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SOURCE CODING TO PROVIDE FOR ROBUST ERROR RECOVERY

BACKGROUND OF THE INVENTION
1. Field of the Invention

The present invention relates to providing a robust error recovery due to
data losses incurred during transmission of signals. More particularly, the present
invention relates to a data shuffling method used in facilitating a robust error
recovery.

2. Art Background

A number of techniques exist for reconstructing lost data due to random
errors that occur during signal transmission. However, these techniques cannot
handle the loss of consecutive packets of data. Consecutive loss of packets of data is
described in the art as burst error. Burst errors result in a reconstructed signal with
such a degraded quality that it is easily apparent to the end user. Additionally,
compression methodologies used to facilitate high speed communications
compound the signal degradation caused by burst errors, thus adding to the
degradation of the reconstructed signal. An example of burst error loss affecting
transmitted and/or stored signals is seen in high definition television ("HDTV")
signals and mobile telecommunication applications wherein compression
methodologies play an important role.

The advent of HDTV has led to television systems with a much higher
resolution than the current standards proposed by the National Television Systems
Committee ("NTSC"). Proposed HDTV signals are predominantly digital.
Accordingly, when a color television signal is converted for digital use it is common
that the luminance and chrominance signals are digitized using eight bits. Digital
transmission of color television requires a nominal bit rate of two hundred and
sixteen megabits per second. The transmission rate is greater for HDTV which
would nominally require about 1200 megabits per second. Such high transmission
rates are well beyond the bandwidths supported by current wireless standards.

Accordingly, an efficient compression methodology is required.
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Compression methodologies also play an important role in mobile
telecommunication applications. Typically, packets of data are communicated
between remote terminals in mobile telecommunication applications. The limited
number of transmission channels in mobile communications requires an effective
compression methodology prior to the transmission of packets. A number of
compression techniques are available to facilitate high transmission rates.

Adaptive Dynamic Range Coding ("ADRC") and the discrete cosine
transform ("DCT") coding provide image compression techniques known in the art.
Both techniques take advantage of the local correlation within an image to achieve a
high compression ratio. However, an efficient compression algorithm results in
compounded error propagation because errors in an encoded signal are more
prominent when subsequently decoded. This error multiplication results in a
degraded video image that is readily apparent to the user.

SUMMARY OF THE INVENTION

Data is encoded to maximize subsequent recovery of lost or damaged
compression constants of encoded data. In one embodiment, a compression
constant is used to define a randomization pattern and the data is randomized
using the randomization pattern. In one embodiment, a bit reallocation process and
code reallocation process are performed on the data to randomize the data.

BRIEF DESCRIPTION OF THE DRAWINGS

The objects, features and advantages of the present invention will be
apparent to one skilled in the art in light of the following detailed description in
which:

Figure 1 generally illustrates the processes of signal encoding, transmission,
and decoding.

Figure 2 illustrates one embodiment of a packet structure.

Figure 3 is a flow diagram illustrating one embodiment of the encoding
process in accordance with the teachings of the present invention.

Figure 4 is a flow diagram illustrating one embodiment of the decoding

process in accordance with the teachings of the present invention.
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Figure 5 illustrates one embodiment of image-to-block mapping in
accordance with the teachings of the present invention.

Figure 5a illustrates one embodiment of a shuffling pattern used in image-to-
block mapping.

Figure 6 is an illustration of exemplary complementary and interlocking
block structures.

Figures 7a, 7b, 7¢, 7d illustrate one embodiment of shuffling patterns for Y
blocks within a frame set.

Figure 8 is an illustration of one embodiment of cumulative DR distribution
for Buffer 0.

Figure 8a is an illustration of one embodiment of a partial buffering process
in accordance with the teachings of the present invention.

Figure 9 illustrates one embodiment of the intra buffer YUV block shuffling
process in accordance with the teachings of the present invention.

Figure 10 illustrates one embodiment of the intra group VL-data shuffling
process in accordance with the teachings of the present invention.

Figure 11 illustrates one embodiment of Q code concatenation within a 3-
block group in accordance with the teachings of the present invention.

Figure 11a illustrates one embodiment of Q code concatenation for frame
pairs including motion blocks in accordance with the teachings of the present
invention.

Figure 12 illustrates one embodiment of pixel data error caused by a 1/6
burst error loss.

Figure 12a illustrates one embodiment of shuffling Q codes and distributing
Q code bits in accordance with the teachings of the present invention.

Figure 12b illustrates one embodiment of pixel data error caused by a 1/6
burst error loss of redistributed Q codes.

Figure 12c illustrates one embodiment of pixel data error caused by a 1/6
burst error loss of reassigned Q codes.

Figure 12d illustrates one embodiment of a randomization process.
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Figures 12e, 12f, 12g and 12h are examples of randomization processes.

Figure 13 illustrates one embodiment of MIN shuffling in accordance with
the teachings of the present invention.

Figure 13a illustrates one embodiment of Motion Flag shuffling and of a
fixed length data loss in one frame pair.

Figure 14 illustrates one embodiment of a modular shuffling.

Figure 14a illustrates one embodiment of a modular shuffling result and the
fixed length data loss associated with the modular shuffling.

Figure 14b illustrates an alternate embodiment of a modular shuffling result
and the fixed length data loss associated with the modular shuffling.

Figure 14c illustrates an alternate embodiment of a modular shuffling result
and the fixed length data loss associated with the modular shuffling.

Figure 15 illustrates one embodiment of variable length data buffering in a
frame set.

Figure 16 illustrates one embodiment of inter segment VL-data shuffling in
accordance with the teachings of the present invention.

DETAILED DESCRIPTION

The present invention provides a method for coding and arranging a signal
stream to provide for a robust error recovery. In the following description, for
purposes of explanation, numerous details are set forth, in order to provide a
thorough understanding of the present invention. However, it will be apparent to
one skilled in the art that these specific details are not required in order to practice
the present invention. In other instances, well known electrical structures and
circuits are shown in block diagram form in order not to obscure the present
invention unnecessarily.

The signal processing methods and structures are described from the
perspective of one embodiment in which the signals are video signals. However, it
is contemplated that the methods and apparatus described herein are applicable to
a variety of types of signals including audio signals or other digital bitstreams of

data, wherein each signal is composed of multiple signal elements. Furthermore
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the embodiment of the process described herein utilizes the Adaptive Dynamic
Range Coding ("ADRC") process to compress data; however a variety of coding
techniques and algorithms may be used. For a more detailed discussion on ADRC,
see "Adaptive Dynamic Range Coding Scheme for Future HDTV Digital VIR",
Kondo, Fujimori and Nakaya, Fourth International Workshop on HDTV and
Beyond, September 4-6, 1991, Turin, Italy.

In the above paper, three different kinds of ADRC are explained. These are
achieved according to the following equations:
Non-edge-matching ADRC:

DR = MAX —MIN +1

_| (x—MIN +05)-2°
1 I DR
y=|lg+05)-DR M’NJ

| 2°

Edge-matching ADRC:
DR = MAX — MIN

— e _
4= | = MIN) (2 1)+0‘5J
I DR
x'= q'DR+M1N+0.5J
27 -

Multi-stage ADRC:
DR = MAX —MIN +1

_| k-MIN +0.5)-2°
1 DR

e (¢+0.5)-DR +MINJ
2Q

Where MAX’ is the averaged value of x' in the case of g =2° —1;

MIN’ is the averaged value of x' in the case of ¢ =0; and

DR’ = MAX" - MIN’
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. =[(x—MI]g;-’(2Q —1)+0_5J

x’{q'DR +MIN’+O.5J

iZQ—”

where MAX represents the maximum level of a block, MIN represents the
minimum level of a block, x represents the signal level of each sample, Q represents
the number of quantization bits, g represents the quantization code (encoded data),

x' represents the decoded level of each sample, and the square brackets |- | represent

a truncation operation performed on the value within the square brackets.

The signal encoding, transmission, and subsequent decoding processes are
generally illustrated in Figure 1. Signal 100 is a data stream input to Encoder 110.
Encoder 110 follows the Adaptive Dynamic Range Coding ("ADRC") compression
algorithm and generates Packets 1, . . . N for transmission along Transmission
Media 135. Decoder 120 receives Packets 1, . .. N from Transmission Media 135 and
generates Signal 130. Signal 130 is a reconstruction of Signal 100.

Encoder 110 and Decoder 120 can be implemented a variety of ways to
perform the functionality described herein. In one embodiment, Encoder 110
and/or Decoder 120 are embodied as software stored on media and executed by a
general purpose or specifically configured computer system, typically including a
central processing unit, memory and one or more input/output devices and co-
processors. Alternately, the Encoder 110 and/or Decoder 120 may be implemented
as logic to perform the functionality described herein. In addition, Encoder 110
and/or Decoder 120 can be implemented as a combination of hardware, software or
firmware.

In the present embodiment Signal 100 is a color video image comprising a
sequence of video frames, each frame including information representative of an
image in an interlaced video system. Each frame is composed of two fields,
wherein one field contains data of the even lines of the image and the other field

containing the odd lines of the image. The data includes pixel values which
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describe the color components of a corresponding location in the image. For
example, in the present embodiment, the color components consist of the luminance
signal Y, and color difference signals U, and V. It is readily apparent the process of
the present invention can be applied to signals other than interlaced video signals.
Furthermore, it is apparent that the present invention is not limited to
implementations in the Y, U, V color space, but can be applied to images
represented in other color spaces.

Referring back to Figure 1, Encoder 110 divides the Y, U, and V signals and
processes each group of signals independently in accordance with the ADRC
algorithm. The following description, for purposes of simplifying the discussion,
describes the processing of the Y signal; however, the encoding steps are replicated
for the U and V signals.

In the present embodiment, Encoder 110 groups Y signals across two
subsequent frames, referred to herein as a frame pair, of Signal 100 into three
dimensional blocks (“3D”) blocks. For one embodiment, a 3D block is generated
from grouping two 2D blocks from the same localized area across a given frame
pair, wherein a two dimensional 2D block is created by grouping localized pixels
within a frame or a field. It is contemplated that the process described herein can
be applied to different block structures. The grouping of signals will be further
described in the image-to-block mapping section below.

Continuing with the present embodiment, for a given 3D block, Encoder 110
calculates whether there is a change in pixel values between the 2D blocks forming
the 3D block. A Motion Flag is set if there are substantial changes in values. Asis
known in the art, use of a Motion Flag allows Encoder 110 to reduce the number of
quantization codes when there is localized image repetition within each frame pair.
Encoder 110 also detects the maximum pixel intensity value ("MAX") and the
minimum pixel intensity value ("MIN") within a 3D block. Using values MAX and
MIN, Encoder 110 calculates the dynamic range ("DR") for a given 3D block of data.
For one embodiment DR = MAX - MIN + 1 in the case of non-edge-matching
ADRC. For edge-matching ADRC, DR = MAX - MIN. In an alternative
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embodiment, Encoder 110 encodes signals on a frame by frame basis for a stream of
frames representing a sequence of video frames. In another embodiment, Encoder
110 encodes signals on a field by field basis for a stream of fields representing a
sequence of video fields. Accordingly, Motion Flags are not used and 2D blocks
are used to calculate the MIN, MAX, and DR values.

In the present embodiment, Encoder 110 references the calculated DR against
a threshold table (not shown) to determine the number of quantization bits ("Qbits")
used to encode pixels within the block corresponding to the DR. Encoding of a
pixel results in a quantization code ("Q code"). The Q codes are the relevant
compressed image data used for storage or transmission purposes.

In one embodiment, the Qbit selection is derived from the DR of a 3D block.
Accordingly, all pixels within a given 3D block are encoded using the same Qbit,
resulting in a 3D encoded block. The collection of Q codes, MIN, Motion Flag, and
DR for a 3D encoded block is referred to as a 3D ADRC block. Alternately, 2D
blocks are encoded and the collection of Q codes, MIN, and DR for a given 2D block
results in 2D ADRC blocks.

A number of threshold tables can be implemented. In one embodiment, the
threshold table consists of a row of DR threshold values. A Qbit corresponds to the
number of quantization bits used to encode a range of DR values between two
adjacent DRs within a row of the threshold table. In an alternative embodiment, the
threshold table includes multiple rows and selection of a row depends on the
desired transmission rate. Each row in the threshold table is identified by a
threshold index. A detailed description of one embodiment of threshold selection is
described below in the discussion of partial buffering. A further description of
ADRC encoding and buffering is disclosed in US Patent no. 4,722,003 entitled "High
Efficiency Coding Apparatus” and US Patent no. 4,845,560 also entitled "High
Efficiency Coding Apparatus”, assigned to the assignee of the present invention.

Here forth the Q codes are referred to as variable length data ("VL-data"). In
addition, the DR, MIN, and Motion Flag are referred to as block attributes. The
block attributes, together with the threshold index, constitute the fixed length data
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("FL-data"). Furthermore, in view of the above discussion, the term block attribute
describes a parameter associated with a component of a signal element, wherein a
signal element includes multiple components.

In an alternate embodiment, the FL-data includes a Qbit code. The advantage is
that the Qbit information does not have to be derived from the DR during the
decoding process. Thus, if the DR information is lost or damaged, the Qbit
information can still be determined from the Qbit code. Furthermore, if the Qbit
code is lost or damaged, the Qbit information can be derived from DR. Thus the
requirement to recover the DR and Qbit is reduced.

The disadvantage to including the Qbit code is the additional bits to be
transmitted for each ADRC block. However, in one embodiment, Qbit codes for
groups of ADRC blocks are combined, for example, in accordance with a function
such as addition or concatenation. For example, if ADRC blocks are grouped in
threes and if the Qbit values for each ADRC block are respectively 3, 4 and 4, the
summed value that is encoded into the FL-data is 11. Thus the number of bits
required to represent the sum is less than the number of bits required to represent
each individual value and undamaged Qbit values of the group can be used to
determine the Qbit value without performing a Qbit recovery process such as the
one described subsequently.

Other embodiments are also contemplated. For example, Motion Flag data
may also be encoded. A tag with Qbit and Motion Flag data can be generated and
used to reference a table of codes. The configuration and function of the coding can
vary according to application.

Frames, block attributes, and VL-data describe a variety of components
within a video signal. The boundaries, location, and quantity of these components
are dependent on the transmission and compression properties of a video signal. In
the present embodiment, these components are varied and shuffled within a
bitstream of the video signal to ensure a robust error recovery during transmission

losses.
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For illustrative purposes, the following description provides fora 1/6
consecutive packet transmission loss tolerance, pursuant to an ADRC encoding and
shuffling of a video signal. Accordingly, the following definition and division of
components exist for one embodiment. Other embodiments also are contemplated.
A data set includes a partition of data of a video or other type of data signal. Thus,
in one embodiment, a frame set is a type of data set that includes one or more
consecutive frames. A segment includes a memory with the capacity to store a
one-sixth division of the Q codes and block attributes included in a frame set.
Further, a buffer includes a memory with the capacity to store a one-sixtieth
division of the Q codes and block attributes included in a frame set. The shuffling
of data is performed by interchanging components within segments and/or buffers.
Subsequently, the data stored in a segment is used to generate packets of data for
transmission. Thus, in the following description if a segment is lost all the packets
generated from the segment are lost during transmission. Similarly, if a fraction of
a segment is lost then a corresponding number of packets generated from the
segment are lost during transmission.

Although, the following description refers to a 1/6 consecutive packet loss
for data encoded using ADRC encoding, it is contemplated that the methods and
apparatus described herein are applicable to a design of a 1/n consecutive packets
loss tolerance coupled to a variety of encoding/decoding schemes.

Figure 2 illustrates one embodiment of Packet Structure 200 used for the
transmission of the data across point-to-point connections as well as networks.
Packet Structure 200 is generated by Encoder 110 and is transmitted across
Transmission Media 135. For one embodiment, Packet Structure 200 comprises five
bytes of header information, eight DR bits, eight MIN bits, a Motion Flag bit, a five
bit threshold index, and 354 bits of Q codes. The packet structure described herein
is illustrative and may typically be implemented for transmission in an
asynchronous transfer mode ("ATM") network. However, the present invention is
not limited to the packet structure described and a variety of packet structures that

are used in a variety of networks can be utilized.

10
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As noted earlier, Transmission Media (e.g., media) 135 is not assumed to
provide error-free transmission and therefore packets may be lost or damaged. As
noted earlier, conventional methods exist for detecting such loss or damage, but
substantial image degradation will generally occur. The system and methods of the
present invention therefore teach source coding to provide robust recovery from
such loss or damage. It is assumed throughout the following discussion that a burst
loss, that is the loss of several consecutive packets, is the most probable form of
error, but some random packet losses might also occur.

To ensure a robust recovery for the loss of one or more consecutive packets
of data, the system and methods of the present invention provide multiple level
shuffling. In particular, the FL-data and the VL-data included in a transmitted
packet comprise data from spatially and temporally disjointed locations of an
image. Shuffling data ensures that any burst error is scattered and facilitates error
recovery. As will be described below, the shuffling allows recovery of block
attributes and Qbit values.

Data Encoding/Decoding

Figure 3 is a flow diagram illustrating one embodiment of the encoding
process performed by Encoder 110. Figure 3 further describes an overview of the
shuffling process used to ensure against image degradation and to facilitate a
robust error recovery.

In step one of Figure 3, an input frame set, also referred to as a display
component, is decimated to reduce the transmission requirements. The Y signal is
decimated horizontally to three-quarters of its original width and the U and V
signals are each decimated to one-half of their original height and one-half of their
original width. This results in a 3:1:0 video format with 3960 Y blocks, 660 U blocks
and 660 V blocks in each frame pair. As noted earlier, the discussion will describe
the processing of Y signals; however, the process is applicable to the U and V
signals. At step two, the two Y frame images are mapped to 3D blocks. At step
three, 3D blocks are shuffled. At step four, ADRC buffering and encoding is used.
At step five, encoded Y, U and V blocks are shuffled within a buffer.

11
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At step six, the VL-data for a group of encoded 3D blocks and their
corresponding block attributes are shuffled. At step seven, the FL-data is shuffled
across different segments. At step eight, post-amble filling is performed in which
variable space at the end of a buffer is filled with a predetermined bitstream. At
step nine, the VL-data is shuffled across different segments.

For illustrative purposes the following shuffling description provides a
method for manipulation of pixel data before and after encoding. For an alternative
embodiment, independent data values are shuffled/deshuffled via hardware. In
particular, the hardware maps the address of block values to different addresses to
implement the shuffling/deshuffling process. However, address mapping is not
possible for data dependent values because shuffling has to follow the processing of
data. The intra group VL-data shuffling described below includes the data
dependent values. Further, for illustrative purposes the following shuffling
description occurs on discrete sets of data. However, for alternative embodiments a
signal is defined based on multiple data levels ranging from bits, to pixels, and to
frames. Shuffling is possible for each level defined in the signal and across different
data levels of the signal.

Figure 4 is a flow diagram illustrating one embodiment of decoding process
performed by Decoder 120. Preferably, the conversion and de-shuffling processes
are the inverse of the processes represented in Figure 3.

Image-to-Block Mapping

In the present embodiment, a single frame typically comprises 5280 2D
blocks wherein each 2D block comprises 64 pixels. Thus, a frame pair comprises
5280 3D blocks as a 2D block from a first frame and a 2D block from a subsequent
frame are collected to form a 3D block.

Image-to-block mapping is performed for the purpose of dividing a frame or
frame set of data into 2D blocks or 3D blocks respectively. Moreover, image-to-
block mapping includes using a complementary and/or interlocking pattern to

divide pixels in a frame to facilitate robust error recovery during transmission

12
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losses. However, to improve the probability that a given DR value is not too large,
each 2D block is constructed from pixels in a localized area.

Figure 5 illustrates one embodiment of an image-to-block mapping process
for an exemplary 16 pixel section of an image. Image 500 comprises 16 pixels
forming a localized area of a single frame. Each pixel in Image 500 is represented
by an intensity value. For example, the pixel in the top left hand side of the image
has an intensity value equal to 100 whereas the pixel in the bottom right hand side
of the image has an intensity value of 10.

In one embodiment, pixels from different areas of Image 500 are used to
create 2D Blocks 510, 520, 530, and 540. 2D Blocks 510, 520, 530, and 540 are
encoded, shuffled (as illustrated below), and transmitted. Subsequent to
transmission, 2D Blocks 510, 520, 530, and 540 are recombined and used to form
Image 550. Image 550 is a reconstruction of Image 500.

To ensure accurate representation of Image 500 despite a possible
transmission loss, Figure 5 is an interlocking complementary block structure, one
embodiment of which is illustrated in Figure 5, is used to reconstruct Image 550. In
particular, the pixel selection used to create 2D Blocks 510, 520, 530, and 540
ensures that a complementary and/or interlocking pattern is used to recombine the
blocks when Image 550 is reconstructed. Accordingly, when a particular 2D block's
attribute is lost during transmission, contiguous sections of Image 550 are not
distorted during reconstruction. For example, as illustrated in Figure 5 the DR of
2D Block 540 is lost during data transmission. However, during reconstruction of
Image 550, the decoder utilizes multiple neighboring pixels of neighboring blocks
through which a DR can be recovered for the missing DR of 2D Block 540. In
addition, as will be subsequently described, the combination of complementary
patterns and shifting increases the number of neighboring pixels, preferably
maximizing the number of neighboring pixels that originate from other blocks,
significantly improving DR and MIN recovery.

Figure 5a illustrates one embodiment of a shuffling pattern used to form 2D

blocks in one embodiment of the image-to-block mapping process. Animage is

13
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decomposed into two sub-images, Sub-Image 560 and Sub-Image 570, based on
alternating pixels. Rectangular shapes are formed in Sub-Image 560 to delineate the
2D block boundaries. For purposes of discussion, the 2D blocks are numbered 0, 2,
4,7,9,11,12,14, 16, 19, 21, and 23. Tile 565 illustrates the pixel distribution for a 2D
block within Sub-Image 560.

In Sub-Image 570, the 2D block assignment is shifted by eight pixels
horizontally and four pixels vertically. This results in a wrap around 2D block
assignment and overlap when Sub-Images 560 and 570 are combined during
reconstruction. The 2D blocks are numbered 1, 3, 5, 6, 8, 10, 13, 15, 17, 18, 20, and
22. Tile 575 illustrates the pixel distribution for a 2D block within Sub-Image 570.
Tile 575 is the complementary structure of Tile 565. Accordingly, when a particular
block's attribute is lost during transmission, neighboring pixels through which a
block attribute can be recovered for the missing 2D block exists. Additionally, an
overlapping 2D block of pixels with a similar set of block attributes exist.

Therefore, during reconstruction of the image the decoder has multiple neighboring
pixels from adjacent 2D blocks through which a lost block attribute can be
recovered.

Figure 6 illustrates other complementary and interlocking 2D block
structures. Other structures may also be utilized. Similar to Figure 5, these 2D
block structures illustrated in Figure 6, ensure surrounding 2D blocks are present
despite transmission losses for a given 2D block. However, Patterns 610a, 610b, and
610d use horizontal and/or vertical shifting during the mapping of pixels to
subsequent 2D blocks. Horizontal shifting describes shifting the tile structure in the
horizontal direction a predetermined number of pixels prior to beginning a new 2D
block boundary. Vertical shifting describes shifting the tile structure in the vertical
direction a predetermined number of pixels prior to beginning a new 2D block
boundary. In application, horizontal shifting only may be applied, vertical shifting
may only be applied, or a combination of horizontal and vertical shifting may be

applied.
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Pattern 610a illustrates a spiral pattern used for image-to-block mapping.
The spiral pattern follows a horizontal shifting to create subsequent 2D blocks
during the image-to-block mapping process. Patterns 610b and 610d illustrate
complementary patterns wherein pixel selection is moved by a horizontal and
vertical shifting to create subsequent 2D blocks during the image-to-block mapping
process. Further, Patterns 610b and 610d illustrate alternating offsets on pixels
selection between 2D blocks. Pattern 610c illustrates using an irregular sampling of
pixels to create a 2D block for image-to-block mapping. Accordingly, the image-to-
block mapping follows any mapping structure provided a pixel is mapped to a 2D
block only once.

Figure 5, Figure 5a and Figure 6 describe image-to-block mapping for 2D
block generation. It is readily apparent that the processes are applicable to 3D
blocks. As described above, 3D block generation follows the same boundary
definition as a 2D block, however the boundary division extends across a
subsequent frame resulting in a 3D block. In particular, a 3D block is created by
collecting the pixels used to define a 2D block in a first frame together with pixels
from a 2D block in a subsequent frame. In one embodiment, both pixels in the 2D
block from the first frame and the 2D block from the subsequent frame are from the
exact same location.

Intra Frame Set Block Shuffling

The pixels values for a given image are closely related for a localized area.
However, in another area of the same images the pixel values may have
significantly different values. Thus, subsequent to encoding the DR and MIN
values for spatially close 2D or 3D blocks in a section of an image have similar
values, whereas the DR and MIN values for blocks in another section of the image
may be significantly different. Accordingly, when buffers are sequentially filled
with encoded data from spatially close 2D or 3D blocks of an image, a
disproportionate usage of buffer space occurs. Intra frame set block shuffling

occurs prior to ADRC encoding and includes shuffling the 2D or 3D blocks
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generated during the image-to-block mapping process. This shuffling process
ensures an equalized buffer usage during a subsequent ADRC encoding.

Figures 7a - 7d illustrate one embodiment of shuffling 3D Y-blocks. The 3D
Y-blocks in Figures 7a-7d are generated from applying the image-to-block mapping
process described above to a frame pair containing only Y signals. The 3D Y-blocks
are shuffled to ensure that the buffers used to store the encoded frame pair contain
3D Y-blocks from different parts of the frame pair. This leads to similar DR
distribution during ADRC encoding. A similar DR distribution within each buffer
leads to consistent buffer utilization. |

Figure 7a -7d also illustrate 3D block shuffling using physically disjointed 3D
blocks to ensure that transmission loss of consecutive packets results in damaged
block attributes scattered across the image, as opposed to a localized area of the
image.

The block shuffling is designed to widely distribute block attributes in the
event of small, medium, or large, burst packet losses occur. In the present
embodiment, a small burst loss is thought of as one where a few packets are lost; a
medium loss is one in which the amount of data that can be held in one buffer is
lost; and a large loss is one in which the amount of data that can be held in one
segment is lost. During the 3D block shuffling each group of three adjacent blocks
are selected from relatively remote parts of the image. Accordingly, during the
subsequent intra group VL-data shuffling (to be detailed later), each group is
formed from 3D blocks that have differing statistical characteristics. Distributed
block attribute losses allow for a robust error recovery because a damaged 3D
block is surrounded by undamaged 3D blocks and the undamaged 3D blocks can be
used to recover lost data.

Figure 7a illustrates a frame pair containing 66 3D Y-blocks in the horizontal
direction and 60 3D Y-blocks in the vertical direction. The 3D Y-blocks are allocated
into Segments 0 - 5. As illustrated, the 3D Y-block assignment follows a two by
three column section such that one 3D Y-block from each section is associated with

a segment. Thus, if no further shuffling is performed and a burst loss of the first 880
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packets occurs, all the block attributes associated with Segment 0 are lost.
However, as later described, FL-data shuffling is performed to further disperse
block attribute losses.

Figure 7b illustrates the scanning order of 3D Y-blocks numbered “0” used
to enter into Segment 0. Each "0" 3D Y-block of Figure 7a is numbered 0,1, 2, 3, . ..
., 659 to illustrate their location in the stream that is inputted into Segment 0. Using
the block numbering to allocate segment assignment the remaining 3D Y-blocks are
inputted into Segments 1 - 5, thus resulting in a frame pair shuffled across multiple
segments.

Figure 7c illustrates the 660 3D Y-blocks comprising one segment. The 3D Y-
blocks numbered 0 - 65 are inputted into Buffer 0. Similarly the 3D Y-blocks
adjacent to the numbered 3D Y-blocks are inputted into Buffer 1. The process is
repeated to fill Buffers 2 - 9. Accordingly, damage to a buffer during data
transmission results in missing 3D Y-blocks from different parts of the image.

Figure 7d illustrates the final ordering of the "0" 3D Y-blocks across a buffer.
3D Y-blocks 0, 1, and 2 occupy the first three positions in the buffer. The process is
repeated for the rest of the buffer. Accordingly, loss of three 3D Y-blocks during
data transmission results in missing 3D Y-blocks from distant locations within the
image.

Figures 7a-d illustrate one embodiment of 3D block distributions for 3D Y-
blocks of a frame set. In alternative embodiments, however, 3D block distributions
for 3D U-blocks and 3D V-blocks are available. The 3D U-blocks are generated
from applying the image-to-block mapping process, described above, to a frame set
containing only U signals. Similarly, 3D V-blocks are generated from applying the
image-to-block mapping process to a frame set containing only V signals. Both the
3D U-block and the 3D V-block follow the 3D Y-block distribution described above.
However, as previously described, the number of 3D U-blocks and 3D V-blocks
each have a 1:6 proportion to 3D Y-blocks.

Figures 7a-d are used to illustrate one embodiment of intra frame set block

shuffling for a Y signal such that burst error of up to 1/6 of the packets lost during
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transmission is tolerated and further ensures equalized buffer use. It will be
appreciated by one skilled in the art that segment, buffer, and ADRC block
assignments can be varied to ensure against 1/n burst error loss or to modify buffer
utilization.

Partial Buffering

As illustrated in Figure 3, the ADRC encoding and buffering processes occur
in step four. Dependent on the encoding technique, 2D or 3D blocks generated
during the image-to-block mapping process are encoded resulting in 2D or 3D
ADRC blocks. A 3D ADRC block, contains Q codes, a MIN value, a Motion Flag,
and a DR. Similarly, a 2D ADRC block contains Q codes, a MIN, and a DR. A 2D
ADRC block, however, does not include a Motion Flag because the encoding is
performed on a single frame or a single field.

A number of buffering techniques are found in the prior art (see for example,
High Efficiency Coding Apparatus, U.S. Patent 4,845,560 of Kondo et. al. and High
Efficiency Coding Apparatus, U.S. Patent 4,722,003 of Kondo). Both High Efficiency
Coding Apparatus patents are hereby incorporated by reference.

The partial buffering process set forth below, describes an innovative
method for determining the encoding bits used in ADRC encoding. In particular,
partial buffering describes a method of selecting threshold values from a threshold
table designed to provide a constant transmission rate between remote terminals
while restricting error propagation. In an alternative embodiment, the threshold
table is further designed to provide maximum buffer utilization. In one
embodiment, a buffer is a memory that stores a one-sixtieth division of encoded
data from a given frame set. The threshold values are used to determine the
number of Qbits used to encode the pixels in 2D or 3D blocks generated from the
image-to-block mapping process previously described.

The threshold table includes rows of threshold values, also referred to as a
threshold set, and each row in the threshold table is indexed by a threshold index.
In one embodiment, the threshold table is organized with threshold sets that

generate a higher number of Q code bits located in the upper rows of the threshold
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table. Accordingly, for a given buffer having a predetermined number of bits
available, Encoder 110 moves down the threshold table until a threshold set that
generates less than a predetermined number of bits is encountered. The
appropriate threshold values are used to encode the pixel data in the buffer.

In one embodiment, a transmission rate of no more than 30 Mbps is desired.
The desired transmission rate results in 31,152 bits available for VL-data storage in
any given buffer. Accordingly, for each buffer a cumulative DR distribution is
computed and a threshold set is selected from the threshold table to encode the
pixels in 3D or 2D blocks into VL-data.

Figure 8 illustrates one embodiment of selected threshold values and the DR
distribution for Buffer 0. The vertical axis of Figure 8 includes the cumulative DR
distribution. For example, the value "b" is equal to the number of 3D or 2D blocks
whose DR is greater than or equal to L3. The horizontal axis includes the possible
DR values. In one embodiment, DR values range from 0 to 255. Threshold values
L4, L3, Ly, and L1 describe a threshold set used to determine the encoding of a
buffer.

In one embodiment, all blocks stored in Buffer 0 are encoded using threshold
values Ly, L3, Ly, and L1. Accordingly, blocks with DR values greater than L4 have
their pixel values encoded using four bits. Similarly, all pixels belonging to blocks
with DR values between L3 and L4 are encoded using three bits. All pixels
belonging to blocks with DR values between L2 and L3 are encoded using two bits.
All pixels belonging to blocks with DR values between L1 and L2 are encoded using
one bit. Finally, all pixels belonging to blocks with DR values smaller than L1 are
encoded using zero bits. L4, L3, L2, and L1 are selected such that the total number

of bits used to encode all the blocks in Buffer 0 is as close as possible to a limit of
31,152 bits without exceeding the limit of 31,152.

Figure 8a illustrates the use of partial buffering in one embodiment. Frame
800 is encoded and stored in Buffers 0 - 59. Provided a transmission error inhibits

data recovery, the decoding process is stalled for Frame 800 until error recovery is
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performed on the lost data. However, partial buffering restricts the error
propagation within a buffer, thus allowing decoding of the remaining buffers. In
one embodiment, a transmission error inhibits the Qbit and Motion Flag recovery
for Block 80 in Buffer 0. Partial buffering limits the error propagation to the
remaining blocks within Buffer 0. Error propagation is limited to Buffer 0 because
the end of Buffer 0 and the beginning of Buffer 1 are known due to the fixed buffer
length. Accordingly, Decoder 120 can begin processing of blocks within Buffer 1
without delay. Additionally, the use of different threshold sets to encode different
buffers allows Encoder 110 to maximize/control the number of Q codes bits
included in a given buffer, thus allowing a higher compression ratio. Furthermore,
the partial buffering process allows for a constant transmission rate because Buffers
0 - 59 consist of a fixed length.

In one embodiment, a buffer's variable space is not completely filled with Q
code bits because a limited number of threshold sets exist. Accordingly, the
remaining bits in the fixed length buffer are filled with a predetermined bitstream
pattern referred to as a post-amble. As will be described subsequently, the post-
amble enables bidirectional data recovery because the post-amble delineates the
end of the VL-data prior to the end of the buffer.

Intra Buffer YUV Block Shuffling

Y, U, and V, signals each have unique statistical properties. To improve the
Qbit and Motion Flag recovery process (described below) the Y, U, and V signals
are multiplexed within a buffer. Accordingly, transmission loss does not have a
substantial effect on a specific signal.

Figure 9 illustrates one embodiment of the intra buffer YUV block shuffling
process in which YUV ADRC blocks are derived from the Y, U, and V signals
respectively. Buffer 900 illustrates the ADRC block assignments after intra frame
set block shuffling. Buffer 900 comprises 66 Y-ADRC blocks followed by 11 U-
ADRC blocks which are in turn followed by 11 V-ADRC blocks. Buffer 910 shows
the YUV ADRC block organization after intra buffer YUV block shuffling. As
illustrated, three Y-ADRC blocks are followed by a U-ADRC block or three Y-
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ADRC blocks are followed by a V-ADRC block. Intra buffer YUV block shuffling
reduces similarity between adjacent block's bitstreams within the buffer.
Alternative embodiments of in%ra buffer YUV block shuffling with a different
signal, i.e., YUV ratios or other color spaces are possible dependent on the initial
image format.
Intra Group VL-Data Shuffling

In one embodiment, Intra group VL-data shuffling comprises three
processing steps. The three processing steps include Q code concatenation, Q code
reassignment, and randomizing concatenated Q codes. Figure 10 illustrates one
embodiment of intra group VL-data shuffling wherein three processing steps are
applied consecutively to Q codes stored in a buffer. In alternative embodiments,
one or more processing steps discussed herein may be applied to perform intra
group VL-data shuffling. Each processing step independently assists in the error
recovery of data lost during transmission. Accordingly, each processing step is

described independently.

1. Q code concatenation

Q code concatenation ensures that groups of ADRC blocks are decoded
together. Group decoding facilitates error recovery because additional information
is available from neighboring blocks during the data recovery process detailed
below. For one embodiment, Q code concatenation is applied independently to
each group of three ADRC blocks stored in a buffer. In an alternative embodiment,
a group includes ADRC block(s) from different buffers. The concatenation of Q
codes across three ADRC blocks is described as generating one concatenated ADRC
tile. Figure 11 and Figure 11a illustrate one embodiment of generating
concatenated ADRC tiles.

Figure 11 illustrates one embodiment of generating a concatenated ADRC
tile from 2D ADRC blocks. Specifically, the concatenation is performed for each Q
code (qo - qe3) included in 2D ADRC Blocks 0, 1, and 2 resulting in the sixty four Q
codes of Concatenated ADRC Tile A. For example, the first Q code qp o (Oth
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quantized value) of 2D ADRC Block 0 is concatenated to the first Q code qp,1 of 2D
ADRC Block 1. The two concatenated Q codes are in turn concatenated to the first
Q code qp 2 of 2D ADRC Block 2, thus resulting in Qg of Concatenated ADRC Tile
A. The processes is repeated until Qg3 is generated. Alternatively, the generation

of Qj in Concatenated ADRC Tile A is described by the equation
Qi=[4qi0,9i,1,9i2] i=0,1,2,...63

Additionally, associated with each Q; in Concatenated ADRC Tile A there is
a corresponding number of N bits that represents the total number of bits
concatenated to generate a single Q;.

Figure 11a illustrates one embodiment of generating a concatenated ADRC
tile from frame pairs including motion blocks. A motion block is a 3D ADRC block
with a set Motion Flag. The Motion Flag is set when a predetermined number of
pixels within two 2D blocks structure created by image-to-block mapping process
described earlier, change in value between a first frame and a subsequent frame. In
an alternative embodiment, the Motion Flag is set when the maximum value of each
pixel change between the 2D block of a first frame and a subsequent frame exceeds
a predetermined value. In contrast, non-motion (i.e., stationary) block includes a
3D ADRC block with a Motion Flag that is not set. The Motion Flag remains un-set
when a predetermined number of pixels within the two 2D blocks of a first frame
and a subsequent frame do not change in value. In an alternative embodiment, the
Motion Flag remains un-set when the maximum value of each pixel change
between a first frame and a subsequent frame does not exceed a predetermined
value.

A motion block includes Q codes from an encoded 2D block in a first frame
and an encoded 2D block in a subsequent frame. The collection of Q codes
corresponding to a single encoded 2D block are referred to as an ADRC tile.
Accordingly, a motion block generates two ADRC tiles. However, due to the lack
of motion, a stationary block need only include one-half of the number of Q codes

of a motion block, thus generating only one ADRC tile. In the present embodiment,
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the Q codes of a stationary block are generated by averaging corresponding pixels
values between a 2D block in a first frame and a corresponding 2D block in a
subsequent frame. Each averaged pixel value is subsequently encoded resulting in
the collection of Q codes forming a sing]ie ADRC tile. Accordingly, Motion Blocks
1110 and 1130 generate ADRC Tiles 0, 1, 3, and 4. Stationary Block 1120 generates
ADRC Tile 2.

The concatenated ADRC tile generation of Figure 11a concatenates the Q
codes for ADRC Tiles 0 - 4 into Concatenated ADRC Tile B. Specifically, the
concatenation is performed for each Q code (qp - gg3) included in ADRC Tiles 0, 1, 2,
3 and 4 resulting in the sixty four Q codes of Concatenated ADRC Tile B.
Alternatively, the generation of each Q code, Q; in Concatenated ADRC Tile B is
described by the mathematical equation

Qi=[qi0,9i1,92.93,9%4] =0,1,2,...63
2. Q code reassignment

Q code reassignment ensures that bit errors caused by transmission losses
are localized within spatially disjointed pixels. In particular, during Q code
reassignment, Q codes are redistributed and the bits of the redistributed Q codes
are shuffled. Accordingly, Q code reassignment facilitates error recovery because
undamaged pixels surround each damaged pixel. Furthermore, DR and MIN
recovery is aided because pixel damage is distributed evenly throughout an ADRC
block.

Figure 12 illustrates one embodiment of pixel corruption during the
transmission loss of a 1/6 burst error loss. In particular, 2D ADRC Blocks 1210,
1220, and 1230 each include sixty four pixels encoded using three bits. Accordingly,
each pixel, Py through Pg3, of a 2D ADRC block is represented by three bits. 2D

ADRC Block 1210 shows the bit loss pattern, indicated by a darkened square, of bits
when the first bit of every six bits are lost. Similarly, the bit loss pattern when the
second bit or fourth bit of every six bits are lost are shown in 2D ADRC Blocks 1220

and 1230, respectively. Figure 12 illustrates that without Q code reassignment one-
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half of all the pixels 2D ADRC Blocks 1210, 1220, and 1230 are corrupted fora 1/6
burst error loss.

For one embodiment, Q code reassignment is applied independently to each
concatenated ADRC tile stored in a buffer, thus ensuring that bit errors are
localized within spatially disjointed pixels upon deshuffling. In an alternative
embodiment, Q code reassignment is applied to each ADRC block stored in a
buffer.

Figure 12a illustrates one embodiment of Q code reassignment that generates
a bitstream of shuffled Q code bits from a concatenated ADRC tile. Table 122 and
Table 132 illustrate the Q code redistribution. Bitstreams 130 and 140 illustrate the
shuffling of Q code bits.

Table 122 shows the concatenated Q codes for Concatenated ADRC Tile A.
Qo is the first concatenated Q code and Qg3 is the final concatenated Q code. Table

132 illustrates the redistribution of Q codes. For one embodiment Qg, Qg, Q12, Q18,

Q24, Q30, Qa6, Qu2, Qug, Qs4, and Qgp are included in a first set, partition 0.
Following Table 132, the following eleven concatenated Q codes are included in
partition 1. The steps are repeated for partitions 2 - 5. The boundary of a partition
is delineated by a vertical line in Table 132. This disjointed spatial assignment of
concatenated Q codes to six partitions ensures that a 1/6 burst error loss results in a
bit loss pattern distributed across a group of consecutive pixels.

Figure 12b illustrates one embodiment of the bit pattern loss created by the
1/6 burst error loss of redistributed Q codes. In particular, 2D ADRC blocks 1215,
1225, and 1235 each include sixty four pixels encoded using three bits. Accordingly,
each pixel Py through Pg3, of each 2D ADRC block, is represented by three bits. In
2D ADRC Blocks 1215, 1225, and 1235 the bit loss pattern, indicated by a darkened
square, is localized across a group of consecutive pixels. Accordingly, only eleven
consecutive pixels within each 2D ADRC Block 1215, 1225, and 1235 are corrupted
for a given segment loss. In an alternative embodiment, QQ code assignment to

partitions include Q codes from different motion blocks, thus providing both a
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disjointed spatial and temporal assignment of Q codes to six segments. This results
in additional undamaged spatial-temporal pixels during a 1/6 burst error loss and
further facilitates a more robust error recovery.

Referring to Figure 12a, the bits of the redistributed Q codes in Table 132 are
shuffled across a generated bitstream so that adjacent bits in the bitstream are from
adjacent partitions. The Q code bits for all the partitions in Table 132 are
concatenated into Bitstream 130. For a given partition adjacent bits in Bitstream 130
are scattered to every sixth bit location in the generated Bitstream 140.

Accordingly, bits number zero through five, of Bitstream 140, include the first bit
from the first Q code in each partition. Similarly, bits number six through eleven, of
Bitstream 140, include the second bit from the first Q code in each partition. The
process is repeated for all Q code bits. Accordingly, a 1/6 burst error loss will result
in a spatially disjointed pixel loss.

Figure 12c illustrates one embodiment of the bit pattern loss created by the
1/6 burst error loss of reassigned ( i.e. redistributed and shuffled) Q codes. In
particular, 2D ADRC Blocks 1217, 1227, and 1237 each include sixty four pixels
encoded using three bits. Accordingly, each pixel Py through Pg3, of each 2D ADRC
Block, is represented by three bits. In 2D ADRC Blocks 1217, 1227, and 1237, the bit
loss pattern, indicated by a darkened square, is distributed across spatially

disjointed pixels, thus facilitating pixel error recovery.

3. Randomization of Q codes bits

In one embodiment, Q) code bit randomization process is composed of two
steps as shown in Figure 12d; however, the process may be performed using only
either one of the two steps.

Randomization may be applied to destroy the correlation of incorrect
candidate decodings that may be generated during a subsequent data decoding
process in order to estimate lost or damaged data. The randomization process does
not change the properties of the correct candidate decoding, as it is restored to its

original condition. In particular, by utilizing randomization across multiple blocks
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of data, subsequent derandomized data will tend to result in candidate decodings
that exhibit highly correlated properties indicative that the corresponding
candidate decoding is not a good selection. The randomization process is chosen
such that a correct derandomization results in candidate decoding exhibiting highly
correlated properties and an incorrect derandomization results in a decoding
exhibiting uncorrelated properties. Encoding parameters may be used to perform
the randomization and derandomization processes. For example, a randomization
pattern may be chosen based on the values for the compression constants.

One embodiment of a randomization process is illustrated in Figure 12d. At
step 1277, a bit reallocation is performed. At step 1279 a code reallocation is
performed. As noted above, steps 1277 and 1279 each may be performed
independently and still realize some coding benefits. In addition, steps 1277 and
1279 may be executed in an order different than illustrated in Figure 12d.

In one embodiment, as discussed above, randomization is achieved using a
code reallocation process. In one embodiment, reallocation is performed using a
masking key. Thus, during the encoding process, a key, referred to herein as KEY,
is used to mask a bitstream of Q codes. KEY may be used to mask a bitstream of Q
codes corresponding to three blocks of data. Each key element (d,) of the masking
key is generated by the combination of certain compression constants used to
encode a corresponding block of data. This process may enhance error localization.

For example, in one embodiment, the MF and Qbit values are used to define
KEY. Alternately, the masking key is generated from DR and MIN values. More
particularly, for 4 bit ADRC encoding which uses MR and Qbit values to generate
KEY, the value of the key elements composing KEY are determined in accordance
with the following equation:

d,=5em, +q wherei=0,1,2
and g represents the number of quantization bits; q;=0,1,2,3,4and m,
represents the motion flag (MF) value, for example, 0 for a stationary block and 1

for a motion block.
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Continuing with the present example, if KEY is generated using three blocks,
KEY is formed according to the following;:

KEY=d,+10d, +100  d,

If KEY is generated using N blocks, KEY is defined according to the following:

KEY = Nflof -d,

i=0
The result of the process is a randomization of Q codes, for example, as shown in
Figure 12e.

It therefore follows that during recovery of MF or Qbit data, a bit
derandomization process is performed in which possible KEY values are
regenerated depending upon the values used to create the masking keys. The
regenerated KEY values are used to unmask the received bitstream of Q codes
resulting in candidate encoded data. Thus, if the MF or Qbit value used to generate
the mask is not correct, the corresponding Q codes will exhibit a low level of
correlation, which will be typically readily detectable.

In another embodiment, a randomization process, referred to herein as bit
reallocation, is applied to the data. In one embodiment, bit reallocation is achieved
by simple bit weight inversion. The inversion pattern is determined according to
the number of bits used for encoding (e.g., Qbit). This randomization process can
improve recovery of MF and Qbit values. Examples are shown in Figures 12e, 12f,
12g, and 12h. Figure 12f illustrates a bit reallocation process for 2 bit encoding,
Figure 12g illustrates a bit reallocation for 3 bit encoding and Figure 12h illustrates
a bit reallocation for 4 bit encoding.

Figures 10 - 12 illustrate intra group VL-data shuffling tolerated up to 1/6
packet data loss during transmission. It will be appreciated by one skilled in the
art, that the number of total partitions and bit separation can be varied to ensure
against 1/n burst error loss.

Inter Segment FL-Data Shuffling
Inter segment FL-data shuffling describes rearranging block attributes

among different segments. Rearranging block attributes provides for a distributed
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loss of data. In particular, when FL-data from a segment is lost during transmission
the DR value, MIN value, and Motion Flag value lost do not belong to the same
block. Figures 13 and 14 illustrate one embodiment of inter segment FL-data
shuffling.

Figure 13 illustrates the contents of Segments 0 to 5. For one embodiment,
each segment comprises 880 DRs, 880 MINs, 880 Motion Flags, and VL-data
corresponding to 660 Y-blocks, 110 U-blocks, and 110 V-blocks. As illustrated in
graph MIN Shuffling 1300, the MIN values for Segment 0 are moved to Segment 2,
the MIN values for Segment 2 are moved to Segment 4, and the MIN values for
Segment 4 are moved to Segment 0. Additionally, the MIN values for Segment 1
are moved to Segment 3, the MIN values for Segment 3 are moved to Segment 5,
and the Motion Flag values for Segment 5 are moved to Segment 1.

Figure 13a illustrates Motion Flag shuffling. As illustrated, in graph Motion
Flag Shuffling 1305, the Motion Flag values for Segment 0 are moved to Segment 4,
the Motion Flag values for Segment 2 are moved to Segment 0, and the Motion Flag
values for Segment 4 are moved to Segment 2. Additionally, the Motion Flag
values for Segment 1 are moved to Segment 5, the Motion Flag values for Segment 3
are moved to Segment 1, and the Motion Flag values for Segment 5 are moved to
Segment 3. Loss pattern 1310 illustrates the FL-data loss after Segment 0 is lost
during transmission.

For a specific block attribute, both Figure 13 and Figure 13a illustrate
shuffling all instances of the specific block attribute between segments. For
example, in Figure 13 the 880 MIN values from Segment 0 are collectively
exchanged with the 880 MIN values in Segment 2. Similarly, in Figure 13a the 880
Motion Flags for Segment 0 are collectively exchanged with the 880 Motion Flags in
Segment 4. During a transmission loss of consecutive packets, this collective
shuffling of block attributes results in a disproportionate loss of a specific block
attributes for a block group. In one embodiment, a block group includes three

ADRC blocks.
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Figure 14 illustrates one embodiment of a modular three shuffling process
for DR, MIN, and Motion Flag values. A modular three shuffling describes a
shuffling pattern shared across three blocks (i.e., a block group) in three different
segments. The shuffling pattern is repeated for all block groups within the three
different segments. However, a different shuffling pattern is used for different
block attributes. Accordingly, the modular three shuffling process distributes block
attributes over all three segments. In particular, for a given block group a modular
three shuffling ensures that only one instance of a specific block attribute is lost
during the transmission loss of a segment. Thus, during the data recovery process,
described below, a reduced number of candidate decodings are generated to
recover data loss within a block.

As illustrated in DR Modular Shuffle 1410, a segment stores 880 DR values.
Accordingly, the DR values are numbered 0 - 879 dependent on the block from
which a given DR value is derived. In a modular three shuffling the FL-data
contents of three segments are shuffled. A count of 0 -2 is used to identify each DR
value in the three segments identified for a modular shuffling. Accordingly, DR's
belonging to blocks numbered 0, 3, 6,9 . . . belong to Count 0. Similarly, DR's
belonging to blocks numbered 1, 4, 7, 10, . . . belong to Count 1 and DR's belonging
to blocks numbered 2, 5, 8, 11 . . . belong to Count 2. Thus, for a given count the DR
values associated with that count are shuffled across Segment 0, 2, and 4. Similarly,
the DR values associated with the same count are shuffled across Segments 1, 3, and
5.

In DR Modular Shuffle 1410, the DR values belonging to Count 0 are left un-
shuffled. The DR values belonging to Count 1 are shuffled. In particular, the Count
1 DR values in Segment A are moved to Segment B, the Count 1 DR values in
Segment B are moved to Segment C, and the Count 1 DR values in Segment C are
moved to Segment A.

The DR values belonging to Count 2 are also shuffled. In particular, the

Count 2 DR values in Segment A are moved to Segment C, the Count 2 DR values
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in Segment B are moved to Segment A, and the Count 2 DR values in Segment C
are moved to Segment B.

MIN Modular Shuffle 1420 illustrates one embodiment of a modular three
block attribute shuffling process for MIN values. A segment includes 880 MIN
values. In MIN Modular Shuffle 1420, the shuffling pattern used for Count 1 and
Count 2 in DR Modular Shuffle 1410 are shifted to Count 0 and Count 1. In
particular, the shuffling pattern used for Count 1 in DR Modular Shuffle 1410 is
applied to Count 0. The shuffling pattern used for Count 2 in DR Modular Shuffle
1410 is applied to Count 1 and the MIN values belonging to Count 2 are left un-
shuffled.

Motion Flag Modular Shuffle 1430 illustrates one embodiment of a modular
three block attribute shuffling process for Motion Flag values. A segment includes
880 Motion Flag values. In Motion Flag Modular Shuffle 1430, the shuffling pattern
used for Count 1 and Count 2 in DR Modular Shuffle 1410 are shifted to Count 2
and Count 0 respectively. In particular, the shuffling pattern used for Count 2 in
DR Modular Shuffle 1410 is applied to Count 0. The shuffling pattern used for
Count 1 in DR Modular Shuffle 1410 is applied to Count 2 and the Motion Flag
values belonging to Count 1 are left un-shuffled.

Figure 14a illustrates the modular shuffling result of Modular Shuffles 1410,
1420, and 1430. Modular Shuffle Result 1416 shows each attribute destination of
blocks belonging to Segment 0. In this example, Segment 0 corresponds to Segment
A of Figure 14. This destination is defined according to Modular Shuffles 1410,
1420, and 1430 of Figure 14. Figure 14a also illustrates the distribution loss of block
attributes after Segment 0 is lost during transmission. In particular, Loss Pattern
1415 shows the DR, Motion Flag, and MIN values loss across six segments after a
subsequent deshuffling is applied to the received data that was initially shuffled
using Modular Shuffles 1410, 1420, and 1430. Asillustrated in Figure 14a, the block
attribute loss is distributed periodically across Segments 0, 2, and 4 while Segments
1,3, and 5 have no block attribute loss. Additionally, Spatial Loss Pattern 1417
illustrates the deshuffled spatial distribution of damaged FL-data after Segment 0 is
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lost during transmission. Spatial Loss Pattern 1417 shows the DR, Motion Flag, and
MIN value loss after a subsequent deshuffling is applied to the received data. In
Spatial Loss Pattern 1417, a damaged block is surrounded by undamaged blocks
and damaged block attributes can be recovered with surrounding undamaged
blocks.

‘Figure 14 and Figure 14a illustrate a modular three shuffling pattern and the
distribution loss of block attributes after a segment is lost during transmission. In
alternative embodiments, the count variables or the number of segments are varied
to alternate the distribution of lost block attributes. Figure 14b illustrates Modular
Shuffle Result 1421 and Loss Pattern 1420. Similarly, Figure 14c illustrates Modular
Shuffle Result 1426 and Loss Pattern 1425. Both Loss Pattern 1420 and Loss Pattern
1425 illustrate the distribution loss of block attributes across six segments, as
opposed to three segments as previously described.

It is contemplated that in alternate embodiments various combinations of
block attributes will be distributed to perform the shuffling process.

Inter Segment VL-Data Shuffling

In the inter segment VL-data shuffling process, bits between a predetermined
number of segments, for example, 6 segments, are arranged to ensure a spatially
separated and periodic VL-data loss during an up to 1/6 packet transmission loss.
Figure 15 and 16 illustrate one embodiment of the inter segment VL-data shuffling
process.

In the present embodiment, a transmission rate approaching 30 Mbps is
desired. Accordingly, the desired transmission rate results in 31,152 bits available
for the VL-data in each of the 60 buffers. The remaining space is used by FL-data
for the eighty eight blocks included in a buffer. Figure 15 includes the VL-data
buffer organization within a frame set for a transmission rate approaching 30 Mbps.
As previously described, partial buffering is used to maximize the usage of
available VL-data space within each buffer, and the unused VL-data space is filled

with a post-amble.
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Figure 16 illustrates one embodiment of the shuffling process to ensure a
spatially separated and periodic VL-data loss. The first row illustrates the VL-data
from the 60 buffers in Figure 15 rearranged into a concatenated stream of 1,869,120
bits. The second row illustrates the collection of every sixth bit into a new stream of
bits. Thus, when the decoder subsequently reverses the process, a burst loss of up
to 1/6 of the data transmitted is transformed into a periodic loss where at least 5
undamaged bits separate every set of two damaged bits.

The third row illustrates grouping every 10 bits of Stream 2 into a new
stream of bits, Stream 3. The boundary of a grouping is also defined by the number
of bits in a segment. Grouping of Stream 2 for every tenth bit ensures that a 1/60
data loss results in fifty-nine undamaged bits between every set of two damaged
bits. This provides for a spatially separated and periodic VL-data loss in the event
that 88 consecutive packets of data are lost.

The fourth row illustrates grouping every 11 bits of Stream 3 into Stream 4.
The boundary of a grouping is also defined by the number of bits in a segment.
Grouping of Stream 3 for every eleventh bit ensures that 1/660 data loss results in
659 undamaged bits between to damaged bits, resulting in a spatially separated and
periodic VL-data loss during a transmission loss of 8 consecutive packets.

Each group of 31,152 bits within Stream 4 is consecutively re-stored in
Buffers 0 - 59, with the first group of bits stored in Buffer 0 and the last group of bits
stored in Buffer 59.

It will be appreciated by one skilled in the art that the grouping requirements
of Figure 16 are variable to ensure a spatially separated and periodic VL-data loss
tolerance up to a 1/n transmission loss.

Transmission

The previously described shuffling process creates buffers with intermixed
FL-data and VL-data. For one embodiment, packets are generated from each
buffer, according to packet structure 200, and transmitted across Transmission
media 135. The data received is subsequently decoded. Lost or damaged data may

be recovered using data recovery processes.
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The invention has been described in conjunction with the preferred
embodiment. It is evident that numerous alternatives, modifications, variations and

uses will be apparent to those skilled in the art in light of the foregoing description.
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CLAIMS
What is claimed is:

1. A method for encoding data to maximize subsequent recovery of lost
or damaged compression constants of encoded data, said method for encoding
comprising the steps of:

using at least one compression constant to define (1277) a randomization
pattern; and

randomizing (1279) the data using the randomization pattern.:

2. The method as set forth in claim 1, wherein the step of randomizing

comprises the step of performing a bit reallocation process.

3. The method as set forth in claim 1, wherein the step of randomizing

comprises the step of performing a code reallocation process.

4. The method as set forth in claim 1, wherein the data comprises a

plurality of blocks, said step of randomizing is applied to the plurality of blocks.

5. The method as set forth in claim 2, wherein the bit reallocation process

is performed by bit weight inversion.

6. The method as set forth in claim 3, wherein code reallocation process

is performed by masking the data using a masking key.

7. The method as set forth in claim 6, wherein compression constants are

used to define the masking key.

8.  The method as set forth in claim 6, wherein the masking key is
determined according to the following:

KEY =5-m+q
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where q represents the number of quantization bits, and m represents a motion flag

value indicative of motion of the data.

9. The method as set forth in claim 6, wherein the masking key for N

blocks is determined according to the following:

N-1
KEY =)'10" -d,

i=0

where d;, =5-m, +¢,,q,represents the number of quantization bits of an i-th block,

m;represents the motion flag value of the i-th block, and d, represents a key element

of the i-th block.

10. A system for encoding data to maximize subsequent recovery of lost
or damaged compression constants of encoded data, said system comprising:

at least one compression constant;

a randomization pattern defined by the at least one compression constant;
and

a randomizer configured to receive the randomization pattern, said
randomizer randomizing the data using the randomization pattern.

11.  The system as set forth in claim 10, wherein the randomizer performs

a bit reallocation process.

12.  The system as set forth in claim 10, wherein randomizer performs a

code reallocation process.

13.  The system as set forth in claim 10, wherein the data comprises a

plurality of blocks and the plurality of blocks are randomized.
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14. The system as set forth in claim 11, wherein bit reallocation is

performed by bit weight inversion.

15.  The system as set forth in claim 12, wherein code reallocation is

performed by masking the data using a masking key.

16.  The system as set forth in claim 17, wherein compression constants are

used to define the masking key.

17.  The system as set forth in claim 15, wherein the masking key is
determined according to the following:

KEY =5-m+q

where q represents the number of quantization bits, and m represents a

motion flag value indicative of motion of the data.

18.  The system as set forth in claim 15, wherein the masking key for N

blocks is determined according to the following:

N-1
KEY ='10' -d,
i=0
where d, =5-m, +g,,q,represents the number of quantization bits of an
i-th block, m,represents the motion flag value of the i-th block, and d, represents a
key element of the i-th block.

19. A computer readable medium containing instructions which, when
executed by a processing system perform a process for encoding data to maximize
subsequent recovery of lost or damaged compression constants of encoded data

comprising;:
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using at least one compression constant to define (1277) a randomization

pattern; and
randomizing (1279) the data using the randomization pattern.

20.  The computer readable medium as set forth in claim 19, wherein the
randomizing comprises instructions, which when executed, perform a bit

reallocation process.

21.  The computer readable medium as set forth in claim 19, wherein
randomizing comprises instructions, which when executed, perform a code

reallocation process.

22.  The computer readable medium as set forth in claim 19, wherein the
data comprises a plurality of blocks, and the randomizing is applied to the plurality
of blocks.

23.  The computer readable medium as set forth in claim 20, wherein bit

reallocation is performed by bit weight inversion.

24.  The computer readable medium as set forth in claim 21, wherein code

reallocation is performed by masking the data using a masking key.

25.  The computer readable medium as set forth in claim 24, wherein

compression constants are used to define the masking key.

26.  The computer readable medium as set forth in claim 24, wherein the
masking key is determined according to the following:

KEY =5-m+gq
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where q represents the number of quantization bits, and m represents a motion flag

value indicative of motion of the data.

27.  The computer readable medium as set forth in claim 24, wherein the

masking key for N blocks is determined according to the following:

N-1
KEY = Y'10" -d,
i=0

where d, =5-m, +g,,q,represents the number of quantization bits of an  i-th
block, m, represents the motion flag value of the i-th block, and d, represents a key

element of the i-th block.

28.  Anapparatus for encoding data to maximize subsequent recovery of
lost or damaged compression constants of encoded data comprising:

means for using at least one compression constant to define (1277) a
randomization pattern; and

means for randomizing (1279) the data using the randomization pattern.

29.  The apparatus as set forth in claim 28, wherein the means for

randomizing performs a bit reallocation process.

30.  The apparatus as set forth in claim 28, wherein the means for

randomizing performs a code reallocation process.
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