(51) International Patent Classification:
C07K 7/08 (2006.01) A61K 47/42 (2006.01)

(21) International Application Number:
PCT/US20 13/063250

(22) International Filing Date:
3 October 2013 (03. 10.2013)

(25) Filing Language:
English

(26) Publication Language:
English

(30) Priority Data:
61/710,289 5 October 2012 (05. 10.2012) US

(71) Applicant: THE UNIVERSITY OF KANSAS [US/US];
245 Strong Hall, 1450 Jayhawk Boulevard, Lawrence, KS 66045 (US).

(72) Inventor: PETERSON, Blake, R.; 1746 Lake Alvamar Drive, Lawrence, KS 66047 (US).

(74) Agents: BENNS, Jonathan M. et al; 1389 Center Drive,
Suite 300, Park City, UT 84098 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SY, TH, TI, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))
— with sequence listing part of description (Rule 52(a))

(54) Title: CONFORMATIONALLY-CONSTRAINED KINKED ENDOSOMAL-DISRUPTING PEPTIDES

(57) Abstract: A conformationally-constrained kinked peptide includes: a conformationally-constraining portion and a kinked portion linked to the conformationally-constraining portion that conformationally constrains the kinked portion, the kinked portion comprising an endosomal-disrupting peptide. The peptide can include a peptide sequence of one of SEQ ID NOS: 1, 5-38, or 40-69. The conformationally-constrained kinked portion can be a majority portion or minority of the peptide. The peptide can include one of Formulae 1-IC, wherein: CC-Peptide includes a peptide that conformationally constrains the ED-KP; Peptide independently includes natural, unnatural, essential or non-essential aromatic, aliphatic, or other amino acids having L or D configuration; ED-KP includes an endosomal-disrupting kinked peptide; Xaa, Xaa 1, and Xaa 2 are independently one or more natural or non-natural amino acids, essential amino acids, or non-essential amino acids, or derivatives of amino acids having L or D configuration; LI and L2 are independently linkers; and nl, n2, n3, and n4 are independently 0-50.

Fig. 1
CONFORMATIONAL Y-CONSTRAINED KINKED ENDOSOMAL-DISRUPTING PEPTIDES

CROSS-REFERENCE

This patent application claims priority to U.S. Provisional Patent Application 61/710,289 filed October 5, 2012, which provisional application is incorporated herein by specific reference in its entirety.

GOVERNMENT SUPPORT

This invention was made with government support under contract No. 5R01CA083831 awarded by the National Institutes of Health. The government has certain rights in the invention.

SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on October 2, 2013, is named K1262.10028WO01_SL.txt and is 52,250 bytes in size.

BACKGROUND

It is often difficult to deliver biologically active compounds, such as proteins, peptides, nucleic acids, drugs, and diagnostic compounds into cells across the cell membrane because cell membranes resist the passage of these compounds. One method for transmembrane delivery of exogenous molecules is based on the mechanism of receptor-mediated endocytosis (RME). RME is a major mechanism of uptake of impermeant molecules by mammalian cells (Conner, S. D.; Schmid, S. L. Nature 2003, 422, 37-44). In this process, extracellular ligands bind cell surface receptors that cluster in dynamic regions of cellular plasma membranes. By actively pinching off to form intracellular vesicles, these membrane regions are internalized, encapsulating ligand-receptor complexes in the cytoplasm. These vesicles fuse and form early (primary/sorting) endosomes that are acidified (pH about 6) by the activation of proton pumps, conditions that generally promote the dissociation of receptors from bound ligands. Free receptors often cycle back to the cell surface, generally via subsequent trafficking through related recycling endosomes (also termed the endocytic recycling compartment) (Maxfield, F. R.; McGraw, T. E. Nat. Rev. Mol. Cell. Biol. 2004, 5, 121-132).
In contrast, free ligands are typically directed to more acidic late endosomes and lysosomes (pH 5), where hydrolases and other enzymes promote their degradation. Some viruses and other intracellular pathogens exploit RME to enter cells, but these organisms avoid degradation in lysosomes by expressing pH-dependent fusogenic proteins that disrupt endosomal membranes (Lakadamyali, M.; Rust, M. J.; Zhuang, X. Microbes Infect. 2004, 6, 929-836). To escape entrapment within these membranes and gain access to the cytosol, Semliki Forest virus disrupts early endosomes whereas influenza virus disrupts late endosomes during the course of infection. Nevertheless, many exogenous molecules that are introduced into cells using RME are not able to escape degradation in the late endosomes or the lysosome.

Accordingly, it can be important in various medical therapies to destabilize an endosome in order to allow for biologically active agents to be released from the endosome and/or lysosome into cellular cytoplasm. As such, it may be advantageous to identify substances that destabilize the endosome and/or lysosome.

BRIEF DESCRIPTION OF THE FIGURES

The foregoing and following information as well as other features of this disclosure will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. Understanding that these drawings depict only several embodiments in accordance with the disclosure and are, therefore, not to be considered limiting of its scope, the disclosure will be described with additional specificity and detail through use of the accompanying drawings, in which:

Figure 1 shows structures of cholesterylamine-PC4 endosome disruptor (Compound 1, Panel A), a fluorescent disulfide-linked cholesterylamine (Compound 2, Panel B), and products of cleavage of Compound 2 by reduced glutathione (GSH, panel B), and Panel C shows proposed mechanism of release of the fluorescent probe Compound 3 upon disruption of early endosomes of animal cells.

Figures 2A-2C include dose-response curves for disruption of endosomes of Jurkat lymphocytes by synthetic compounds of the invention.

Figure 3 includes a graph that shows solubility of compounds of the invention in PBS.

Figure 4A includes micrographs obtained after treatment with Compound 59.

Figure 4B includes micrographs obtained after treatment with Compound 60.
Figure 5 includes a graph that shows endosomal release profiles of compounds of the invention.

Figure 6 includes a micrograph showing endosomal release obtained after treatment with Compound 59.

5 DETAILED DESCRIPTION

Generally, the present invention relates to conformationally-constrained and kinked peptides that have endosomal disrupting properties. As such, the present invention relates to conformationally-constrained endosomal-disrupting peptides, cargo molecules thereof, cargo delivery systems thereof, and methods of manufacture and use thereof. Standard chemical synthesis techniques and peptide chemistry can be used for manufacturing the molecules of the invention. Standard agent delivery into cells and endosomal disruption techniques to release cargo into cytoplasm in *in vitro* or *in vivo* can employ the use of the molecules of the invention. Molecules of the invention can include, without limitation, conformationally-constrained endosomal-disrupting peptides and sequences thereof, conjugates thereof, cargo molecules thereof having cargo and/or targeting moieties with or without linkers with respect to the endosomal-disrupting peptide, longer polypeptides having the peptide sequence, and any other molecular constructions with the peptide sequence.

In one example, the conformationally-constrained endosomal-disrupting peptide can be coupled to a targeting moiety, such as a cell membrane-targeting moiety like a cholesterol or cholesterol derivative directly or through a linker and/or coupling group. The targeting moiety may be any protein, peptide, nucleic acid, compound or substance that facilitates RME internalization into an endosome. In another example, the conformationally-constrained endosomal-disrupting peptide can be coupled to a cargo moiety, such as a therapeutic agent, such as siRNA, small molecule drug, macromolecule drug, polypeptide, polynucleotide, or the like. In yet another example, the conformationally-constrained endosomal-disrupting peptide is linked at one end to a cargo moiety and a targeting moiety on the other end. In another example, the conformationally-constrained endosomal-disrupting peptide is linked at one end to a targeting moiety and a cargo moiety is linked to an internal region of the compound, such as near the targeting moiety, to a linker between the targeting moiety and endosomal-disrupting peptide, or to a part of the endosomal-disrupting peptide.
The conformationally-constrained endosomal-disrupting peptide can be designed based on a viral protein that facilitates endosome release. The conformationally-constrained endosomal-disrupting peptide can be configured as a membrane-lytic peptide and may include a hydrophobic, amphipathic, or other helical or non-helical sequence kinked by a proline or glycine residue. The kinked helical, non-helical, or unstructured peptide or peptidomimetic can enable the conformationally-constrained endosomal-disrupting peptide or peptidomimetic to destabilize the endosome so that cargo associated therewith can pass through pores induced in the endosome membrane. In one aspect, the conformationally-constrained endosomal-disrupting peptide is configured to mimic a viral protein that destabilizes an endosome. The conformationally-constrained endosomal-disrupting peptide can be a non-natural analogue of the dodecapeptide PC4 (sequence: SSAWWSYWPPVA; SEQ ID NO: 39). The conformationally-constrained endosomal-disrupting peptide can be linked to any targeting moiety, such as derivatives of cholesterol, other lipids, proteins, peptides, nucleic acids, carbohydrates, or other compounds which can function as cellular and endosome-targeting elements.

In one embodiment, the conformationally-constrained endosomal-disrupting peptide can include a sequence having the SSA tripeptide of PC4 replaced with helix-inducing or otherwise conformationally-constraining 2-aminoisobutyric acid (Aib) residues or derivatives thereof in order to be an active disruptor of early endosomes. In one aspect, the peptides can include covalently linking endosome disruptive peptides to both a targeting moiety (e.g., cholesteryl carbamate) and a disulfide-linked cargo (e.g., fluorophore) to provide soluble integrated delivery systems capable of release of the cargo into cellular cytosol. The conformationally-constrained endosomal-disrupting peptides disclosed here and related bioconjugates have applications as agents for cellular delivery and targeting of therapeutics and probes.

As a new strategy for delivery of cell impermeant molecules into cells, we investigated mimics of cholesterol that are designed to target membrane-active kinked peptides to early endosomes. Mimics of cholesterol were studied because free (unesterified) cholesterol is a key component of lipid bilayers of mammalian cells that resides predominantly (-60%) in the plasma membrane. Much of the remaining free cholesterol (-35%) is stored in membranes of early endosomes, particularly the endocytic recycling compartment (ERC). Constitutive cycling of cholesterol between the ERC to the plasma membrane is used to maintain homeostasis in most mammalian cells. This
Dynamic lipid trafficking occurs through both non-vesicular and vesicular mechanisms, and the latter process is similar to plasma membrane recycling of many cell surface receptors. We previously identified N-alkyl-3P-cholesterylamines (3P-amino-5-cholestenes) as unique synthetic mimics of cholesterol that can be avidly incorporated in the outer leaflet of plasma membranes of cells of higher eukaryotes. This incorporation occurs at least in part via a receptor-mediated process that can be inhibited by ezetimibe. Once incorporated, these compounds rapidly cycle between the plasma membrane and early/recycling endosomes, similar to many natural cell surface receptors. We found that by incorporating glutamic acid residues proximal to N-alkyl-3P-cholesterylamine and other structurally related cholesterol mimics, these compounds preferentially localize in early endosomes compared with the plasma membrane, providing a unique platform for targeting molecules to these compartments.

By linking a membrane-lytic peptide termed PC4 to N-alkyl-3P-cholesterylamine, we previously demonstrated release of a disulfide-linked fluorescent probe from early endosomes into the cytoplasm and nucleus of living mammalian cells. This novel two-component delivery system employed Compound 1 (Figure 1, panel A) to promote cleavage of the disulfide of cholesterylamine Compound 2 and release fluorophore Compound 3 (Figure 1, panel B) into the cytosol and nucleus of animal cells through a proposed mechanism illustrated in Figure 1 (Panel C). Compound 4 remains after cleavage and release of Compound 3. This mechanism is based on the observation that, like the extracellular environment, some endosomes appear to be oxidizing and disruption of these compartments can allow reduced glutathione (GSH), present at high concentrations in the cytosol, to cleave disulfides targeted to the lumen of these organelles. Compared to the myriad studies of cell-penetrating peptides such as HIV-1 Tat, Penetratin, Antennapedia, and many others, that nearly universally contain multiple basic amino acid residues, the delivery approach shown in Figure 1 is unique in that basic amino acids are not required for cellular uptake or release of cargo by these agents. Moreover, because some cell-penetrating peptides with a preponderance of basic groups exhibit substantial toxicity, the avoidance of these groups may benefit certain delivery applications.

Accordingly, the compounds of the present invention can include unnatural kinked peptides as membrane-lytic agents. The compounds of the present invention can include analogues of Compound 1 that include helix-promoting or otherwise
conformationally-constrained amino acids. The design of the compounds of the invention used alanine scanning and truncation approaches to optimize release of the anionic fluorescent probe Compound 3 from early endosomes. We further constructed integrated delivery systems that combine the features of the conformationally-constrained endosomal-disrupting peptide with targeting moieties and cargo molecules for delivery into the cellular cytosol.

In one embodiment, the compounds of the invention can have improved potency, maintained or increased efficacy of disruption of early endosomes, minimized toxicity in culture, and maximized solubility. We used a combination of solution-phase and solid-phase synthesis to prepare analogues of Compound 1 including lipopeptides (Compounds 5-38) and unmodified peptides (Compounds 39-54). The structures of these compounds are shown in Tables A, B, and C. Many of these analogues include Aib residues (e.g., a stretch of contiguous Aib residues), a naturally occurring amino acid found in some antibacterial peptides. The Aib residues can be derivatives thereof, reaction products thereof, or analogues thereof having peptide linkages. The Aib residues dramatically affect peptide structure, and peptides containing Aib can adopt 3_{10} or alpha helical structures depending on length, the number of Aib residues, and the solvent. In peptides that equilibrate between these structures, high polarity solvents tend to favor alpha helices, whereas the 3_{10}-helix is often observed in low polarity solvents, but Aib can also provide conformational constraint in the absence of defined helical structures.

In one aspect, Compounds 1-4 and 39 are specifically excluded from the invention.

The effects of the compounds of the invention on human Jurkat leukemia cells were evaluated using flow cytometry-based assays of potency, efficacy, and toxicity. Compound potency and efficacy was typically evaluated by incubating cells with endosome disruptors and fluorescent probe Compound 2 (2.5 µM) for 14 h at 37 °C. Because the fluorescence of the carboxyfluorescein of Compound 2 is quenched by the acidity of early endosomes and this fluorophore remains trapped in the cytoplasm when released from these compartments, disruption of endosomes results in enhanced cellular fluorescence that can be readily quantified. Further confirmation of release of the fluorophore was established by confocal microscopy, which revealed green fluorescence throughout the cytoplasm and nucleus for active endosome disruptive agents. Analysis of flow cytometry data by non-linear regression was used to determine IC_{50} values for
potency with the efficacy expressed as a percentage. The efficacy values were defined as the percentage release of carboxyfluorescein compared to the maximal release observed by Compound 1 under the same conditions. Compound 1 typically confers maximal release in this cell line at a concentration of ~ 8 µM. Dose-dependent effects on cellular viability after 48 h at 37 °C in culture were also measured by flow cytometry. Thermodynamic solubility was determined in phosphate buffered saline (PBS, pH 7.4) after equilibration at room temperature for 24 h. Representative dose response curves are shown in Figures 2A-2C, and data for representative compounds is provided in Table A and Table B and Table C.

Compounds were generated that include a targeting moiety, such as a cholesterol derivative, where the generic structures of the formulae of the compounds is provided below in Structures A, A1, A2, X, B, O, U, and Z (notice Structure O is not oxygen). Structure A is a cholesterol derivative with a linker of 5-aminopentanamide or 5-aminopentanoic acid or reaction product thereof or derivative thereof between the chol and peptide R. Structure A1 is a palmitic acid derivative with a linker of 5-aminopentanamide or 5-aminopentanoic acid or reaction product thereof or derivative thereof between the chol and peptide R’. Structure A2 is a cholesteryl carbamate derivative with linker of 3-aminopropanamide or 3-aminopropanic acid or reaction product thereof or derivative thereof between the chol and peptide R’. Structure X is a 6-aminohexanamide or 6-aminohexanoic acid or e-Ahx amino acid or reaction product thereof or derivative thereof, which can be considered a nonstandard amino acid. B is 3-aminopropanamide or 3-aminopropanoic acid or reaction product thereof or derivative thereof, which can be considered a nonstandard amino acid. O is 3-(2-(2-aminoethoxy)ethoxy)ethoxy)propanamide or 3-(2-(2-aminoethoxy)ethoxy)ethoxy)propanoic acid or mini-PEG amino acid or reaction product thereof or derivative thereof, which can be considered a nonstandard amino acid. U is 2-amino-2-methylpropanamide or 2-amino-2-methylpropanoic acid or 2-aminoisobutyric acid or Aib amino acid or reaction product thereof or derivative thereof, which can be considered a nonstandard amino acid. Z is (S)-2-aminopent-4-ynamide or (S)-2-aminopent-4-ynoic acid or vinylglycine or reaction product thereof or derivative thereof, which can be considered a nonstandard amino acid. Structures X, B, O, U, and Z can serve as linkers in the peptide, and may be considered nonstandard amino acids for peptide descriptions and sequence listing purposes, and may include or form amide bonds.
common with amino acids in peptides. The structures of Structures A, Al, A2, X, B, O, U, and Z are illustrated below. The R, R', and R" of Structures A, Al, and A2 are provided in Table A.

Also, R, R', and R" can include another linker and the peptide so that the linker further separates the targeting moiety from the peptide. As such, the linker shown in Structures A, Al, and A2 can include an extended linker. Alternatively, the illustrated linker coupled to the R, R', and R" can be substituted or exchanged for a different linker. Such a linker between the targeting moiety and peptide can be any type of linker, including biodegradable and biostable linkers, and linkers which can include the cargo coupled thereto.
The compounds of Structures A, Al, and A2 can include peptide sequences that are lipid-linked endosome disruptors. They can include a lipidic-targeting moiety (T), a linker (L), and conformationally-constrained endosomal-disrupting peptide (CCEDP) to form T-L-EDP. The linker L can include a cargo molecule coupled thereto, as shown herein, where the cargo can be any cargo for delivery into the cytoplasm.

In Tables A, B, and C, the natural amino acids are represented by single letter codes, with codes for nonstandard amino acids, and X, B, O, U, and Z are defined above. Amino acid residues shown in bold represent changes from sequences directly above in the Table A. Residues underlined in italics flank (see Compound 10) deleted amino acids compared to sequences directly above in Table A.

It should be recognized that the peptide sequences of Compounds 1 and 5-69 of Table A and Table B and Table C and the structures may be used alone. That is, the R, R', and R'' do not have to be linked to a targeting moiety. Accordingly, the peptide sequences of Compounds 5-69 can include an amine end, such as NH₂ or NH₃⁺ instead of the targeting moiety. Also, the targeting moiety of Compounds 5-38 and 55-60 can be included with a different end group or cap, such as an acetyl group (e.g., Ac). Also, the targeting moiety of Compounds 5-38 and 55-60 can be exchanged with a cargo substance. Correspondingly, the NH₃⁺ or Ac of Compounds 39-54 and 61-68 can be exchanged for a targeting moiety or cargo substance.

The peptide sequences of Compounds 5-38 and 40-69 are novel conformationally-constrained peptides. As such, the peptide sequences of Compounds 1 and 5-69 are Peptides 1 and 5-69. The Peptides 1 and 5-69 are identified by the amino acid sequences of Sequences 1 and 5-69. As such, the Compounds 1 and 5-69, Peptides 1 and 5-69, and Sequences 1 and 5-69 correlate, and include SEQ ID NOs: 1 and 5-69 of the Sequence Listing.

In one embodiment, the CONH₂ of Compounds 1 and 5-69 and Peptides 1 and 5-69 can be coupled to a targeting moiety. The targeting moiety can be any as described herein, such as a cholesterol derivative or other. However, either end of the peptides of
Compounds and Peptides 1 and 5-62 may be coupled to a targeting moiety and the other coupled to a cargo substance.

In one embodiment, the CONH$_2$ of Compounds 1 and 5-69 and Peptides 1 and 5-69 can be coupled to a cargo substance. The cargo substance can be any agent to be delivered into a cell. Such cargo substances can be drugs, such as small molecule drugs, nucleic acid drugs (e.g., siRNA), macromolecule drugs or protein drugs, or combinations thereof as well as any other cargo including toxins. The cargo can also be a reporter, such as a fluorophore or enzyme substrate.

In one embodiment, an internal amino acid or other linker moiety of Compounds 1 and 5-69 and Peptides 1 and 5-69 can be coupled to a cargo substance, such as shown in Compounds 55-60. The cargo substance can be any agent to be delivered into a cell. Such cargo substances can be drugs, such as small molecule drugs, nucleic acid drugs (e.g., siRNA), macromolecule drugs or protein drugs, or combinations thereof as well as any other cargo including toxins. The cargo can also be a reporter, such as a fluorophore or enzyme substrate. While a fluorophore is shown in Compounds 55-60, any cargo, such as a drug, may also be coupled in the same manner.

In one embodiment, either the C-terminus or N-terminus of the peptides can have additional peptides or polypeptides. That is, the peptide sequences shown can be internal to a polypeptide.

Figures 4A-4B show dose-response curves for disruption of endosomes of Jurkat lymphocytes by synthetic compounds. Cells were treated with fluorescent molecular probe Compound 2 (2.5 µM) and endosome disruptors for 14 hours at 37 °C. Enhanced cellular fluorescence resulting from release of the pH-sensitive fluorophore Compound 3 into the cytoplasm was quantified by flow cytometry.

Figure 3 shows the thermodynamic solubility values for representative compounds in PBS (pH 7.4) after equilibration for 24 hours.

Table 1 shows the potency, efficacy, toxicity, and solubility of representative synthetic endosome disruptors. The # represents the compound number in accordance with Tables A, B, and C. Concentrations of compound stock solutions were determined by absorbance measurements at 280 nm. Efficacy was determined as % change in cellular fluorescence relative to the maximal response of Compound 1, defined as 100%. Potencies and efficacies in Jurkat lymphocytes were measured by flow cytometry after treatment of cells with the compounds listed and the fluorescent probe Compound 2 (2.5
µM) for 14 hours. Toxicity to this cell line was determined by flow cytometry analysis of light scattering and counterstaining with PI after treatment for 48 h at 37 °C in culture. Thermodynamic solubility in PBS (pH 7.4, ± S.D.) was measured by sonication of 1 mL solutions containing visible solid for 30 minutes at room temperature (22 °C), gentle rocking of these samples for 24 hours at room temperature (22 °C), centrifugation for 1 hour at 16000 g, and absorbance measurements of the supernatant at 280 nm to determine concentration based on calculated extinction coefficients. Values in parentheses represent 95% confidence intervals. N.D., not determined.
Table A

<table>
<thead>
<tr>
<th>Compound NO.</th>
<th>SEQ ID NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,</td>
<td>R = EEXXSSAWWSYWPPVA-CONH2</td>
</tr>
<tr>
<td>5,</td>
<td>R = EEXXAAAWWAYWPPVA-CONH2</td>
</tr>
<tr>
<td>6,</td>
<td>R = BEEXXSAWSYWPVVA-CONH2</td>
</tr>
<tr>
<td>7,</td>
<td>R = BEEXXAAWAYWPPVA-CONH2</td>
</tr>
<tr>
<td>8,</td>
<td>R = BEEXXAAWAYWPPVA-CONH2</td>
</tr>
<tr>
<td>9,</td>
<td>R = BEEXXAAWAYWPPVA-CONH2</td>
</tr>
<tr>
<td>10,</td>
<td>R = BEEUXUUWAYWPPVA-CONH2</td>
</tr>
<tr>
<td>11,</td>
<td>R = BEEUXUUWAYWPPVA-CONH2</td>
</tr>
<tr>
<td>12,</td>
<td>R = BEEUXUUWAYWPPVA-CONH2</td>
</tr>
<tr>
<td>13,</td>
<td>R = BEEXXUWWA WPVA-CONH2</td>
</tr>
<tr>
<td>14,</td>
<td>R = BEEXXUWWAYWPPVA-CONH2</td>
</tr>
<tr>
<td>15,</td>
<td>R = BEEXXUWWAYWPPVA-CONH2</td>
</tr>
<tr>
<td>16,</td>
<td>R = BEEXXUWWAYWPPAA-CONH2</td>
</tr>
<tr>
<td>17,</td>
<td>R = BEEXXUWWAYWPPAA-CONH2</td>
</tr>
<tr>
<td>18,</td>
<td>R = BEEXXUWWAYWPPAA-CONH2</td>
</tr>
<tr>
<td>19,</td>
<td>R = BEEXXUWWAYWPPAA-CONH2</td>
</tr>
<tr>
<td>20,</td>
<td>R = BEEXXUWWAYWPPAA-CONH2</td>
</tr>
<tr>
<td>21,</td>
<td>R = BEEXXUWWAYWPPAA-CONH2</td>
</tr>
<tr>
<td>22,</td>
<td>R = BEEXXUWWAYWPPAA-CONH2</td>
</tr>
<tr>
<td>23,</td>
<td>R = BEEXXUWWAYWPPAA-CONH2</td>
</tr>
<tr>
<td>24,</td>
<td>R = BEEXXUWWAYWPPAA-CONH2</td>
</tr>
<tr>
<td>25,</td>
<td>R = BEEXXUWWAYWPPAA-CONH2</td>
</tr>
<tr>
<td>26,</td>
<td>R = BEEXXUWWAYWPPAA-CONH2</td>
</tr>
<tr>
<td>27,</td>
<td>R = BEEXXUWWAYWPPAA-CONH2</td>
</tr>
<tr>
<td>28,</td>
<td>R = BEEXXUWWAYWPPAA-CONH2</td>
</tr>
<tr>
<td>29,</td>
<td>R = BEEXXUWWAYWPPAA-CONH2</td>
</tr>
<tr>
<td>30,</td>
<td>R = BEEXXUWWAYWPPAA-CONH2</td>
</tr>
<tr>
<td>31,</td>
<td>R = BEEXXUWWAYWPPAA-CONH2</td>
</tr>
<tr>
<td>32,</td>
<td>R = BEEXXUWWAYWPPAA-CONH2</td>
</tr>
<tr>
<td>33,</td>
<td>R" = BZOOUUU UWWAYWPPVA-CONH2</td>
</tr>
<tr>
<td>34^</td>
<td>R" = BZOOUUU UWWAYWPPVA-CONH2</td>
</tr>
<tr>
<td>35^</td>
<td>R" = BZOOUUU UWWAYWPPVA-CONH2</td>
</tr>
<tr>
<td>36,</td>
<td>R" = BZOOUUU UWWAYWPPVA-CONH2</td>
</tr>
<tr>
<td>37^</td>
<td>R" = BZOOUUU UWWAYWPPVA-CONH2</td>
</tr>
<tr>
<td>38,</td>
<td>R" = BZOOUUU UWWAYWPPVA-CONH2</td>
</tr>
</tbody>
</table>
Table B
Compound NO.
SEQ ID NO.
39, Ac-SSAWWSYWPPVA-CONH₂
40, Ac-AAAWWAYWPPVA-CONH₂
41, Ac-UUWWAYWPPVA-CONH₂
42, AC-UUUUWWAYWPPVA-CONH₂
43, H₃N+-UUU UWWAYWPPVA-CONH₂
44, H₃N+-UUUUWWAYWPPVV-CONH₂
45, H₃N+-UUUUAWAYWPPVV-CONH₂
46, H₃N+-UUUUWAAYWPW-CONH₂
47, H₃N+-UUUWWAAWPPV-CONH₂
48, H₃N+-UUUWWAYAPPW-CONH₂
49, H₃N+-UUUUWAYWAPW-CONH₂
50, H₃N+-UUUWWAYWPAW-CONH₂
51, H₃N+-UUUUWAYWPPAV-CONH₂
52, H₃N+-UUUYYAWWPW-CONH₂
53, H₃N+-UUUWYAWWPW-CONH₂
54, H₃N+-UUUWWAWYPW-CONH₂
Table C

<table>
<thead>
<tr>
<th>Compound NO.</th>
<th>SEQ ID NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>61,</td>
<td>Ac-UUUUWWAYWPPVA-CONH₂</td>
</tr>
<tr>
<td>62,</td>
<td>Ac-UUUUUYYAYYPWPW-CONH₂</td>
</tr>
<tr>
<td>63,</td>
<td>Ac-UUUUWWAYWPPW-CONH₂</td>
</tr>
<tr>
<td>64,</td>
<td>Ac-UUUUHHAAHPVYCONH₂</td>
</tr>
<tr>
<td>65,</td>
<td>Ac-UUUUWWAYWPPVL-CONH₂</td>
</tr>
<tr>
<td>66,</td>
<td>Ac-UUUUWWAYWPPLV-CONH₂</td>
</tr>
<tr>
<td>67,</td>
<td>Ac-UUUUWWWAYWPPLL-CONH₂</td>
</tr>
<tr>
<td>68,</td>
<td>Ac-UUUUWWGYWPPVAPA-CONH₂</td>
</tr>
<tr>
<td>69,</td>
<td>Ac-UUUUYYAYYPWPW-CONH₂</td>
</tr>
</tbody>
</table>

55 (n = 1); 56 (n = 2); 57 (n = 3); 58 (n = 4)

(The above compounds disclose "UUUYYAYYPPVV" as SEQ ID NO: 69)

59 (X = Y = S); 60 (X = NH, Y = CO)

(The above compounds disclose "UUUYYAYYPPVV" as SEQ ID NO: 69)
Compound 70 (X=Y=S)
Compound 71 (X=NH, Y=CO)
(Compounds 70 and 71 disclose "UUUYYAYPPVV" as SEQ ID NO: 69)

Compound 72
(Compound 72 discloses "UUUYYAYPPVV" as SEQ ID NO: 69)
(Compound 72 discloses the siRNA sequences as SEQ ID NOS 75-76, respectively, in order of appearance)

Compound 73
(Compound 73 discloses the siRNA sequences as SEQ ID NOS 77 and 76, respectively, in order of appearance)

Compound 74
(Compound 74 discloses "UUUYYAYPPVV" as SEQ ID NO: 69)
Compounds 55-60 and 70-72 and 73 include the peptide sequence of Compound 69 - UUUUYAYYPVV-CONH₂ (SEQ ID NO: 69). Compounds 72 and 73 include the HuRsiRNA having SEQ ID NOS: 75-77. It should be noted that the targeting moiety and cargo can be exchanged for any targeting moiety and cargo. The peptide can be exchanged with other peptides in accordance with the invention.

Some of the analogues investigated (Compounds 5-31) included the N-alkyl-3P-cholesterylamine membrane anchor present in the endosome disruptor (Compound 1). Replacement of the SSA tripeptide of Compound 1 with a more hydrophobic and helix-promoting AAA tripeptide enhanced potency by fourfold (compare Compound 1 with Compound 5). Inclusion of a beta-alanine near the N-terminus further enhanced efficacy (compare Compound 8 with Compound 5). Substitution of the N-terminal AAA tripeptide of Compound 7 with the conformationally-constrained UUU (U=Aib) sequence enhanced potency with some loss of efficacy that may be due to shortening of the constrained peptide (compare Compound 7 with Compound 9). Comparison of Compound 9 with Compound 10 and Compound 11 indicated that truncation of a single residue at the N-terminus or C-terminus of the core PC4-related sequence reduced potency and/or efficacy.

Analysis of the alanine-scanning analogues Compounds 12-18 compared to the reference Compound 9 revealed that many of the aromatic amino acids are helpful for high activity/potency. Additionally, the kinking PP dipeptide (e.g., di-proline sequence) provides maximal activity, but agents with a single proline residue (e.g., Compound 16 and Compound 17) retain substantial activity. These studies also revealed that the hydrophobic valine near the C-terminus is particularly helpful. Further extension of the UUU sequence by one Aib to obtain UUUU (SEQ ID NO: 2) enhanced potency by tenfold (compare Compound 19 with Compound 20).

Table 1

<table>
<thead>
<tr>
<th>#</th>
<th>Potency (EC₅₀, μM)</th>
<th>Efficacy (% of max. 1)</th>
<th>Toxicity (IC₅₀, μM)</th>
<th>Solubility (aq., μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.6 (1.4-1.9)</td>
<td>100 (88-13)</td>
<td>9 (8-9)</td>
<td>112 ± 13</td>
</tr>
<tr>
<td>5</td>
<td>0.4 (0.4-0.5)</td>
<td>100 (95-105)</td>
<td>14 (13-16)</td>
<td>10 ± 1</td>
</tr>
<tr>
<td>6</td>
<td>3.5 (3.3-3.6)</td>
<td>94 (89-98)</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>7</td>
<td>1.0 (0.9-1.1)</td>
<td>99 (90-107)</td>
<td>16 (15-16)</td>
<td>N.D.</td>
</tr>
<tr>
<td>8</td>
<td>0.4 (0.4-0.5)</td>
<td>113 (103-122)</td>
<td>9 (8-9)</td>
<td>N.D.</td>
</tr>
<tr>
<td></td>
<td>Value (Range)</td>
<td>Value (Range)</td>
<td>Value (Range)</td>
<td>Value (Range)</td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>9</td>
<td>0.4 (0.3-0.5)</td>
<td>87 (80-92)</td>
<td>11 (10-12)</td>
<td>12 ± 1</td>
</tr>
<tr>
<td>10</td>
<td>0.9 (0.8-1.0)</td>
<td>97 (86-107)</td>
<td>15 (15-15)</td>
<td>N.D.</td>
</tr>
<tr>
<td>11</td>
<td>0.8 (0.8-0.9)</td>
<td>71 (66-77)</td>
<td>15 (15-16)</td>
<td>N.D.</td>
</tr>
<tr>
<td>12</td>
<td>0.4 (0.3-0.5)</td>
<td>99 (90-108)</td>
<td>14 (13-14)</td>
<td>N.D.</td>
</tr>
<tr>
<td>13</td>
<td>0.7 (0.6-0.8)</td>
<td>97 (89-104)</td>
<td>16 (15-16)</td>
<td>N.D.</td>
</tr>
<tr>
<td>14</td>
<td>1.2 (0.8-1.9)</td>
<td>51 (39-63)</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>15</td>
<td>N.D.</td>
<td>< 50</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>16</td>
<td>1.6 (1.3-2.0)</td>
<td>55 (47-63)</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>17</td>
<td>2.1 (1.8-2.5)</td>
<td>55 (47-64)</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>18</td>
<td>N.D.</td>
<td>< 50</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>19</td>
<td>1.0 (0.9-1.2)</td>
<td>88 (79-97)</td>
<td>20 (18-21)</td>
<td>N.D.</td>
</tr>
<tr>
<td>20</td>
<td>0.1 (0.09-0.13)</td>
<td>109 (99-118)</td>
<td>15 (15-15)</td>
<td>N.D.</td>
</tr>
<tr>
<td>21</td>
<td>0.1 (0.08-0.12)</td>
<td>112 (102-122)</td>
<td>9 (8-9)</td>
<td>N.D.</td>
</tr>
<tr>
<td>22</td>
<td>> 10</td>
<td>< 50</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>23</td>
<td>0.10 (0.09-0.11)</td>
<td>74 (701-78)</td>
<td>4 (4-4)</td>
<td>N.D.</td>
</tr>
<tr>
<td>24</td>
<td>0.09 (0.07-0.10)</td>
<td>74 (65-83)</td>
<td>5 (4-5)</td>
<td>N.D.</td>
</tr>
<tr>
<td>25</td>
<td>0.09 (0.09-0.10)</td>
<td>109 (104-114)</td>
<td>9 (9-9)</td>
<td>22 ± 1</td>
</tr>
<tr>
<td>26</td>
<td>0.1 (0.06-0.15)</td>
<td>123 (113-134)</td>
<td>8 (8-9)</td>
<td>14 ± 2</td>
</tr>
<tr>
<td>27</td>
<td>0.2 (0.1-0.2)</td>
<td>81 (74-87)</td>
<td>3 (3-3)</td>
<td>N.D.</td>
</tr>
<tr>
<td>28</td>
<td>0.06 (0.05-0.07)</td>
<td>122 (111-133)</td>
<td>3 (3-4)</td>
<td>63 ± 28</td>
</tr>
<tr>
<td>29</td>
<td>0.08 (0.07-0.09)</td>
<td>125 (115-135)</td>
<td>3 (3-3)</td>
<td>90 ± 2</td>
</tr>
<tr>
<td>30</td>
<td>0.03 (0.02-0.04)</td>
<td>127 (110-144)</td>
<td>2 (2-2)</td>
<td>3 ± 1</td>
</tr>
<tr>
<td>31</td>
<td>0.08 (0.7-0.9)</td>
<td>119 (109-130)</td>
<td>4 (3-4)</td>
<td>5 ± 1</td>
</tr>
<tr>
<td>32</td>
<td>0.7 (0.5-1.0)</td>
<td>121 (95-149)</td>
<td>16 (15-17)</td>
<td>856 ± 2</td>
</tr>
<tr>
<td>33</td>
<td>0.13 (0.12-0.15)</td>
<td>129 (117-141)</td>
<td>> 100</td>
<td>2 ± 1</td>
</tr>
<tr>
<td>34</td>
<td>0.10 (0.09-0.12)</td>
<td>102 (92-111)</td>
<td>17 (17-17)</td>
<td>405 ± 20</td>
</tr>
<tr>
<td>35</td>
<td>0.11 (0.10-0.12)</td>
<td>114 (110-119)</td>
<td>13 (13-13)</td>
<td>649 ± 11</td>
</tr>
<tr>
<td>36</td>
<td>0.06 (0.06-0.07)</td>
<td>128 (122-133)</td>
<td>13 (13-14)</td>
<td>233 ± 21</td>
</tr>
<tr>
<td>37</td>
<td>0.04 (0.04-0.05)</td>
<td>130 (124-135)</td>
<td>3 (3-4)</td>
<td>348 ± 13</td>
</tr>
<tr>
<td>38</td>
<td>0.04 (0.04-0.05)</td>
<td>112 (102-122)</td>
<td>8 (8-8)</td>
<td>1058 ± 19</td>
</tr>
<tr>
<td>39</td>
<td>N.D.</td>
<td>« 50</td>
<td>N.D.</td>
<td>173 ± 11</td>
</tr>
<tr>
<td>40</td>
<td>N.D.</td>
<td>« 50</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>41</td>
<td>5.9 (5.5-6.3)</td>
<td>53 (50-56)</td>
<td>> 100</td>
<td>24 ± 3</td>
</tr>
<tr>
<td>Compound</td>
<td>42</td>
<td>5.3 (4.9-5.9)</td>
<td>85 (78-92)</td>
<td>> 100</td>
</tr>
<tr>
<td>----------</td>
<td>----</td>
<td>--------------</td>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td>43</td>
<td>10</td>
<td>(6-15)</td>
<td>64 (38-90)</td>
<td>N.D.</td>
</tr>
<tr>
<td>44</td>
<td>5.2</td>
<td>(4.8-5.5)</td>
<td>97 (94-102)</td>
<td>N.D.</td>
</tr>
<tr>
<td>45</td>
<td>N.D.</td>
<td>« 50</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>46</td>
<td>N.D.</td>
<td>« 50</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>47</td>
<td>N.D.</td>
<td>« 50</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>48</td>
<td>N.D.</td>
<td>« 50</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>49</td>
<td>12</td>
<td>(12-12)</td>
<td>45 (42-52)</td>
<td>N.D.</td>
</tr>
<tr>
<td>50</td>
<td>9</td>
<td>(8-10)</td>
<td>71 (62-81)</td>
<td>N.D.</td>
</tr>
<tr>
<td>51</td>
<td>N.D.</td>
<td>< 50</td>
<td>N.D.</td>
<td>N.D.</td>
</tr>
<tr>
<td>52</td>
<td>1.9</td>
<td>(1.8-2.1)</td>
<td>87 (83-93)</td>
<td>N.D.</td>
</tr>
<tr>
<td>53</td>
<td>7.1</td>
<td>(5.6-9.1)</td>
<td>104 (79-128)</td>
<td>N.D.</td>
</tr>
<tr>
<td>54</td>
<td>3.8</td>
<td>(3.5-4.1)</td>
<td>100 (94-107)</td>
<td>N.D.</td>
</tr>
</tbody>
</table>

Replacement of all of the more polar Trp and Tyr amino acids with Phe was not tolerated (compare Compound 21 with Compound 22), but potency was retained with some reduction in efficacy when the Trp residues were replaced by Tyr (compare Compound 21 with Compound 23). This loss of efficacy was overcome by installation of Val at the C-terminus (compare Compound 23 with Compound 25).

In an attempt to improve solubility, the ε-Ahx-s-Ahx motif (e.g., XX dipeptide) of Compound 21 was replaced by a dipeptide derived from two mini-PEG amino acids (e.g., OO dipeptide). This change enhanced efficacy (compare Compound 21 with Compound 26), but the solubility of Compound 26 in PBS continued to be much lower (e.g., 14 µM) than the parent Compound 1 (e.g., 112 µM). Higher potency and solubility were achieved by further substituting the more hydrophobic Trp residues with the more polar Tyr (compare Compound 26 with Compound 28 and Compound 29), but none of these compounds were more soluble than Compound 1. The data provides enhanced potency of tyrosine-containing YYAYY peptides (SEQ ID NO: 3) over analogous tryptophan-containing WWAYW peptides (SEQ ID NO: 4), demonstrating greater affinity of tyrosine for insertion into biological membranes compared with tryptophan.

Compounds 30 and 31 included propargylglycine as an alkyne for potential coupling to cargo using Cu-catalyzed Huisgen 1,3-dipolar cycloaddition reactions with azides. These compounds represented two of the most potent and effective endosome disruptors, but showed low solubility in PBS (< 5 µM). However, solubility can be
enhanced by a modified linker that includes hydrophilic moieties, such as a PEG linker or a linker that includes PEG.

To evaluate the properties of endosome disruptors linked to other lipids, the palmitic acid derivative Compound 32 and cholesteryl carbamates Compounds 33-38 were synthesized. These compounds proved to be much more soluble in PBS than the corresponding cholesteryl amines (See Figures 2A-2C and Table 1). The palmitic acid derivative Compound 32 was sevenfold less potent than a structurally similar cholesterylamine Compound 26, but remarkably was sixtyfold more soluble in PBS (856 µM). Fortuitously, the analogous cholesteryl carbamate Compound 34 retained high potency/efficacy, comparable to Compound 26, while maintaining high solubility in PBS (405 µM). Studies of the solubility of simpler model systems that replaced the endosome disruptive peptide with a fluorophore revealed that the hundredfold difference in solubility between compounds such as Compound 31 and Compound 35 does not relate to an intrinsic difference in solubility between the cholesterylamine and cholesteryl carbamate, but rather is a specific property of these particular lipopeptide derivatives (data not shown). Additionally, cholesteryl carbamate Compound 33 lacking the Glu-Glu dipeptide sequence of Compound 34 was highly active and potent but exhibited low solubility in PBS (2 µM). Based on these results, we synthesized the alkyne-containing cholesterol carbamates Compounds 35-38. All of these compounds were highly potent, active, and soluble in PBS, with Compound 37 and Compound 38 exhibiting the highest potency (IC₅₀ = 40 nM). Studies of toxicity to Jurkat lymphocytes in culture after treatment for 48 hours revealed that potent and soluble endosome disruptors such as Compound 38 can exhibit hundredfold selectivity for disruption of endosomes over toxicity to cells in culture.

We further synthesized and examined the properties of much shorter peptides lacking a cellular/endosomal-targeting lipid. Whereas the unconjugated PC4 peptide (Compound 39) was devoid of biological activity in the endosome disruption assay, replacement of the N-terminal SSA motif with UUU (Compound 41) conferred substantial endosome disruption activity (Figure 2A-2C and Table 1). This activity was improved by incorporation of additional Aib residues (Compound 42) and substitution of Ala with Val at the C-terminus (compare Compound 43 with Compound 44). The substantial activity of peptide Compound 50 bearing only a single proline residue further demonstrates that a single residue capable of inducing a kink in the structure is sufficient
to enable disruption of endosomes by these types of compounds. The studies of lipid conjugates indicate that these and related peptides could be used to promote endosomal escape of cargo when conjugated to a wide variety of cellular-targeting motifs.

Figures 2A-2C include dose-response curves for disruption of endosomes of Jurkat lymphocytes by synthetic compounds. Cells were treated with fluorescent molecular probe Compound 2 (2.5 µM) and endosome disruptors for 14 hours at 37 °C. Enhanced cellular fluorescence resulting from release of the pH-sensitive fluorophore Compound 3 into the cytoplasm was quantified by flow cytometry.

Systems that integrate a cellular/endosomal-targeting motif, endosome disruptive element, and linked cargo could also be useful for delivery applications. To create examples of these types of systems, we investigated attachment of a fluorophore as model cargo though acylation of amine-containing side chains, as well as coupling via triazoles derived from Cu-catalyzed Huisgen 1,3-dipolar cycloaddition reactions of alkynes with azides. The integrated systems of Compounds 55-60 were prepared to examine the influence of linker length and structure on delivery of carboxyfluorescein. The structures of integrated delivery systems of Compounds 55-60 include a cholesteryl carbamate linked to both an endosome disruptive peptide and carboxyfluorescein as cargo.

Treatment of Jurkat lymphocytes with Compounds 55-60 resulted in dose-dependent accumulation of fluorescence in the cytosol (Figure 5). By using bead standards (Spherotech) to convert cellular fluorescence to molecules of equivalent fluorescein (MEFL), and the diameter of Jurkat cells (12.3 ± 0.7 µm by microscopy), the concentration of fluorophore released into the cytosol was measured as a function of the concentration of the added delivery system. These systems were structurally specific, and small molecular changes to the linker between the cargo and peptide backbone strongly affected the efficiency of delivery. In particular, amine-containing side chains with three or fewer methylenes in the linker region (Compounds 55-57) were of relatively low potency/efficacy, but the four methylenes in the side chain of lysine provided modest potency/efficacy (IC₅₀ ~ 2.1 µM). In contrast, the triazole derivative Compound 59 was more than twice as potent (IC₅₀ = 830 nM). Moreover, treatment with 250 nM of Compound 59 yielded a cytosolic fluorophore concentration of over 1 µM, and at the maximum dose studied (2 µM), Compound 59 delivered 11 µM of the fluorophore into the cytosol after 14 h in culture.
Figure 5 shows comparative efficacy of integrated fluorophore delivery systems. Dose-dependent accumulation of fluorophore Compound 3 in the cytosol of Jurkat lymphocytes after 14 h was determined by quantification of cellular fluorescence by flow cytometry, conversion to MEFL using bead standards, and calculation based on the average diameter of living Jurkat lymphocytes (12.3 μm).

Jurkat lymphocytes treated with the integrated fluorescent disulfide Compound 59 and the isosteric amide Compound 60 were imaged by confocal microscopy. As shown in Figures 4A-4B, only the disulfide Compound 59 released the fluorophore into the cytosol. The amide Compound 60 remained trapped in early endosomes. These results further confirm the importance of a disulfide or other cleavable linker between the delivery system and the cargo for release from endosomes by this mechanism.

Figures 4A-4B show confocal and DIC micrographs of living Jurkat lymphocytes treated for 16 h with the disulfide-linked fluorophore delivery system Compound 59 (Panel A) and the analogous amide control Compound 60 (Panel B). Scale bar = 10 microns.

To examine the potential of these types of compounds in vivo, the integrated fluorescent disulfide Compound 59 was injected into the tail vein of B6D2F1 mice at 25 mg/Kg in 100 μL of 1:1 PBS:DMSO. After 8 hours, splenocytes were harvested and imaged by confocal microscopy. As shown in Figure 6, green fluorescence was observed in the cytosol of living nucleated cells. These results suggest that these delivery systems have the potential for substantial half-lives and high stability in vivo.

Figure 6 shows overlaid confocal fluorescence (blue/green) and DIC micrographs of living splenocytes isolated from B6D2F1 mice. Mice were subjected to tail vein injection of the disulfide-linked fluorophore delivery system Compound 59 at 25 mg/Kg. After 8 hours, cells were harvested by splenectomy and processing with a gentle max tissue dissociator. Cells were treated with blue fluorescent cell permeable Hoechst 33342 nuclear stain and red fluorescent cell-impermeable propidium iodide nuclear stain to identify cells suitable for analysis of the subcellular distribution of the green fluorescent probe. All of the cells shown in the field were living nucleated cells or erythrocytes as evidenced by positive Hoechst staining and lack of propidium iodide staining. Erythrocytes are non-fluorescent. Scale bar = 10 microns.

In one embodiment, the conformationally-constrained endosomal-disrupting peptide can include a general structure as in Formulae 1-1C, where CC-Peptide is the
peptide or peptide sequence that adds a conformational constraint to the conformationally-constrained endosomal-disrupting peptide and ED-Peptide is the peptide or peptide sequence that provides for endosomal disruption. For example, the ED-Peptide includes an amino acid that induces a kink or disruption in peptide secondary structure, and can be referred to as ED-KP. The ED-KP is an endosomal-disrupting kinked peptide, which can be a modified PC4 peptide, which is an example of a kinked peptide.

In one embodiment, the conformationally-constrained endosomal-disrupting peptide can be included in a cargo delivery molecule having a cargo moiety and/or targeting moiety with a general structure as in Formulae 2-2C.

In one embodiment, the conformationally-constrained endosomal-disrupting peptide can be included in a cargo delivery molecule having one of a cargo moiety or targeting moiety with a general structure as in Formulae 3-3C and 4-4C.

Formula 1 = (CC-Peptide)_{a} i^- (Peptide)_{n2}^- (ED- KP)_{n3}^- (Peptide)_{n4}^-

Formula 1A = (CC-Peptide)_{a} i^- (LI)_{n2}^- (ED- KP)_{n3}^- (L2)_{n4}^-.

Formula 1B = (CC-Peptide)_{a} i^- (Xaa)_{n2}^- (ED- KP)_{n3}^- (Xaa)_{n4}^-.

Formula 1C = (CC-Peptide)_{a} i^- (CCM)_{n1}^- (Xaa)_{n2}^- (Xaa)_{n3}^- (Xaa)_{n4}^-.

Formula 2 = Z_{1}^- Y_{1}^- X_{1}^- (CC-Peptide)_{h1}^- (Peptide)_{h2}^- (ED- KP)_{h3}^- (Peptide)_{h4}^- X_{2}^- Y_{2}^- Z_{2}^-.

Formula 2A = Z_{1}^- Y_{1}^- X_{1}^- (CC-Peptide)_{a} i^- (LI)_{n2}^- (ED- KP)_{n3}^- (L2)_{n4}^- X_{2}^- Y_{2}^- Z_{2}^-.

Formula 2B = Z_{1}^- Y_{1}^- X_{1}^- (CC-Peptide)_{a} i^- (Xaa)_{n2}^- (ED- KP)_{n3}^- (Xaa)_{n4}^- X_{2}^- Y_{2}^- Z_{2}^-.

Formula 2C = Z_{1}^- Y_{1}^- X_{1}^- (CC-Peptide)_{h1}^- (Xaa)_{h2}^- (ED- KP)_{h3}^- (Xaa)_{h4}^- X_{2}^- Y_{2}^- Z_{2}^-.

Formula 3 = Z_{1}^- Y_{1}^- X_{1}^- (CC-Peptide)_{h1}^- (Peptide)_{h2}^- (ED- KP)_{h3}^- (Peptide)_{h4}^-.

Formula 3A = Z_{1}^- Y_{1}^- X_{1}^- (CC-Peptide)_{a} i^- (LI)_{n2}^- (ED- KP)_{n3}^- (L2)_{n4}^-.

Formula 3B = Z_{1}^- Y_{1}^- X_{1}^- (CC-Peptide)_{a} i^- (Xaa)_{n2}^- (ED- KP)_{n3}^- (Xaa)_{n4}^-.

Formula 3C = Z_{1}^- Y_{1}^- X_{1}^- (CC-Peptide)_{h1}^- (Xaa)_{h2}^- (ED- KP)_{h3}^- (Xaa)_{h4}^-.

Formula 4 = (CC-Peptide)_{a} i^- (Peptide)_{n2}^- (ED- KP)_{n3}^- (Peptide)_{n4}^- X_{2}^- Y_{2}^- Z_{2}^-.

Formula 4A = (CC-Peptide)_{a} i^- (LI)_{n2}^- (ED- KP)_{n3}^- (L2)_{n4}^- X_{2}^- Y_{2}^- Z_{2}^-.

Formula 4B = (CC-Peptide)_{a} i^- (Xaa)_{n2}^- (ED- KP)_{n3}^- (Xaa)_{n4}^- X_{2}^- Y_{2}^- Z_{2}^-.

Formula 4C = (CC-Peptide)_{a} i^- (Xaa)_{h2}^- (ED- KP)_{h3}^- (Xaa)_{h4}^- X_{2}^- Y_{2}^- Z_{2}^-.

In one embodiment, the conformation-constraining peptide (i.e., CC-Peptide) is replaced with a conformation-constraining moiety (CCM) and the endosomal-disrupting peptide (i.e., ED-Peptide) is replaced with an endosomal-disrupting kinked peptide (ED-KP). In one embodiment, the conformationally-constrained endosomal-disrupting peptide
can include a general structure as in Formulae 5-5C, where CCM is a chemical moiety that conformationally constrains the conformationally-constrained endosomal-disrupting peptide and KP is the kinked peptide that provides for endosomal disruption. KP can be a kinked helix or other kinked peptide structure or has at least one amino acid that destabilizes or kinks a helix, or it can be a mimic of a kinked helix, any of which has endosomal disrupting properties. In one embodiment, the conformationally-constrained endosomal-disrupting peptide can be included in a cargo delivery molecule having a cargo moiety and targeting moiety with a general structure as in Formulae 6-6C. In one embodiment, the conformationally-constrained endosomal-disrupting peptide can be included in a cargo delivery molecule having one of a cargo moiety or targeting moiety with a general structure as in Formulae 7-7C and 8-8C.

Formula 5 = (CCM)_n i-(Peptide)_n2-(ED-KP)_n3-(Peptide)_n4.

Formula 5A = (CCM)_n i-(Ll)_n2-(ED-KP)_n3-(L2)_n4.

Formula 5B = (CCM)_n i-(Xaa)_n2-(ED-KP)_n3-(Xaa)_n4.

Formula 5C = (CCM)_n1-(Xaa)_n2-(ED-KP)_n3-(Xaa)_n4.

Formula 6 = Z^1-Y^1-X^1- (CCM)_n i-(Peptide)_n2-(ED-KP)_n3-(Peptide)_n4-X^2-Y^2-Z^2.

Formula 6A = Z^1-Y^1-X^1- (CCM)_n i-(Ll)_n2-(ED-KP)_n3-(L2)_n4-X^2-Y^2-Z^2.

Formula 6B = Z^1-Y^1-X^1- (CCM)_n i-(Xaa)_n2-(ED-KP)_n3-(Xaa)_n4-X^2-Y^2-Z^2.

Formula 6C = Z^1-Y^1-X^1- (CCM)_n1-(Xaa)_n2-(ED-KP)_n3-(Xaa)_n4-X^2-Y^2-Z^2.

Formula 7 = Z^1-Y^1-X^1- (CCM)_n i-(Peptide)_n2-(ED-KP)_n3-(Peptide)_n4.

Formula 7A = Z^1-Y^1-X^1- (CCM)_n i-(Ll)_n2-(ED-KP)_n3-(L2)_n4.

Formula 7B = Z^1-Y^1-X^1- (CCM)_n i-(Xaa)_n2-(ED-KP)_n3-(Xaa)_n4.

Formula 7C = Z^1-Y^1-X^1- (CCM)_n1-(Xaa)_n2-(ED-KP)_n3-(Xaa)_n4.

Formula 8 = (CCM)_n i-(Peptide)_n2-(ED-KP)_n3-(Peptide)_n4-X^2-Y^2-Z^2.

Formula 8A = (CCM)_n i-(Ll)_n2-(ED-KP)_n3-(L2)_n4-X^2-Y^2-Z^2.

Formula 8B = (CCM)_n i-(Xaa)_n2-(ED-KP)_n3-(Xaa)_n4-X^2-Y^2-Z^2.

Formula 8C = (CCM)_n1-(Xaa)_n2-(ED-KP)_n3-(Xaa)_n4-X^2-Y^2-Z^2.

In one aspect, in any Formula, nl, n2, n3, n4, and n5 can be 0-50, such as 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45 or 50 or other integer value in this range.

In one aspect, Xaa, Xaa^1, and Xaa^2 can independently be one or more natural or non-natural amino acids, essential amino acids, or non-essential amino acids, or derivatives of amino acids having L or D configuration. X^1 or X^2 are independently nothing or a coupling group or beta-alanine residues or a polypeptide. Y^1 or Y^2 are
independently nothing or a linker. \(Z^1 \) or \(Z^2 \) are independently an agent or cargo for delivery into a cell or a cell-targeting moiety for targeting a cell. The cell-targeting moiety can be a receptor-targeting moiety and/or a membrane-targeting moiety. Any amino acid can have L or D configuration.

In one embodiment, in the formulae shown, \(Z \) (e.g., \(Z^1 \) and/or \(Z^2 \)) can be a targeting moiety, where \(Y \) (e.g., \(Y^1 \) or \(Y^2 \)) or \(X \) (e.g., \(X^1 \) or \(X^2 \)) includes a cargo moiety coupled thereto, such as shown in Compounds 55-60 and 70-72, and which can be represented by Formulae 2, 2A, 2B, 2C, 3, 3A, 3B, 3C, 4, 4A, 4B, 4C, 6, 6A, 6B, 6C, 7, 7A, 7B, 7C, 8, 8A, 8B, and/or 8C. The \(L \) (e.g., LI or L2) may also include a cargo moiety coupled thereto, which can be represented by the same compounds.

In one embodiment, the cell-targeting moiety \(Z^1 \) and/or \(Z^2 \) is a cholesterol derivative selected from the group consisting of cholesterol, dihydrocholesterol, sitosterol, cholesteryl, dihydrocholesteryl, cholesterylamine, dihydrocholesterylamine, sitosterylamine, or derivative thereof. The cell-targeting moiety can be any moiety that targets and interacts with a receptor to facilitate RME. The cell-targeting moiety can be a molecule, protein, peptide, antibody, nucleic acid, carbohydrate, fragment thereof, or other.

In one embodiment, the linkers \(Y^1 \) or \(Y^2 \) are independently selected from a straight chain or branched or cyclic substituted or unsubstituted alkyl group having Cl-C100 or an aromatic group, amino acid, a polypeptide, a polynucleotide, polysaccharide, a polyethylene glycol, a biodegradable linker, or combinations thereof. When substituted, the substituent can be a cargo molecule.

In one embodiment, the coupling groups \(X^1 \) or \(X^2 \) independently include an amide, ether, ester, carbamate, alkyl, aryl, alkene, triazole, amine, or alkanol. Alternatively, the coupling group can be derived from a coupling reaction between the linker and a coupling agent selected from a dithio diacid, a dicarboxylic acid, an acrylic moiety, a diazide, a styrene, a vinyl carboxylic acid, a urethane, a vinyl acetate, a vinyl ether, a Diels-Alder reagent, disulfides, hydrazones, imines, acetics, orthoesters, or other acid-labile or redox sensitive groups that allow release of agents in cells or tissues, photopolymerizable moiety, photocleavable moiety, derivatives thereof, and combinations thereof.

In one embodiment, the cargo molecule agents \(Z^1 \) or \(Z^2 \) are independently selected from therapeutic agents, imaging agents, diagnostic agents, assay agents, toxic agents, or
combinations thereof. Examples of the agents \(Z^1 \) or \(Z^2 \) independently include a protein, peptide, polypeptide, nucleic acid, RNA, DNA, RNA/DNA hybrid, PNA, morpholinos, oligomers, siRNA, carbohydrates, lipids, markers, luminophores, tracer substances, molecular probes, oligopeptides, drugs, prodrug, toxins, a small molecule, a enzyme substrate, or combinations thereof.

In one embodiment, one of \(Z^1 \) or \(Z^2 \) is a targeting moiety and the other is cargo.

In one embodiment, the compound includes one or more beta-alanine residues in the \(Y \) (e.g., \(Y^1 \) or \(Y^2 \)) linker between the \(X \) (e.g., \(X^1 \) or \(X^2 \)) coupling group and the \(Z \) (e.g., \(Z^1 \) and/or \(Z^2 \)) targeting moiety.

In one embodiment, the CC-Peptide is or includes one or more Aib moieties or a peptide having two or more Aib moieties that are in sequence or separate. In one embodiment, the CC-Peptide is or includes one or more alanine moieties or a peptide having one or more alanine moieties (e.g., beta-alanine) that are in sequence or separate. In one embodiment, the CC-Peptide is or includes other conformation-stabilizing or conformation-constraining amino acids or peptide sequences. In one aspect, the CC-Peptide can include one or more Aib moieties and/or one or more alanine moieties. Combinations of embodiments described above may also be used.

In one embodiment, the ED-KP is or includes one or more proline moieties or a peptide having two or more proline moieties that are in sequence or separate. In one example, the ED-KP includes two sequential proline moieties. In one aspect, the ED-KP is or includes one or more glycine moieties or a peptide having two or more glycine moieties that are in sequence or separate. In one example, the ED-KP includes two sequential glycine moieties. In one aspect, the ED-KP is or includes one or more glycine moieties and one or more proline moieties or a peptide having the glycine and proline are in sequence or separate. In one example, the ED-KP includes glycine-proline or proline-glycine moieties. In one embodiment, the ED-Peptide is or includes one or more secondary structure-altering amino acid moieties or a peptide having one or more secondary structure-altering amino acid moieties that are in sequence or separate. The ED-KP is a modified PC4 having a kink. Combinations of embodiments described above may also be used.

In one embodiment, the Peptide can be any aromatic, aliphatic, or other amino acids including non-natural aromatic, aliphatic, or other amino acids or derivatives thereof. These derivatives include but are not limited to N-alkyl amino acids. In one
embodiment, the Peptide includes one or more Xaa, Xaa₁, or Xaa₂. In one embodiment, the Peptide can be a linker L₁ or L₂, which linker L₁ or L₂ can be a straight chain or branched or cyclic substituted or unsubstituted alkyl group having C₁-C₁₀₀ or an aromatic group, amino acid, a polypeptide, a polynucleotide, polysaccharide, a polyethylene glycol, a biodegradable linker, or combinations thereof.

In one embodiment, Xaa, Xaa₁, or Xaa₂ are independently phenylalanine, tryptophan, histidine, tyrosine, thyroxine, or other aromatic amino acid.

In one embodiment, the conformationally-constraining moiety (CCM) can be a conformation-stabilizing amino acid, conformation-stabilizing peptide, conformation-stabilizing functional group, conformation-stabilizing helix mimics, or conformation-constrained amino acids or conformation-constraining peptides. The endosomal-disrupting kinked peptide (ED-KP) can be a suitable peptide sequence or mimic thereof.

In one aspect, X₁, Y₁, and Z₁ and X₂, Y₂, and Z₂ independently can each represent nothing (unmodified), one or more functional groups, one or more amino acids, a capping group, a solubilizing group such as PEG or other motif that alters solubility, a linker to a targeting motif, or a targeting motif such as a targeting motif comprising a cellular-binding or membrane-binding moiety such as a small molecule, protein, peptide, lipid, antibody, cholesterol or a cholesterol mimic, carbohydrate, nucleic acid, or other moiety with affinity for cellular components or membranes. X₁, Y₁, and Z₁ and X₂, Y₂, and Z₂ can also represent zero, one, or more cargo molecules including nucleic acids, peptides, proteins, small molecules, drugs, or probes linked to the specific structure. X₁, Y₁, and Z₁ and X₂, Y₂, and Z₂ can also be independently defined for X, Y, and Z in the incorporated references. In one aspect, the targeting moiety can be a cholesterol or cholesterol derivative.

In one aspect, the CCM can be one or more 2-aminoisobutyric acid (i.e., Aib) moieties or a polypeptide containing one or more Aib. Also, CCM can include two or more Aib, which can be sequential Aib or an amino acid or peptide can be between the Aib moieties.

In one embodiment, each Aib moiety can be replaced by other helix-stabilizing amino acids (e.g., natural or non-natural), helix-stabilizing crosslinking groups, other helix-stabilizing modifications, or other conformationally-restricted amino acids or groups. Examples of these are found in the incorporated references or generally known to one of ordinary skill in the art. Specifically, helix-stabilizing amino acids include alanine
and others as described in Richardson et al. "Amino Acid Preferences for Specific Locations at the Ends of Alpha Helices" Science 1988, 240, 1648-1652.

In one embodiment, the conformationally-constrained endosomal-disrupting peptide can include a general structure as in Formula 9, which provides a modified PC4 peptide, which is a kinked PC4 peptide derivative that is conformationally constrained in the kink. That is, the structure of Formula 9 includes kinked peptide portion and the conformationally-constraining peptide portion. In one embodiment, the conformationally-constrained endosomal-disrupting peptide can be included in a cargo delivery molecule having a cargo moiety and targeting moiety with a general structure as in Formula 10. In one embodiment, the conformationally-constrained endosomal-disrupting peptide can be included in a cargo delivery molecule having one of a targeting moiety or a cargo as in Formula 11 or Formula 12.

Formula 9 = \((\text{Aib})_{n_1}i-(\text{Xaa}^1)_{n_2}-(\text{KP})_{n_3}-(\text{Xaa}^2)_{n_4}\).
Formula 10 = \(Z^1-Y^1-X^1-(\text{Aib})_{n_1}i-(\text{Xaa}^1)_{n_2}-(\text{KP})_{n_3}-(\text{Xaa}^2)_{n_4}X^2-Y^2-Z^2\).
Formula 11 = \(Z^1-Y^1-X^1-(\text{Aib})_{n_1}i-(\text{Xaa}^1)_{n_2}-(\text{KP})_{n_3}-(\text{Xaa}^2)^{n_4}\).
Formula 12 = \((\text{Aib})_{n_1}i-(\text{Xaa}^1)_{n_2}-(\text{KP})_{n_3}-(\text{Xaa}^2)_{n_4}X^2-Y^2-Z^2\).

All of the variables are defined herein, with KP being a kinked peptide or an amino acid that causes a peptide to kink, such as one or more amino acids that cause an endosomal-disrupting peptide sequence to kink. As such, all or part of \((\text{Xaa}^1)_{n_2}\) and/or \((\text{Xaa}^2)_{n_3}\) provide for the endosomal-disrupting peptide or the endosomal-disrupting functionality. The \((\text{KP})_{n_3}\) provides the kink in the endosomal-disrupting peptide. The \((\text{Aib})_{n_1}i\) provides the conformation constraint. The KP can be one or more prolines or one or more glycines or a combination of one or more prolines and one or more glycines. Examples include: proline-proline, proline-glycine, glycine-proline, and glycine-glycine, as well as tripeptides, tetrapeptides, or n-peptides thereof, where n is an integer.

In one aspect, the KP can be substituted with other secondary structure-altering moieties or amino acids. The KP can be replaced by other amino acids that alter secondary structure of peptides that may or may not be separated by one or more amino acids. In Formulae 9-9C, 10-10C, 11-1 1C, and 12-12C, KP\(_1\) can be the same or different from KP and Xaa\(^3\) and/or Xaa\(^4\) can be the same or different from Xaa\(^1\) or Xaa\(^2\). The n5 can be an integer that is the same or different from n3, and n6 can be an integer that is the same or different from n4. The n7 can be any integer as described for an "n" herein (e.g.,
is 0-50, such as 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45 or 50, or other value in this range.

Formula 9A = (Aib)_{n1}(Xaa)_{n2}-(KP)_{n3}(Xaa)_{n4}-(KPl)_{n5},

Formula 10A = Z^1-Y^1-X^1-(Aib)_{n1}(Xaa)_{n2}-(KP)_{n3}(Xaa)_{n4}-(KPl)_{n5}X^2-Y^2-Z^2.

Formula 11A = Z^1-Y^1-X^1-(Aib)_{n1}(Xaa)_{n2}-(KP)_{n3}(Xaa)_{n4}-(KPl)_{n5}X^2-Y^2-Z^2.

Formula 12A = (Aib)_{n1}(Xaa)_{n2}-(KP)_{n3}(Xaa)_{n4}-(KPl)_{n5}X^2-Y^2-Z^2.

Formula 9B = (Aib)_{n1}(Xaa)_{n2}-(Y^n)_{n3}(Xaa)_{n4}-(Y^n)_{n5}X^2-Y^2-Z^2.

Formula 10B = Z^1-Y^1-X^1-(Aib)_{n1}(Xaa)_{n2}-(KP)_{n3}(Xaa)_{n4}-(KPl)_{n5}X^2-Y^2-Z^2.

Formula 11B = Z^1-Y^1-X^1-(Aib)_{n1}(Xaa)_{n2}-(KP)_{n3}(Xaa)_{n4}-(KPl)_{n5}X^2-Y^2-Z^2.

Formula 12B = (Aib)_{n1}(Xaa)_{n2}-(KP)_{n3}(Xaa)_{n4}-(KPl)_{n5}X^2-Y^2-Z^2.

Formula 9C = (Xaa)_{n7}-(Aib)_{n1}(Xaa)_{n2}-(KP)_{n3}(Xaa)_{n4}-(KPl)_{n5}.

Formula 10C = Z^1-Y^1-X^1-(Xaa)_{n7}(Aib)_{n1}(Xaa)_{n2}-(KP)_{n3}(Xaa)_{n4}-(KPl)_{n5}X^2-Y^2-Z^2.

Formula 11C = Z^1-Y^1-X^1-(Xaa)_{n7}(Aib)_{n1}(Xaa)_{n2}-(KP)_{n3}(Xaa)_{n4}-(KPl)_{n5}X^2-Y^2-Z^2.

Formula 12C = (Xaa)_{n7}-(Aib)_{n1}(Xaa)_{n2}-(KP)_{n3}(Xaa)_{n4}-(KPl)_{n5}X^2-Y^2-Z^2.

The X, Y, and Z moieties of the formulae can represent nothing (unmodified), one or more functional groups, one or more amino acids, a capping group, a solubilizing group such as PEG or other motif that alters solubility, a linker to a targeting motif, or a targeting motif comprising a cellular-binding or membrane-binding moiety such as a small molecule, protein, peptide, antibody, lipid, cholesterol or a cholesterol mimic, carbohydrate, nucleic acid, or other moiety with affinity for cellular components or membranes. X, Y, and Z moieties of the formulae can also represent zero, one, or more cargo molecules including nucleic acids, peptides, proteins, small molecules, drugs, toxins, enzyme substrates, or probes linked to the specific structure. The Xaa can be one or more aromatic, aliphatic, or other amino acids including non-natural aromatic, aliphatic, or other amino acids or derivatives thereof. Any of the "n" or monomers (e.g., n1, n2, n3, n4, n5, n6, etc.) can be n = 0 to 50, 0 to 30, 0 to 20, 0 to 10, 0 to 5, or 0 to 2.

In one embodiment, Aib can be replaced by other helix-stabilizing amino acids (natural or non-natural), helix-stabilizing crosslinking groups, other helix-stabilizing modifications, or other conformationally-restricted amino acids or groups.

In one embodiment, the C-terminus can be modified such as by amidation or be unmodified.

In one embodiment, the linker (e.g., L or Y) can comprise amino acids or other coupling groups.
In one embodiment, the Pro in the ED-KP or KP can be replaced by other amino acids such as glycine that create a kink in a helix including two or more prolines or glycines or other amino acids or groups that alter secondary structure of peptides and that may or may not be separated by one or more amino acids. The incorporated references include examples.

In one embodiment, the Xaa is at least one amino acid that is either a natural aromatic amino acid (such as Tyr, Trp, or Phe) or a non-natural aromatic amino acid or mimic thereof.

In one embodiment, the conformationally-constrained endosomal-disrupting peptide can be included in a longer peptide sequence. Which longer peptide sequence is capable of being cleaved in a cell to form the conformationally-constrained endosomal-disrupting peptide of Formulae 1-IC, 5-5C, and 9-9C. That is, the Formulae of 1-IC, 5-5C, and 9-9C can be contained in a longer sequence that is cleaved in an endosome to form Formulae 1-IC, 5-5C, and 9-9C. The longer peptide sequence can also be included in the molecules that have targeting moieties and/or cargo. The cleaving of the longer peptide sequence can be by proteolysis. The proteolysis can be cell-specific, so that the endosome of specific cell types can be targeted for endosomal release.

In one embodiment, the targeting motif can be a lipid other than cholesterol or cholesterol derivative. In one embodiment, the targeting motif is a protein-binding small molecule (e.g., folic acid), peptide, protein, polypeptide, antibody, antibody fragment, or other protein-binding motif. The targeting motif can be receptor active and bind with cell surface receptors or other cellular biomolecules that undergo endocytosis.

The cargo can be any therapeutics, probes, or other cargo to be delivered into a cell. As such, the present invention can include the use of these agents for delivery of therapeutics, probes, or other cargo into a cell. The method can use these agents for assays or diagnostic purposes by delivering assay or diagnostic cargo into a cell. In one embodiment, the cargo (e.g., Z) can be covalently linked to the conformationally-constrained kinked peptide. In one embodiment, the cargo can be non-covalently linked with the conformationally-constrained kinked peptide.

In one embodiment, the present invention includes a conformationally-constrained endosomal-disrupting peptide that is a derivative of dodecapeptide PC4. The conformationally-constrained endosomal-disrupting peptide can be longer or shorter than PC4, and can have various amino acid substitutions, additions, deletions, or other
modifications from PC4 so long as the conformationally-constrained endosomal-
disrupting peptide is conformationally constrained and has the kink features. The PC4
derivative can be kinked and conformationally constrained in the kinked conformation.

By exhibiting unique structural features, the compounds of this invention are
structurally different from previously reported endosome-disrupting agents and are
substantially more potent and more active than previously reported agents, as shown by
the data. It is indeed surprising and unexpected that conformationally-constrained kinked
peptides can be more active in endosomal disruption from native or conformation-free
peptides. Thus, the conformationally-constrained endosomal-disrupting peptides of the
present invention are a significant advance in the art of endosomal disruption and cargo
delivery platforms.

In the structures of Compounds 1 and 5-69, the peptide sequences shown can fit
into any of the formulae shown herein. For example, the left side of sequences of
Compounds 40-54 can be (Aib)$_n$-i. The left side of sequences of Compounds 40-54 can be
(Xaa)$_n$-i. The PP can be the KP or KP1. The portion between the (Aib)$_n$-i and PP can be
the (Xaa)$_n$-i. The left side portions in sequences of Compounds 1 and 5-69 that include
one or more U moieties can be the CC-Peptide and/or CCM. The right side portions to
the right of any proline and/or glycine can be the right side amino acid sequence, such as
Xaa, Xaa2, and/or Xaa3 or Peptide or L2. The portions having or being the prolines can
be the ED-KP or KP or KP1. The portions between the U moieties and the prolines can
be the Xaa or Xaa1 or L1 or Peptide.

In one embodiment, the sequences or structures of Compounds 1, 5-38, and 40-69
can include a different targeting moiety and/or the amide can be linked to a cargo. In
another embodiment, the sequences or structures of Compounds 1, 5-38, and 40-69 can
include the amino acid sequence shown with X1, Y1, and Z1 at one end, and/or X2, Y2, and
Z2 at the other end.

In one embodiment, the molecule of the invention can include the Formula 13 =
A-Y-(Helix-Stabilizing Amino Acids, functional groups, helix mimics, or
conformationally-constrained amino acids or groups)$_n$-(Xaa)$_n$-(Helix-Disrupting Amino
Acids or groups or mimics)$_n$-(Xaa)$_n$-Z-B. In one embodiment, the molecule of the
invention can include the Formula 14 = A-Y-(Aib)$_n$-(Xaa)$_n$-(Pro or other secondary
structure-altering amino acid)$_n$-(Xaa)$_n$-Z-B. Where A, B, Y, and Z can represent nothing
(unmodified), one or more functional groups, one or more amino acids, a capping group,
a solubilizing group such as PEG or other motif that alters solubility, a linker to a targeting motif, or a targeting motif comprising a cellular-binding or membrane-binding moiety such as a small molecule, protein, peptide, lipid, cholesterol or a cholesterol mimic, carbohydrate, nucleic acid, or other moiety with affinity for cellular components or membranes. A, B, Y, or Z can also represent zero, one, or more cargo molecules including nucleic acids, peptides, proteins, small molecules, drugs, toxins, enzyme substrates, or probes linked to the specific structure. Xaa is one or more aromatic, aliphatic, or other amino acids including non-natural aromatic, aliphatic, or other amino acids or derivatives thereof. The n is from 0 to 50, or any specific integer therebetween.

The Aib can be replaced by other helix-stabilizing amino acids (natural or non-natural), helix-stabilizing crosslinking groups, other helix-stabilizing modifications, or other conformationally-restricted amino acids or groups. The C-terminus can be modified such as by amidation or unmodified. The linker can comprise amino acids or other coupling groups. The Pro can be replaced by other amino acids such as glycine, thiaproline, or analogues or derivatives of proline or glycine or other amino acids that create a kink in a helix including two or more prolines or glycines or other amino acids or groups that alter the structure of peptides by kinking a helix or inducing a turn or bend and that may or may not be separated by one or more amino acids. In one aspect, at least one amino acid of Xaa is either a natural aromatic amino acid (such as Tyr, Trp, or Phe) or a non-natural aromatic amino acid or mimic. In one aspect, the active membrane-disruptive peptide is generated by proteolysis of a longer peptide sequence.

Pharmaceutical compositions can include the compounds of the invention, and can include, without limitation, lyophilized powders or aqueous or non-aqueous sterile injectable solutions or suspensions, which may further contain antioxidants, buffers, bacteriostats, and solutes that render the compositions substantially compatible with the tissues or the blood of an intended recipient. Other components that may be present in such compositions include water, surfactants (e.g., Tween®), alcohols, polyols, glycerin, and vegetable oils, for example. Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules, tablets, or concentrated solutions or suspensions. The composition may be supplied, for example, but not by way of limitation, as a lyophilized powder which is reconstituted with sterile water or saline prior to administration to the patient.

Suitable pharmaceutically acceptable carriers include essentially chemically inert
and nontoxic compositions that do not interfere with the effectiveness of the biological activity of the pharmaceutical composition. Examples of suitable pharmaceutical carriers include, but are not limited to, water, saline solutions, glycerol solutions, ethanol, N-((2,3- dioleyloxy)propyl)N,N,N-trimethylammonium chloride (DOTMA), diolesyl-phosphotidyl-ethanolamine (DOPE), and liposomes. Such compositions should contain a therapeutically effective amount of the compound, together with a suitable amount of carrier so as to provide the form for direct administration to the patient.

The compositions described herein can be administered, for example, by parenteral, intravenous, subcutaneous, intramuscular, intracranial, intraorbital, ophthalmic, intraventricular, intracapsular, intraspinal, intracisternal, intraperitoneal, intranasal, aerosol, or oral administration. Common carriers or excipients can be used for preparing pharmaceutical compositions designed for such routes of administration.

In one embodiment, a conformationally-constrained kinked peptide comprises: a conformationally-constraining portion and a kinked portion linked to the conformationally-constraining portion that conformationally constrains the kinked portion, the kinked portion comprising an endosomal-disrupting peptide. The peptide can include a peptide sequence of one of SEQ ID NOs: 1, 5-38, or 40-69. In one aspect, the conformationally-constrained kinked portion is a majority portion of the peptide. In one aspect, the conformationally-constrained kinked portion is a minority portion of the peptide. In one aspect, the peptide can include one of Formulae 1-IC, wherein: CCM-Peptide includes a peptide that conformationally constrains the ED-KP; Peptide independently includes natural, unnatural, essential or non-essential aromatic or aliphatic amino acids, or derivatives thereof having L or D configuration; ED-KP includes an endosomal-disrupting kinked peptide; Xaa, Xaa^1, and Xaa^2 are independently one or more natural or non-natural amino acids, essential amino acids, or non-essential amino acids, or derivatives of amino acids having L or D configuration; L1 and L2 are independently linkers; and nL, n2, n3, and n4 are independently 0-50.

In one embodiment, the peptide can include one of Formulae 5-5C, wherein: CCM includes a moiety that conformationally constrains the ED-KP; Peptide independently includes natural, unnatural, essential or non-essential aromatic, aliphatic, or other amino acids, or derivatives thereof having L or D configuration; ED-KP includes an endosomal-disrupting kinked peptide; Xaa, Xaa^1, and Xaa^2 are independently one or more natural or non-natural amino acids, essential amino acids, or non-essential amino acids, or derivatives thereof having L or D configuration; L1 and L2 are independently linkers; and nL, n2, n3, and n4 are independently 0-50.
acids, or derivatives of amino acids having L or D configuration; L1 and L2 are independently linkers; and n1, n2, n3, and n4 are independently 0-50.

In one embodiment, the peptide can include one of Formulae 9-9C, wherein: KP and KP1 independently include a kinked peptide or an amino acid that causes peptide to kink; Xaa, Xaa1, and Xaa2 are independently one or more natural or non-natural amino acids, essential amino acids, or non-essential amino acids, or derivatives of amino acids having L or D configuration; and n1, n2, n3, n4, n5, n6, and n7 are independently 0-50.

In one embodiment, the peptide can include one of the peptide sequences of one of the SEQ ID NOs: 40-54 or 69.

In one embodiment, a cell-targeting compound can include: one or more of the peptides of one of claims 1-8; and a targeting moiety linked to an end of the peptide.

In one embodiment, a cell-targeting compound can include the targeting moiety on the C-terminus or N-terminus of the peptide of one of SEQ ID NOs: 1, 5-38, or 40-69.

In one embodiment, the cell-targeting compound can include one of Formulae 2-2C, 3-3C, or 4-4C, wherein: CC-Peptide includes a peptide that conformationally constrains the ED-KP; Peptide independently includes natural, unnatural, essential or non-essential aromatic or aliphatic amino acids, or derivatives thereof having L or D configuration; ED-KP includes an endosomal-disrupting kinked peptide; Xaa, Xaa1, and Xaa2 are independently one or more natural or non-natural amino acids, essential amino acids, or non-essential amino acids, or derivatives of amino acids having L or D configuration; L1 and L2 are independently linkers; n1, n2, n3, and n4 are independently 0-50; Z1 and Z2 are independently a targeting moiety, cargo moiety, or nothing, wherein at least one is a targeting moiety; Y1 and Y2 are independently nothing or a linker, or a linker having a cargo moiety; and X1 and X2 are independently nothing, a coupling group, one or more beta-alanine residues, or a polypeptide.

In one embodiment, the cell-targeting compound can include one of Formulae 6-6C, 7-7C, or 8-8C, wherein: CCM includes a moiety that conformationally constrains the ED-KP; Peptide independently includes natural, unnatural, essential or non-essential aromatic or aliphatic amino acids, or derivatives thereof having L or D configuration; ED-KP includes an endosomal-disrupting kinked peptide; Xaa, Xaa1, and Xaa2 are independently one or more natural or non-natural amino acids, essential amino acids, or non-essential amino acids, or derivatives of amino acids having L or D configuration; L1 and L2 are independently linkers; n1, n2, n3, and n4 are independently 0-50; Z1 and Z2
are independently a targeting moiety, cargo moiety, or nothing, wherein at least one is a targeting moiety; Y¹ and Y² are independently nothing or a linker, or a linker having a cargo moiety; and X¹ and X² are independently nothing, a coupling group, one or more beta-alanine residues, or a polypeptide.

In one embodiment, the cell-targeting compound includes a linker between and linking the one or more peptides and the targeting moiety. In one aspect, the linker is adjacent to a cargo moiety opposite of the cholesterol carbamate, wherein the cargo moiety is branched from the linker, wherein the linker includes a bi-glutamic acid adjacent to the branch having the cargo moiety.

In one embodiment, the cell-targeting compound includes one of Formulae 10-10C, 11-11C, or 12-1IC wherein: KP and KP1 independently include a kinked peptide or an amino acid that causes peptide to kink; Xaa, Xaa¹, and Xaa² are independently one or more natural or non-natural amino acids, essential amino acids, or non-essential amino acids, or derivatives of amino acids having L or D configuration; Z¹ and Z² are independently a targeting moiety, cargo moiety, or nothing, wherein at least one is a targeting moiety; Y¹ and Y² are independently nothing or a linker, or a linker having a cargo moiety; X¹ and X² are independently nothing, a coupling group, one or more beta-alanine residues, or a polypeptide; and n1, n2, n3, n4, n5, n6, and n7 are independently 0-50.

In one embodiment, the cell-targeting compound includes a structure of one of Compounds 1, 5-38, and 40-73.

In one embodiment, a cargo delivery compound includes: one of the peptides described herein; and a cargo moiety linked to the peptide.

In one embodiment, a cargo delivery molecule can include cargo that is a therapeutic agent, pharmaceutical, nutraceutical, diagnostic agent, assay agent, tracking agent, suicide agent, toxin, or any other agent.

In one embodiment, a molecule can include one or more beta-alanine residues between the peptide and the targeting moiety.

In one embodiment, a molecule can include the conformationally-constraining portion having one or more Aib moieties or a peptide having two or more Aib moieties that are in sequence or separate. In one aspect, the conformationally-constraining portion includes one or more alanine moieties or a peptide having one or more alanine moieties that are in sequence or separate. In one aspect, the kinked portion is or includes one or
more proline moieties or a peptide having two or more proline moieties that are in sequence or separate. In one aspect, the kinked portion includes two sequential proline moieties. In one aspect, the kinked portion includes one or more glycine moieties or a peptide having two or more glycine moieties that are in sequence or separate. In one aspect, the kinked portion includes two sequential glycine moieties. In one aspect, the kinked portion includes one or more glycine moieties and one or more proline moieties or a peptide where the glycine and proline are in sequence or separate. In one aspect, the kinked portion includes one or more glycine-proline segments or one or more proline-glycine segments. In one aspect, Xaa, Xaa\(^1\), or Xaa\(^2\) are independently phenylalanine, tryptophan, histidine, tyrosine, thyroxine, or other aromatic amino acid.

In one embodiment, \(X^1, Y^1, \) and \(Z^1\) and \(X^2, Y^2, \) and \(Z^2\) independently can each represent nothing (unmodified), one or more functional groups, one or more amino acids, a capping group, a solubilizing group such as PEG or other motif that alters solubility, a linker to a targeting motif, or a targeting motif such as a targeting motif comprising a cellular-binding or membrane-binding moiety such as a small molecule, protein, peptide, lipid, cholesterol or a cholesterol mimic, carbohydrate, nucleic acid, or other moiety with affinity for cellular components or membranes. In one aspect, \(X^1, Y^1, \) and \(Z^1\) and \(X^2, Y^2, \) and \(Z^2\) represent zero, one, or more cargo molecules including nucleic acids, peptides, proteins, small molecules, drugs, or probes.

In one embodiment, the CCM can be one or more 2-aminoisobutyric acid (i.e., Aib) moieties or a polypeptide containing one or more Aib. In one aspect, CCM can include two or more Aib, which can be sequential Aib or an amino acid or peptide can be between the Aib moieties. In one aspect, each Aib moiety can be replaced by other helix-stabilizing amino acids (e.g., natural or non-natural), helix-stabilizing crosslinking groups, other helix-stabilizing modifications, or other conformationally-restricted amino acids or groups.

In one aspect, the coupling agent, such as \(X^1\) and/or \(X^2\) can be selected from a dithio diacid, a dicarboxylic acid, an acrylic moieties, a diazide, a styrene, a vinyl carboxylic acid, a urethane, a vinyl acetate, a vinyl ether, a Diels-Alder reagent, disulfides, hydrazones, imines, acetals, orthoesters, or other acid-labile or redox sensitive groups that allow release of agents in cells or tissues, photopolymerizable moiety, photocleavable moiety, derivatives thereof, and combinations thereof.

In one aspect, the invention includes a method of disrupting endosomes
comprising: providing the molecule of the invention having an endosomal-disrupting peptide; and administering the molecule to a cell. In one aspect, the cell is in a cell culture. In one aspect, the cell is in a living organism. In one aspect, the method can include administering a sufficient amount of the molecule to disrupt the endosome of the cell.

In one embodiment, a method of delivering cargo to a cell can include: performing the method of disrupting endosomes of one of the embodiments with the molecule having a cargo moiety; and allowing the molecule and/or cargo to escape the endosome into cytoplasm of the cell.

In one embodiment, a method of targeting a cell for delivery of cargo can include: performing the method of disrupting endosomes with a molecule having a targeting moiety; and allowing the molecule to target and associate with a cell membrane sufficiently for endocytosis of the molecule.

From the foregoing, it will be appreciated that various embodiments of the present disclosure have been described herein for purposes of illustration, and that various modifications may be made without departing from the scope and spirit of the present disclosure. Accordingly, the various embodiments disclosed herein are not intended to be limiting, with the true scope and spirit being indicated by the following claims.

Suh; *Eur J Biochem*; Vol. 266, pp. 665-674, 1999; Using an Azobenzene Cross-Linker to Either Increase or Decrease Peptide Helix Content upon Trans-to-Cis Photoisomerization;

CLAIMS

1. A conformationally-constrained kinked peptide comprising:
a conformationally-constraining portion; and
a kinked portion linked to the conformationally-constraining portion that
conformationally constrains the kinked portion, the kinked portion comprising an
endosomal-disrupting peptide.

2. The peptide of claim 1, comprising a peptide sequence of one of SEQ ID
NOS: 1, 5-38, or 40-69.

3. The peptide of one of claims 1-2, wherein the conformationally-constrained kinked portion is a majority portion of the peptide.

4. The peptide of one of claims 1-2, wherein the conformationally-constrained kinked portion is a minority portion of the peptide.

5. The peptide of one of claims 1-4, comprising one of Formulae 1-1C, wherein:

 CC-Peptide includes a peptide that conformationally constrains the ED-KP;
 Peptide independently includes natural, unnatural, essential or non-essential
 aromatic or aliphatic or other amino acids, or derivatives thereof having L or D
 configuration;
 ED-KP includes an endosomal-disrupting kinked peptide;
 Xaa, Xaa₁, and Xaa² are independently one or more natural or non-natural amino
 acids, essential amino acids, or non-essential amino acids, or derivatives of amino acids
 having L or D configuration;
 L₁ and L₂ are independently linkers; and
 nl, n2, n3, and n4 are independently 0-50.

6. The peptide of one of claims 1-4, comprising one of Formulae 5-5C, wherein:

 CCM includes a moiety that conformationally constrains the ED-KP;
 Peptide independently includes natural, unnatural, essential or non-essential
 aromatic, aliphatic, or other amino acids, or derivatives thereof having L or D
 configuration;
 ED-KP includes an endosomal-disrupting kinked peptide;
Xaa, Xaa\(^1\), and Xaa\(^2\) are independently one or more natural or non-natural amino acids, essential amino acids, or non-essential amino acids, or derivatives of amino acids having L or D configuration;

L\(_1\) and L\(_2\) are independently linkers; and

n\(_1\), n\(_2\), n\(_3\), and n\(_4\) are independently 0-50.

7. The peptide of one of claims 1-4, comprising one of Formulae 9-9C, wherein:

KP and KP\(_1\) independently include a kinked peptide or an amino acid that can cause a peptide to kink;

Xaa, Xaa\(^1\), and Xaa\(^2\) are independently one or more natural or non-natural amino acids, essential amino acids, or non-essential amino acids, or derivatives of amino acids having L or D configuration; and

n\(_1\), n\(_2\), n\(_3\), n\(_4\), n\(_5\), n\(_6\), and n\(_7\) are independently 0-50.

8. The peptide of one of claims 1-7, comprising one of the peptide sequences of one of the SEQ ID NOs: 40-54 or 69.

9. A cell-targeting compound comprising:

one or more of the peptides of one of claims 1-8; and

a targeting moiety linked to an end of the peptide.

10. The cell-targeting compound of one of claims 8-11, wherein the targeting moiety is on the C-terminus of the peptide of one of SEQ ID NOs: 1, 5-38, or 40-69.

11. The cell-targeting compound of one of claims 8-12, wherein the targeting moiety is on the N-terminus of the peptide of one of SEQ ID NOs: 1, 5-38, or 40-69.

12. The cell-targeting compound of one of claims 9-11, comprising one of Formulae 2-2C, 3-3C, or 4-4C, wherein:

CC-Peptide includes a peptide that conformationally-constrains the ED-KP;

Peptide independently includes natural, unnatural, essential or non-essential aromatic, aliphatic, or other amino acids, or derivatives thereof having L or D configuration;

ED-KP includes an endosomal-disrupting kinked peptide;

Xaa, Xaa\(^1\), and Xaa\(^2\) are independently one or more natural or non-natural amino acids, essential amino acids, or non-essential amino acids, or derivatives of amino acids having L or D configuration;

L\(_1\) and L\(_2\) are independently linkers;
nl, n2, n3, and n4 are independently 0-50;

Z^1 and Z^2 are independently a targeting moiety, cargo moiety, or nothing, wherein at least one is a targeting moiety;

Y^1 and Y^2 are independently nothing or a linker, or a linker having a cargo moiety; and

X^1 and X^2 are independently nothing, a coupling group, one or more beta-alanine residues, or a polypeptide.

13. The cell-targeting compound of one of claims 9-11, comprising one of Formulae 6-6C, 7-7C, or 8-8C, wherein:

- CCM includes a moiety that conformationally constrains the ED-KP;
- Peptide independently includes natural, unnatural, essential or non-essential aromatic, aliphatic, or other amino acids, or derivatives thereof having L or D configuration;
- ED-KP includes an endosomal-disrupting kinked peptide;
- Xaa, Xaa1, and Xaa2 are independently one or more natural or non-natural amino acids, essential amino acids, or non-essential amino acids, or derivatives of amino acids having L or D configuration;
- L1 and L2 are independently linkers;
- nl, n2, n3, and n4 are independently 0-50;

Z^1 and Z^2 are independently a targeting moiety, cargo moiety, or nothing, wherein at least one is a targeting moiety;

Y^1 and Y^2 are independently nothing or a linker, or a linker having a cargo moiety; and

X^1 and X^2 are independently nothing, a coupling group, one or more beta-alanine residues, or a polypeptide.

14. The cell-targeting compound of one of claims 9-11, comprising a linker between and linking the one or more peptides and the targeting moiety.

15. The cell-targeting compound of one of claims 9-15, wherein the targeting moiety is a cholesterol or cholesterol derivative.

16. The cell-targeting compound of claim 16, wherein the cholesterol derivative is a cholesteryl amine, cholesteryl carbamate, a dihydrocholesterol, sitosterol, cholesteryl, dihydrocholesteryl, or derivative thereof.
17. The cell-targeting compound of claim 14, comprising wherein the linker is adjacent to a cargo moiety opposite of the cholesterol carbamate, wherein the cargo moiety is branched from the linker, wherein the linker includes a bi-glutamic acid adjacent to the branch having the cargo moiety.

18. The cell-targeting compound of one of claims 9-17, comprising one of Formulae 10-1OC, 11-1lC, or 12-1C wherein:

- KP and KP1 independently include a kinked peptide or an amino acid that can cause a peptide to kink;
- Xaa, Xaa¹, and Xaa² are independently one or more natural or non-natural amino acids, essential amino acids, or non-essential amino acids, or derivatives of amino acids having L or D configuration;
- Z¹ and Z² are independently a targeting moiety, cargo moiety, or nothing, wherein at least one is a targeting moiety;
- Y¹ and Y² are independently nothing or a linker, or a linker having a cargo moiety;
- X¹ and X² are independently nothing, a coupling group, one or more beta-alanine residues, or a polypeptide; and

n₁, n₂, n₃, n₄, n₅, n₆, and n₇ are independently 0-50.

19. The cell-targeting compound of one of claims 1-18, comprising a structure of one of Compounds 1, 5-38, and 40-73.

20. A cargo delivery compound comprising:

- one of the peptides of one of claims 1-8; and
- a cargo moiety linked to the peptide.

21. A cargo delivery molecule comprising:

- one or more of the cell-targeting compounds of claims 9-19; and
- a cargo moiety linked at an internal portion of the cell-targeting compound between the targeting moiety and the peptide.

22. A cargo delivery molecule comprising:

- one of the targeting molecules of one of claims 9-19; and
- a cargo moiety linked at an end of the peptide opposite of the targeting moiety.

23. The cargo delivery molecule of one of claims 20-22, wherein the cargo is a therapeutic agent, pharmaceutical, nutraceutical, diagnostic agent, assay agent, tracking agent, suicide agent, toxin, or any other agent.
24. A molecule of one of claims 1-19 or 21-23, comprising one or more beta-alanine residues between the peptide and the targeting moiety.

25. A molecule of one of claims 1-19 or 21-24, wherein the conformationally-constraining portion comprises one or more Aib moieties or a peptide having two or more Aib moieties that are in sequence or separate.

26. A molecule of one of claims 1-19 or 21-25, wherein the conformationally-constraining portion includes one or more alanine moieties or a peptide having one or more alanine moieties that are in sequence or separate.

27. A molecule of one of claims 1-19 or 21-26, wherein the kinked portion is or includes one or more proline moieties or a peptide having two or more proline moieties that are in sequence or separate.

28. A molecule of one of claims 1-19 or 21-27, wherein the kinked portion includes two sequential proline moieties.

29. A molecule of one of claims 1-19 or 21-28, wherein the kinked portion includes one or more glycine moieties or a peptide having two or more glycine moieties that are in sequence or separate.

30. A molecule of one of claims 1-19 or 21-29, wherein the kinked portion includes two sequential glycine moieties.

31. A molecule of one of claims 1-19 or 21-30, wherein the kinked portion includes one or more glycine moieties and one or more proline moieties or a peptide where the glycine and proline are in sequence or separate.

32. A molecule of one of claims 1-19 or 21-31, wherein the kinked portion includes one or more glycine-proline segments or one or more proline-glycine segments.

33. A molecule of one of claims 5-7, 12-13, or 18, wherein Xaa, Xaa\(^1\), or Xaa\(^2\) are independently phenylalanine, tryptophan, histidine, tyrosine, thyroxine, or other aromatic amino acid.

34. A method of disrupting endosomes comprising: providing the molecule of one of claims 1-33; and administering it to a cell.

35. The method of claim 34, wherein the cell is in a cell culture.

36. The method of claim 34, wherein the cell is in a living organism.

37. The method of one of claims 34-36, administering a sufficient amount of the molecule to disrupt the endosome of the cell.
38. A method of delivering cargo to a cell, the method comprising:
 performing the method of disrupting endosomes of one of claims 34-37 with the
 molecule having a cargo moiety; and
 allowing the molecule and/or cargo to escape the endosome into cytoplasm of the
 cell.

39. A method of targeting a cell for delivery of cargo, the method comprising:
 performing the method of disrupting endosomes of one of claims 34-38 with a
 molecule having a targeting moiety; and
 allowing the molecule to target and associate with a cell membrane sufficiently for
 endocytosis of the molecule.
Endosome Disruption By Representative Lipid-Linked Compounds

Fig. 2A
Endosome Disruption By Unconjugated Peptides

Fig. 2

Log [Compound] (M)

% Of Maximal Release By 1

Efficacy Of Fluorophore Release

100 80 60 40 20 0

-6.0 -5.8 -5.6 -5.4 -5.2 -5.0 -4.8
Endosome Disruption By Unconjugated Peptides

Efficiency of Fluorophore Release

(% of maximal release by 1)

Log [Compound] (M)

Fig. xc
Jurkat Cells After Treatment With Disulfide 59 (1μM, 16 h)
Jurkat Cells After Treatment With Amide 60 (1μM, 16 h)

Confocal Fluorescence

DIC

Fig. 4B
A. CLASSIFICATION OF SUBJECT MATTER

C07K 7/08(2006.01)i, A61K 47/42(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C07K 7/08; A61K 47/42

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: conformationally constrained kinked peptide, endosomal disrupting peptide, receptor mediated endosytosis

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 2010-0041773 AI (PETERSON, BLAKE R.) 18 February 2010 See abstract; claims 1 and 17.</td>
<td>1-4</td>
</tr>
<tr>
<td>A</td>
<td>SUN, QI et al., 'Selective disruption of ear lymph/recipient endsomes: release of dispersible inked cargo mediated by a N-alkyl-3E-cholesteryamine-capped peptide', Journal of the American Chemical Society, 10 July 2008, Vol. 130, No. 31, pp. 10064-10065 See the whole document.</td>
<td>1-4</td>
</tr>
<tr>
<td>A</td>
<td>US 2006-0229235 AI (PETERSON, BLAKE R.) 12 October 2006 See paragraphs [0067]-[0068]; claim 1.</td>
<td>1-4</td>
</tr>
<tr>
<td>A</td>
<td>HYMEL, DAVID et al., 'Synthetic cell surface receptor ors for delivery of therapeutics and probes', Advanced Drug Delivery Reviews, 25 February 2012, Vol. 64, Issue 9, pp. 797-810 See p. 802-806.</td>
<td>1-4</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search: 24 January 2014 (24.01.2014)

Date of mailing of the international search report: 24 January 2014 (24.01.2014)

Name and mailing address of the ISA/KR

Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan City, 302-701, Republic of Korea
Facsimile No. +82-42-472-7140

Authorized officer

HEO, Joo Hyung
Telephone No. +82-42-481-8150

Form PCT/ISA/210 (second sheet) (July 2009)
1. With regard to any nucleotide and/or amino acid sequence disclosed in the international application, the international search was carried out on the basis of:

 a. a sequence listing filed or furnished
 □ on paper
 ☑ in electronic form

 b. time of filing or furnishing
 □ contained in the international application as filed
 ☑ filed together with the international application in electronic form
 □ furnished subsequently to this Authority for the purposes of search

2. ☐ In addition, in the case that more than one version or copy of a sequence listing has been filed or furnished, the required statements that the information in the subsequent or additional copies is identical to that in the application as filed or does not go beyond the application as filed, as appropriate, were furnished.

3. Additional comments:
INTERNATIONAL SEARCH REPORT

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. □ Claims Nos.:
 because they relate to subject matter not required to be searched by this Authority, namely:

2. ☒ Claims Nos.: 16,17,35,36
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
 Claims 16, 17, 35 and 36 are unclear (PCT Article 6), because they refer to multiple dependent claims which are not drafted in accordance with PCT Rule 6.4(a).

 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. □ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. □ As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of any additional fees.

3. □ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. □ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest □ The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.

☒ The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.

☒ No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (July 2009)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2010-0041773 Al</td>
<td>18/02/2010</td>
<td>WO 2010-022051 A2</td>
<td>25/02/2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010-022051 A3</td>
<td>17/06/2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010-0029906 Al</td>
<td>04/02/2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010-0160657 Al</td>
<td>24/06/2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 7514400 B2</td>
<td>07/04/2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 7947647 B2</td>
<td>24/05/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 7956029 B2</td>
<td>07/06/2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 8198230 B2</td>
<td>12/06/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010-071772 A2</td>
<td>24/06/2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010-071772 A3</td>
<td>21/10/2010</td>
</tr>
</tbody>
</table>