wo 2015/076904 A2 ||]I ¥ 00000 N 0 R

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(43) International Publication Date
28 May 2015 (28.05.2015)

(10) International Publication Number

WO 2015/076904 A2

WIPOIPCT

(51) International Patent Classification:

HO04L 29/06 (2006.01) HO04L 12/26 (2006.01)

(21) International Application Number:
PCT/US2014/054505
(22) International Filing Date:
8 September 2014 (08.09.2014)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
61/899,468 4 November 2013 (04.11.2013) US
14/474,916 2 September 2014 (02.09.2014) US
(71) Applicant: ILLUMIQ, INC. [US/US]; 160 San Gabriel
Drive, Sunnyvale, CA 94086 (US).
(72) Inventors: KIRNER, Paul, J.; ¢/o ILLUMIO, Inc., 160

San Gabriel Drive, Sunnyvale, CA 94086 (US). COOK,
Daniel, R.; c¢/o ILLUMIO, Inc., 160 San Gabriel Drive,
Sunnyvale, CA 94086 (US). FANDLL, Juraj, G.; c/o IL-
LUMIO, Inc., 160 San Gabriel Drive, Sunnyvale, CA
94086 (US). GLENN, Matthew, K.; c/o ILLUMIO, Inc.,
160 San Gabriel Drive, Sunnyvale, CA 94086 (US).

(74

(8D

(84)

GUPTA, Mukesh; c/o ILLUMIO, Inc., 160 San Gabriel
Drive, Sunnyvale, CA 94086 (US). RUBIN, Andrew, S.;
c/o ILLUMIO, Inc., 160 San Gabriel Drive, Sunnyvale, CA
94086 (US). SCOTT, Jerry, B.; ¢/o ILLUMIO, Inc., 160
San Gabriel Drive, Sunnyvale, CA 94086 (US).
VERGHESE, Thukalan, V.; ¢/o ILLUMIO, Inc., 160 San
Gabriel Drive, Sunnyvale, CA 94086 (US).

Agents: HOFFMAN, Brian, M. et al.; Fenwick & West
LLP, Silicon Valley Center, 801 California Street, Moun-
tain View, CA 94041 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,

[Continued on next page]

(54) Title: DISTRIBUTED NETWORK SECURITY USING A LOGICAL MULTI-DIMENSIONAL LABEL-BASED POLICY

MODEL

Modify description of managed server
to indicate that managed server is
quarantined 1010

!

Update cached actor-sets to indicate
guarantined server's changed state
1020

!

Determine which updated actor-sets
are relevant to other managed server
1030

!

—
(=
(=]

Currently-relevant updated actor-sets [y, Determine updated actor-set that
differ from actor-sets previously sent to —| should be added, removed, or modified
other server? 1040 1060
y o ¢
Take no further action Send tg other server updated actor-set
1050 and instruction to add, remove, or
I modify updated actor-set 1070
FIG. 10

(57) Abstract: A managed server (MS) within an adminis-
trative domain is quarantined. The administrative domain in-
cludes multiple MSs that use management instructions to
configure management modules so that the configured man-
agement modules implement an administrative domain- wide
management policy that comprises a set of one or more rules.
The quarantined MS is isolated from other MSs. A descrip-
tion of the MS is modified to indicate that the MS is quarant-
ined, thereby specifying a description of the quarantined MS.
Cached actor-sets are updated to indicate the quarantined
MS's changed state, thereby specitying updated actor- sets. A
determination is made regarding which updated actor-sets are
relevant to an other MS, thereby specifying currently-relev-
ant updated actor-sets. A determination is made regarding
whether the currently-relevant updated actor-sets ditfer from
actor-sets previously sent to the other MS. Responsive to de-
termining that the currently-relevant updated actor-sets are
identical to the previously-sent actor-sets, no further action is
taken.

WO 2015/076904 A2 WA 00 TN VT 0TS O A A

GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, Published:

TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT,
LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF,
SL SK, SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA,

GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

WO 2015/076904 PCT/US2014/054505

DISTRIBUTED NETWORK SECURITY USING A LOGICAL MULTI-

DIMENSIONAL LABEL-BASED POLICY MODEL
BACKGROUND

l. TECHNICAL FIELD
[0001] The subject matter described herein generally relates to the field of managing
servers (physical or virtual) of an administrative domain and, in particular, to managing
servers according to an administrative domain-wide policy that adheres to a logical multi-
dimensional label-based policy model.
2. BACKGROUND INFORMATION
[0002] Servers (physical or virtual) of an administrative domain are managed according
to a policy. For example, a security policy might specify access control and/or secure
connectivity, while a resource-usage policy might specify usage of the administrative
domain’s computing resources (e.g., disks and/or peripherals). Conventional policies
reference physical devices and are expressed in terms of low-level constructs such as Internet
Protocol (IP) addresses, IP address ranges, subnetworks, and network interfaces. These low-
level constructs make it difficult to write a fine-grained policy in an abstract and natural way.
SUMMARY
[0003] The above and other issues are addressed by a method, non-transitory computer-
readable storage medium, and system for quarantining a managed server within an
administrative domain. The administrative domain includes a plurality of managed servers
that use management instructions to configure management modules so that the configured
management modules implement an administrative domain-wide management policy that
comprises a set of one or more rules. The quarantined managed server is isolated from other
managed servers in the plurality of managed servers. An embodiment of the method
comprises modifying a description of the managed server to indicate that the managed server
is quarantined, thereby specifying a description of the quarantined managed server. The
method further comprises updating cached actor-sets to indicate the quarantined managed
server’s changed state, thereby specifying updated actor-sets. The method further comprises
determining which updated actor-sets are relevant to an other managed server, thereby
specifying currently-relevant updated actor-sets. The method further comprises determining
whether the currently-relevant updated actor-sets differ from actor-sets previously sent to the

other managed server. The method further comprises responsive to determining that the

WO 2015/076904 PCT/US2014/054505

currently-relevant updated actor-sets are identical to the previously-sent actor-sets, taking no
further action.

[0004] An embodiment of the medium stores computer program modules executable to
perform steps. The steps comprise modifying a description of the managed server to indicate
that the managed server is quarantined, thereby specifying a description of the quarantined
managed server. The steps further comprise updating cached actor-sets to indicate the
quarantined managed server’s changed state, thereby specifying updated actor-sets. The steps
further comprise determining which updated actor-sets are relevant to an other managed
server, thereby specifying currently-relevant updated actor-sets. The steps further comprise
determining whether the currently-relevant updated actor-sets differ from actor-sets
previously sent to the other managed server. The steps further comprise responsive to
determining that the currently-relevant updated actor-sets are identical to the previously-sent
actor-sets, taking no further action.

[0005] An embodiment of the system comprises a non-transitory computer-readable
storage medium storing computer program modules executable to perform steps. The steps
comprise modifying a description of the managed server to indicate that the managed server
is quarantined, thereby specifying a description of the quarantined managed server. The steps
further comprise updating cached actor-sets to indicate the quarantined managed server’s
changed state, thereby specifying updated actor-sets. The steps further comprise determining
which updated actor-sets are relevant to an other managed server, thereby specifying
currently-relevant updated actor-sets. The steps further comprise determining whether the
currently-relevant updated actor-sets differ from actor-sets previously sent to the other
managed server. The steps further comprise responsive to determining that the currently-
relevant updated actor-sets are identical to the previously-sent actor-sets, taking no further
action.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] FIG. 1 is a high-level block diagram illustrating an environment for managing
servers (physical or virtual) of an administrative domain, according to one embodiment.
[0007] FIG. 2 is a high-level block diagram illustrating an example of a computer for
use as one or more of the entities illustrated in FIG. 1, according to one embodiment.
[0008] FIG. 3 is a high-level block diagram illustrating a detailed view of a global
manager, according to one embodiment.

[0009] FIG. 4 is a high-level block diagram illustrating a detailed view of a policy

WO 2015/076904 PCT/US2014/054505

implementation module of a managed server, according to one embodiment.

[0010] FIG. 5 is a flowchart illustrating a method of generating management
instructions for a particular managed server, according to one embodiment.

[0011] FIG. 6 is a flowchart illustrating a method of generating a configuration for a
management module of a managed server, according to one embodiment.

[0012] FIG. 7 is a flowchart illustrating a method of monitoring local state of a
managed server and sending local state information to a global manager, according to one
embodiment.

[0013] FIG. 8 is a flowchart illustrating a method of processing a change to the state of
an administrative domain’s computer network infrastructure, according to one embodiment.
[0014] FIG. 9 is a flowchart illustrating a method of detecting and reporting a rogue
process, according to one embodiment.

[0015] FIG. 10 is a flowchart illustrating a method of quarantining a managed server
within an administrative domain, according to one embodiment.

[0016] FIG. 11 is a flowchart illustrating a method of processing a change to a state of a
group of unmanaged devices within an administrative domain, according to one embodiment.
DETAILED DESCRIPTION
[0017] The Figures (FIGS.) and the following description describe certain embodiments

by way of illustration only. One skilled in the art will readily recognize from the following
description that alternative embodiments of the structures and methods illustrated herein may
be employed without departing from the principles described herein. Reference will now be
made to several embodiments, examples of which are illustrated in the accompanying figures.
It is noted that wherever practicable similar or like reference numbers may be used in the
figures and may indicate similar or like functionality.

[0018] FIG. 1 is a high-level block diagram illustrating an environment 100 for
managing servers (physical or virtual) 130 of an administrative domain 150, according to one
embodiment. The administrative domain 150 can correspond to an enterprise such as, for
example, a service provider, a corporation, a university, or a government agency. The
environment 100 may be maintained by the enterprise itself or by a third party (e.g., a second
enterprise) that helps the enterprise manage its servers 130. As shown, the environment 100
includes a network 110, a global manager 120, multiple managed servers 130, and multiple
unmanaged devices 140. The multiple managed servers 130 and the multiple unmanaged

devices 140 are associated with the administrative domain 150. For example, they are

WO 2015/076904 PCT/US2014/054505

operated by the enterprise or by a third party (e.g., a public cloud service provider) on behalf
of the enterprise. While one global manager 120, two managed servers 130, and two
unmanaged devices 140 are shown in the embodiment depicted in FIG. 1 for clarity, other
embodiments can have different numbers of global managers 120, managed servers 130,
and/or unmanaged devices 140.

[0019] The network 110 represents the communication pathway between the global
manager 120, the managed servers 130, and the unmanaged devices 140. In one embodiment,
the network 110 uses standard communications technologies and/or protocols and can include
the Internet. In another embodiment, the entities on the network 110 can use custom and/or
dedicated data communications technologies.

[0020] A managed server 130 is a machine (physical or virtual) that implements an
administrative domain-wide management policy 330 (shown in FIG. 3). In one embodiment,
a server is a user-space instance of a virtual server (sometimes referred to as a container,
virtualization engine, virtual private server, or jail) according to operating system-level
virtualization, which is a server virtualization method where the kernel of an operating
system enables multiple isolated user-space instances, instead of only one instance. If a
managed server 130 is a physical machine, then the managed server 130 is a computer or set
of computers. If a managed server 130 is a virtual machine, then the managed server 130
executes on a computer or set of computers. The administrative domain-wide management
policy 330 specifies whether and/or how entities associated with the administrative domain
150 are allowed to access (or be accessed by) other entities or otherwise consume (or
provide) services. For example, the administrative domain-wide management policy 330
specifies security or resource usage. A security policy might specify access control, secure
connectivity, disk encryption, and/or control of executable processes, while a resource-usage
policy might specify usage of the administrative domain’s computing resources (e.g., disks,
peripherals, and/or bandwidth).

[0021] A managed server 130 includes a management module 132, a management
module configuration 134, and a policy implementation module 136. The management
module 132 implements the administrative domain-wide management policy 330. For
example, in the case of security, the management module 132 can be a low-level network or
security engine such as an operating system-level firewall, an Internet Protocol security
(IPsec) engine, or a network traffic filtering engine (e.g., based on the Windows Filtering
Platform (WFP) development platform). In the case of resource usage, the management

module 132 can be a disk-usage engine or a peripheral-usage engine.

4

WO 2015/076904 PCT/US2014/054505

[0022] The management module configuration 134 affects the operation of the
management module 132. For example, in the case of security, the management module
configuration 134 can be access control rules applied by a firewall, secure connectivity
policies applied by an IPsec engine (e.g., embodied as iptables entries and ipset entries in the
Linux operating system), or filtering rules applied by a filtering engine. In the case of
resource usage, the management module configuration 134 can be disk-usage policies applied
by a disk-usage engine or peripheral-usage policies applied by a peripheral-usage engine.
[0023] The policy implementation module 136 generates the management module
configuration 134 based on a) management instructions received from the global manager
120 and b) the state of the managed server 130. The management instructions are generated
based, in part, on the administrative domain-wide management policy 330. The management
module configuration 134 generated by the policy implementation module 136 implements
that administrative domain-wide management policy 330 (to the extent that the policy
concerns the managed server 130). This two-step process (generating management
instructions and generating the management module configuration 134) is referred to as
“Instantiating” a management policy. The policy implementation module 136 also monitors
the local state of the managed server 130 and sends local state information to the global
manager 120.

[0024] In one embodiment, the policy implementation module 136 is part of a larger
proprietary module (not shown). The proprietary module is loaded onto a device that already
has a management module 132 and a management module configuration 134, thereby
transforming the device from an unmanaged device 140 to a managed server 130. The policy
implementation module 136 is further described below with reference to FIGS. 4, 6, and 7.
[0025] An unmanaged device 140 is a computer (or set of computers) that does not
include a policy implementation module 136. An unmanaged device 140 does not implement
the administrative domain-wide management policy 330. However, interaction between a
managed server 130 and an unmanaged device 140 can be subject to the administrative
domain-wide management policy 330 (as implemented by the managed server 130). One
example of an unmanaged device 140 is a network circuit that is used by an administrative
domain 150. Another example of an unmanaged device 140 is a device used by a person to
authenticate himself to the administrative domain 150 (e.g., a notebook or desktop computer,
a tablet computer, or a mobile phone).

[0026] The global manager 120 is a computer (or set of computers) that generates

management instructions for managed servers 130 and sends the generated management

5

WO 2015/076904 PCT/US2014/054505

instructions to the servers. The management instructions are generated based on a) the state
of the administrative domain’s computer network infrastructure 320 and b) an administrative
domain-wide management policy 330. The state of the administrative domain’s computer
network infrastructure 320 includes descriptions of managed servers 130 and (optionally)
descriptions of unmanaged devices 140. The global manager 120 also processes local state
information received from managed servers 130.

[0027] The administrative domain-wide management policy 330 is based on a logical
management model that can reference managed servers 130 based on their high-level
characteristics, referred to herein as “labels.” A label is a pair that includes a “dimension” (a
high-level characteristic) and a “value” (the value of that high-level characteristic). A
management policy constructed in this multi-dimensional space is more expressive than a
management policy constructed according to a single-characteristic network/IP address-based
policy model. In particular, expressing management policy using the higher-level abstractions
of “labels” enables people to better understand, visualize, and modify management policy.
[0028] The logical management model (e.g., the number and types of dimensions
available and those dimensions’ possible values) is configurable. In one embodiment, the
logical management model includes the following dimensions and values, as shown in Table

1:

Dimension Meaning (M), Values (V)

Role M: The role of the managed server within the
administrative domain.

V: web, API, database

Environment M: The lifecycle stage of the managed server.

V: production, staging, development

Application M: The logical application (higher-level grouping
of managed servers) to which the managed server
belongs.

V: trading, human resources

Line of Business | M: The business unit to which the managed
server belongs.

V: marketing, engineering

Location M: The location of the managed server. Can be

physical (e.g., country or geographical region) or

WO 2015/076904 PCT/US2014/054505

logical (e.g., network). Physical is particularly
useful for expressing geographic compliance
requirements.

V: US or EU (physical), us-west-1 or us-cast-2
(logical)

Table 1 — Example of logical management model
[0029] The logical management model enables multiple managed servers 130 to be
grouped together by specifying one or more labels (referred to herein as a “label set”) that
describe all of the managed servers 130 in the group. A label set includes either zero values
or one value for a dimension in the logical management model. A label set need not include
labels for all dimensions in the logical management model. In this way, the logical
management model enables the segmentation and separation of an administrative domain’s
managed servers 130 and the creation of arbitrary groupings of managed servers 130. The
logical management model also allows for a single managed server 130 to exist in multiple
overlapping sets (i.e., multiple overlapping groups of managed servers). The logical
management model does not limit the single managed server 130 to existing in a hierarchy of
nested sets.
[0030] For example, in the case of security, segmentation can be used with access
control policies to define groups of managed servers 130 that are subject to particular
policies. Similarly, segmentation can be used with secure connectivity policies to define
groups of managed servers 130 and the policies that apply to intra-group communications and
inter-group communications. So, communications among a first group of managed servers
130 (specified by a first label set) can be restricted to a first secure connection setting (e.g.,
secure connection not required), and communications between the first group of managed
servers and a second group of managed servers (specified by a second label set) can be
restricted to a second secure connection setting (e.g., IPsec Encapsulating Security Payload
(ESP)/Authentication Header (AH) Advanced Encryption Standard (AES)/Secure Hash
Algorithm-2 (SHA-2)).
[0031] Each managed server 130 in the environment 100 implements the administrative
domain-wide management policy 330 (to the extent that the policy concerns the managed
server 130). As a result, the administrative domain-wide management policy 330 is applied in
a distributed fashion throughout the administrative domain 150, and there are no choke

points. Also, the administrative domain-wide management policy 330 is applied at the logical

WO 2015/076904 PCT/US2014/054505

level independent of the administrative domain’s physical network topology and network
addressing schemes.

[0032] The global manager 120, the state of the administrative domain’s computer
network infrastructure 320, and the administrative domain-wide management policy 330 are
further described below with reference to FIGS. 3, 5, and §.

[0033] FIG. 2 is a high-level block diagram illustrating an example of a computer 200
for use as one or more of the entities illustrated in FIG. 1, according to one embodiment.
lustrated are at least one processor 202 coupled to a chipset 204. The chipset 204 includes a
memory controller hub 220 and an input/output (I/O) controller hub 222. A memory 206 and
a graphics adapter 212 are coupled to the memory controller hub 220, and a display device
218 is coupled to the graphics adapter 212. A storage device 208, keyboard 210, pointing
device 214, and network adapter 216 are coupled to the 1/O controller hub 222. Other
embodiments of the computer 200 have different architectures. For example, the memory
206 is directly coupled to the processor 202 in some embodiments.

[0034] The storage device 208 includes one or more non-transitory computer-readable
storage media such as a hard drive, compact disk read-only memory (CD-ROM), DVD, or a
solid-state memory device. The memory 206 holds instructions and data used by the
processor 202. The pointing device 214 is used in combination with the keyboard 210 to
input data into the computer system 200. The graphics adapter 212 displays images and other
information on the display device 218. In some embodiments, the display device 218
includes a touch screen capability for receiving user input and selections. The network
adapter 216 couples the computer system 200 to the network 110. Some embodiments of the
computer 200 have different and/or other components than those shown in FIG. 2. For
example, the global manager 120 and/or the managed server 130 can be formed of multiple
blade servers and lack a display device, keyboard, and other components, while the
unmanaged device 140 can be a notebook or desktop computer, a tablet computer, or a
mobile phone.

[0035] The computer 200 is adapted to execute computer program modules for
providing functionality described herein. As used herein, the term “module” refers to
computer program instructions and/or other logic used to provide the specified functionality.
Thus, a module can be implemented in hardware, firmware, and/or software. In one
embodiment, program modules formed of executable computer program instructions are
stored on the storage device 208, loaded into the memory 206, and executed by the processor

202.

WO 2015/076904 PCT/US2014/054505

[0036] FIG. 3 is a high-level block diagram illustrating a detailed view of a global
manager 120, according to one embodiment. The global manager 120 includes a repository
300 and a processing server 310. The repository 300 is a computer (or set of computers) that
stores the state of the administrative domain’s computer network infrastructure 320, the
administrative domain-wide management policy 330, and a global security data repository
335. In one embodiment, the repository 300 includes a server that provides the processing
server 310 access to the administrative domain state 320, the management policy 330, and the
global security data repository 335 in response to requests.

[0037] The state of the administrative domain’s computer network infrastructure 320
includes descriptions of managed servers 130 and (optionally) descriptions of unmanaged
devices 140. A description of a managed server 130 includes, for example, a unique identifier
(UID), an online/offline indicator, one or more configured characteristics (optional), network
exposure information, service information, and one or more labels that describe the managed
server 130 (a label set).

[0038] The UID uniquely identifies the managed server 130. The online/offline
indicator indicates whether the managed server 130 is online or offline. A “configured
characteristic” stores a value associated with the managed server 130 and can be any type of
information (e.g., an indication of which operating system is running on the managed server).
A configured characteristic is used in conjunction with a rule’s condition portion (described
below).

[0039] The network exposure information concerns the managed server’s network
interfaces. In one embodiment, the network exposure information includes, for each of the
managed server’s network interfaces, an identifier of a “bidirectionally-reachable network”
(BRN) to which the network interface is attached and zero or more IP addresses (and their
subnets) that are used for operating within the BRN. A BRN is a set of subnets, within an
organization or across organizations, where any node within the BRN can establish
communication with any other node in the BRN. For example, all of the nodes in a BRN have
unique [P addresses. In other words, a BRN does not contain any NATs. Network exposure
information (e.g., a network interface’s BRN identifier) can be used in conjunction with a
rule’s condition portion.

[0040] In another embodiment, the network exposure information includes routing
information and/or whether the managed server is behind a network address translator (NAT)
(and, if it is behind a NAT, what type of NAT — 1:1 or 1:N). The global manager 120 can

determine whether a managed server 130 is behind a network address translator (NAT) (and,

9

WO 2015/076904 PCT/US2014/054505

if it is behind a NAT, what type of NAT — 1:1 or 1:N). For example, the global manager 120
determines whether a NAT exists between the global manager 120 and the managed server
130 by comparing (a) the server’s IP address according to the TCP connection between the
global manager and the server and (b) the server’s IP address according to the local state
information received from the server. If (a) and (b) differ, then a NAT exists between the
global manager 120 and the managed server 130. If a NAT does exist, then the global
manager 120 determines the type of NAT (1:1 or 1:N) by performing data center detection.
For example, the global manager 120 identifies the server’s data center by the data center’s
public IP address. (Alternatively, the managed server performs data center detection by
querying information that is external to the server but inside the data center. The server then
sends that information to the global manager as part of the local status.) Configuration
information indicates which types of NATs are used by which data centers. If no NAT
information is associated with a particular data center, then the global manager 120 assumes
that the NAT type is 1:N.

[0041] The service information includes, for example, process information and/or
package information. Process information includes, for example, names of processes that the
managed server 130 is running, which network ports and network interfaces those processes
are listening on, which users initiated those processes, configurations of those processes,
command-line launch arguments of those processes, and dependencies of those processes
(e.g., shared objects to which those processes link). (Those processes correspond to the
managed server 130 providing a service or using a service.) Package information includes,
for example, which packages (executables, libraries, or other components) are installed on the
managed server 130, the versions of those packages, the configurations of those packages,
and the hash values of those packages.

[0042] A description of an unmanaged device 140 includes, for example, network
exposure information (e.g., the IP address of the unmanaged device and an identifier of the
BRN to which the unmanaged device is connected). An unmanaged device 140 is part of an
“unmanaged device group” (UDG). An UDG includes one or more unmanaged devices 140.
For example, the “Headquarters UDG” could include the primary circuit and the backup
circuit that are used by an administrative domain’s headquarters, where each circuit is
associated with an IP address. An UDG is associated with a unique identifier (UID).
Information stored in the administrative domain state 320 regarding an UDG includes the
UID of the UDG and information regarding the unmanaged devices 140 in the UDG (e.g.,

their network exposure information).

10

WO 2015/076904 PCT/US2014/054505

[0043] Descriptions of managed servers 130 and unmanaged devices 140 can be loaded
into the administrative domain state 320 in various ways, such as by interacting with the
global manager 120 via a graphical user interface (GUI) or an application programming
interface (API). Descriptions of managed servers 130 can also be loaded into the
administrative domain state 320 based on local status information received from managed
servers (described below).

[0044] Regarding managed servers’ labels specifically (and configured characteristics,
if any), the assignment (or reassignment) of a value for a dimension (or the setting of a
configured characteristic’s value) can be performed in even more ways. For example, the
assignment/setting can be performed using a deployment and configuration tool as part of
provisioning a managed server 130. Any such tool can be used, including off-the-shelf third-
party tools (e.g., Puppet Labs’ Puppet software, Opscode’s Chef software, or CFEngine AS’
CFEngine software) and custom tools that an administrative domain 150 might have.

[0045] As another example, the assignment/setting can be performed by a
“label/configured characteristic engine” (not shown) that calculates labels and/or configured
characteristic (“CC”) values. In one embodiment, the label/CC engine calculates labels/CC
values based on label/CC assignment rules. A label/CC assignment rule is a function that
accesses data from the administrative domain state 320 and assigns (or suggests assignment
of) a label or a CC value. A label/CC assignment rule can be preset or user-configurable. For
example, the global manager 120 includes a set of predefined rules, but the end-user can
modify and/or delete those rules and add new rules based on the user’s own custom
requirements. Label/CC assignment rules can be evaluated for a managed server 130 during
the initialization process. Label/CC value suggestions can then be made for any
dimension/CC, and the end-user can accept or reject those suggestions. For example, if a
managed server 130 is executing the Postgres database or the MySQL database, then the
suggested label could be <Role, Database>. If a managed server is executing the Linux
operating system, then the suggested value for the operating system CC could be “Linux.”
[0046] In another embodiment, the label/CC engine calculates labels/CC values based
on cluster analysis. For example, the label/CC engine uses a combination of min-cut and K-
means algorithms, with additional heuristics, of connected graphs to automatically identify a
cluster of highly-connected managed servers 130. The cluster of managed servers 130 might
correspond to an “application” (see Table 1) in the administrative domain 150. The end-user
can choose to apply a value for the Application dimension (or any other dimension) to those

managed servers 130 en masse.

11

WO 2015/076904 PCT/US2014/054505

[0047] The administrative domain-wide management policy 330 includes one or more
rules. Broadly speaking, a “rule” specifies a relationship between one or more providers of a
service and one or more consumers of that service.

[0048] Rule Function — The relationship is subjected to a “rule function”, which is the
practical effect of the rule. For example, in the case of security, the rule function could be
access control, secure connectivity, disk encryption, or control of executable processes. A
rule with an access control function specifies whether a consumer may use a provider’s
service. In one embodiment, the access control function uses a pure “whitelist” model, which
means that only the allowable relationships are expressed, and all other relationships are
blocked by default. A rule with a secure connectivity function specifies over what secure
channels (e.g., encrypted network sessions using point-to-point data encryption) a consumer
may use a provider’s service. For example, a rule with a secure connectivity function could
specify that usage of a provider’s services must be encrypted when the provider is located in
the US and the consumer is located in the EU. A rule with a disk encryption function
specifies whether a provider must store its data on an encrypted file system. A rule with an
executable process-control function specifies whether a process is allowed to execute.
[0049] In the case of resource usage, the rule function could be disk-usage or
peripheral-usage. A rule with a disk-usage function specifies an amount of data that a
consumer can store on a provider. Note that a rule can specify other rule functions as well
beyond just access control, secure connectivity, disk encryption, control of executable
processes, disk usage, and peripheral usage. For example, a rule function could specify which
Open Systems Interconnection (OSI) model Layer-7 services to apply to network traffic, the
amount of metadata to collect for security analytics, or the triggers for capturing a complete
network packet. The management policy model supports any number of rule functions that
can be applied.

[0050] A rule function can be associated with one or more settings (referred to herein as
a “function profile”) that specify details regarding the practical effect of the rule. For
example, settings associated with a secure connectivity rule function can be a list of
cryptographic algorithms used to encrypt network traffic. In one embodiment, a rule function
is associated with multiple function profiles, and a function profile includes a priority. This
priority is used by the function-level instruction generation module 360, as described below.
[0051] Service — In general, a “service” is an arbitrary process executing on a specific
network port using a specific network protocol. A service of a rule within the management

policy 330 is specified by a port/protocol pair and (optionally) additional qualifications, such
12

WO 2015/076904 PCT/US2014/054505

as process information and/or package information (described above with respect to a
description of a managed server 130 within the administrative domain state 320). If a
managed server 130 has multiple network interfaces, then a service can be exposed on all
networks or on only a subset of those networks. The end-user specifies on which networks
the service is exposed. Note that, depending on the rule function, a service might not use any
network resources. For example, a service for an executable process-control rule function
does not execute on a network port using a network protocol.

[0052] Providers/Consumers — The one or more providers of the service and the one or
more consumers (i.¢., users) of the service are managed servers 130 and/or unmanaged
devices 140.

[0053] In one embodiment, a rule is represented within the administrative domain-wide
management policy 330 using a set of information that includes a rule function portion, a
service portion, a provided-by portion, a used-by portion, and an optional rule condition
portion. The rule function portion describes the practical effect of the rule and can be
associated with one or more settings (function profiles). The service portion describes the
service to which the rule applies. If the service portion indicates “All”, then the rule applies to
all services.

[0054] The provided-by (PB) portion describes which managed servers 130 and/or
unmanaged devices 140 can provide the service (i.e., who the “providers” are). If the PB
portion indicates “Anybody”, then anybody (e.g., any managed server 130 or unmanaged
device 140) can provide the service. If the PB portion indicates “Any managed server”, then
any managed server 130 can provide the service. (“Any managed server” is equivalent to
specifying a label set that contains a wildcard, thereby matching all managed servers 130.)
The used-by (UB) portion describes which managed servers 130 and/or unmanaged devices
140 can use the service (i.e., who the “consumers” are). Similar to the PB portion, the UB
portion can also indicate “Anybody” or “Any managed server.”

[0055] Within the PB portion and the UB portion, a managed server 130 is specified by
using a label set (i.e., one or more labels that describe the managed server) or a UID. The
ability to specify managed servers 130 using label sets stems from the logical management
model, which references managed servers based on their dimensions and values (labels). An
unmanaged device 140 is specified by using a UID of an unmanaged device group (UDG). If
a rule specifies an UDG, then the rule includes additional information regarding the
unmanaged devices 140 in that group (e.g., the devices’ network exposure information). The

PB portion of a rule and/or the UB portion of a rule can include multiple items, including

13

WO 2015/076904 PCT/US2014/054505

label sets (to specify managed servers 130), managed server UIDs, and/or UDG UIDs.
[0056] The rule condition portion, which is optional, specifies whether the rule applies
to a particular managed server 130 and/or a particular network interface of that managed
server. The rule condition portion is a Boolean expression that includes one or more
configured characteristics (“CCs”; part of a managed server’s description in the
administrative domain state 320) and/or network exposure information (e.g., a network
interface’s BRN identifier; also part of a managed server’s description in the administrative
domain state 320). A CC portion of the expression specifies whether the rule applies to the
particular managed server, while a network exposure information portion of the expression
specifies whether the rule applies to a particular network interface of that managed server. If
the expression evaluates to “true” for a particular managed server’s configured characteristics
(specifically, for the values of that managed server’s configured characteristics) and a
particular network interface’s information, then the rule applies to that managed server and
that managed server’s relevant network interface. If the expression evaluates to “false”, then
the rule does not apply to that managed server and that managed server’s relevant network
interface. For example, if a configured characteristic stores an indication of which operating
system is running on the managed server, then a rule condition portion that includes that
configured characteristic can control whether the rule applies to a particular managed server
based on that server’s operating system.

[0057] Rules within the administrative domain-wide management policy 330 are
organized into rule lists. Specifically, the management policy 330 includes one or more rule
lists, and a rule list includes one or more rules and (optionally) one or more scopes. A
“scope” constrains where (i.e., to which managed servers 130) a rule is applied. A scope
includes a provided-by (PB) portion and a used-by (UB) portion that limit the application of
the rules in the rule list. The PB portion of the scope limits the PB portion of the rules, and
the UB portion of the scope limits the UB portion of the rules. The PB and UB portions of a
scope can specify a group of managed servers 130 by using a label set. If the label set does
not contain a label for a specific dimension, then there is no scoping of that dimension for the
resulting group of managed servers 130. If a rule list does not include any scopes, then its
rules are applied globally.

[0058] Different scopes can be applied to a single rule list. For example, an end-user
can build a set of rules that express how the web service tier (managed servers 130 with a
<Role, Web> label) consumes services from the database tier (managed servers with a <Role,

Database> label), how the load-balancing tier consumes services from the web service tier,

14

WO 2015/076904 PCT/US2014/054505

and so on. Then, if the end-user wants to apply this rule list to his production environment
(managed servers 130 with an <Environment, Production> label) and to his staging
environment (managed servers with an <Environment, Staging> label), he does not need to
copy or duplicate the rule list. Instead, he applies multiple scopes to a single rule list (a first
scope where the PB portion and the UB portion include the <Environment, Production> label
and a second scope where the PB portion and the UB portion include the <Environment,
Staging> label). The scope abstraction makes the rule list scale from both a usability
perspective and a computational perspective.
[0059] Now that the administrative domain-wide management policy 330 has been
described, it is helpful to work through some examples. Consider an administrative domain
150 with a two-tier application where a user device accesses a web server (the first tier), and
the web server accesses a database server (the second tier). In the first tier, the user device is
the consumer, and the web server is the provider. In the second tier, the web server is the
consumer, and the database server is the provider. The administrative domain 150 includes
two instances of this application: one in a production environment and one in a staging
environment.
[0060] The web servers and the database servers are managed servers 130, and their
descriptions (e.g., label sets) are present in the administrative domain state 320. For example,
their label sets are:
web server in production: <Role, Web> and <Environment, Production>
database server in production: <Role, Database> and <Environment, Production>
web server in staging: <Role, Web> and <Environment, Staging>
database server in staging: <Role, Database> and <Environment, Staging>
(The Application dimension, the Line of Business dimension, and the Location dimension are
not relevant to this example, so their labels are omitted.)
[0061] Now consider the following administrative domain-wide management policy
330, which is a security policy that specifies access control and secure connectivity:
Rule List #1

e Scopes

o <Environment, Production>
o <Environment, Staging>
e Rules

o #l

15

WO 2015/076904 PCT/US2014/054505

* Function: Access Control
= Service: Apache

= PB: <Role, Web>

* UB: Anybody

o #2
* Function: Access Control
= Service: PostgreSQL
= PB: <Role, Database>
= UB: <Role, Web>
Rule List #2

e Scopes: None

e Rules
o #l
* Function: Secure Connectivity
» Service: All
= PB: <Role, Database>
* UB: Any managed server
[0062] Note that the rules above refer to services simply as “Apache” and

“PostgreSQL” for clarity. Remember that a service is a process and is specified by a
port/protocol pair and (optionally) additional qualifications, such as process information
and/or package information (described above with respect to a description of a managed
server 130 within the administrative domain state 320).

[0063] Rule List #1/Rule #1 allows any device (e.g., a user device) to connect to a web
server and use the Apache service. Specifically, the allowance of a connection is specified by
“Access Control” in the Function portion. The “any device” is specified by “Anybody” in the
UB portion. The “web server” is specified by “<Role, Web>" (a label set that includes only
one label) in the PB portion. The Apache service is specified by “Apache” in the Service
portion.

[0064] Rule List #1/Rule #2 allows a web server to connect to PostgreSQL on a
database server. Specifically, the allowance of a connection is specified by “Access Control”
in the Function portion. The “web server” is specified by “<Role, Web>" in the UB portion.
The “PostgreSQL” is specified by “PostgreSQL” in the Service portion. The “database

server” is specified by “<Role, Database>" (a label set that includes only one label) in the PB

16

WO 2015/076904 PCT/US2014/054505

portion.

[0065] Rule List #1 also prevents inter-environment connections. For example, a web
server is allowed to connect to PostgreSQL on a database server if the web server and
database server are both in the same environment (e.g., both in the production environment or
both in the staging environment). Both servers in the production environment is specified by
“<Environment, Production>" (a label set that includes only one label) in the Scope portion,
while both servers in the staging environment is specified by “<Environment, Staging>" (a
label set that includes only one label) in the Scope portion. (Since the scopes in this example
do not distinguish between the PB portion and the UB portion, each scope’s label set is
applied to both the PB portion and the UB portion.) As a result, a web server is not allowed to
connect to PostgreSQL on a database server if the servers are in different environments (e.g.,
if the web server is in the staging environment and the database server is in the production
environment).

[0066] Rule List #2 states that whenever any managed server connects to a database
server, that connection must be performed through an encrypted channel. Specifically, the
“database server” is specified by “<Role, Database>" in the PB portion. The “encrypted
channel” is specified by “Secure Connectivity” in the Function portion. The “any managed
server” is specified by “Any managed server” in the UB portion. The “whenever” is specified
by “All” in the Service portion.

[0067] Turning aside from the above example, consider the following two managed
servers 130: Server 1 is a web server that is part of production, part of app1, and owned by
engineering in California. It would be labeled as:

<Role, Web>

<Environment, Production>

<Application, app1>

<LB, Engineering>

<Location, US>

Server 2 is a database server that is part of production, also part of app1, and also owned by
engineering but in Germany. It would be labeled as:

<Role, Database Server>

<Environment, Production>

<Application, app1>

<LB, Engineering>

<Location, EU>

17

WO 2015/076904 PCT/US2014/054505

[0068] Assume that an access control rule allows all access to all managed servers 130
that are part of app1. This rule would allow Server 1 and Server 2 to communicate with each
other and would disallow a managed server 130 in Germany that is part of app2 from
communicating with Server 1 or Server 2. Now assume that a secure connectivity rule
specifies that all network traffic between EU and US must be encrypted. Rule functions are
independently applied. In other words, the secure connectivity rule is a separate policy that is
applied independent of the access control rule. As a result, the network traffic from Server 1
to Server 2 would be allowed (given the access control rule) and encrypted (given the secure
connectivity rule).

[0069] Returning to FIG. 3, the global security data repository 335 is described below
in the section entitled “Additional Security Aspects.”

[0070] The processing server 310 generates management instructions for managed
servers 130 and sends the generated management instructions to the servers. The processing
server 310 also processes local state information received from managed servers 130. The
processing server 310 includes various modules such as a policy engine module 340, a
relevant rules module 350, a function-level instruction generation module 360, an actor
enumeration module 370, a relevant actors module 380, an administrative domain state
update module 385, and a global security module 390. In one embodiment, the processing
server 310 includes a computer (or set of computers) that communicates with the repository
300 and processes data (e.g., by executing the policy engine module 340, the relevant rules
module 350, the function-level instruction generation module 360, the actor enumeration
module 370, the relevant actors module 380, the administrative domain state update module
385, and the global security module 390).

[0071] The relevant rules module 350 takes as input the administrative domain-wide
management policy 330 and an indication of a particular managed server 130 (e.g., that
server’s UID), generates a set of rules that are relevant to that server, and outputs the set of
rules. This is a filtering process by which the relevant rules module 350 examines the
management policy 330 and extracts only the relevant rules for the given managed server
130. The relevant rules module 350 performs the filtering by iterating through all of the rule
lists in the management policy 330, analyzing the scopes of each rule list to determine
whether the scopes apply to this managed server 130 and (if the scopes do apply to this
managed server 130) analyzing the rules of each rule list to determine whether those rules
apply to this managed server 130. A rule applies to a managed server 130 if a) the PB portion

of the rule and/or the UB portion of the rule specifies the managed server and b) the condition

18

WO 2015/076904 PCT/US2014/054505

portion of the rule (if present) evaluates to “true” for that managed server (specifically, for
the values of that managed server’s configured characteristics and network exposure
information). The end result (referred to herein as a “management policy perspective”) is a
collection of two sets of rules: rules where this managed server 130 provides a service and
rules where this managed server 130 consumes a service.

[0072] The function-level instruction generation module 360 takes as input a set of
rules (e.g., a management policy perspective generated by the relevant rules module 350),
generates function-level instructions, and outputs the function-level instructions. The
function-level instructions are later sent to a managed server 130 as part of the management
instructions. A function-level instruction is similar to a rule in that each one includes a rule
function portion, a service portion, a PB portion, and a UB portion. However, whereas a rule
can include multiple items within its PB portion and/or UB portion (including label sets,
managed server UIDs, and/or UDG UIDs), a function-level instruction includes only one item
within its PB portion and only one item within its UB portion. Also, whereas a rule can
specify a managed server (including its multiple network interfaces) within its PB portion
and/or UB portion, a function-level instruction includes only one network interface within its
PB portion and UB portion.

[0073] The function-level instruction generation module 360 analyzes a rule and
generates one or more function-level instructions based on that rule. If the rule’s PB portion
includes multiple items, the rule’s UB portion incudes multiple items, or a managed server
referenced by the rule (in the PB portion or UB portion) has multiple network interfaces, then
the function-level instruction generation module 360 generates multiple function-level
instructions (e.g., one function-level instruction for each possible combination of a PB item, a
UB item, and a particular network interface).

[0074] Consider a rule that includes two items in its PB portion (A and B) and two
items in its UB portion (C and D). The function-level instruction generation module 360
would generate four function-level instructions with the following PB and UB portions: 1)
PB=A,UB=C;2)PB=A,UB=D; 3)PB=B,UB=C;4)PB=B, UB =D. Now consider
a rule that covers a managed server in its PB portion or UB portion (e.g., by specifying a UID
or a label set), and that managed server has multiple network interfaces. The function-level
instruction generation module 360 would generate multiple function-level instructions (e.g.,
one function-level instruction for each network interface of the managed server).

[0075] The function-level instruction generation module 360 analyzes the rules, the

functions within those rules, and the function profiles referenced by those rules. If a rule list

19

WO 2015/076904 PCT/US2014/054505

includes multiple scopes, then the function-level instruction generation module 360 applies
those scopes multiple times to the rule list iteratively (thereby generating a complete set of
function-level instructions for each scope). Recall that a rule function can be associated with
multiple function profiles, and a function profile can include a priority. The function-level
instruction generation module 360 orders the rules based on the priorities of the various
function profiles such that the function profile with the highest priority is used. The function-
level instruction generation module 360 translates the ordered rules into function-level
instructions for the managed server 130 to execute. Function-level instructions reference the
appropriate managed servers 130 and/or unmanaged devices 140 (e.g., the managed servers
130 and/or unmanaged devices 140 that were referenced in the input rules), taking into
account the network exposure details of the services associated with the rules.

[0076] Note that the function-level instruction generation module 360 can generate a
function-level instruction for a particular managed server 130 that turns out to be irrelevant
for that server. For example, that managed server is covered by the provided-by (PB) portion
of a rule, so the function-level instruction generation module 360 generates a corresponding
function-level instruction. However, the rule also includes a portion that specifies the
managed server’s local state (e.g., a service portion that describes the provided service).
Since the global manager 120 does not know the managed server’s local state (e.g., whether
the managed server is actually providing that service), the generated function-level
instruction is sent to the managed server. The managed server checks its local state (e.g.,
whether it is providing that service) and processes the function-level instruction accordingly,
as explained below with reference to the policy compilation module 410.

[0077] The actor enumeration module 370 takes as input a collection of descriptions of
managed servers 130 and unmanaged device groups (UDGs) (e.g., the state of the
administrative domain’s computer network infrastructure 320), generates representations of
those descriptions of servers and UDGs in an enumerated form (referred to as “actor-sets™),
and outputs the actor-sets. For example, the actor enumeration module 370 enumerates the
managed servers 130 and the UDGs within the administrative domain state 320 and the
possible label sets and assigns each a unique identifier (UID). These actor-sets can then be
used in conjunction with UB portions and PB portions of rules and scopes, which specify
actors using managed server UIDs, UDG UlIDs, and/or label sets.

[0078] Consider a logical management model that includes a set of N dimensions D;
(7=1,...,N), and each dimension D; includes a set S; of possible values V; (j=1,...,M;) (where

the wildcard “*” is one of the possible values). In one embodiment, the actor enumeration

20

WO 2015/076904 PCT/US2014/054505

module 370 enumerates all label sets that are possible based on the logical management
model, which are equal to the Cartesian product given by S; x §; % ... x Sy. The size of this
setis My x M x ... X My. The enumeration process collapses the multi-dimensional label
space of the managed servers 130 into a simple enumerated form.

[0079] In another embodiment, the actor enumeration module 370 enumerates only
those label sets that are possible based on the administrative domain state 320 (e.g., based on
descriptions of managed servers within the administrative domain 150). For example,
consider a logical management model that includes 2 dimensions (X and Y), and each
dimension includes 3 possible values (A, B, and *). A managed server with the label set
“<X=A><Y=B>" can be a member of 4 possible label sets: 1) “<X=A><Y=B>”, 2)
“<X=A> <Y=E>7) 3) “<X=*> <Y=B>”, and 4) “<X=*><Y=*>" Note that the managed
server’s label set exists in 2-dimensional space (X and Y), while possible label sets 2, 3, and
4 are projections of the managed server’s label set into sub-dimensional spaces (label set 2 is
I-dimensional space (X), label set 3 is 1-dimensional space (Y), and label set 4 is 0-
dimensional space). So, the actor enumeration module 370 enumerates those 4 possible label
sets. The managed server with the label set “<X=A><Y=B>" cannot be a member of the
label set “<X=A><Y=A>", so the actor enumeration module 370 does not enumerate that
label set.

[0080] In yet another embodiment, the actor enumeration module 370 enumerates only
those label sets that are used in the administrative domain-wide management policy 330 (e.g.,
in UB portions and PB portions of rules and scopes).

[0081] An actor-set includes a UID and zero or more actor-set records. An actor-set
record includes a UID (either a managed server UID or an UDG UID), an identifier of the
actor’s operating system, and the IP address of the actor (managed server 130 or unmanaged
device 140) given the specific BRN. For example, an actor-set might include actor-set
records whose IP addresses correspond to all of the managed servers 130 covered by the label
set of <Role, Database> and <Environment, Production>. As another example, an actor-set
might include actor-set records whose IP addresses correspond to all of the unmanaged
devices 140 in the Headquarters UDG. A single actor (e.g., managed server 130 or
unmanaged device 140) can appear in multiple actor-sets.

[0082] Another factor in the actor-set calculation is actors with multiple network
interfaces, plus the inclusion of network topology such as network address translation (NAT).
So, there could be two actor-sets for the label set of <Role, Database> and <Environment,

Production>: one actor-set with the internet-facing IP addresses of those managed servers 130

21

WO 2015/076904 PCT/US2014/054505

(i.e., associated with a first BRN), and a different actor-set for those same managed servers
with the private network-facing IP addresses of those managed servers (i.e., associated with a
second BRN).

[0083] In one embodiment, the actor enumeration module 370 can also update actor-
sets based on changes to the administrative domain state 320. For example, the actor
enumeration module 370 takes as input actor-sets (previously output by the actor enumeration
module) and a change to a managed server’s description (within the administrative domain
state 320), generates updated actor-sets (which are consistent with the changed server
description), and outputs the updated actor-sets. The actor enumeration module 370 generates
the updated actor-sets in different ways depending on the type of change to the managed
server’s description.

[0084] Offline/online change — If the description change indicates that the server went
from online to offline, then the actor enumeration module 370 generates the updated actor-
sets by removing the server’s actor-set record from all input actor-sets of which the server
was a member. If the description change indicates that the server went from offline to online,
then the actor enumeration module 370 generates the updated actor-sets by adding the
server’s actor-set record to any relevant input actor-sets. (If necessary, the actor enumeration
module 370 creates a new actor-set and adds the server’s actor-set record to that new actor-
set.)

[0085] Label set change — If the description change indicates that the server’s label set
changed, then the actor enumeration module 370 treats this like a first server (with the old
label set) going offline and a second server (with the new label set) coming online.

[0086] Network exposure information change — If the description change indicates that
the server removed a network interface, then the actor enumeration module 370 generates the
updated actor-sets by removing the server’s actor-set record from all input actor-sets
(associated with that network interface’s BRN) of which the server was a member. If the
description change indicates that the server added a network interface, then the actor
enumeration module 370 generates the updated actor-sets by adding the server’s actor-set
record to any relevant input actor-sets (associated with that network interface’s BRN). (If
necessary, the actor enumeration module 370 creates a new actor-set (associated with that
network interface’s BRN) and adds the server’s actor-set record to that new actor-set.) If the
description change indicates that the server changed a network interface’s BRN, then the
actor enumeration module 370 treats this like a first network interface (with the old BRN)

being removed and a second network interface (with the new BRN) being added. If the

22

WO 2015/076904 PCT/US2014/054505

description change indicates that the server changed a network interface’s IP address (but not
the BRN), then the actor enumeration module 370 generates the updated actor-sets by
modifying the server’s actor-set record in all input actor-sets (associated with that network
interface’s BRN) of which the server was a member.

[0087] The relevant actors module 380 takes as input one or more actor-sets (e.g., the
managed servers 130 and the UDGs within the administrative domain state 320 in
enumerated form) and a set of rules (e.g., a management policy perspective), determines
which actor-sets are relevant to those rules, and outputs only those actor-sets. This is a
filtering process by which the relevant actors module 380 examines the actor-sets and
extracts only the relevant actor-sets for the given set of rules. The relevant actors module 380
performs the filtering by iterating through all of the input actor-sets, analyzing the PB
portions and UB portions of the input rules to determine whether a particular actor-set is
referenced by any of the rules’ PB portions or UB portions. The end result (referred to herein
as an “actor perspective”) is a collection of actor-sets. The actor perspective is later sent to a
managed server 130 as part of the management instructions.

[0088] In one embodiment, the relevant actors module 380 uses the input set of rules to
generate an “actor-set filter.” The actor-set filter selects, from the input actor-sets, only the
actor-sets that are relevant to the input rules. In other words, the relevant actors module 380
uses the actor-set filter to filter the input actor-sets into relevant actor-sets.

[0089] The policy engine module 340 generates management instructions for managed
servers 130 and sends the generated management instructions to the servers. The policy
engine module 340 generates the management instructions (using the relevant rules module
350, the function-level instruction generation module 360, the actor enumeration module 370,
and the relevant actors module 380) based on a) the state of the administrative domain’s
computer network infrastructure 320 and b) the administrative domain-wide management
policy 330.

[0090] For example, the policy engine module 340 executes the relevant rules module
350, providing as input the administrative domain-wide management policy 330 and the UID
of a particular managed server 130. The relevant rules module 350 outputs a set of rules that
are relevant to that server (a “management policy perspective”). The policy engine module
340 executes the actor enumeration module 370, providing as input the administrative
domain state 320. The actor enumeration module 370 outputs a representation of the
descriptions of the managed servers 130 and unmanaged device groups (UDGs) within the

administrative domain state 320 in an enumerated form (“actor-sets”). The policy engine

23

WO 2015/076904 PCT/US2014/054505

module 340 executes the function-level instruction generation module 360, providing as input
the management policy perspective (output by the relevant rules module 350). The function-
level instruction generation module 360 outputs function-level instructions. The policy
engine module 340 executes the relevant actors module 380, providing as input the actor-sets
(output by the enumeration module 370) and the management policy perspective (output by
the relevant rules module 350). The relevant actors module 380 outputs only those actor-sets
that are relevant to those rules (“relevant actor-sets”). The policy engine module 340 sends
the function-level instructions (output by the function-level instruction generation module
360) and the relevant actor-sets (output by the relevant actors module 380) to the particular
managed server 130.

[0091] In one embodiment, the policy engine module 340 caches information that was
generated during the above process. For example, the policy engine module 340 caches, in
association with the particular managed server 130, the management policy perspective, the
function-level instructions, the actor-set filter, and/or the relevant actor-sets. As another
example, the policy engine module 340 caches the administrative domain’s actor-sets (which
are not specific to a particular managed server 130).

[0092] Since an administrative domain’s actor-sets are based on the administrative
domain state 320, a change to the administrative domain state 320 can require a change to the
administrative domain’s actor-sets. Similarly, since a managed server’s management
instructions are based on the administrative domain state 320 and the administrative domain-
wide management policy 330, a change to the administrative domain state 320 and/or a
change to the administrative domain-wide management policy 330 can require a change to
the managed server’s management instructions. In one embodiment, the policy engine
module 340 can update an administrative domain’s actor-sets and/or update a managed
server’s management instructions and then distribute these changes (if necessary) to managed
servers 130. The cached information mentioned above helps the policy engine module 340
more efficiently update the administrative domain’s actor-sets and/or the managed server’s
management instructions and distribute the changes.

[0093] In one embodiment, the policy engine module 340 updates an administrative
domain’s actor-sets (based on a change to the administrative domain state 320) and
distributes the changes to managed servers 130 as follows: The policy engine module 340
executes the actor enumeration module 370, providing as input the cached actor-sets
(previously output by the actor enumeration module) and the changed portion of the

administrative domain state 320 (e.g., a changed server description). The actor enumeration

24

WO 2015/076904 PCT/US2014/054505

module 370 outputs the updated actor-sets. In one embodiment, the policy engine module 340
then sends all of the updated actor-sets to all of the managed servers 130 within the
administrative domain 150. However, that embodiment is inefficient, since not all managed
servers are affected by changes to all actor-sets.

[0094] In another embodiment, only selected actor-sets are sent to selected servers. For
example, a particular managed server is sent only those actor-sets that a) were previously sent
to that server and b) have changed. The cached relevant actor-sets indicate which actor-sets
were previously sent to that server (see (a) above). The policy engine module 340 compares
the cached actor-sets to the updated actor-sets to determine which actor-sets have changed
(see (b) above). The policy engine module 340 then computes the intersection of (a) and (b).
Actor-sets in that intersection are sent to the particular managed server. In one embodiment,
for even greater efficiency, actor-sets are sent in “diff” format, which describes differences
between the cached actor-sets and the updated actor-sets. For example, the diff format
specifies an actor-set identifier, an actor identifier (e.g., a managed server UID or an UDG
UID), and an indication of whether that actor should be added to, removed from, or modified
within the actor-set.

[0095] In yet another embodiment, two tables are maintained and used to improve
efficiency. A first table associates a managed server 130 with actor-sets of which that
managed server is a member. A second table associates a managed server 130 with actor-sets
that are relevant to that managed server (e.g., as determined by the relevant actors module
380). In these tables, a managed server 130 is represented by, e.g., that managed server’s
UID, and an actor-set is represented by, e.g., that actor-set’s UID. The policy engine module
340 uses the changed portion of the administrative domain state 320 (e.g., the changed server
description) to determine which managed server’s description changed. The policy engine
module 340 uses the first table to determine which actor-sets that managed server was a
member of. Those actor-sets might change as a result of the changed server description. So,
the policy engine module 340 uses the second table to determine which managed servers
those actor-sets are relevant to. The policy engine module 340 performs the intersection
computation described above for only those managed servers.

[0096] In one embodiment, the policy engine module 340 updates a managed server’s
management instructions (based on a change to the administrative domain state 320) and
sends the updated management instructions to the managed server as follows: The policy
engine module 340 executes the relevant rules module 350, providing as input the

administrative domain-wide management policy 330 and the UID of the managed server 130.

25

WO 2015/076904 PCT/US2014/054505

The relevant rules module 350 outputs a set of rules that are relevant to that server (a
“management policy perspective”). The policy engine module 340 compares the management
policy perspective that was just output to the cached management policy perspective to
determine whether they differ. If the just-output management policy perspective and the
cached management policy perspective are identical, then the policy engine module 340 takes
no further action. In this situation, the previously-generated managed server’s management
instructions (specifically, the function-level instructions and relevant actor-sets) are
consistent with the change to the administrative domain state 320 and do not need to be re-
generated and re-sent to the managed server.

[0097] If the just-output management policy perspective and the cached management
policy perspective differ, then the policy engine module 340 determines which rules should
be added to the cached perspective and which rules should be removed from the cached
perspective. The policy engine module 340 executes the function-level instruction generation
module 360, providing as input the rules to add and the rules to remove. The function-level
instruction generation module 360 outputs function-level instructions to add and function-
level instructions to remove (relative to the cached function-level instructions, which were
previously sent to the managed server). The policy engine module 340 instructs the managed
server to add or remove the various function-level instructions, as appropriate. In one
embodiment, for greater efficiency, function-level instructions are sent in “diff” format,
which describes differences between the cached function-level instructions and the updated
function-level instructions. For example, the diff format specifies a function-level instruction
identifier and an indication of whether that function-level instruction should be added to or
removed from the previously-sent function-level instructions.

[0098] The policy engine module 340 also executes the actor enumeration module 370,
providing as input the cached actor-sets and the changed portion of the administrative domain
state 320 (e.g., the changed server description). The actor enumeration module 370 outputs
the updated actor-sets. The policy engine module 340 executes the relevant actors module
380, providing as input the updated actor-sets and the just-output management policy
perspective. The relevant actors module 380 outputs only those updated actor-sets that are
relevant to those rules (“updated relevant actor-sets™).

[0099] The policy engine module 340 compares the updated relevant actor-sets to the
cached relevant actor-sets to determine whether they differ. If the updated relevant actor-sets
and the cached relevant actor-sets are identical, then the policy engine module 340 sends no

actor-sets to the managed server. In this situation, the previously-generated relevant actor-sets

26

WO 2015/076904 PCT/US2014/054505

are consistent with the change to the administrative domain state 320 and do not need to be
re-sent to the managed server. If the updated relevant actor-sets and the cached relevant
actor-sets differ, then the policy engine module 340 determines which actor-sets should be
added, removed, or modified relative to the cached relevant actor-sets. The policy engine
module 340 instructs the managed server to add, remove, or modify the various actor-sets, as
appropriate. In one embodiment, for greater efficiency, actor-sets are sent in “diff” format,
which describes differences between the cached relevant actor-sets and the updated relevant
actor-sets. For example, the diff format specifies an actor-set identifier and an indication of
whether that actor-set should be added to, removed from, or modified relative to the
previously-sent actor-sets.

[00100] Recall that the policy engine module 340 can update a managed server’s
management instructions (based on a change to the administrative domain-wide management
policy 330) and send the updated management instructions to the managed server. A change
to the management policy 330 is, for example, the addition, removal, or modification of a
rule or a rule set. In one embodiment, a change to the management policy 330 is generated by
interaction with the global manager 120 via a GUI or APIL. In another embodiment, a change
to the management policy 330 is generated by an automated process within the global
manager 120 (e.g., in response to a security threat detected by the global manager). The
policy engine module 340 updates the managed server’s management instructions and sends
the updated management instructions to the managed server in a similar way, regardless of
whether there was a change to the management policy 330 or a change to the administrative
domain state 320. However, there are a few differences.

[00101] In the case of a change to the management policy 330, the policy engine module
340 does not necessarily update management instructions for all managed servers 130.
Instead, the policy engine module 340 compares the previous management policy 330 to the
new management policy 330 to determine which rules should be added, removed, or
modified relative to the previous management policy 330. The policy engine module 340
determines which managed servers 130 are affected by the changed rules (e.g., which
managed servers are covered by a) the rules’ and/or scopes’ PB and/or UB portions and b) the
rules’ conditional portions (if any)). The policy engine module 340 executes the relevant
rules module 350, providing as input the changed rules (instead of the entire new
management policy 330) and the UID of the managed server 130 (for only those servers that
are affected by the changed rules).

[00102] The administrative domain state update (ADSU) module 385 receives changes

27

WO 2015/076904 PCT/US2014/054505

to the administrative domain state 320 and processes those changes. A change to the
administrative domain state 320 is, for example, the addition, removal, or modification of a
description of a managed server 130 (including the modification of a managed server’s label
set or configured characteristics) or a description of an unmanaged device or unmanaged
device group. In one embodiment, a change to the administrative domain state 320 originates
in local state information received from a particular managed server 130. In another
embodiment, a change to the administrative domain state 320 is generated by interaction with
the global manager 120 via a GUI or API. In yet another embodiment, a change to the
administrative domain state 320 is generated by an automated process within the global
manager 120 (e.g., in response to a security threat detected by the global manager).

[00103] For example, the ADSU module 385 receives a change regarding a particular
unmanaged device 140. The ADSU module 385 stores the new information in the
administrative domain state 320 (e.g., as part of an unmanaged device group of which that
particular unmanaged device is a member). The ADSU module 385 then updates the
administrative domain’s actor-sets based on the unmanaged device group change.
Specifically, the ADSU module 385 instructs the policy engine module 340 to update the
administrative domain’s actor-sets. In one embodiment, the ADSU module 385 waits for an
event to occur before instructing the policy engine module 340 to update the administrative
domain’s actor-sets. This event can be, for example, receipt of a user command or occurrence
of a specified maintenance window.

[00104] As another example, the ADSU module 385 receives a change regarding a
particular managed server 130. The ADSU module 385 stores the new information in the
administrative domain state 320 as part of the description of that particular managed server
130. The ADSU module 385 then (optionally) analyzes that managed server’s description to
determine additional information regarding the server and stores that information in the
description. The ADSU module 385 then determines whether to update the administrative
domain’s actor-sets and/or the managed server’s management instructions based on a change
to the managed server’s description. If the ADSU module 385 determines to update the
administrative domain’s actor-sets, then the ADSU module 385 instructs the policy engine
module 340 to update the administrative domain’s actor-sets. In one embodiment, the ADSU
module 385 waits for an event to occur before instructing the policy engine module 340 to
update the administrative domain’s actor-sets. If the ADSU module 385 determines to update
the managed server’s management instructions, then the ADSU module 385 instructs the

policy engine module 340 to update the managed server’s management instructions. In one

28

WO 2015/076904 PCT/US2014/054505

embodiment, the ADSU module 385 waits for an event to occur before instructing the policy
engine module 340 to update the managed server’s management instructions. The
aforementioned events can be, for example, receipt of a user command or occurrence of a
specified maintenance window.

[00105] Whether or not the ADSU module 385 determines to update the administrative
domain’s actor-sets and/or the managed server’s management instructions depends on the
type of change to the managed server’s description. In one embodiment, the ADSU module

385 makes this determination as shown in Table 2:

Type of Change | Whether to Update

Online to offline Administrative domain’s actor-sets: Yes

Managed server’s management instructions: No

Offline to online Administrative domain’s actor-sets: Yes

Managed server’s management instructions: Yes

Label set Administrative domain’s actor-sets: Yes

Managed server’s management instructions: Yes

Configured Administrative domain’s actor-sets: Yes

characteristic Managed server’s management instructions: Yes

Network exposure | Administrative domain’s actor-sets: Yes
info Managed server’s management instructions: Yes

(unless IP address is the only change)

Service info Administrative domain’s actor-sets: No
Managed server’s management instructions: Yes

(only in specified situations)

Table 2 — Whether to update administrative domain’s actor-sets and/or managed server’s
management instructions based on type of server description change

[00106] In one embodiment, the ADSU module 385 determines additional information
regarding the server by executing the label/configured characteristic engine and providing the
server’s description as input. The label/CC engine calculates labels/CC values for the server
based on the server’s description and label/CC assignment rules. In another embodiment, the
ADSU module 385 determines whether the server is behind a network address translator
(NAT) (and, if it is behind a NAT, what type of NAT — 1:1 or 1:N).
[00107] The global security module 390 is described below in the section entitled
“Additional Security Aspects.”

29

WO 2015/076904 PCT/US2014/054505

[00108] FIG. 4 is a high-level block diagram illustrating a detailed view of a policy
implementation module 136 of a managed server 130, according to one embodiment. The
policy implementation module 136 includes a local state repository 400, a policy compilation
module 410, a local state update module 420, and a local security module 430. The local state
repository 400 stores information regarding the local state of the managed server 130. In one
embodiment, the local state repository 400 stores information regarding the managed server’s
operating system (OS), network exposure, and services. OS information includes, for
example, an indication of which OS is running. Network exposure information and service
information were described above with respect to a description of a managed server 130
within the administrative domain state 320.

[00109] The policy compilation module 410 takes as input management instructions and
state of a managed server 130 and generates a management module configuration 134. For
example, the management instructions are received from the global manager 120 and include
function-level instructions (generated by the function-level instruction generation module
360) and relevant actor-sets (output by the relevant actors module 380). The state of the
managed server 130 is retrieved from the local state repository 400. In one embodiment,
execution of the policy compilation module 410 is triggered by a) the managed server
powering up or coming online, b) the managed server receiving management instructions,
and/or ¢) the contents of the local state repository 400 changing.

[00110] The policy compilation module 410 maps the function-level instructions and
relevant actor-sets into a management module configuration 134. For example, the policy
compilation module 410 maps an access control function-level instruction (which contains a
port and an actor-set reference) into an iptables entry and an ipset entry in the Linux
operating system or a Windows Filtering Platform (WFP) rule in the Windows operating
System.

[00111] The application of management policy at a managed server 130 can be affected
by the local state of that server. In one embodiment, the policy compilation module 410
evaluates a condition associated with a received function-level instruction and generates the
management module configuration 134 based on the result of that evaluation. For example,
the policy compilation module 410 evaluates a condition that references the operating system
of the managed server’s peer (i.e., the other actor in the relationship) and selects function
profile attributes based on the result of that evaluation, where the selected function profile
attributes are expressed in the management module configuration 134.

[00112] As another example, recall that a managed server 130 can receive a function-

30

WO 2015/076904 PCT/US2014/054505

level instruction that turns out to be irrelevant for that server. For example, the rule includes a
portion that specifies the managed server’s local state (e.g., a service portion that describes
the provided service). Since the global manager 120 does not know the managed server’s
local state (e.g., whether the managed server is actually providing that service), the generated
function-level instruction is sent to the managed server. The policy compilation module 410
checks the managed server’s local state (e.g., determines whether the managed server is
providing that service). This determination amounts to evaluating a condition that references
the managed server’s local state. The policy compilation module 410 processes the function-
level instruction accordingly. If the policy compilation module 410 determines that the
condition evaluates to “true” (e.g., the managed server is providing that service), then the
policy compilation module 410 incorporates that function-level instruction into the
management module configuration 134. Specifically, the policy compilation module 410
incorporates function-level instructions into the management module configuration 134 only
after evaluating the associated condition (which concerns the local state of that server). If the
evaluation of the condition is false, then the policy compilation module 410 does not express
the function-level instructions in the management module configuration 134. The specific
conditions (e.g., their nature and particular values) are extensible. In one embodiment, the
conditions are related to the definition of a “service” and include process information and/or
package information (described above with respect to a description of a managed server 130
within the administrative domain state 320).

[00113] For example, consider a function-level instruction that allows access to only the
Apache service inbound on port 80 (i.e., where the managed server 130 is the “provider” or
endpoint). The managed server 130 expresses this function-level instruction in the
management module configuration 134 to allow access on port 80 only after evaluating the
associated condition, which concerns whether the application (executing on that server) that
is listening on port 80 is actually Apache and not some other application (rogue or otherwise).
The managed server 130 expresses this function-level instruction in the management module
configuration 134 only after determining that the associated condition evaluates to “true.” If
the associated condition evaluates to “false,” then the managed server 130 does not express
this function-level instruction in the management module configuration 134. As a result, the
network traffic is blocked.

[00114] In one embodiment, a managed server 130 monitors its outbound connections.
The managed server 130 compares outbound network traffic to its internal process table to

determine which processes in that table are establishing those outbound connections. The

31

WO 2015/076904 PCT/US2014/054505

managed server 130 can enforce a rule that allows only certain processes (given a set of
requirements, mentioned above as “process information”) to establish an outbound
connection.

[00115] In one embodiment (not shown), the policy compilation module 410 is located at
the global manager 120 instead of at the managed server 130. In that embodiment, the global
manager 120 does not send management instructions to the managed server 130. Instead, the
managed server 130 sends its local state to the global manager 120. After the policy
compilation module 410 generates the management module configuration 134 (at the global
manager 120), the management module configuration 134 is sent from the global manager
120 to the managed server 130.

[00116] The local state update (LSU) module 420 monitors the local state of the
managed server 130 and sends local state information to the global manager 120. In one
embodiment, the LSU module 420 determines an initial local state of the managed server
130, stores appropriate local state information in the local state repository 400, and sends that
local state information to the global manager 120. The LSU module 420 determines the local
state of the managed server 130 by inspecting various parts of the server’s operating system
(OS) and/or file system. For example, the LSU module 420 obtains service information from
the OS’ kernel tables (networking information), the OS’ system tables (package information),
and the file system (files and hash values). The LSU module 420 obtains network exposure
information from the OS’ kernel and and/or OS-level data structures.

[00117] After the LSU module 420 sends the initial local state information to the global
manager 120, the LSU module monitors changes to the local state. The LSU module monitors
changes by, for example, polling (e.g., performing inspections periodically) or listening (e.g.,
subscribing to an event stream). The LSU module 420 compares recently-obtained local state
information to information already stored in the local state repository 400. If the information
matches, then the LSU module 420 takes no further action (until local state information is
obtained again). If they differ, then the LSU module 420 stores the recently-obtained
information in the local state repository 400, executes the policy compilation module 410 to
re-generate the management module configuration 134 (and re-configures the management
module 132 accordingly), and notifies the global manager 120 of the change. In one
embodiment, the LSU module 420 sends changes to local state information to the global
manager 120 in “diff” format, which describes differences between the local state
information that was previously stored in the local state repository 400 (and, therefore,

previously sent to the global manager 120) and the recently-obtained local state information.

32

WO 2015/076904 PCT/US2014/054505

For example, the diff format specifies a type of local state information (e.g., operating
system) and a new value for that information type. In another embodiment, the LSU module
420 sends the entire contents of the local state repository 400 to the global manager 120.
[00118] The local security module 430 is described below in the section entitled
“Additional Security Aspects.”

[00119] FIG. 5 is a flowchart illustrating a method 500 of generating management
instructions for a particular managed server 130, according to one embodiment. Other
embodiments can perform the steps in different orders and can include different and/or
additional steps. In addition, some or all of the steps can be performed by entities other than
those shown in FIG. 1. In one embodiment, the method 500 is executed multiple times (e.g.,
once for each managed server 130 in an administrative domain 150).

[00120] When the method 500 starts, the state of the administrative domain’s computer
network infrastructure 320 and an administrative domain-wide management policy 330 have
already been stored in the repository 300 of the global manager 120. At this point, the method
500 begins.

[00121] In step 510, the administrative domain state 320 and the administrative domain-
wide management policy 330 are accessed. For example, the policy engine module 340 sends
a request to the repository 300 and receives the administrative domain state 320 and the
administrative domain-wide management policy 330 in response.

[00122] In step 520, one or more relevant rules are determined. For example, the policy
engine module 340 executes the relevant rules module 350, providing as input the
administrative domain-wide management policy 330 and the UID of the particular managed
server 130. The relevant rules module 350 outputs a set of rules that are relevant to that server
(management policy perspective).

[00123] In step 530, actors are enumerated. For example, the policy engine module 340
executes the actor enumeration module 370, providing as input the administrative domain
state 320. The actor enumeration module 370 generates a representation of the managed
servers 130 and unmanaged device groups (UDGs) within the administrative domain state
320 in an enumerated form (actor-sets).

[00124] In step 540, one or more function-level instructions are generated. For example,
the policy engine module 340 executes the function-level instruction generation module 360,
providing as input the management policy perspective (generated in step 520). The function-
level instruction generation module 360 generates function-level instructions.

[00125] In step 550, one or more relevant actors is determined. For example, the policy

33

WO 2015/076904 PCT/US2014/054505

engine module 340 executes the relevant actors module 380, providing as input the actor-sets
(generated in step 530) and the management policy perspective (generated in step 520). The
relevant actors module 380 outputs only those actor-sets that are relevant to those rules
(relevant actor-sets).

[00126] In step 560, management instructions are sent to the particular managed server
130. For example, the policy engine module 340 sends the function-level instructions
(generated in step 540) and the relevant actor-sets (generated in step 550) to the particular
managed server 130.

[00127] Note that steps 520 and 540 concern generating the management policy
perspective (and resulting function-level instructions) for a particular managed server 130,
while steps 530 and 550 concern generating the actor perspective for that managed server.
The generation of the management policy perspective and the generation of the actor
perspective are minimally dependent on each other, since step 520 generates a set of rules
that is used by step 550. Even so, keeping the management policy calculations (i.e., steps 520
and 540) and the actor-set calculations (i.e., steps 530 and 550) separate enhances the
scalability of the policy engine module 340. Since the management policy calculations and
the actor-set calculations are kept mostly separate, they can be performed in parallel (e.g.,
even for the same managed server 130). In addition, perspective calculations for different
managed servers 130 can also be performed in parallel. Also, if an actor changes, then only
the actor-sets need to be recalculated. (The function-level instructions do not need to be
recalculated.) If a rule changes, then only the function-level instructions and the relevant
actor-sets need to be recalculated. (The actors do not need to be re-enumerated.)

[00128] FIG. 6 is a flowchart illustrating a method 600 of generating a configuration 134
for a management module 132 of a managed server 130, according to one embodiment. Other
embodiments can perform the steps in different orders and can include different and/or
additional steps. In addition, some or all of the steps can be performed by entities other than
those shown in FIG. 1.

[00129] When the method 600 starts, information regarding the local state of the
managed server 130 has already been stored in the local state repository 400 of the policy
implementation module 136 in the managed server 130. At this point, the method 600 begins.
[00130] In step 610, management instructions are received from the global manager 120.
For example, the policy compilation module 410 receives function-level instructions and
relevant actor-sets from the global manager 120.

[00131] In step 620, the local state is accessed. For example, the policy compilation

34

WO 2015/076904 PCT/US2014/054505

module 410 accesses information regarding the local state of the managed server 130 that is
stored in the local state repository 400.

[00132] In step 630, a management module configuration 134 is generated. For example,
the policy compilation module 410 takes as input the management instructions (received in
step 610) and the local state (accessed in step 620) and generates a management module
configuration 134.

[00133] In step 640, a management module 132 is configured. For example, the policy
compilation module 410 configures the management module 132 to operate in accordance
with the management module configuration 134 (generated in step 630).

[00134] FIG. 7 is a flowchart illustrating a method 700 of monitoring local state of a
managed server 130 and sending local state information to a global manager 120, according
to one embodiment. Other embodiments can perform the steps in different orders and can
include different and/or additional steps. In addition, some or all of the steps can be
performed by entities other than those shown in FIG. 1.

[00135] When the method 700 starts, information regarding local state of the managed
server 130 has already been stored in the local state repository 400 of the managed server
130. At this point, the method 700 begins.

[00136] In step 710, information regarding the current local state of the managed server
130 is determined. For example, the LSU module 420 determines the local state of the
managed server 130 by inspecting various parts of the server’s operating system (OS) and/or
file system.

[00137] In step 720, a determination is performed regarding whether information
regarding the current local state differs from information stored in the local state repository
400. For example, the LSU module 420 performs this determination. If the information does
not differ, then the method proceeds to step 730 and ends. If the information does differ, then
the method proceeds to step 740.

[00138] In step 740, the differing information is stored in the local state repository 400.
For example, the LSU module 420 performs this step.

[00139] In step 750, the management module configuration 134 is re-generated (because
the contents of the local state repository 400 have changed), and the management module 132
is re-configured accordingly. For example, the LSU module 420 executes the policy
compilation module 410, which re-generates the management module configuration 134.
[00140] In step 760, the differing information is sent to the global manager 120. For
example, the LSU module 420 performs this step.

35

WO 2015/076904 PCT/US2014/054505

[00141] FIG. 8 is a flowchart illustrating a method 800 of processing a change to the
state of an administrative domain’s computer network infrastructure 320, according to one
embodiment. Other embodiments can perform the steps in different orders and can include
different and/or additional steps. In addition, some or all of the steps can be performed by
entities other than those shown in FIG. 1.

[00142] In step 810, a change regarding a particular managed server 130 is received. For
example, the administrative domain state update (ADSU) module 385 receives an
online/offline indicator, an operating system indicator, network exposure information, and/or
service information from the managed server 130 as part of local state information.

[00143] In step 820, the received information is stored. For example, the ADSU module
385 stores the received online/offline indicator, network exposure information, and/or service
information in the administrative domain state 320 (specifically, in the description of the
managed server 130 to which the information pertains).

[00144] In step 830, the server description is analyzed to determine additional
information regarding the server. For example, the ADSU module 385 uses a
label/configured characteristic engine to calculate labels/CC values for the server and/or
determines whether the server is behind a network address translator (NAT) (and, if it is
behind a NAT, what type of NAT — 1:1 or 1:N) and stores that information in the server
description. Step 830 is optional.

[00145] In step 840, a determination is made regarding whether to update the
administrative domain’s actor-sets. For example, the ADSU module 385 determines whether
to update the administrative domain’s actor-sets based on a change to the managed server’s
description. If a determination is made to update the administrative domain’s actor-sets, then
the method proceeds to step 850. If a determination is made not to update the administrative
domain’s actor-sets, then the method proceeds to step 860.

[00146] In step 850, the administrative domain’s actor-sets are updated. For example, the
ADSU module 385 instructs the policy engine module 340 to update the administrative
domain’s actor-sets and notify affected managed servers 130 accordingly. In one embodiment
(not shown), the ADSU module 385 waits for an event to occur before instructing the policy
engine module 340 to update the administrative domain’s actor-sets.

[00147] In step 860, a determination is made regarding whether to update the managed
server’s management instructions. For example, the ADSU module 385 determines whether
to update the managed server’s management instructions based on a change to the managed

server’s description. If a determination is made to update the managed server’s management

36

WO 2015/076904 PCT/US2014/054505

instructions, then the method proceeds to step 870. If a determination is made not to update
the managed server’s management instructions, then the method proceeds to step 880.
[00148] In step 870, the managed server’s management instructions are updated. For
example, the ADSU module 385 instructs the policy engine module 340 to update the
managed server’s management instructions. In one embodiment (not shown), the ADSU
module 385 waits for an event to occur before instructing the policy engine module 340 to
update the managed server’s management instructions.

[00149] In step 880, the method ends.

Additional Security Aspects

[00150] Recall that the policy implementation module 136 of a managed server 130
includes a local security module 430. The local security module 430 collects security-related
information (“security metadata’) from the managed server 130 and sends the collected
information to the global manager 120. Local security modules 430 enable managed servers
130 to act as distributed detection nodes or probes in the administrative domain 150. In one
embodiment, the local security module 430 collects and sends any or all of the following
security-related information:

[00151] a) Identification of a rogue process and/or a rogue action — The local security
module 430 detects “rogue processes” running on the managed server 130. A rogue process is
a process that performs (or attempts to perform) an improper action (“rogue action”), such as
an action that violates the management policy implemented by the management module
configuration 134. For example, if the management policy includes an access control rule that
specifies allowable network connections, then attempting to connect (e.g., initiating a
network connection) to a device that is not listed as allowable would be a rogue action.
Specifically, if the access control rule states that a connection is allowed if the provider is a
database server and the consumer is a web server, then a database server attempting to act as
a consumer with a web server acting as a provider would be a rogue action. In one
embodiment, the local security module 430 accesses instructions that describe the
management policy for allowed actions. Any nonconformance to that policy constitutes a
rogue action.

[00152] Recall that process information includes, for example, names of processes that
the managed server 130 is running, which network ports and network interfaces those
processes are listening on, which users initiated those processes, configurations of those

processes, command-line launch arguments of those processes, and dependencies of those

37

WO 2015/076904 PCT/US2014/054505

processes. A rogue action can concern any type of process information. For example,
listening on the “wrong” network port or network interface (e.g., a network port or network
interface that is not specified by the management policy as being allowed) can be a rogue
action. As another example, executing under the context of the “wrong” user or users (e.g., a
user that is not specified by the management policy as being allowed) can be a rogue action.
As yet another example, loading unusual or unauthorized shared objects can be a rogue
action.

[00153] In one embodiment, if the local security module 430 detects a rogue
process/action, then the local security module sends the global manager 120 information
regarding the rogue action (e.g., performed by the rogue process), information regarding the
rogue process itself (e.g., process information), and/or information regarding additional
actions performed by the rogue process, such as domain name system (DNS) lookups
requested and network connections attempted and/or made. Information regarding the rogue
action includes, for example, a type of the rogue action (e.g., listening on the wrong network
port or interface or executing under the context of the wrong user), details of the rogue action
based on its type (e.g., the wrong network port or interface that was listened on or the wrong
user under whose context the process executed), and/or a timestamp indicating when the
rogue action occurred. Information regarding a DNS lookup includes, for example, the
information that was sent to the DNS to lookup. Information regarding a network connection
includes, for example, an IP address and/or a port number of the destination device. Rogue
process/action information can be used to identify “bad” managed servers 130, where a
managed server is “bad” if it performs (or attempts to perform) an action that violates the
management policy implemented by the management module configuration 134.

[00154] FIG. 9 is a flowchart illustrating a method 900 of detecting and reporting a
rogue process, according to one embodiment. Other embodiments can perform the steps in
different orders and can include different and/or additional steps. In addition, some or all of
the steps can be performed by entities other than those shown in FIG. 1.

[00155] When the method 900 starts, a management module 132 within a managed
server 130 has already been configured according to a management module configuration
134. The managed server 130 configured the management module 132 using management
instructions received from a global manager 120. The configured management module 132
implements an administrative domain-wide management policy 330. At this point, the
method 900 begins.

[00156] In step 910, a request to perform an action is received from a process executing

38

WO 2015/076904 PCT/US2014/054505

on the managed server 130. For example, the local security module 430 receives the request.
[00157] In step 920, a determination is made that the action is improper according to the
configured management module 132 within the managed server 130. For example, the local
security module 430 sends the request to the management module 132, which then analyzes
the request to determine whether the request complies with the administrative domain-wide
management policy 330. The local security module 430 receives a response from the
management module 132 indicating that the request does not comply with the administrative
domain-wide management policy 330. Based on the received response, the local security
module 430 determines that the action is improper.

[00158] In step 930, information is sent to the global manager regarding the improper
action or regarding the process. For example, the local security module 430 sends the global
manager information regarding the improper action (e.g., a type of the improper action,
details of the improper action based on the improper action’s type, or a timestamp indicating
when the improper action occurred) or information regarding the process that requested to
perform the action (e.g., a name of the process, a network port on which the process is
listening, a network interface on which the process is listening, a user that initiated the
process, a configuration of the process, a command-line launch argument of the process, or a
dependency of the process).

[00159] b) Identification of operating system-level tampering — The local security
module 430 detects operating system-level tampering (e.g., a modification to the management
module configuration 134).

[00160] ¢) Logs — The local security module 430 obtains logs from the managed server
130 and sends the logs to the global manager 120. The logs include, for example, firewall
logs (e.g., web-based L7 rule and signature-based attacks reported by a web application
firewall (WAF) engine), intrusion detection system (IDS) logs (e.g., traditional L7 signature-
based intrusion detection events from an IDS engine), and authentication logs (e.g., secure
shell (SSH) authentication logs). In one embodiment, these logs are normalized into a
standard format so that they are easier to analyze. The normalization can be performed at the
managed server 130 and/or at the global manager 120.

[00161] d) Identification of a detected intrusion — The local security module 430 detects
intrusions using various techniques. For example, the local security module 430 uses some
basic intrusion signatures in conjunction with iptables. As another example, the local security
module 430 tracks some activities associated with IP addresses and compares the amount of

tracked activities to some thresholds (e.g., to detect SSH brute force attacks).

39

WO 2015/076904 PCT/US2014/054505

[00162] ¢) Identification of a “bad actor” — The local security module 430 compares
known “bad actors” (e.g., devices whose IP addresses are associated with low reputations
and/or security threats) to IP addresses blocked by the managed server 130. While a bad actor
is typically an unmanaged device 140, a bad actor could be a managed server 130. In one
embodiment, the identification of the bad actor is provided to the global manager 120 in the
form of a log stream.

[00163] In one embodiment, the local security module 430 also performs its own
security functions. For example, the local security module 430 detects when a process on the
managed server 130 creates a new outbound connection. The local security module 430
accesses a list of known bad actors (unmanaged devices 140 and/or managed servers 130)
and determines whether the destination device of the outbound connection is on the list. If the
destination device is on the list, then the local security module 430 blocks the outbound
connection in order to prevent extrusions. In another embodiment, the local security module
430 uses local attack thresholds and heuristics to apply blocking policy locally.

[00164] Recall that the repository 300 of the global manager 120 includes a global
security data repository 335. The global security data repository 335 stores security-related
information (“security metadata”). This information includes, for example, rogue processes
and/or rogue actions, operating system-level tampering, logs, detected intrusions, and bad
actors.

[00165] Recall that the processing server 310 of the global manager 120 includes a
global security module 390. The global security module 390 receives security-related
information (“security metadata”) from managed servers 130 and stores that information in
the global security data repository 335. This information includes, for example, rogue
processes and/or rogue actions, operating system-level tampering, logs, detected intrusions,
and bad actors.

[00166] The global security module 390 also analyzes information stored in the global
security data repository 335 and modifies the administrative domain state 320 and/or the
administrative domain-wide management policy 330 based on the results of the analysis, as
appropriate. The analysis of information stored in the global security data repository 335
detects attacks and/or vulnerabilities. The global security module 390 can detect an attack or
a vulnerability on a single managed server 130 as well as across the administrative domain
150 as a whole.

[00167] The modification of the administrative domain state 320 and/or the management

policy 330 performs global enforcement. Recall that the administrative domain state 320

40

WO 2015/076904 PCT/US2014/054505

includes descriptions of managed servers 130 and (optionally) descriptions of unmanaged
devices 140. In one embodiment, the administrative domain state 320 stores information
regarding policy violations of managed servers 130. For example, the global security module
390 analyzes, for a particular managed server 130, the rogue process/action information
stored in the global security data repository 335. The global security module 390 then sets a
policy violation-specific configured characteristic of that managed server to a particular
value, such as a number of violations performed or attempted (1, 2, 3, etc.). In another
embodiment, the administrative domain state 320 stores information regarding tampering
with managed servers 130. For example, the global security module 390 analyzes, for a
particular managed server 130, the operating system-level tampering information stored in
the global security data repository 335. The global security module 390 then sets a
tampering-specific configured characteristic of that managed server to a particular value, such
as a Boolean value that indicates the presence/absence of tampering.

[00168] In another embodiment, the administrative domain state 320 stores information
regarding one or more Unmanaged Device Groups (UDG). Members of a first UDG are
known attackers or bad actors (e.g., unmanaged devices 140 that pose security threats). The
global security module 390 maintains this bad-actor UDG by adding or removing
attackers/bad actors as necessary. For example, the global security module 390 uses the log
information, detected intrusion information, and/or bad actor information stored in the global
security data repository 335 to identify a “bad” unmanaged device 140. If the global security
module 390 identifies a particular attacker or bad actor, then the global security module adds
that actor to the bad-actor UDG. In one embodiment, the bad-actor UDG is used to identify
unmanaged devices 140 whose network connections (to or from a managed server 130)
should be blocked, as described below. In another embodiment, the bad-actor UDG is used in
the administrative domain-wide management policy 330 (e.g., within the provided-by or
used-by portion of a rule).

[00169] Members of other UDGs are known to be “risky”” and have associated “risk
scores.” For example, members of a first risky UDG have risk scores of “1”°, members of a
second risky UDG have risk scores of “2”, etc. The global security module 390 maintains the
risky UDGs by adding or removing unmanaged devices 140 as necessary. For example, the
global security module 390 uses the log information, detected intrusion information, and/or
bad actor information stored in the global security data repository 335 to identify a risky
unmanaged device 140 and that device’s risk score. If the global security module 390

identifies a particular risky unmanaged device 140, then the global security module adds that

41

WO 2015/076904 PCT/US2014/054505

unmanaged device to the appropriate risky UDG (based on the unmanaged device’s risk
score). In one embodiment, a risky UDG is used to tweak, tune, refine, or improve the
operation of the local security module 430, as described below. In another embodiment, a
risky UDG is used in the administrative domain-wide management policy 330 (e.g., within
the provided-by or used-by portion of a rule).

[00170] The administrative domain state update module 385 receives changes to the
administrative domain state 320 and processes the changes accordingly, as explained above.
This enables the detection of an attack on one managed server 130 to be distributed as a
dynamic enforcement policy to other managed servers so that they are protected. In other
words, a feedback loop exists where the managed servers 130 send security-related
information to the global manager 120, and the global manager 120 generates management
instructions based on the security-related information and sends the instructions to the
managed servers 130.

[00171] In particular, updated relevant actor-sets (e.g., actor-sets associated with
changed UDGs or changed managed servers) might be sent to various managed servers 130.
In one embodiment, receipt of the updated relevant actor-sets causes those managed servers
to reconfigure their management modules 132. For example, the reconfigured management
modules 132 might cease allowing communications to and/or from unmanaged devices 140
that are members of the first UDG (thereby blocking all of these communications). In another
embodiment, receipt of the updated relevant actor-sets causes the local security modules 430
in those managed servers to operate differently. For example, the local security modules 430
might modify or tune their analyses such that data is analyzed differently based on the risk
score of an unmanaged device 140. The threshold for reporting security information
regarding a particular unmanaged device 140 might be lower if the device’s risk score is high.
As another example, the local security modules 430 might block different outbound
connections based on an updated bad-actor UDG.

[00172] Note that an attack might be distributed so that any one single managed server
130 might not know that it is under attack. Since the managed servers 130 send security-
related information to the global manager 120, the global security module 390 can detect
attack patterns across the administrative domain 150 that no single probe in any one part of
the domain could see in isolation. When a domain-wide attack is detected by the global
security module 390, the global security module can follow the same mechanism as described
above (namely, modifying the administrative domain state 320) to distribute dynamic

enforcement policy to other managed servers 130 so that they are protected.

42

WO 2015/076904 PCT/US2014/054505

[00173] Since the global security module 390 has access to both application-based
anomalies and network-based anomalies, its analysis of information stored in the global
security data repository 335 is more accurate. The global security module 390 can also act
more quickly and does not need to wait for longer periods of time before taking enforcement
action (e.g., modifying the administrative domain state 320). Also, the global security module
390 can identify an attack that is unique to a particular administrative domain 150. That
attack could be targeting only that domain, and the attack would be “in the noise” on other
internet-scale security systems. Also, because of the placement of the managed servers 130
(specifically, their policy implementation modules 136) in the administrative domain 150, the
global security module 390 is also capable of catching internal threats from within the
domain from insiders or, alternately, botnets that have made it through the domain’s
perimeter defenses and are now trying to move sideways within the domain.

[00174] In one embodiment, the global security module 390 also performs one or more
of the following functions:

[00175] a) Statistical analysis of information stored in the global security data repository
335 — The global security module 390 analyzes information stored in the global security data
repository 335 to determine the top “N” items in different categories. The categories can be,
for example, the top individual nodes that are communicating, the top pairs of nodes that are
communicating, the top IP addresses blocked by managed servers 130, and the top IP
addresses allowed by managed servers with high risk scores. The statistics can be calculated
on multiple levels, such as per managed server, per datacenter, per business unit, and per
administrative domain 150.

[00176] b) Identification of “bad actors” — The global security module 390 identifies bad
actors using configured thresholds of activities.

[00177] In one embodiment, the global security module 390 is extensible and/or security
analytics functions can be implemented to provide both global alerting and dynamic
enforcement based on different threats and attack types.

[00178] Now that the global security module 390 has been described, it is helpful to
work through an example. The environment 100 (especially the global manager 120 and the
managed servers 130) enables a managed server to be put into “quarantine mode.” Quarantine
mode isolates a particular managed server 130 from other managed servers. For example, an
infected or badly-behaving managed server 130 is quarantined from the rest of the “healthy”
managed servers.

[00179] When a managed server 130 is in quarantine, other managed servers

43

WO 2015/076904 PCT/US2014/054505

(specifically, their management modules 132) block inbound network traffic that originated
from the quarantined server. In addition, the management module 132 installed on the
quarantined server puts itself into a configurable self-quarantine mode where (by default)
outbound network traffic is blocked, and only administrative inbound network traffic is
allowed. If the quarantined server has been rooted and the attacker is smart enough, then the
self-quarantine mode can be circumvented. However, in a large number of cases of less
sophisticated viruses (and in cases where an infected system does not yet have a malicious
payload and is just performing reconnaissance), self-quarantine mode helps provide an
additional layer of protection. Even in the case of a very advanced threat, other managed
servers 130 provide isolation from the quarantined server.

[00180] In one embodiment, quarantine mode is implemented as follows: First, the
global security module 390 determines to quarantine a particular managed server 130. For
example, the global security module 390 determines that a network attack originated from the
particular managed server 130 or the particular managed server 130 has a vulnerability. This
determination can be based on, for example, an action performed by the global manager 120
(c.g., analysis of information stored in the global security data repository 335) and/or a
notification received by the global manager from an external source (e.g., a managed server
130, a third-party vulnerability scanner, or a user command). A notification received from a
managed server 130 can concern, for example, a rogue process/action or operating system-
level tampering. A notification received from a vulnerability scanner can concern, for
example, devices that have vulnerabilities. A notification received from a user command can
concern, for example, a bad actor that was identified by a person using any possible means.
[00181] Then, the global security module 390 modifies the administrative domain state
320 to indicate that the particular managed server 130 is quarantined. For example, the global
security module 390 adds the particular managed server 130 to a special quarantine actor-set
(referred to herein as Actor-Set Q or “ASQ”). The administrative domain state 320 stores
information regarding Actor-Set Q, whose members are quarantined. The global security
module 390 maintains Actor-Set Q by adding or removing managed servers 130 as necessary.
[00182] In another example, the global security module 390 sets a quarantine-specific
configured characteristic (referred to herein as “CCq”) to a particular value, such as a threat
level (1, 2, 3, etc.). CCq can be used to define Actor-Set Q conditionally, where each member
of Actor-Set Q has a CCq value greater than zero (“CCg>0"). CCq can also be used to
conditionally define multiple quarantine actor-sets (e.g., one quarantine actor-set for each

threat level, where each member of that actor-set has the same CCq value). CCq can also be

44

WO 2015/076904 PCT/US2014/054505

used in conjunction with a rule’s condition portion (a Boolean expression) to specify whether
the rule applies to a particular managed server 130. For example, a condition portion of
“CCq=0" excludes all quarantined servers, regardless of their threat levels. This condition
portion can be used with a whitelist-model rule to prevent quarantined servers from acting as
providers or consumers.

[00183] A quarantine actor-set, whether defined conditionally or by explicitly-assigned
members, can be used in the administrative domain-wide management policy 330 within a
rule’s used-by (UB) portion or provided-by (PB) portion. Specifically, a quarantine actor-set
can be used as part of a set difference calculation (e.g., subtraction of common set members).
For example, the UB portion “* - <quarantine actor-set>" specifies that anybody except
members of the quarantine actor-set can use a service, where the wildcard character “*”
denotes anybody, the subtraction character “-” denotes “except”, and “<quarantine actor-
set>"" denotes any type of quarantine actor-set (whose members could be, for example, all
quarantined managed servers or only managed servers with particular CCq values (e.g.,
CCqy>2 or CCq<5)). A quarantine actor-set can also be used to positively indicate a provider
or consumer. For example, the PB portion “<quarantine actor-set>" specifies that members of
the quarantine actor-set provide a service, such as allowing connections from devices that are
part of an administrative security response team.

[00184] Note that using CCq in a rule’s condition portion can be logically equivalent to
using a quarantine actor-set in a set difference calculation in a rule’s UB portion or PB
portion. For example, a first rule with <UB=Web, PB=Database, Condition= “CCq=0"> is
logically equivalent to a second rule with <UB=Web-ASQ, PB=Database-ASQ>, where CCq
defines ASQ conditionally (CCgp>0).

[00185] The administrative domain state update module 385 receives this change to the
administrative domain state 320 and processes the change accordingly, as explained above. In
particular, updated management instructions (e.g., relevant actor-sets and/or function-level
instructions) are sent to managed servers 130. Receipt of the updated management
instructions causes those managed servers (specifically, their policy compilation modules
410) to generate new management module configurations 134 and reconfigure their
management modules 132 accordingly. The new management module configurations 134 are
generated based on the updated management instructions.

[00186] For a quarantined managed server 130, the received updated management
instructions cause that server to enter self-quarantine mode. For example, if the function-level

instructions follow a whitelist-type model (e.g., providing an exhaustive list of what the

45

WO 2015/076904 PCT/US2014/054505

server may do), then the updated function-level instructions might be a subset of the
previously-received function-level instructions. As a result, the quarantined managed server
130 will not be allowed to perform as many tasks as it did when it was not quarantined.
[00187] For a non-quarantined managed server 130, the received updated management
instructions (specifically, any quarantine actor-sets and/or quarantine function-level
instructions) cause that server to isolate the quarantined server. (Note that the quarantine
function-level instructions need not be sent again from the global manager 120 to the
managed servers 130 if those instructions were previously sent and have not changed.) In
particular, the policy compilation module 410 applies the quarantine function-level
instructions to members of the quarantine actor-sets and does not apply the standard function-
level instructions to those members. The reconfiguration of the management module 132
causes the management module to block inbound traffic from the members of the quarantine
actor-sets (i.e., the quarantined managed servers 130).

[00188] At some point, it might be appropriate to “unquarantine” a quarantined managed
server 130 (i.e., release the server from quarantine mode). For example, if the quarantined
managed server 130 has been made safe (e.g., by removing malicious software or
vulnerabilities), then it might be appropriate to unquarantine that server. Once the managed
server 130 is unquarantined, it will no longer be isolated from other managed servers and will
be released from self-quarantine mode.

[00189] In one embodiment, releasing a quarantined managed server 130 from
quarantine mode is implemented as follows: First, the global security module 390 determines
to release a particular managed server 130 from quarantine. For example, the global security
module 390 determines that the managed server 130 no longer poses a security threat. This
determination can be based on, for example, an action performed by the global manager 120
(c.g., analysis of information stored in the global security data repository 335) and/or a
notification received by the global manager from an external source (e.g., a third-party
vulnerability scanner or a user command).

[00190] A notification received from a vulnerability scanner can concern, for example,
devices that have vulnerabilities. In one embodiment, the vulnerability notification lists
devices that previously had vulnerabilities but no longer do. In another embodiment, the
vulnerability notification lists devices that currently have vulnerabilities. In that embodiment,
the global security module 390 can compare a recent vulnerability notification to an old
vulnerability notification to determine which devices previously had vulnerabilities but no

longer do. A notification received from a user command can concern, for example, a

46

WO 2015/076904 PCT/US2014/054505

managed server 130 that was identified by a person as no longer posing a security threat.
[00191] Then, the global security module 390 modifies the administrative domain state
320 to indicate that the particular managed server 130 is released from quarantine. For
example, the global security module 390 removes the particular managed server 130 from a
special quarantine actor-set. In another example, the global security module 390 sets a
quarantine-specific configured characteristic to a particular value, such as a threat level (e.g.,
0 for no threat).

[00192] The administrative domain state update module 385 receives this change to the
administrative domain state 320 and processes the change accordingly, as explained above. In
particular, updated management instructions (e.g., relevant actor-sets and/or function-level
instructions) are sent to managed servers 130. Receipt of the updated management
instructions causes those managed servers (specifically, their policy compilation modules
410) to generate new management module configurations 134 and reconfigure their
management modules 132 accordingly. The new management module configurations 134 are
generated based on the updated management instructions.

[00193] For a managed server 130 released from quarantine, the received updated
management instructions cause that server to exit self-quarantine mode. For example, if the
function-level instructions follow a whitelist-type model (e.g., providing an exhaustive list of
what the server may do), then the updated function-level instructions might be a superset of
the previously-received function-level instructions. As a result, the unquarantined managed
server 130 will be allowed to perform more tasks than it did when it was quarantined.
[00194] For a different managed server 130, the received updated management
instructions (specifically, any quarantine actor-sets and/or quarantine function-level
instructions) cause that server to stop isolating the newly-unquarantined server. In particular,
the policy compilation module 410 applies the quarantine function-level instructions to
members of the quarantine actor-sets (which no longer include the newly-unquarantined
server) and does not apply the standard function-level instructions to those members. The
reconfiguration of the management module 132 causes the management module to block
inbound traffic from the members of the quarantine actor-sets.

[00195] FIG. 10 is a flowchart illustrating a method 1000 of quarantining a managed
server 130 within an administrative domain 150, according to one embodiment. The
administrative domain 150 includes a plurality of managed servers 130 that use management
instructions to configure management modules 132 so that the configured management

modules implement an administrative domain-wide management policy that comprises a set

47

WO 2015/076904 PCT/US2014/054505

of one or more rules, so that the quarantined managed server is isolated from other managed
servers in the plurality of managed servers. Other embodiments can perform the steps in
different orders and can include different and/or additional steps. In addition, some or all of
the steps can be performed by entities other than those shown in FIG. 1.

[00196] When the method 1000 starts, a description of a managed server 130 (the
managed server that will be quarantined) has already been stored in an administrative domain
state 320 of a global manager 120. Also, actor-sets for the administrative domain have
already been cached in the global manager 120. Finally, a management policy perspective
and relevant actor-sets have already been cached in association with another managed server
130 (different from the quarantined managed server). At this point, the method 1000 begins.
[00197] In step 1010, the description of the managed server 130 is modified to indicate
that the managed server is quarantined. For example, the global security module 390 modifies
the administrative domain state 320 by setting a quarantine-specific configured characteristic
of the managed server 130 to a particular value, thereby specifying a description of the
quarantined managed server.

[00198] In step 1020, cached actor-sets are updated to indicate the quarantined managed
server’s changed state. For example, the global security module 390 uses the actor
enumeration module 370 to update the cached actor-sets for the administrative domain,
thereby specifying updated actor-sets.

[00199] In step 1030, a determination is made regarding which updated actor-sets are
relevant to the other managed server 130. For example, the global security module 390 uses
the relevant actors module 380 to determine which updated actor-sets are relevant to the other
managed server 130, thereby specifying currently-relevant updated actor-sets.

[00200] In step 1040, a determination is made regarding whether the currently-relevant
updated actor sets differ from actor-sets previously sent to the other managed server 130. For
example, the global security module 390 compares the currently-relevant updated actor sets
to actor-sets previously sent to the other managed server 130 (which were cached in
association with the other managed server as “relevant actor-sets”). Responsive to
determining that the currently-relevant updated actor-sets do not differ from (e.g., are
identical to) the previously-sent actor-sets, the method 1000 proceeds to step 1050.
Responsive to determining that the currently-relevant updated actor-sets do differ from the
previously-sent actor-sets, the method 1000 proceeds to step 1060.

[00201] In step 1050, no further action is taken. For example, the global security module
390 takes no further action.

48

WO 2015/076904 PCT/US2014/054505

[00202] In step 1060, an updated actor-set that should be added, removed, or modified
relative to the previously-sent actor-sets is determined. For example, the global security
module 390 compares the currently-relevant updated actor sets to actor-sets previously sent to
the other managed server 130.

[00203] In step 1070, the updated actor-set and an instruction to add, remove, or modify
the updated actor-set are sent to the other managed server. For example, the global security
module 390 sends the updated actor-set and the instruction to the other managed server.
[00204] FIG. 11 is a flowchart illustrating a method 1100 of processing a change to a
state of a group of unmanaged devices 140 within an administrative domain 150, according to
one embodiment. The administrative domain 150 includes a plurality of managed servers 130
that use management instructions to configure management modules 132 so that the
configured management modules implement an administrative domain-wide management
policy that comprises a set of one or more rules. Other embodiments can perform the steps in
different orders and can include different and/or additional steps. In addition, some or all of
the steps can be performed by entities other than those shown in FIG. 1.

[00205] When the method 1100 starts, a description of an unmanaged device group (the
unmanaged device group whose state changes) has already been stored in an administrative
domain state 320 of a global manager 120. Also, actor-sets for the administrative domain
have already been cached in the global manager 120. Finally, a management policy
perspective and relevant actor-sets have already been cached in association with a managed
server 130. At this point, the method 1100 begins.

[00206] In step 1110, the description of the unmanaged device group is modified to add
an unmanaged device to the unmanaged device group. For example, the global security
module 390 modifies the administrative domain state 320 by adding an unmanaged device to
the unmanaged device group.

[00207] In step 1120, cached actor-sets are updated to indicate the unmanaged device
group’s changed state. For example, the global security module 390 uses the actor
enumeration module 370 to update the cached actor-sets for the administrative domain,
thereby specifying updated actor-sets.

[00208] In step 1130, a determination is made regarding which updated actor-sets are
relevant to the managed server 130. For example, the global security module 390 uses the
relevant actors module 380 to determine which updated actor-sets are relevant to the
managed server 130, thereby specifying currently-relevant updated actor-sets.

[00209] In step 1140, a determination is made regarding whether the currently-relevant

49

WO 2015/076904 PCT/US2014/054505

updated actor sets differ from actor-sets previously sent to the managed server 130. For
example, the global security module 390 compares the currently-relevant updated actor sets
to actor-sets previously sent to the managed server 130 (which were cached in association
with the managed server as “relevant actor-sets”). Responsive to determining that the
currently-relevant updated actor-sets do not differ from (e.g., are identical to) the previously-
sent actor-sets, the method 1100 proceeds to step 1150. Responsive to determining that the
currently-relevant updated actor-sets do differ from the previously-sent actor-sets, the method
1100 proceeds to step 1160.

[00210] In step 1150, no further action is taken. For example, the global security module
390 takes no further action.

[00211] In step 1160, an updated actor-set that should be added, removed, or modified
relative to the previously-sent actor-sets is determined. For example, the global security
module 390 compares the currently-relevant updated actor sets to actor-sets previously sent to
the managed server 130.

[00212] In step 1170, the updated actor-set and an instruction to add, remove, or modify
the updated actor-set are sent to the managed server. For example, the global security module

390 sends the updated actor-set and the instruction to the managed server.

[00213] The above description is included to illustrate the operation of certain
embodiments and is not meant to limit the scope of the invention. The scope of the invention
is to be limited only by the following claims. From the above discussion, many variations
will be apparent to one skilled in the relevant art that would yet be encompassed by the spirit

and scope of the invention.

50

WO 2015/076904 PCT/US2014/054505

CLAIMS
1. A method of detecting and reporting a rogue process, the method comprising:
receiving, from a process executing on a managed server, a request to perform an
action;
determining that the action is improper according to a management module within the
managed server, wherein the management module was configured by the
managed server to implement an administrative domain-wide management
policy using management instructions received from a global manager; and
sending, to the global manager, information regarding the improper action or
information regarding the process.
2. The method of claim 1, wherein information regarding the improper action comprises a
type of the improper action, details of the improper action based on the improper action’s
type, or a timestamp indicating when the improper action occurred.
3. The method of claim 1, wherein information regarding the process comprises a name of the
process, a network port on which the process is listening, a network interface on which the
process is listening, a user that initiated the process, a configuration of the process, a
command-line launch argument of the process, or a dependency of the process.
4. The method of claim 1, further comprising:
determining that the process requested a domain name system (DNS) lookup; and
sending, to the global manager, information regarding the DNS lookup.
5. The method of claim 1, further comprising;:
determining that the process attempted to make a network connection; and
sending, to the global manager, information regarding the network connection.
6. The method of claim 1, wherein the information sent to the global manager is used by the
global manager to determine whether the managed server should be quarantined.
7. The method of claim 1, wherein the action comprises initiating a network connection.
8. The method of claim 1, wherein the action comprises listening on a network port or
listening on a network interface.
9. The method of claim 1, wherein the action comprises executing under a context of a user.
10. The method of claim 1, wherein the action comprises loading a shared object.
11. A method of quarantining a managed server within an administrative domain, wherein the
administrative domain includes a plurality of managed servers that use management

instructions to configure management modules so that the configured management modules

51

WO 2015/076904 PCT/US2014/054505

implement an administrative domain-wide management policy that comprises a set of one or
more rules, so that the quarantined managed server is isolated from other managed servers in
the plurality of managed servers, the method comprising:
modifying a description of the managed server to indicate that the managed server is
quarantined, thereby specifying a description of the quarantined managed
server;
updating cached actor-sets to indicate the quarantined managed server’s changed
state, thereby specifying updated actor-sets;
determining which updated actor-sets are relevant to an other managed server, thereby
specifying currently-relevant updated actor-sets;
determining whether the currently-relevant updated actor-sets differ from actor-sets
previously sent to the other managed server; and
responsive to determining that the currently-relevant updated actor-sets are identical
to the previously-sent actor-sets, taking no further action.
12. The method of claim 11, wherein modifying the first description of the quarantined
managed server to indicate that the quarantined managed server is quarantined comprises
setting a value for a quarantine-specific configured characteristic of the quarantined managed
server.
13. The method of claim 11, further comprising determining to quarantine the managed
server.
14. The method of claim 13, wherein determining to quarantine the managed server
comprises determining that a network attack originated from the managed server or
determining that the managed server has a vulnerability.
15. The method of claim 11, further comprising responsive to determining that the currently-
relevant updated actor-sets differ from the previously-sent actor-sets:
determining an updated actor-set that should be added, removed, or modified relative
to the previously-sent actor-sets; and
sending, to the other managed server, the updated actor-set and an instruction to add,
remove, or modify the updated actor-set.
16. The method of claim 15, wherein sending the updated actor-set and the instruction causes
the other managed server to block inbound network traffic that originated from the
quarantined managed server.

17. The method of claim 11, further comprising, prior to updating the cached actor-sets:

52

WO 2015/076904 PCT/US2014/054505

determining, based on the description of the quarantined managed server, additional
information regarding the quarantined managed server; and
modifying the description of the quarantined managed server to indicate the additional
information.
18. The method of claim 11, further comprising:
determining, based on the description of the quarantined managed server, which rules
within the set of rules are currently relevant to the quarantined managed
server, thereby specifying currently-relevant rules;
determining whether the currently-relevant rules differ from previously-relevant rules,
wherein the previously-relevant rules were determined based on the
unmodified description of the managed server; and
responsive to determining that the currently-relevant rules are identical to the
previously-relevant rules, taking no further action.
19. The method of claim 18, further comprising responsive to determining that the currently-
relevant rules differ from the previously-relevant rules:
determining a rule that should be added, removed, or modified relative to the
previously-relevant rules;
generating, based on the determined rule, a function-level instruction; and
sending, to the quarantined managed server, the function-level instruction and an
instruction to add, remove, or modify the function-level instruction.
20. The method of claim 19, wherein sending the function-level instruction and the
instruction to add, remove, or modify causes the quarantined managed server to block
outbound network traffic.
21. The method of claim 19, wherein sending the function-level instruction and the
instruction to add, remove, or modify causes the quarantined managed server to allow only
administrative inbound network traffic.
22. The method of claim 11, further comprising:
determining which updated actor-sets are relevant to the quarantined managed server,
thereby specifying second currently-relevant updated actor-sets;
determining whether the second currently-relevant updated actor-sets differ from
second actor-sets previously sent to the quarantined managed server; and
responsive to determining that the second currently-relevant updated actor-sets are

identical to the previously-sent second actor-sets, taking no further action.

53

WO 2015/076904 PCT/US2014/054505

23. A method of processing a change to a state of a group of unmanaged devices within an
administrative domain, wherein the administrative domain includes a plurality of managed
servers that use management instructions to configure management modules so that the
configured management modules implement an administrative domain-wide management
policy that comprises a set of one or more rules, the method comprising:
modifying a description of the unmanaged device group to add an unmanaged device
to the unmanaged device group;
updating cached actor-sets to indicate the unmanaged device group’s changed state,
thereby specifying updated actor-sets;
determining which updated actor-sets are relevant to a managed server, thereby
specifying currently-relevant updated actor-sets;
determining whether the currently-relevant updated actor-sets differ from actor-sets
previously sent to the managed server; and
responsive to determining that the currently-relevant updated actor-sets are identical
to the previously-sent actor-sets, taking no further action.
24. The method of claim 23, further comprising determining to add the unmanaged device to
the unmanaged device group.
25. The method of claim 23, wherein determining to add the unmanaged device to the
unmanaged device group comprises determining that the unmanaged device poses a security
threat.
26. The method of claim 23, further comprising responsive to determining that the currently-
relevant updated actor-sets differ from the previously-sent actor-sets:
determining an updated actor-set that should be added, removed, or modified relative
to the previously-sent actor-sets; and
sending, to the managed server, the updated actor-set and an instruction to add,
remove, or modify the updated actor-set.
27. The method of claim 23, wherein sending the updated actor-set and the instruction causes
the managed server to block inbound network traffic that originated from the unmanaged
device or to block outbound network traffic that is destined for the unmanaged device.
28. A non-transitory computer-readable storage medium storing computer program modules
for quarantining a managed server within an administrative domain, wherein the
administrative domain includes a plurality of managed servers that use management
instructions to configure management modules so that the configured management modules

implement an administrative domain-wide management policy that comprises a set of one or

54

WO 2015/076904 PCT/US2014/054505

more rules, so that the quarantined managed server is isolated from other managed servers in
the plurality of managed servers, the computer program modules executable to perform steps
comprising:
modifying a description of the managed server to indicate that the managed server is
quarantined, thereby specifying a description of the quarantined managed
server;
updating cached actor-sets to indicate the quarantined managed server’s changed
state, thereby specifying updated actor-sets;
determining which updated actor-sets are relevant to an other managed server, thereby
specifying currently-relevant updated actor-sets;
determining whether the currently-relevant updated actor-sets differ from actor-sets
previously sent to the other managed server; and
responsive to determining that the currently-relevant updated actor-sets are identical
to the previously-sent actor-sets, taking no further action.
29. A system for quarantining a managed server within an administrative domain, wherein
the administrative domain includes a plurality of managed servers that use management
instructions to configure management modules so that the configured management modules
implement an administrative domain-wide management policy that comprises a set of one or
more rules, so that the quarantined managed server is isolated from other managed servers in
the plurality of managed servers, the system comprising:
a non-transitory computer-readable storage medium storing computer program
modules executable to perform steps comprising:
modifying a description of the managed server to indicate that the managed
server is quarantined, thereby specifying a description of the
quarantined managed server;
updating cached actor-sets to indicate the quarantined managed server’s
changed state, thereby specifying updated actor-sets;
determining which updated actor-sets are relevant to an other managed server,
thereby specifying currently-relevant updated actor-sets;
determining whether the currently-relevant updated actor-sets differ from
actor-sets previously sent to the other managed server; and
responsive to determining that the currently-relevant updated actor-sets are
identical to the previously-sent actor-sets, taking no further action; and

a computer processor for executing the computer program modules.

55

WO 2015/076904 PCT/US2014/054505

1/11

—
o

Global manager
120

I

Managed server 130A Managed server 130B Unmanaged Unmanaged |
device 140A device 140B :

Management Management |
module 132 module 132 |

I

I

Mgmt. module Mgmt. module |
configuration configuration |
134 134 |

I

I

Policy Policy I
implementation implementation |
module 136 module 136 :

I

I

WO 2015/076904 PCT/US2014/054505

2/11

202
\ Processor

21 8\
I
Display / 204
I I
P — | Chipset |
I |
I |
| 220 | 206
212
Graphics Adapter I Memory I Memory
; Controller Hub i
I |
| |
| |
| |
208 | | 216
| | 4
| |
Storage Device | I/O Controller | Network
Hub : Adapter
|
| |
| |
e/
210
214
é/
Keyboard 200 Pointing Device

FIG. 2

WO 2015/076904

3/11

PCT/US2014/054505

Global manager 120

Repository 300

Administrative domain state 320

Administrative domain-wide
management policy 330

Global security data repository 335

Processing server 310

Policy engine module 340

Relevant rules module 350

Function-level instruction generation
module 360

Actor enumeration module 370

Relevant actors module 380

Administrative domain state update
module 385

Global security module 390

FIG. 3

WO 2015/076904 PCT/US2014/054505

4/11

Policy implementation module 136

Local state repository 400

Policy compilation module 410

Local state update module 420

Local security module 430

FIG. 4

WO 2015/076904 PCT/US2014/054505

5/11

o
(]
o

Access administrative domain state and
management policy 510

!

Determine relevant rule(s)
520

!

Enumerate actor(s)
530

!

Generate function-level instruction(s)
540

!

Determine relevant actor(s)
550

!

Send management instructions to
managed server
560

FIG. 5

WO 2015/076904 PCT/US2014/054505

6/11

(o]
o

Receive management instructions from
global manager
610

!

Access local state
620

!

Generate management module
configuration
630

!

Configure management module
640

FIG. 6

WO 2015/076904 PCT/US2014/054505

711

~J
o

Determine information re: current local
state of managed server (MS)
710

!

Information re: current local state of MS| No
differs from information stored in local
state repository? 720

Yes¢

Store differing information in local state
repository
740

!

Re-generate management module
configuration
750

!

Send differing information to global
manager
760

!

End
730

FIG. 7

WO 2015/076904 PCT/US2014/054505

8/11

Receive change regarding managed
server
810

!

Store received information
820

!

Analyze description of managed server
(optional)
830

!

Update administrative domain’s actor- | No
sets?
840

Yes¢

Update administrative domain’s actor-
sets and notify affected managed
servers accordingly 850

!

Update managed server’'s management
instructions? ——
860

Yes¢

Update managed server’'s management
instructions
870

!

End
880

Co
o

No

FIG. 8

WO 2015/076904

9/11

Receive, from a process, a request to
perform an action
910

!

Determine that the action is improper
920

!

Send to global manager information
regarding the improper action or the
process 930

FIG.9

PCT/US2014/054505

(o]
(]
o

WO 2015/076904

10/11

Modify description of managed server
to indicate that managed server is
quarantined 1010

'

Update cached actor-sets to indicate
quarantined server’'s changed state
1020

!

Determine which updated actor-sets
are relevant to other managed server
1030

!

Currently-relevant updated actor-sets
differ from actor-sets previously sent to
other server? 1040

PCT/US2014/054505

Yes
—>

I

Determine updated actor-set that
should be added, removed, or modified
1060

!

Take no further action
1050

Send to other server updated actor-set
and instruction to add, remove, or
modify updated actor-set 1070

FIG. 10

WO 2015/076904

PCT/US2014/054505

o

Determine updated actor-set that
should be added, removed, or modified
1160

!

11/11
Modify description of unmanaged
device group to add an unmanaged
device 1110
Update cached actor-sets to indicate
unmanaged device group’s changed
state 1120
Determine which updated actor-sets
are relevant to managed server
1130
Currently-relevant updated actor-sets |y g
differ from actor-sets previously sent to —
server? 1140
¢ No
Take no further action
1150

Send to server updated actor-set and
instruction to add, remove, or modify
updated actor-set 1170

FIG. 11

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - claims
	Page 54 - claims
	Page 55 - claims
	Page 56 - claims
	Page 57 - claims
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings

