LENSizBin7 Are Mean

HEQ03 LENSizBin7 Are Tot

HEO03 LENSizBin7 Num

HEO03

LENSizBin8 Are Mean

HEO03

LENSizBin8 Are Tot

HEOQ3

LENSizBin8 Num

HEO03

LEN

Are Mean

HEO3

LEN

Are Q50

HEO03

LEN

Are Q75

HEO3

LEN

Are Q90

HEO03

LEN

Are Q95

HEO03

LEN

Are Tot

HEO03

LEN

Com Mean

HEO03

LEN

ElpFit Mean

HEO03

LEN

Num

HEOQ3

LEN

OrgBlu MeanMean

HEO03

LEN

OrgBlu MeanStd
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HEO03 LEN

OrgBlu StdMean

HEO03 LEN

OrgBri_MeanMean

HEO03_LEN

OrgBri_StdMean

HEO03 LEN

OrgGre MeanMean

HEO03_LEN

OrgGre MeanStd

HEO03 LEN

OrgGre StdMean

HEO03_LEN

OrgH MeanMean

HEO3 _LEN

OrgH StdMean

HEO3 _LEN

Orgl MeanMean

HEQ3 LEN

OrgQ MeanMean

HE03 LEN

OrgRed MeanMean

HEO3 _LEN

OrgRed MeanStd

HEO03 _LEN

OrgRed StdMean

HEO03_LEN

OrgS MeanMean .

HEO03 _LEN

OrgS StdMean

HEO03_LEN

OrgV_MeanMean

HEO03 LEN

OrgV StdMean

HEO03 LEN OrgY_ MeanMean

HEQ3 LEN Rou Mean

HEO03 LEN Shalnd Mean

HEO03 LENwWON Are Mean

HE03 _LENwON

Are Tot

HE03 LENWON

Com Mean

HE(03 LENWON

ElpFit_Mean

HE(03 LENwON

Num -

HE03 LENwON

OrgBlu_MeanMean

HE03 LENwON

OrgBlu MeanStd

HE03 LENwON

OrgBlu_StdMean

HE03 LENwON

OrgBri_MeanMean

HE03 LENwWON

OrgBri_StdMean

HE03 LENwON

OrgGre_MeanMean

HE03 LENwON

OrgGre MeanStd

HE03 LENwON

OrgGre StdMean

HE03 LENwON

OrgH MeanMean

HE03 LENwWON

OrgH StdMean

HE03 LENwWON

Orgl MeanMean

HE03 LENwON

OrgQ MeanMean

HE03 LENwON

OrgRed MeanMean

HE03 LENwWON

OrgRed MeanStd

HE03 LENwON

OrgRed_StdMean

HE03 LENwWON

OrgS MeanMean

HE03 LENwON

OrgS StdMean

HE03 LENwON

OrgV_MeanMean

HE03 LENwWON

OrgV StdMean

HE(03 LENwON

OrgY MeanMean
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HEO03 LENwON

Rou Mean

HE03_LENwON

Shalnd Mean

HEO3 LENwIN

Are Mean

HEO03 LENwIN

Are Tot

HE03 LENwIN

Com Mean

HE(03 LENwIN

ElpFit Mean

HE(03 LENwIN

Num

HEO03 LENwIN

OrgBlu_MeanMean

HE03 LENwIN

OrgBlu_MeanStd

HE03 LENWIN

OrgBlu StdMean

HE03 LENwIN

OrgBri_ MeanMean

HE03 LENwIN

OrgBri_StdMean

HE03 LENwIN

OrgGre_MeanMean

HE03 LENwIN

OrgGre_MeanStd

HE03 LENwIN

OrgGre StdMean

HE03 LENwIN

OrgH MeanMean

HE03 LENwIN

OrgH StdMean

HE03 LENwIN

Orgl MeanMean

HE03 LENwIN

OrgQ MeanMean

HE03 LENwIN

OrgRed MeanMean

HE03 LENwIN

OrgRed MeanStd

HE03 LENwIN

OrgRed StdMean

HE03 LENWIN

OrgS MeanMean

HE03 LENWIN

OrgS StdMean

HE03 LENWIN

OrgV MeanMean

HE03 LENWIN

OrgV _StdMean

HE03 LENwIN

OrgY MeanMean

HE03 LENWIN

Rou Mean

HE03 LENWIN

Shalnd Mean

HE03 LENw2N

Are Mean

HE03 LENw2N

Are Tot

HE03 LENw2N

Com_ Mean

HE03 LENw2N

ElpFit Mean

HE03 LENw2N

Num

HE03 LENw2N

OrgBlu_MeanMean

HE03 LENw2N

OrgBlu MeanStd

HE03 LENw2N

OrgBlu StdMean

HE03 LENw2N

OrgBri MeanMean

HE03 LENwW2N

OrgBri_StdMean

HE03 LENw2N

OrgGre MeanMean

HE03 LENw2N

OrgGre MeanStd

HE03 LENw2N

OrgGre StdMean

HE03 LENw2N

OrgH MeanMean

HE03 LENw2N

OrgH StdMean

HE03 LENw2N

Orgl MeanMean
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HE03 _LENwW2N OrgQ_MeanMean

HE03 LENw2N OrgRed MeanMean

HE03 LENwW2N OrgRed_MeanStd

HE03 LENw2N OrgRed_StdMean

HE03 LENwW2N OrgS MeanMean

HE03 LENw2N OrgS StdMean

HE03 LENw2N OrgV_MeanMean

HE03 LENwW2N OrgV_StdMean

HE03 LENwW2N OrgY MeanMean

HE03 LENw2N Rou Mean

HE03 LENw2N_Shalnd_Mean

Color and morphometric measurements of light
HEO03 LigNucBin0 3_Are Mean nuclei

HE03 LigNucBin0_3_Are Tot

HEO03 LigNucBin0_3 Num

HEO03 LigNucBin0_5_Are Mean

HEO03 LigNucBin0 5 Are_Tot

HEO03 LigNucBin0_5 Num

HEO03 LigNucBin0_7_Are_Mean

HE03 LigNucBin0_7_Are Tot

HEO03 LigNucBin0_7_ Num

HEO03 LigNucBinO_Are_Mean

HEO03 LigNucBin0_Are_Tot

HEO03 LigNucBin0_Num

HEO03 LigNucBinl 3_Are_Mean

HEO03 LigNucBinl _3_Are_Tot
HEO03 LigNucBinl 3 Num
HEO3 LigNucBinl _5_Are Mean
HEO3 LigNucBinl _5_Are Tot
HEO03 LigNucBinl_5_Num
HE03 LigNucBinl_7_Are Mean
HEO3 LigNucBinl_7_Are Tot
HEO03 LigNucBinl 7 Num

HEO03 LigNucBinl_Are_Mean

HEO3 LigNucBinl_Are_Tot

HEO03 LigNucBinl Num

HEO03 LigNucBin2_3_Are Mean

HEO03 LigNucBin2 3 Are_Tot

HEO3 LigNucBin2 3 Num

HEO3 LigNucBin2_5_Are Mean

HEO3 LigNucBin2 5 _Num

3
3
5
HEO03 LigNucBin2_5_Are Tot
5
7

HEO3 LigNucBin2 7 _Are_Mean

HE03 LigNucBin2_7_Are Tot

HEO03 LigNucBin2_7_Num
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HEO3

LigNucBin2

Are Mean

HEO3

LigNucBin2

Are Tot

HEO3

LigNucBin2

Num

HEOQ3

LigNucBin3

5 Are Mean

HEO03

LigNucBin3

5 Are Tot

HEO3

LigNucBin3

S Num

HEO3

LigNucBin3

7 Are Mean

HEO03

LigNucBin3

7 Are Tot

HEO3

LigNucBin3

7 Num

HEOQ3

LigNucBin3

Are Mean

HEO03

LigNucBin3

Are Tot

HEO3

LigNucBin3

Num

HEO03

LigNucBin4

5 Are Mean

HEO03

LigNucBin4

5 Are Tot

HEOQ3

LigNucBin4

5 Num

HEO03

LigNucBin4

7 Are Mean

HE03

LigNucBin4

7 Are Tot

HEO3

LigNucBin4

7 Num

HEO03

LigNucBin4

Are Mean

HEO3

LigNucBin4

Are Tot

HEO03

LigNucBin4

Num

HEO03

LigNucBin5

7 Are_Mean

HEOQ3

LigNucBin5

7 Are Tot

HEQ3

LigNucBin5 7 Num

HEO03

LigNucBin5

Are Mean

HEO3

LigNucBin5

Are Tot

HEO03

LigNucBin5

Num

HEQ3

LigNucBin6

7 Are Mean

HEO03

LigNucBin6

7 Are Tot

HEO3

LigNucBin6

7 Num

HEO3 LigNucBin6_Are_Mean

HEO3

LigNucBin6

Are Tot

HEOQ3

LigNucBin6

Num

HEOQ3

LigNucBin7

Are Mean

HEO03

LigNucBin7

Are Tot

HEOQ3

LigNucBin7

Num

HEOQ3

LigNucBin8

Are Mean

HEO03

LigNucBin8

Are Tot

HEO3

LigNucBin8

Num

HEO3

NoWhi Are

Tot

HEOQ3

NucLikTis Are Tot
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HEO03

Nuc Are Mean

Area features of all nuclei

HEO03

Nuc Are Std

HEO03 Nuc Are Tot

HEOQ3

Nuc Num
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HEO3 Nuclli

Are Mean

Area features of nucleoli

HEO3 Nuclli

Are Q50

HEO3 Nuclli

Are Q75

HEO03 Nuclli

Are Q90

HEO03 Nuclli

Are Q95

HEO03 PDNuc

Are Mean

Color and morphometric features of poorly defined
nuclei

HEQ3 PDNuc

Are Std

HEQ3 _PDNuc

Are Tot

HEO3_PDNuc

ElpFit Mean

HEO03 PDNuc

ElpFit_Std

HEO03 PDNuc

LOW Mean

HE03 _PDNuc

LOW_Std

HEO3 PDNuc

Num

HEO03 PDNuc

OrgBlu MeanMean

HEO3 PDNuc_OrgBlu_MeanStd

HEO3 PDNuc

OrgBlu StdMean

HEO03 PDNuc

OrgBri_Mean

HE03 PDNuc

OrgBri_Std

HEO03 _PDNuc

OrgGre_MeanMean

HE03 PDNuc

OrgGre MeanStd

HEO3 PDNuc

OrgGre StdMean

HEOQ3 PDNuc

OrgRed MeanMean

HEQ3 PDNuc

OrgRed MeanStd

HEOQ3 PDNuc

OrgRed StdMean

HEQ3 PDNuc

Shalnd Mean

HE03 PDNuc

Shalnd Std

HEOQO3 StrNuc

Are Mean

Color and morphometric features of stroma nuclei

HEO3 StrNuc

Are Median

HEQ3 StrNuc

Are Std

HEO3 StrNuc

Are Tot

HEO3 StrNuc

ElpFit Mean

HEO3 StrNuc

ElpFit Median

HEO3 StrNuc

ElpFit_Std

HEO3 _StrNuc

LOW Mean

HEO3 StrNuc

LOW Median

HEO3 StrNuc

LOW_Std

HEO3 StrNuc

Num

HEQ3 StrNuc

OrgBlu MeanMean

HEO3 StrNuc

OrgBlu MeanStd

HEQ3 StrNuc

OrgBri_Mean

HEQ3 StrNuc

OrgBri_Std

HEO3 StrNuc

OrgGre_MeanMean

HEO3 StrNuc

OrgGre MeanStd

HEQ3 StrNuc

OrgH Mean
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HEO3

StrNuc OrgH_Std

HEO3

StrNuc_Orgl Mean

HEQ03

StrNuc_Orgl Std

HEO3

StrNuc OrgQ_Mean

HEOQ3

StrNuc OrgQ_Std

HEO3

StrNuc_OrgRed MeanMean

HEO3

StrNuc OrgRed _MeanStd

HEOQ3

StrNuc_OrgS Mean

HEOQ3

StrNuc OrgS_Std

HEO3

StrNuc OrgV Mean

HEO03

StrNuc OrgV Std

HEO3

StrNuc OrgY _Mean

HEO3

StrNuc_OrgY_Std
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HEO3

Str Are Mean

Color and morphometric measurements of stroma

HEO3

Str Are Std

HEO3

Str Are Tot

HEQ3

Str Num

HEOQ3

Str OrgBlu MeanMean

HEO3

Str OrgBlu_MeanStd

HEO3

Str OrgBri_Mean

HEOQ3

Str OrgBri Std

HEO3

Str OrgGre_MeanMean

HEO3

Str OrgGre MeanStd

HEO03

Str Org”H Mean

HEO3

Str OrgH_Std

HEO3

Str Orgl Mean

HEO3

Str Orgl_Std

HEO3

Str OrgQ_Mean

HEO3

Str OrgQ_Std

HEO3

Str OrgRed_MeanMean

HEO3

Str OrgRed_MeanStd

HEOQ3

Str OrgS_Mean

HEO03

Str OrgS_Std

HEO03

Str OrgV_Mean

HEO3

Str OrgV_Std

HEQ3

Str OrgY_Mean

HEO3

Str OrgY Std

HEO3

WDEpiNuc_Are_Mean

Color and morphometric measurements of well
defined epithelial nuclei

HEOQ3

WDEpiNuc_Are_Median

HEO3

WDEpiNuc_Are_Std

HEOQ3

WDEpiNuc_Are_Tot

HEO3

WDEpiNuc_ElpFit Mean

HEO3

WDEpiNuc_ElpFit_Median

HEO3

WDEpiNuc_ElpFit_Std
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HEO03 WDEpiNuc LOW_Mean

HE03 WDEpiNuc LOW_Median

HE(03 WDEpiNuc LOW_Std

HEO03 WDEpiNuc Num

HE03 WDEpiNuc_OrgBlu_MeanMean

HE03 WDEpiNuc OrgBlu MeanStd

HE03 WDEpiNuc_OrgBlu_StdMean

HE03 WDEpiNuc_OrgBri_Mean

HE03 WDEpiNuc OrgBri_Std

HE03 WDEpiNuc_OrgGre_MeanMean

HE03 WDEpiNuc OrgGre_MeanStd

HE03 WDEpiNuc _OrgGre_StdMean

HE03 WDEpiNuc_OrgRed _MeanMean

HE03 WDEpiNuc_OrgRed_MeanStd

HE03 WDEpiNuc_OrgRed_StdMean

HE03 WDEpiNuc_Shalnd _Mean

HE03 WDEpiNuc_Shalnd_Std

HEO03 Whi Are_Tot

'HEx2 LENwNcli NumTotal' Normalized measurements of likely epithelial nuclei
'HEx2 LENwNCcli_AreTotal'
'HEx3 RelNumwONucleoli’ Proportions of numbers of nucleoli

'HEx3 RelNumw INucleoli'

'HEx3 RelNumw2Nucleoli'

'HEx3 RelNumwNucleoli'

'HEx3 RelAreawONucleoli'

'HEx3 RelAreaw INucleoli'

'HEx3 RelAreaw2Nucleoli'

'HEx3 RelAreawNucleoli'

Normalized color features of epithelial nuclei. SN
'HEx3 nrmSN _EpiNuc_OrgRed_MnMn' indicates normalization by Stroma Nuclei

'HEx3 nrmS_EpiNuc_OrgRed_MnMn'

'HEx3 nrmSN EpiNuc_OrgGre_MnMn'

'HEx3 nrmS_EpiNuc_OrgGre_MnMn'

'HEx3 nrmSN_EpiNuc_OrgBlu_MnMn'

'HEx3 nrmS_ EpiNuc_OrgBlu_MnMn'

'HEx3 nrmSN_ EpiNuc_OrgQ_Mn'

'HEx3 nrmS EpiNuc_OrgQ Mn'

'HEx3 nrmSN_EpiNuc_Orgl Mn'

'HEx3 nrmS_EpiNuc_Orgl Mn'

'HEx3 nrm EpiNucOrgRed MeanStd'

'HEx3 nrm_EpiNucOrgGre MeanStd'

'HEx3 nrm_EpiNucOrgBlu_MeanStd'

'HEx3 nrmSN EpiNucOrgRed_MeanStd'

'HEx3 nrmSN_EpiNucOrgGre_MeanStd'

'HEx3 nrmSN_EpiNucOrgBlu_MeanStd'
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'HEx3

nrmSN2 EpiNucOrgRed_MeanStd'

'HEX3

nrmSN2 EpiNucOrgGre_MeanStd'

'"HEx3

nrmSN2 EpiNucOrgBlu_MeanStd'

'HEX3

nrmS_EpiNucOrgRed MeanStd’

'"HEx3

nrmS_EpiNucOrgGre_MeanStd'

'HEx3

nrmS EpiNucOrgBlu_MeanStd'

'HEx3

EpiNucOrgSumRGBMeanStd'

'HEx3

EpiNucNrmSumRGBMeanStd'

"HEx3

EpiNucNrmSNSumRGBMeanStd'

"HEx3

nrm_EpNucBin0 7 Red StdMean'

'HEx3 nrm EpNucBin0_7_Gre_StdMean'

'HEx3

nrm EpNucBin0_7 Blu_StdMean'

'HEx3

nrmSN_EpNucBn0_7_RedStdMean'

'HEx3

nrmSN EpNucBn0_7_GreStdMean'

"HExX3_

nrmSN EpNucBn0_7_BluStdMean'

'HEx3 nrmS _EpNucBn0_7_RedStdMean'

'"HEx3

nrmS_EpNucBn0_7_GreStdMean'

"HEx3

nrmS EpNucBn0_7 BluStdMean'

'HEx3

nrm EpNucBn4 5 Br MeanStd'

'HEx3

nrmSN EpNucB4 5 Br_MeanStd'

'HEx3

nrmSN2 EpNucB4 5 _Br_MeanStd'

'HEx3:nrmS EpNucB4 5 Br_MeanStd'

'HEx3

nrm EpNucBn4 5 Br_StdMean'

'HEx3 nrmSN_EpNucB4_5_Br_StdMean'

'HEx3

nrmSN2 EpNucB4 5_Br_StdMean'

'HEx3

nrmS EpNucB4 _5_Br_StdMean'

'HEx3

nrm EpNucBn4 5 Red_StdMean'

'HEx3

nrmSN_EpNucB4 5 Red_StdMean'

'HEX3

nrmS EpNucB4 5 Red_StdMean'

'HEx3

nrm EpNucBn4 7 Br_MeanStd'

'HEX3

nrmSN_EpNucB4 7 Br_MeanStd'

'HEx3

nrmSN2 EpNucB4 7_Br_MeanStd'

'HEx3_nrm EpNucBn3_7_Red_StdMean'

'HEx3

nrmSN_EpNucB3 7 Red_StdMean’

'HEx3

nrmS_EpNucB3 7 Red_StdMean’

'HEX3

nrm EpiNucErl_Red_MeanStd'

'HEx3

nrm_EpiNucErl _Gre_MeanStd'

'HEx3

nrm_EpiNucErl Blu_MeanStd'

'HEx3

nrm_EpiNucErl_Bri_MeanStd'

'HEx3

nrmSN EpiNucErl_Red_MeanStd'

'HEx3

nrmSN EpiNucErl_Gre_MeanStd'

'HEx3

nrmSN_EpiNucErl_Blu_MeanStd'

'HEX3

nrmSN_EpiNucErl Bri_MeanStd'

'HEx3

nrmSN2_EpNucErl_Red_MeanStd'

'HEX3

nrmSN2 EpNucErl_Gre_MeanStd'
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'HEx3

nrmSN2 EpNucErl Blu_MeanStd'

'HEx3

nrmSN2 EpNucErl_Bri_MeanStd'

'HEx3

ENEr] orgSumRGBMeanStd'

'HEx3

ENEr! nrmSumRGBMeanStd'

'HEX3_

nrm_EpiNucEr2_ Red_MeanStd'

'HEX3

nrm EpiNucEr2 Gre MeanStd'

'HEx3

nrm EpiNucEr2 Blu_MeanStd’

'HEX3

ENEr2orgSumRGBMeanStd'

'HEx3

ENEr2nrmSumRGBMeanStd'

PCT/US2009/004364

'HEX3

nrm_TiEpiNuc_Are Tot'

Normalized area features of epithelial nuclei in total,
clustered, isolated, and likely groups.

'HEx3

nrm_TiEpiCluNuc_Are_Tot'

'HExX3

nrm_TiEpiCluNuc_Num'

'HEX3

nrm TiEpilsoNuc_Are Tot'

'HEX3

nrm_TiEpilsoNuc_Num'

'HEx3

nrm_TiEpiNuc_Num!'

'HEX3

nrm_TiEpiNuc_NucLikTis'

'HEx3

nrm_EpiNuc_Are_Tot2Cyt'

'HEX3

nrm EpiCluNuc_Are Tot2Cyt'

'HEx3

nrm_EpiCluNuc_Num2Cyt'

'HEX3

nrm EpilsoNuc_Are Tot2Cyt'

'HEX3

nrm_EpilsoNuc_Num2Cyt'

'HEX3

nrm_EpiNuc_Num2Cyt'

'HEX3

nrm NucLikTis2Cyt'

'HEX3

TotArea EpNucBin'

'HEX3

TotArea LENucBin'

'HEX3

nrm_EpiNucSizBin0_Are Tot'

Normalized bins of epithelial nuclei divided by size

'HEx3

nrm EpiNucSizBinl_Are_Tot'

'HEx3

nrm_EpiNucSizBin2_Are_Tot'

"HEX3

nrm EpiNucSizBin3_Are_Tot'

'HEx3

nrm_EpiNucSizBin4_Are Tot'

'HEX3

nrm EpiNucSizBin5_Are_Tot'

'HEx3

nrm_EpiNucSizBin6_Are_Tot'

'HEx3

nrm EpiNucSizBin7_Are Tot'

'HEX3

nrm EpiNucSizBin8_Are_Tot'

'HEX3

nrm LENSizBin0 Are Tot'

Normalized bins of likely epithelial nuclei divided by
size

'HEx3

nrm LENSizBinl Are Tot'

'HEx3 nrm_LENSizBin2_Are Tot'

'HExX3

nrm LENSizBin3 Are Tot'

'HEx3

nrm LENSizBind4 Are Tot'

'HEX3

nrm LENSizBin5 Are Tot'

'HEX3

nrm LENSizBin6 Are Tot'

'HEX3

nrm LENSizBin7 Are Tot'

'HEx3 nrm_LENSizBin8 Are Tot'
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'HEx3_A0'

'HEx3_Al'

'HEx3 nrm0 DarNucBin0 Are Tot' Normalized bins of dark nuclei

'HEx3 nrm0Q DarNucBin0_3 Are Tot'

'HEx3 nrm0 DarNucBin0_5 Are Tot'

'HEx3 nrm0 DarNucBin0 7 Are Tot'

'HEx3 nrmQ DarNucBinl Are Tot'

'HEx3 nrm0Q DarNucBinl 3 Are Tot'

'HEx3 nrm0 DarNucBinl 5 Are Tot’

'HEx3 nrm0 DarNucBin! 7 Are Tot'

'HEx3 nrm0 DarNucBin2_ Are_Tot'

'HEx3 nrm0 DarNucBin2 3 Are Tot'

'HEx3 nrm0 DarNucBin2 5 Are Tot'

'HEx3 nrmQ DarNucBin2 7 Are Tot'

'HEx3 nrm0 DarNucBin3_Are Tot'

'HEx3 nrm0 DarNucBin3 5 Are Tot'

'HEx3 nrmQ DarNucBin3 7 Are Tot'

'HEx3 nrm0 DarNucBin4_Are Tot’

"HEx3 nrm0Q DarNucBin4 5 Are Tot'

'HEx3 nrm0 DarNucBin4 7 Are Tot'

'HEx3 nrm0 DarNucBin5_Are_Tot'

'HEx3 nrm0 DarNucBin5 7 Are Tot'

'HEx3 nrm0 DarNucBin6 Are Tot'

'HEx3 nrmQ DarNucBin6 7 Are Tot'

'HEx3 nrmQ DarNucBin7 Are Tot'

'HEx3 nrmQO DarNucBin8 Are Tot'

'HEx3 nrm1 DarNucBin0_Are_Tot'

'HEx3_nrml DarNucBin0 3 Are Tot'

'HEx3 nrm1 DarNucBin0 S Are Tot'

'HEx3 nrm] DarNucBin0_7 Are Tot'

'HEx3 nrm] DarNucBinl Are Tot'

'HEx3 nrml DarNucBinl 3 Are Tot'

'HEx3 nrml DarNucBinl 5 Are Tot'

'HEx3 nrml DarNucBinl 7 Are Tot'

'HEx3 nrml DarNucBin2 Are Tot'

'HEx3 nrml DarNucBin2 3 Are Tot'

'HEx3 nrml DarNucBin2 5 Are Tot'

'HEx3 nrm] DarNucBin2 7 Are Tot'

'HEx3 nrm! DarNucBin3 Are Tot'

'HEx3 nrml DarNucBin3 5 Are Tot'

'HEx3 nrml DarNucBin3 7 Are Tot'

'HEx3 nrml DarNucBin4 Are Tot'

'HEx3 nrm1 DarNucBin4 5 Are Tot'

'HEx3 nrml DarNucBin4 7 Are Tot'

'HEx3 nrml DarNucBin5 Are Tot'
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'HEx3

nrm! DarNucBin5 7 Are Tot'

'HEx3 nrm] DarNucBin6 Are Tot'

'HEx3

nrml DarNucBin6 7 Are Tot'

'HEx3 nrml DarNucBin7 Are Tot'

'HEx3 nrml DarNucBin8_Are Tot'

Table 2. Morphometric Features (e.g., measurable in images of tissue subject to multiplex

immunofluorescence (IF))

Feature

Description

'fd 3 8

Fractal dimension of gland objects as identified by
CK18.

'fd 3 8 fillholes'

Fractal dimension of gland objects as identified by
CK 18, with luminal holes filled in during pre-
processing.

'mst mean length_epinuc'

Average MST length between epithelial nuclei

'mst_std length_epinuc'

Standard Deviation of MST length between epithelial
nuclei

'proportion_edge 1_epinuc'

Proportion of epithelial nuclei with one MST
connecting edge.

'proportion_edge 2_epinuc'

Proportion of epithelial nuclei with two MST
connecting edges.

'proportion_edge 3_epinuc’

Proportion of epithelial nuclei with three MST
connecting edges.

'proportion_edge 4 _epinuc'

Proportion of epithelial nuclei with four MST
connecting edges.

'proportion_edge 5_epinuc’

Proportion of epithelial nuclei with five MST
connecting edges.

'mst mean length intra_epinuc'

Average MST length between epithelial nuclei that
are restricted to CK 18 positive space, i.e. constrained
by glands.

'mst std length_intra_epinuc'

Standard Deviation of MST length between epithelial
nuclei that are restricted to CK 18 positive space, i.e.
constrained by glands.

'mst mean_length_strnuc'

Average MST length between stroma nuclei

'mst_std length_strnuc'

Standard Deviation of MST length between stroma
nuclei

'proportion_edge 1_strnuc'

Proportion of stroma nuclei with one MST connecting
edge.

'proportion_edge 2_strnuc’

Proportion of stroma nuclei with two MST connecting
edges.

'proportion_edge 3_strnuc’

Proportion of stroma nuclei with three MST
connecting edges.
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'proportion_edge 4 strnuc'

Proportion of stroma nuclei with four MST
connecting edges.

'proportion_edge 5_strnuc'

Proportion of stroma nuclei with five MST connecting
edges.

'mst_mean length endnuc'

Average MST length between endothelial nuclei

'mst_std length endnuc'

Standard Deviation of MST length between
endothelial nuclei

'proportion_edge 1_endnuc'

Proportion of endothelial nuclei with one MST
connecting edge.

'proportion_edge 2_endnuc'

Proportion of endothelial nuclei with two MST
connecting edges.

'proportion_edge 3 _endnuc'

Proportion of endothelial nuclei with three MST
connecting edges.

'proportion_edge 4_endnuc'

Proportion of endothelial nuclei with four MST
connecting edges.

'proportion_edge 5_endnuc'

Proportion of endothelial nuclei with five MST
connecting edges.

'iforig_approximation

Variance of pixel values in the approximation sub-
band after applying 1 stage of undecimated wavelet
transform to a mask of epithelial cytoplasm as
identified by CK18.

'iforig_approximation

2!

Variance of pixel values in the approximation sub-
band after applying 2 stages of undecimated wavelet
transform to a mask of epithelial cytoplasm as
identified by CK18.

'iforig_approximation

Variance of pixel values in the approximation sub-
band after applying 3 stages of undecimated wavelet
transform to a mask of epithelial cytoplasm as
identified by CK18.

'iforig_approximation

Variance of pixel values in the approximation sub-
band after applying 4 stages of undecimated wavelet
transform to a mask of epithelial cytoplasm as
identified by CK18.

'iforig_approximation

5'

Variance of pixel values in the approximation sub-
band after applying 5 stages of undecimated wavelet
transform to a mask of epithelial cytoplasm as
identified by CK18.

'iforig_approximation

Variance of pixel values in the approximation sub-
band after applying 6 stages of undecimated wavelet
transform to a mask of epithelial cytoplasm as
identified by CK18.

'iforig_approximation

Variance of pixel values in the approximation sub-
band after applying 7 stages of undecimated wavelet
transform to a mask of epithelial cytoplasm as
identified by CK18.
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'iforig_horiz_detail _1'

Variance of pixel values in the horizontal detail sub-
band after applying | stage of undecimated wavelet
transform to a mask of epithelial cytoplasm as
identified by CK18.

'iforig_horiz_detail 2'

Variance of pixel values in the horizontal detail sub-
band after applying 2 stages of undecimated wavelet
transform to a mask of epithelial cytoplasm as
identified by CK18.

'iforig_horiz_detail _3'

Variance of pixel values in the horizontal detail sub-
band after applying 3 stages of undecimated wavelet
transform to a mask of epithelial cytoplasm as
identified by CK18.

'iforig_horiz_detail_4'

Variance of pixel values in the horizontal detail sub-
band after applying 4 stages of undecimated wavelet
transform to a mask of epithelial cytoplasm as
identified by CK18.

'iforig_horiz_detail 5'

Variance of pixel values in the horizontal detail sub-
band after applying 5 stages of undecimated wavelet
transform to a mask of epithelial cytoplasm as
identified by CK18.

'iforig_horiz_detail_6¢'

Variance of pixel values in the horizontal detail sub-
band after applying 6 stages of undecimated wavelet
transform to a mask of epithelial cytoplasm as
identified by CK18.

iforig_horiz_detail_7'

Variance of pixel values in the horizontal detail sub-
band after applying 7 stages of undecimated wavelet
transform to a mask of epithelial cytoplasm as
identified by CK18.

'iforig_vert_detail_1'

Variance of pixel values in the vertical detail sub-band
after applying 1 stage of undecimated wavelet
transform to a mask of epithelial cytoplasm as
identified by CK18.

iforig_vert_detail 2’

Variance of pixel values in the vertical detail sub-band
after applying 2 stages of undecimated wavelet
transform to a mask of epithelial cytoplasm as
identified by CK18.

'iforig_vert_detail _3'

Variance of pixel values in the vertical detail sub-band
after applying 3 stages of undecimated wavelet
transform to a mask of epithelial cytoplasm as
identified by CK18.

‘iforig_vert detail_4'

Variance of pixel values in the vertical detail sub-band
after applying 4 stages of undecimated wavelet
transform to a mask of epithelial cytoplasm as
identified by CK18.
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'iforig_vert detail 5'

Variance of pixel values in the vertical detail sub-band
after applying 5 stages of undecimated wavelet
transform to a mask of epithelial cytoplasm as
identified by CK18.

iforig_vert detail_6'

Variance of pixel values in the vertical detail sub-band
after applying 6 stages of undecimated wavelet
transform to a mask of epithelial cytoplasm as
identified by CK18.

'iforig_vert_detail _7'

Variance of pixel values in the vertical detail sub-band
after applying 7 stages of undecimated wavelet
transform to a mask of epithelial cytoplasm as
identified by CK18.

‘iforig diag_detail 1"

Variance of pixel values in the diagonal detail sub-
band after applying 1 stage of undecimated wavelet
transform to a mask of epithelial cytoplasm as
identified by CKI18.

'iforig_diag_detail 2'

Variance of pixel values in the diagonal detail sub-
band after applying 2 stages of undecimated wavelet
transform to a mask of epithelial cytoplasm as
identified by CK18.

'iforig_diag_detail 3'

Variance of pixel values in the diagonal detail sub-
band after applying 3 stages of undecimated wavelet
transform to a mask of epithelial cytoplasm as
identified by CK18.

'iforig_diag_detail_4'

Variance of pixel values in the diagonal detail sub-
band after applying 4 stages of undecimated wavelet
transform to a mask of epithelial cytoplasm as
identified by CK18.

'iforig_diag_detail_35'

Variance of pixel values in the diagonal detail sub-
band after applying 5 stages of undecimated wavelet
transform to a mask of epithelial cytoplasm as
identified by CK18.

'iforig_diag_detail 6'

Variance of pixel values in the diagonal detail sub-
band after applying 6 stages of undecimated wavelet
transform to a mask of epithelial cytoplasm as
identified by CK18.

'iforig_diag_detail 7'

Variance of pixel values in the diagonal detail sub-
band after applying 7 stages of undecimated wavelet
transform to a mask of epithelial cytoplasm as
identified by CK18.

'min_1Forig_detaill’

Minimum of above defined features
“iforig_horiz_detail _1” and “iforig_vert_detail 1”.

'min_[Forig detail2'

Minimum of above defined features
“iforig_horiz_detail_2” and “iforig_vert_detail 2"

'min_IForig_detail3’

Minimum of above defined features
“iforig_horiz_detail 3” and “iforig_vert_detail_3”.
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Minimum of above defined features

'min_1Forig detail4’ “iforig_horiz _detail 4” and “iforig_vert_detail 4”.
Minimum of above defined features

'min_1Forig detail5' “iforig_horiz_detail 5” and “iforig_vert_detail 5”.
Minimum of above defined features

'min_lForig detail6' “iforig_horiz_detail 6” and “iforig_vert_detail 6.
Minimum of above defined features

'min_|Forig detail7' “iforig_horiz_detail 7” and “iforig_vert_detail 7.
Maximum of above defined features

'max_IForig detaill’ “iforig_horiz detail 1 and “iforig_vert_detail 1”.
Maximum of above defined features

'max_IForig_detail2' “iforig_horiz_detail_2” and “iforig_vert_detail_2”.
Maximum of above defined features

'max_IForig_detail3' “iforig_horiz detail 3” and “iforig_vert_detail 3”.
Maximum of above defined features

'max_IForig detail4' “iforig_horiz_detail_4” and “iforig_vert_detail_4”.
Maximum of above defined features

'max_|Forig_detail5' “iforig horiz_detail_5” and “iforig_vert_detail_5".
Maximum of above defined features

'max_IForig_detail6' “iforig_horiz_detail_6 and “iforig_vert_detail 6”.
Maximum of above defined features

'max_IForig detail7' “iforig_horiz_detail 7> and “iforig_vert_detail 7".
Sum of above defined features

'sum_IForig_detail I’ “iforig_horiz_detail_1” and “iforig_vert_detail 1.
Sum of above defined features

'sum [Forig detail2' “iforig_horiz_detail 2” and “iforig_vert detail 2”.
Sum of above defined features

'sum_IForig_detail3' “iforig_horiz_detail_3” and “iforig_vert detail 3”.
Sum of above defined features

'sum_IForig detail4’ “iforig_horiz_detail_4” and “iforig_vert_detail 4”.
Sum of above defined features

'sum_IForig_detail5' “iforig_horiz_detail_5” and “iforig_vert_detail 5.
Sum of above defined features

'sum IForig detail6' “iforig_horiz_detail 6" and “iforig_vert_detail 6.
Sum of above defined features

'sum_IForig detail7' “iforig_horiz_detail_7” and “iforig_vert_detail_7”.
Ratio of the above defined features

'TFwaveletratio diagé 7'. “iforig_diag_detail 6” and “iforig_diag detail 7”

Table 3. Molecular Immunofluorescence (IF) Features
In some embodiments, features in Table 3 having the prefix “IF01” are measured through the use of
MPLEX | as described above, whereas “IFx 17 refers to features derived/calculated from the MPLEX

| features. Similarly, in some embodiments, “IF02” refers to features measured through the use of
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MPLEX 2 described above, whereas “IFx2” refers to features derived/calculated from the MPLEX 2

features.
Feature Description
1TFO1 AMACR Threshold' AMACR Threshold
'TFO1_AR_Percentile' AR specific features

'1FO1 AR Threshold'
'1FO1 AR Trigger'
'FO1 BasNuc Area’ Basil Nuclei features
'FO1 BasNuc DAPI Mean'
'IFO1 BasNuc_p63 Mean'

CK 18 alone and with AMACR intensity
'TF01 CK18 AMACRpOb) AMACR_Mean' and morphometric features
'FO1 CK18 AMACRpObj AreaTotal'

1F01 CKI18 AreaTotal'

TFO1 CK18 CK18 Mean'

TFO1 CK18 Threshold’

'1F01 CYtAMACRn_AMACR_MeanMean'

'IFOI CytAMACRn_AMACR_StdMean'

'FOI CytAMACRn_AMACR_StdStd'

'FO1_CytAMACRn_AreaTotal'

'1IFO1 CytAMACRp_AMACR_ MeanMean'

'IF01 CytAMACRp_AMACR_StdMean'

'1IFO1 CytAMACRp_AMACR_StdStd'

'FO1 CytAMACRp_AreaTotal'

Intensity features and percentiles of AR
'FO1 Cyt AR Mean' in cytoplasm (CK18)
'FO1 Cyt AR Perc 02'
'1FO1_Cyt AR _Perc_05'
'FO1 Cyt AR Perc_l10'
TFO1 Cyt AR Perc_15'
TFO1 Cyt AR Perc_20'
FOl Cyt AR Perc_25'
'FO1_Cyt AR Perc_30'
'TFO1_Cyt AR Perc_35'
'FO1 Cyt AR Perc_40'
'FO1 Cyt AR Perc_45'
"TFO1 Cyt AR Perc_50'
"1FO1 Cyt AR Perc_535'
'FO1 Cyt AR Perc_60'
''FOl Cyt AR Perc_65'
'IFO1 Cyt AR Perc_70'
'1FO1 _Cyt AR Perc_75'
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'1F01

Cyt AR Perc 80'

'1FO1

Cyt AR_Perc_85'

'1FO01

Cyt AR_Perc 90'

'1F01

Cyt AR Perc 95'

'1F01

Cyt AR Perc 99'

'1IF01

CytoAMACRn_AMACR MeanStd'

'1F01

CytoAMACRp_AMACR MeanStd'

'1FO1

DAPI Threshold'

'TFO1

Intensity features of AR and AMACR in
EpiNucARnAMACRn_AR_Mean2' epithelial nuclei

"1FOI EpiNucARnAMACRn_AR_MeanMean'

'1F01

EpiNucARnAMACRn_AR_MeanStd'

101

EpiNucARnAMACRn_AR_StdMean'

'1FO1

EpiNucARnAMACRn_AR_StdStd'

'1F01

EpiNucARnAMACRnN_AreaTotal'

'TF01 EpiNucARnAMACRp_AR_ Mean2'

'1FO1

EpiNucARnAMACRp_AR MeanMean'

'1F01

EpiNucARnAMACRp AR MeanStd'

"TF01 EpiNucARnAMACRp AR StdMean'

'TFO1

EpiNucARnAMACRp_AR_StdStd'

'TF01

EpiNucARnAMACRp AreaTotal'

"IF01 EpiNucARn_ARFlux_Mean'

'TFO1

EpiNucARn_AR_Mean'

'1FO1

EpiNucARn_Num'

"1F01 EpiNucARpAMACRn AR _Mean?2'

'1FO1

EpiNucARpAMACRn_AR_MeanMean'

'1F01

EpiNucARpAMACRn AR MeanStd'

'1F01

EpiNucARpAMACRn_AR _StdMean'

'TF01

EpiNucARpAMACRn_AR_StdStd'

'TF01

EpiNucARpAMACRN_AreaTotal'

'[FO01

EpiNucARpAMACRp_AR Mean2'

'1FO1

EpiNucARpAMACRp AR_MeanMean'

'1FO1

EpiNucARpAMACRp_AR_MeanStd'

'TFO1

EpiNucARpAMACRp_AR_StdMean’

'1FO1

EpiNucARpAMACRp_AR_StdStd'

'1FO1

EpiNucARpAMACRp_AreaTotal'

'1FO1

EpiNucARp_ARFlux Mean'

'IFO1

EpiNucARp AR Mean'

'1F01

EpiNucARp_DensityBin0l_Area’

'FO1

EpiNucARp_DensityBin02 Area’

'1FO1

EpiNucARp_DensityBin03 Area’

'IFO1

EpiNucARp_DensityBin04_Area’

'1FO1

EpiNucARp_DensityBin05_Area’

"1F01_EpiNucARp_DensityBin06_Area’

'1FO1

EpiNucARp DensityBin07_Area’
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'IF01_EpiNucARp DensityBin08 Area’

'IFO1 EpiNucARp DensityBin09 Area’

'IFO1 EpiNucARp DensityBinl0_Area’

PCT/US2009/004364

'TFO1_EpiNucARp Num'

Percentiles of AR positive intensity

'IFO1_EpiNucARp_ Perc_02'

'IFO1 _EpiNucARp Perc_05'

'IFO1_EpiNucARp

Perc

10’

'I[FO1_EpiNucARp

Perc

15'

'IF01 _EpiNucARp

Perc

20'

'TFO1_EpiNucARp

Perc

25'

'IFO1_EpiNucARp_ Perc

30'

'IFO1 _EpiNucARp

Perc

35

'TFO1_EpiNucARp

Perc

40

'IFO]_EpiNucARp

Perc

45'

'TFO1_EpiNucARp

Perc

50'

'IFO1_EpiNucARp

Perc

55

'IFO1_EpiNucARp

Perc

60'

'IFO1_EpiNucARp

Perc

65'

'IF01 EpiNucARp

Perc

70'

'TFO1 EpiNucARp

Perc

75'

'TIF01 EpiNucARp

Perc

80'

'TFO1 EpiNucARp

Perc

85’

'1F01 EpiNucARp

Perc

90'

'IF01_EpiNucARp

Perc

95'

'IF01_EpiNucARp

Perc

99'

'IFO! EpiNuc_ARFlux_Mean’

'IFO1 _EpiNuc_AR_Mean'

'FO1 EpiNuc_AR

Perc

02'

'IFO1_EpiNuc_AR

Perc

05'

'IFO1 _EpiNuc_AR

Perc

10'

'IFO1 _EpiNuc_AR

Perc

15'

'TF01 EpiNuc_AR

Perc

20'

'TFO1 EpiNuc_AR

Perc

25'

'IFO1 _EpiNuc_AR

Perc

30'

'IF01 EpiNuc_AR

Perc

35

'1FO1 _EpiNuc_AR

Perc

40'

'IFO1_EpiNuc AR

Perc

45'

'IF01 EpiNuc_AR

Perc

50'

'IFO1 EpiNuc_AR

Perc

55'

'"IF01_EpiNuc_AR

Perc

60'

'IF01_EpiNuc_AR

Perc

65'

'IF01 EpiNuc_AR

Perc

70'

'IF01 _EpiNuc_AR

Perc

75'

'IFO1_EpiNuc_AR

Perc

80'

'IF01_EpiNuc_AR

Perc

85’

143



WO 2010/011356

'[FOl EpiNuc

AR Perc 90’

[FOI_EpiNuc

AR Perc 95

'TFOl EpiNuc

AR Perc 99

'[FO1_EpiNuc

AreaTotal'

'IFO!_EpiNuc DAPI_Mean'

TFOIl_EpiNuc

DensityBin01

Area'

'TFOl EpiNuc

DensityBin02

Area'

'TFO! EpiNuc

DensityBin03

Area'

'1FO1_EpiNuc

DensityBin04

Area'

'[FOl EpiNuc

DensityBin05

Area'

'FOl EpiNuc

DensityBin06

Area'

'TFO1_EpiNuc

DensityBin07

Area'

'TFO1 _EpiNuc

DensityBin08

Area'

'TFO1 EpiNuc

DensityBin09

Area'

'TFO1 EpiNuc

DensityBinl10

Area'

PCT/US2009/004364

'IFO1 _EpiNuc

Hot2AMACRn AR Mean'

Features relative to extremely high levels
of AR (HOT) that are calculated using the
percentiles of AR in epithelial nuclei

'TFO1 EpiNuc

Hot2AMACRN Area'

'1FOl EpiNuc

Hot2AMACRp AR Mean'

'FO1 EpiNuc

Hot2AMACRp_Area’

'TFO1 EpiNuc

Hot2 AR Mean'

'TFO1 EpiNuc

Hot2 Area'

TFO! EpiNuc

HotAMACRn AR Mean'

'TFOl EpiNuc

HotAMACRN_Area’

TFO1 EpiNuc

HotAMACRp AR Mean'

'[FOl_EpiNuc

HotAMACRp _Area’

'TFOI _EpiNuc_Hot AR Mean'

'TFO1 _EpiNuc

Hot Area’

'IFO! EpiNuc

NormARIntBin00 Area'

'IFO1 EpiNuc

NormARIntBin01 Area’

'TFO1 EpiNuc

NormARIntBin02 Area'
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'TFx2 RelAre_ GU2MDT'

'TFx2_RelAre CK182MDT'

'IFx2 RelAre EN Ki67nPAKTn2EN'

'IFx2 RelAre EN Ki67nPAKTp2EN'

'IFx2 RelAre EN_Ki67pPAKTn2EN'

IFx2 RelAre EN_Ki67pPAKTp2EN'

'IFx2 RelAre EN_Ki67nPAKTn2GU'

"TFx2 RelAre EN Ki67nPAKTp2GU'

"TFx2 RelAre EN Ki67pPAKTn2GU'

"TFx2 RelAre EN Ki67pPAKTp2GU'

TFx2 RelAre EN Ki67nPAKTn2ZMDT'

1Fx2 RelAre EN Ki67nPAKTp2MDT!

1Fx2 RelAre EN_Ki67pPAKTn2MDT'

"IFx2 RelAre EN Ki67pPAKTp2MDT'

"Fx2 sumRelAreKi67npPAKTpn' Normalized intensity features

'IFx2 nrmKi67pMean2EpiNucMean'

"IFx2_nrmKi67pMean2Thrh'

"TFx2 nrmKi67pMean2StrNucMean'

'IFx2 nrmKi67pMean2StrNucP50'

"TFx2 nrmKi67pMean2StrNucP95'

"TFx2 nrmKi67pAMACRpMean2SNmn'

"1Fx2_nrmKi67pAMACRnMean2SNmn'

'IFx2 nrmKi67nAMACRpMean2SNmn'

"1Fx2 nrmKi67nAMACRnMean2SNmn'

"IFx2 nrmKi67pAMACRpMean2Thrh'

"1Fx2 nrmKi67pAMACRnMean2Thrh'

'IFx2_nrmKi67nAMACRpMean2Thrh'

'lFx2_nrm Ki67nAMACRnMean2Thrh'
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'IFx2

nrmKi67pAMACRpMean2SNp50'

"TFx2

nrmKi67pAMACRnMean2SNp50'

"TFx2

nrmKi67nAMACRpMean2SNp50'

'IFx2_nrmKi67nAMACRnMean2SNp350'

'IFx2 nrmKi67pAMACRpMean2SNp95'

'1Fx2

nrmKi67pAMACRnMean2SNp95'

"TFx2

nrmKi67nAMACRpMean2SNp95'

'TFx2

nrmKi67nAMACRnMean2SNp95'

'TFx2

nrmKi67nMean2Thrh'

'1Fx2

nrmKi67EpiNucMean2Thrsh’

'IFx2_nrmEpiNucKi67IntTotal2MDT'

'"1Fx2

nrmEpiNucKi67pIntTotalZMDT'

'TFx2

nrmEpiNucKi67nlntTotalZMDT"

'1Fx2

nrmEpiNucKi67IntTotal2GU'

'IFx2 nrmEpiNucKi67pintTotal2GU'

"TFx2 nrmEpiNucKi67nIntTotal2GU'

'1Fx2

nrmEpiNucKi67IntTotal2EN'

'1Fx2

nrmEpiNucKi67pIntTotal2EN'

'IFx2

nrmEpiNucKi67nIntTotal2EN'

'TFx2

RatiEpiNucKi67pInt2MDT!

'1Fx2

nrmEpiNuc_Ki67_p02Thrh'

"Fx2

nrmEpiNuc_Ki67 p0SThrh'

'1Fx2

nrmEpiNuc_Ki67 pl0Thrh'

"IFx2

nrmEpiNuc_Ki67 p15Thrh’

'"IFx2

nrmEpiNuc_Ki67_p20Thrh'

'IFx2

nrmEpiNuc_Ki67 p25Thrh'

'TFx2

nrmEpiNuc

Ki67 _p30Thrh'

'1Fx2

nrmEpiNuc

Ki67_p35Thrh’

'TFx2

nrmEpiNuc

Ki67 p40Thrh’

'TFx2

nrmEpiNuc_Ki67_p45Thrh'

'TFx2

nrmEpiNuc

Ki67 p50Thrh'

'IFx2

nrmEpiNuc_Ki67 p55Thrh'

TFx2_nrmEpiNuc_Ki67_p60Thrh'

'1Fx2

nrmEpiNuc

Ki67_p65Thrh’

'IFx2

nrmEpiNuc

Ki67_p70Thrh’

'1Fx2

nrmEpiNuc

Ki67 p75Thrh’

'TFx2

nrmEpiNuc

Ki67 p80Thrh’

'TFx2

nrmEpiNuc

Ki67 p85Thrh’

"TFx2

nrmEpiNuc

Ki67_p90Thrh’

'1Fx2

nrmEpiNuc

Ki67 p95Thrh’

'TFx2

nrmEpiNuc

Ki67_p99Thrh'

'TFx2

RelRiseKi6

7StrNuc'

"TFx2

RelRiseKi6

7Thrh'

'"TFx2

nrmpAKTpMean2EpiNucMean'

"1Fx2

nrmpAKTp

Mean2Thrh'

PCT/US2009/004364



WO 2010/011356 PCT/US2009/004364

TFx2

nrmpAKTpMean2StrNucMean'

'TFx2

nrmpAKTpMean2StrNucP50'

'TFx2

nrmpAK TpMean2StrNucP95'

TFx2

nrmpAKTpAMACRpMean2SNmn'

'1Fx2

nrmpAKTpAMACRpMean2Thrh'

'TFx2

nrmpAKTpAMACRpMean2SNp30'

TFx2

nrmpAK TpAMACRpMean2SNp95'

'TFx2

nrmpAKTEpiNucMean2Thrsh'

TFx2

nrmEpiNucpAKTIntTota2MDT'

TFx2

nrmEpiNucpAKTIntTotal2GU'

'TFx2

nrmEpiNucpAKTIntTotal2EN'

TFx2

nrmEpiNuc_pAKT p02Thrh'

TFx2

nrmEpiNuc pAKT_p0SThrh'

'1Fx2

nrmEpiNuc_pAKT_ pl0Thrh'

'1Fx2

nrmEpiNuc pAKT pl15Thrh'

'IFx2_nrmEpiNuc_pAKT p20Thrh'

'1Fx2

nrmEpiNuc_pAKT_p25Thrh'

'TFx2

nrmEpiNuc pAKT_p30Thrh'

'TFx2

nrmEpiNuc_pAKT p35Thrh'

TFx2

nrmEpiNuc_pAKT_ p40Thrh'

'TFx2 nrmEpiNuc_pAKT p45Thrh'

TFx2

nrmEpiNuc_pAKT_p50Thrh'

'TFx2

nrmEpiNuc_pAKT p55Thrh'

TFx2

nrmEpiNuc_pAKT_p60Thrh'

'TFx2

nrmEpiNuc_pAKT_p65Thrh'

"1Fx2

nrmEpiNuc_pAKT_p70Thrh’

'1Fx2

nrmEpiNuc_pAKT p75Thrh'

'1Fx2

nrmEpiNuc_pAKT_p80Thrh'

1Fx2

nrmEpiNuc_pAKT p85Thrh'

'TFx2

nrmEpiNuc_pAKT_p90Thrh'

'TFx2

nrmEpiNuc_pAKT p95Thrh'

TFx2

nrmEpiNuc_pAKT p99Thrh'

'TFx2

RelRisepAKTStrNuc'

TFx2

RelRisepAKTThrh'

'1Fx2

RelArea EpiNuc2Cyt'

'1Fx2

RelAreCD34_ProxArea2EN' Normalizations of CD34 proximal area to

blood vessels

'1Fx2

RelAreCD34 ProxAMACRN2EN'

'TFx2

RelAreCD34 ProxAMACRp2EN'

'TFx2

RelAreCD34 ProxArea2CKI18'

'TFx2

RelAreCD34 ProxAMACRN2CK18'

'TFx2

RelAreCD34 ProxAMACRp2CK18'

'TFx2

RelAre CD34Prox2CD34'

'1Fx2

RelAre CD34ProxAMACRNn2CD34'
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'[Fx2 RelAre CD34ProxAMACRp2CD34'

Fx2 RelAre Ki67PosArea2CD34'

'TFx2 RelAre pAKTPosArea2CD34'

'Fx2 RelAr CD34Proxcut052EN'

'1Fx2_RelAr CD34Proxcut052MDT!

1Fx2 RelAreCD34 ProxArea2EN'

NFx2 RelAreCD34 ProxAMACRnN2EN

'IFx2 RelAreCD34 ProxAMACRp2EN'

1Fx2 RelAreCD34 ProxArea2CKI18'

Table 4. Clinical Features

Feature

Number of total biopsy cores

Percent of positive biopsy cores

Age

Length of tumor in biopsy cores

Percent of tumor in biopsy cores
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What is claimed is:

1. Apparatus for evaluating a risk of progression of prostate cancer in a
patient, the apparatus comprising:

a model predictive of prostate cancer progression configured to evaluate a
dataset for a patient to thereby evaluate a risk of prostate cancer progression in the
patient, wherein the model is based on one or more features selected from the following
group of features:

preoperative PSA;

dominant Gleason Grade;

Gleason Score;

at least one of a measurement of expression of androgen receptor
(AR) in epithelial nuclei and stromal nuclei and a measurement of expression of Ki67-
positive epithelial nuclei;

a morphometric measurement of average edge length in the
minimum spanning tree (MST) of epithelial nuclei; and

a morphometric measurement of area of non-lumen associated

epithelial cells relative to total tumor area.

2. The apparatus of claim 1, wherein the dominant Gleason Grade comprises

a dominant biopsy Gleason Grade (bGG).

3. The apparatus of claim 1, wherein the Gleason Score comprises a biopsy

Gleason Score.

4, The apparatus of claim 1, wherein the measurement of the expression of
androgen receptor (AR) in epithelial and stromal nuclei and the measurement of the
expression of Ki67-positive epithelial nuclei form a combined feature, wherein the
predictive model evaluates the measurement of the expression of androgen receptor (AR)
in epithelial and stromal nuclei for the combined feature when a dominant Gleason Grade

for the patient is less than or equal to 3, and evaluates the measurement of the expression
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of Ki67-positive epithelial nuclei for the combined feature when the dominant Gleason

Grade for the patient is 4 or 5.

5. The apparatus of claim 1, wherein the morphometric measurement of
average edge length in the minimum spanning tree (MST) of epithelial nuclei forms a
combined feature with a dominant Gleason Grade, wherein the predictive model
evaluates the measurement of average edge length in the minimum spanning tree (MST)
of epithelial nuclei for the combined feature when the dominant Gleason Grade for the
patient is less than or equal to 3, and evaluates the dominant Gleason Grade for the

combined feature when the dominant Gleason Grade for the patient is 4 or 5.

6. The apparatus of claim 1, wherein based on the evaluation the model is

configured to output a value indicative of a risk of prostate cancer progression in the

patient.

7. The apparatus of claim 1, wherein the model is based on two features from
the group.

8. The apparatus of claim 1, wherein the model is based on three features

from the group.

9. The apparatus of claim 1, wherein the model is based on four features

from the group.

10.  The apparatus of claim 1, wherein the model is based on five features from
the group.

11.  The apparatus of claim 1, wherein the model is based on all of the features
in the group.
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12.  The apparatus of claim 1, wherein the model is based on one or more
features in the group and is further based on at least one additional clinical, molecular, or

morphometric feature.

13. A method of evaluating a risk of progression of prostate cancer in a

patient, the method comprising:

evaluating a dataset for a patient with a model predictive of prostate
cancer progression, wherein the model is based on one or more features selected from the
following group of features: preoperative PSA; dominant Gleason Grade; Gleason Score;
at least one of a measurement of expression of androgen receptor (AR) in epithelial
nuclei and stromal nuclei and a measurement of expression of Ki67-positive epithelial
nuclei; a morphometric measurement of average edge length in the minimum spanning
tree (MST) of epithelial nuclei; and a morphometric measurement of area of non-lumen
associated epithelial cells relative to total tumor area;

thereby evaluating the risk of prostate cancer progression in the patient.

14. The method of claim 13, wherein the dominant Gleason Grade comprises

a dominant biopsy Gleason Grade (bGG).

15.  The method of claim 13, wherein the Gleason Score comprises a biopsy

Gleason Score.

16.  The method of claim 13, wherein the measurement of the expression of
androgen receptor (AR) in epithelial and stromal nuclei and the measurement of the
expression of Ki67-positive epithelial nuclei form a combined feature, wherein the
evaluating comprises evaluating the measurement of the expression of androgen receptor
(AR) in epithelial nuclei and stromal nuclei for the combined feature with the predictive
model when a dominant Gleason Grade for the patient is less than or equal to 3, and
evaluating the measurement of the expression of Ki67-positive epithelial nuclei for the
combined feature with the predictive model when the dominant Gleason Grade for the

patient is 4 or 5.
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17.  The method of claim 13, wherein the morphometric measurement of
average edge length in the minimum spanning tree (MST) of epithelial nuclei forms a
combined feature with a dominant Gleason Grade, wherein the evaluating comprises
evaluating the measurement of average edge length in the minimum spanning tree (MST)
of epithelial nuclei for the combined feature with the predictive model when the
dominant Gleason Grade for the patient is less than or equal to 3, and evaluating the
dominant Gleason Grade for the combined feature with the predictive model when the

dominant Gleason Grade for the patient is 4 or 5.

18. The method of claim 13, further comprising outputting with the predictive

model a value indicative of the risk of prostate cancer progression in the patient.

19. A computer readable medium comprising computer executable

instructions recorded thereon for performing the method comprising:

evaluating a dataset for a patient with a model predictive of prostate
cancer progression, wherein the model is based on one or more features selected from the
following group of features: preoperative PSA; dominant Gleason Grade; Gleason Score;
at least one of a measurement of expression of androgen receptor (AR) in epithelial
nuclei and stromal nuclei and a measurement of expression of Ki67-positive epithelial
nuclei; a morphometric measurement of average edge length in the minimum spanning
tree (MST) of epithelial nuclei; and a morphometric measurement of area of non-lumen
associated epithelial cells relative to total tumor area;

thereby evaluating the risk of prostate cancer progression in the patient.
20.  The computer readable medium of claim 19 further comprising computer
executable instructions recorded thereon for outputting with the predictive model a value

indicative of the risk of prostate cancer progression in the patient.

21.  Apparatus for evaluating a risk of occurrence of an outcome with respect

to a medical condition in a patient, the apparatus comprising:
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a model predictive of an outcome with respect to the medical condition,
wherein the model is based on one or more computer-generated morphometric features
generated from one or more images of tissue subject to multiplex immunofluorescence
(IF), wherein the model is configured to:

receive a patient dataset for the patient; and

evaluate the patient dataset according to the model to produce a value
indicative of the risk of occurrence of the outcome with respect to the medical condition

in the patient.

22.  The apparatus of claim 21, wherein the one or more computer-generated
morphometric feature(s) comprises one or more measurements of the minimum spanning
tree (MST) identified in the one or more images of tissue subject to multiplex

immunofluorescence (IF).

23.  The apparatus of claim 22, wherein the one or more measurements of the
minimum spanning tree (MST) comprises one or more measurements of the MST of
epithelial nuclei identified in the one or more images of tissue subject to multiplex

immunofluorescence (IF).

24.  The apparatus of claim 23, wherein the one or more measurements of the
minimum spanning tree (MST) comprises average edge length in the MST of epithelial
nuclei as identified in the one or more images of tissue subject to multiplex

immunofluorescence (IF).

25.  The apparatus of claim 21, wherein the one or more computer-generated
morphometric features comprises one or more measurements of the fractal dimension
(FD) measured in the one or more images of tissue subject to multiplex

immunofluorescence (IF).
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26. The apparatus of claim 25, wherein the one or more measurements of the
fractal dimension (FD) comprises one or more measurements of the fractal dimension of

one or more glands identified in the one or more images of tissue subject to multiplex IF.

27.  The apparatus of claim 26, wherein the one or more measurements of the
fractal dimension of one or more glands comprises one or more measurements of the

fractal dimension of gland boundaries between glands and stroma.

28.  The apparatus of claim 26, wherein the one or more measurements of the
fractal dimension of one or more glands comprises one or more measurements of the
fractal dimension of gland boundaries between glands and stroma and between glands

and lumen.

29.  The apparatus of claim 21, wherein the model is further based on one or

more clinical features and one or more molecular features.

30. A method of evaluating a risk of occurrence of an outcome with respect a
medical condition in a patient, the method comprising:
evaluating a dataset for a patient with a model predictive of an outcome
with respect to the medical condition, wherein the model is based on one or more
computer-generated morphometric feature(s) generated from one or more images of
tissue subject to multiplex immunofluorescence (IF);
thereby evaluating the risk of occurrence of the outcome with respect to

the medical condition in the patient.

31.  The method of claim 30, wherein the one or more computer-generated
morphometric features comprises one or more measurements of the minimum spanning
tree (MST) identified in the one or more images of tissue subject to multiplex

immunofluorescence (IF).
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32. The method of claim 30, wherein the one or more computer-generated
morphometric features comprises one or more measurements of the fractal dimension
(FD) measured in the one or more images of tissue subject to multiplex

immunofluorescence (IF).

33. A computer readable medium comprising computer executable
instructions recorded thereon for performing the method comprising:
evaluating a dataset for a patient with a model predictive of an outcome
with respect to a medical condition, wherein the model is based on one or more
computer-generated morphometric features generated from one or more images of tissue
subject to multiplex immunofluorescence (IF);
thereby evaluating the risk of occurrence of the medical condition in the

patient.

34. The computer readable medium of claim 33, wherein the one or more
computer-generated morphometric features comprises one or more measurements of the
minimum spanning tree (MST) identified in the one or more images of tissue subject to

multiplex immunofluorescence (IF).

35. The computer readable medium of claim 33, wherein the one or more
computer-generated morphometric features comprises one or more measurements of the
fractal dimension (FD) measured in the one or more images of tissue subject to multiplex

immunofluorescence (IF).

36. Apparatus for identifying objects of interest in images of tissue, the
apparatus comprising:
an image analysis tool configured to segment a tissue image into
pathological objects comprising glands, wherein starting with lumens in the tissue image
identified as seeds, the image analysis tool is configured to perform controlled region

growing on the image comprising:

164



WO 2010/011356 PCT/US2009/004364

initiating growth around the lumen seeds in the tissue image thus
encompassing epithelial cells identified in the image through said growth;

continuing growth of each gland around each lumen seed so long
as the area of each successive growth ring is larger than the area of the preceding growth
ring; and

discontinuing said growth of said gland when the area of a growth

ring is less than the area of the preceding growth ring for said gland.

37.  Apparatus for measuring the expression of one or more biomarkers in
images of tissue subject to immunofluorescence (IF), the apparatus comprising:
an image analysis tool configured to:

measure within an image of tissue the intensity of a biomarker as
expressed within a particular type of pathological object, wherein said measuring
comprises determining a plurality of percentiles of the intensity of the biomarker as
expressed within the particular type of pathological object; and

identify one of said plurality of percentiles as the percentile

corresponding to a positive level of said biomarker in said pathological object.

38.  The apparatus of claim 37, wherein said identifying one of said plurality
of percentiles comprises identifying one of said plurality of percentiles based on an

intensity in a percentile of another pathological object.

39. The apparatus of claim 37, wherein said image analysis tool is further
configured to measure one or more features from said image of tissue, said one or more
features comprising a difference of intensities of percentile values from said plurality of

percentile values.
40.  The apparatus of claim 39, wherein said one or more features comprising a

difference of intensities of percentile values from said plurality of percentile values is

normalized by an image threshold or another difference of intensities of percentile values.
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41. Apparatus for identifying objects of interest in images of tissue, the
apparatus comprising:
an image analysis tool configured to:

detect the presence of CD34 in an image of tissue subject to

immunofluorescence (IF); and

based on said detection, detect and segment blood vessels which

are in proximity to said CD34.
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Feature z® p-value Cl
FD Gland Boundaries (w/ Stroma) < 0.0001 0.348
Gland Boundaries (All) < 0.0001 0.343
Mean Edge Length (All) 0.0043 0.416
Mean Edge Length (Intra-Gland) 0.0044 0.418
Mean Edge Length (Inter-Gland) 0.3130 0.459
Std Dev of Edge Lengths (All) 0.1220 0.446
MST Std Dev of Edge Lengths (Intra-Gland) 0.0295 0.424
Std Dev of Edge Lengths (Inter-Gland) 0.2564 0.470
Degree Distribution for Degree 1 (4,) 0.0032 0.403
Degree Distribution for Degree 2 (4,) 0.0018 0.606
Degree Distribution for Degree 3 (4,) 0.0001 0.364
FD (Gland-Stroma) + Gleason Grade < 0.0001 0.321
Combined Mean Edge Length (All) + Gleason Grade < 0.0001 0.330
4, + Gleason grade < 0.0001 0.321
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Weight
Univariate in
Feature P Value Model
Clinical
Preoperative PSA <0.00001 -24.479
Dominant Biopsy Gleason Grade <0.0001 23.140
Biopsy Gleason Score <0.00001 -17.512
Molecular (Combined)
Combined AR Dynamic Range at Low bGG, Total <0.00001 -16.005
Ki67 at High bGG
Morphometric (Combined)
Combined Mean Distance Between Epithelial <0.00001 -13.521
Tumor Cells (MST) at Low bGG, Actual Grade at
High bGG
Morphometric
Area of Isolated (Non-Lumen Associated) Tumor <0.00001 -6.852

Epithelial Cells Relative to Total Tumor Area
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