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(57) ABSTRACT

Internet backbone servers with edge compensation and a
corresponding assembling device for obtaining erasure-
coded fragments from at least one of the Internet backbone
servers. Upon a fragment loss, the assembling device uses a
fragment pull protocol to retrieve a substitute erasure-coded
fragment from a nearby fractional-storage CDN server hav-
ing low latency in response to the assembling device.
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INTERNET BACKBONE SERVERS WITH
EDGE COMPENSATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of U.S. Provi-
sional Patent Application No. 61/105,683, filed Oct. 15, 2008.

BACKGROUND

[0002] When designing a large-scale streaming system, itis
possible to locate the streaming servers on the Internet back-
bone or at the edges of the Internet. An edge-based architec-
ture may provide fast response, may reduce backbone traffic,
and provide a better protection against different types of
network failures, while a backbone-based architecture may
be less expensive and simpler to maintain.

[0003] Commonly used techniques of synchronizing mul-
tiple servers for delivering distributed content utilize inter-
server communication. These techniques are complex to real-
ize, and often do not optimally utilize resources such as
communication bandwidth and storage space.

BRIEF SUMMARY

[0004] In one embodiment, an apparatus comprising: an
assembling device configured to obtain erasure-coded frag-
ments from at least one CDN server located close to or on the
Internet backbone; upon a fragment loss, the assembling
device is further configured to use a fragment pull protocol to
retrieve a substitute erasure-coded fragment from a nearby
fractional-storage CDN server having low latency in respond-
ing to the assembling device.

[0005] In one embodiment, an apparatus comprising: an
assembling device configured to receive erasure-coded frag-
ments from at least one CDN server located close to or on the
Internet backbone using a push protocol; upon a fragment
loss, the assembling device is configured to pull a substitute
erasure-coded fragment from a nearby fractional-storage
CDN server having low latency.

[0006] Inoneembodiment, a streaming media delivery net-
work, comprising: at least one CDN server, located close to or
on the Internet backbone, configured to provide to an assem-
bling device a first set of erasure-coded fragments of stream-
ing media; and a plurality of fractional-storage CDN servers,
located at the edges of the Internet, configured to provide to
the assembling device a second set of erasure-coded frag-
ments of the streaming media; wherein the first set is at least
5 times larger than the second set, and the first and second sets
comprise enough fragments to enable the assembling device
to start playing the streaming media within a short period of
time following a request.

[0007] Implementations of the disclosed embodiments
involve performing or completing selected tasks or steps
manually, semi-automatically, fully automatically, and/or a
combination thereof. Moreover, depending upon actual
instrumentation and/or equipment used for implementing the
disclosed embodiments, several embodiments could be
achieved by hardware, by software, by firmware, or a combi-
nation thereof. In particular, with hardware, embodiments of
the invention could exist by variations in the physical struc-
ture. Additionally, or alternatively, with software, selected
functions of the invention could be performed by a data pro-
cessor, such as a computing platform, executing software

Apr. 15,2010

instructions or protocols using any suitable computer operat-
ing system. Moreover, features of the embodiments may be
combined.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] The embodiments are herein described, by way of
example only, with reference to the accompanying drawings.
No attempt is made to show structural details of the embodi-
ments in more detail than is necessary for a fundamental
understanding of the embodiments. In the drawings:

[0009] FIG. 1 illustrates one embodiment of segmenting
content, encoding the segments into erasure-coded frag-
ments, distributing the fragments to fractional-storage serv-
ers, and obtaining the fragments by assembling devices and
assembling servers.

[0010] FIG. 2 illustrates fractional-storage servers located
on the Internet backbone.

[0011] FIG. 3 illustrates CDN servers located on the Inter-
net backbone, supported by fractional-storage CDN servers
located on edges of the Internet.

[0012] FIG. 4 illustrates a content delivery center located
on the Internet backbone, supported by fractional-storage
CDN servers located on edges of the Internet.

[0013] FIG. 5 illustrates geographically distributed frac-
tional-storage servers.

[0014] FIG. 6 illustrates peak-to-average traffic ratios gen-
erated by assembling devices distributed over different time
zones.

[0015] FIG. 7 illustrates US-based fractional-storage serv-
ers delivering erasure-coded fragments to assembling devices
spread over the globe.

[0016] FIG. 8 illustrates an assembling server located at a
network juncture.

[0017] FIG. 9 illustrates fractional-storage servers having
the same bandwidth capability.

[0018] FIG. 10 illustrates fractional-storage servers having
different bandwidth capabilities.

[0019] FIG. 11 and FIG. 12 illustrate a case where a frac-
tional-storage server has failed.

[0020] FIG. 13 illustrates a server failure due to network
congestion.

[0021] FIG. 14 illustrates retrieving fragments according to
locality.

[0022] FIG. 15 illustrates distribution and storage of era-
sure-coded fragments on fractional-storage servers.

[0023] FIG. 16 illustrates three examples of changes made
to redundancy factors according to changes in demand.
[0024] FIG. 17 and FIG. 18 illustrate different embodi-
ments of content segmentation.

[0025] FIG. 19 illustrates an assembling device obtaining
erasure-coded fragments from fractional-storage servers.
[0026] FIG. 20 illustrates fast real time fragment retrieval.
[0027] FIG. 21 illustrates real time fragment retrieval, seg-
ment reconstruction, and content presentation.

[0028] FIG. 22 to FIG. 25 illustrate various embodiments
of fragment pull protocols.

[0029] FIG. 26 illustrates various aggregated and non-ag-
gregated fragment request messages.

[0030] FIG. 27 illustrates retrieving fragments and com-
pensating for failures.

[0031] FIG. 28 illustrates operation of hybrid pull and push
protocols.
[0032] FIG. 29 illustrates real time fragment retrieval in

random order.
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[0033] FIG. 30 to FIG. 32 illustrate changes in content
consumption.
[0034] FIG. 33 illustrates utilization of the entire aggre-

gated bandwidth of fractional-storage servers for multiple
content delivery.

DETAILED DESCRIPTION

[0035] FIG. 1 illustrates one embodiment of a fractional-
storage system configured to store erasure-coded fragments.
Content 100, which may optionally be streaming content, is
segmented into content segments 101a, 1015 to 101 (for
brevity referred to as segments). Each of the segments is
encoded into erasure-coded fragments. For example, segment
101a is encoded into erasure-coded fragments 390a to 390
(N). The erasure-coded fragments are distributed to the frac-
tional-storage servers 3994 to 399(N) and/or to the bandwidth
amplification devices 610aa. The erasure-coded fragments
are then obtained by assembling devices like 661 or proxy
servers like proxy server 661s from the fractional-storage
servers 399a to 399(N) and/or the bandwidth amplification
devices 610aa. The obtained erasure-coded fragments are
decoded to reconstruct the segments. The proxy server 661s
may broadcast/multicast and/or re-stream the reconstructed
content, optionally using standard streaming technique, to its
client(s) 6610, optionally over network 300z. In some
embodiments, the content distribution is performed in real
time. In some embodiments, the content assembly is per-
formed in real time and the presentation starts a short time
after the content request.

[0036] Similarly to content 100, additional contents are
segmented, encoded into erasure-coded fragments, and dis-
tributed to the fractional-storage servers and/or to the band-
width amplification devices. Each segment may be recon-
structed independently of other segments by obtaining and
decoding enough erasure-coded fragments generated from
that segment.

[0037] Insome embodiments, the encoding scheme is era-
sure codes and/or rateless codes. In some embodiments, the
fractional-storage servers 3994 to 399(N) are Content Deliv-
ery Network (CDN) servers, optionally accessed over the
public Internet. In some embodiments, the control, manage-
ment, content reception, content segmentation, segment
encoding, erasure-coded fragment distribution, allocation of
bandwidth amplification devices, and/or other kind of central
supervision and operation may be performed by managing
server(s) 393, which may be a part of the CDN network. It is
noted that the term “fractional-storage server” is not limited
to a large server and, according to the context, may include a
fractional-storage bandwidth amplification device, a frac-
tional-storage peer server, or other types of fractional-storage
servers.

[0038] The term “erasure coding” as used herein denotes a
process in which a sequence of erasure-coded fragments can
be generated from a segment such that the segment can be
reconstructed from any or almost any subset of the erasure-
coded fragments of size equal to or somewhat larger than the
size of the segment (sometimes may be referred to as “enough
erasure-coded fragments” or “sufficient subset of frag-
ments”). Examples of erasure codes include, but are not lim-
ited to, rateless codes, Reed-Solomon codes, Tornado codes,
Viterbi codes, Turbo codes, any Block codes, any Convolu-
tional codes, and any other codes that are usually used for
forward error correction (FEC).

Apr. 15,2010

[0039] The term “rateless coding” as used herein denotes a
type of erasure coding in which a very long, potentially lim-
itless, sequence of rateless-coded fragments can be generated
from a segment such that the segment can be reconstructed
from any or almost any subset of the rateless-coded fragments
of size equal to or somewhat larger than the size of the
segment (sometimes may be referred to as “enough rateless-
coded fragments”). Examples of rateless codes include, but
are not limited to, Raptor codes, LT codes, online codes, any
Fountain codes, and any other Rateless codes.

[0040] The term “erasure-coded fragment™ denotes a frag-
ment comprising data encoded with an erasure code (which
may also be a rateless code in some embodiments). The term
“rateless-coded fragment” denotes a fragment comprising
data encoded with a rateless code.

[0041] The term “assembling device” as used herein
denotes a computing device that retrieves erasure-coded frag-
ments from servers over a network. The assembling device
may perform one or more of the following: (i) Decode the
retrieved erasure-coded fragments into segments. (ii) Present
the content reconstructed from the retrieved erasure-coded
fragments. (iii) Act as a bandwidth amplification device, by
receiving, storing, and forwarding erasure-coded fragments.
In some embodiments, the assembling device may be any
device located at the user premises, like an STB, PC, gaming
console, DVD player, PVR device, or any other device able to
retrieve erasure-coded fragments from a communication net-
work. In some embodiments, the assembling device may be
an assembling server. In some embodiments, the assembling
device may be any computational device with access to a
communication network, located at a central office, data cen-
ter, BRAS location, ISP premises, or any other place with
direct network connectivity. In one embodiment, the assem-
bling device is coupled to a display device used for content
presentation.

[0042] The abbreviation CDN denotes “Content Delivery
Network”. The term “CDN server” as used herein denotes a
server having one or more of the following characteristics: (i)
A bandwidth (CDN_BW) that is much greater than the aver-
age bandwidth consumed by a user premises device (User_
BW) receiving video streaming content. In some examples,
the CDN_BW is at least 10 times, 100 times, 1,000 times, or
10,000 times greater than the User BW. (ii) The server is
located outside the last mile communication infrastructure of
the end users, such that the CDN server and the end users are
located in different networks. For example, the CDN server is
not located under a BRAS, while the end users are located
under a BRAS. Moreover, in some embodiments, the CDN
servers are deployed over a wide area across the Internet and
optionally located close to or on the Internet backbone. In
some embodiments, the CDN server does not usually retrieve
and play streaming content. In some embodiments, the CDN
server has a much greater storage space than the storage space
of an average player of streaming content.

[0043] The term “fractional-storage server” in the context
of erasure-coded fragments (also applicable to “fractional-
storage CDN server”), as used herein denotes a server that (i)
stores less than the minimum quantity of erasure-coded frag-
ments required to decode the erasure-coded fragments, and
(i1) where at least a meaningful quantity of the stored erasure-
coded fragments is not stored in order to be consumed by the
fractional-storage server.

[0044] The term “streaming content” as used herein
denotes any type of content that can begin playing as it is
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being delivered. Streaming content may be delivered using a
streaming protocol, a progressive download protocol, or any
other protocol enabling a client to begin playing the content as
it is being delivered. Moreover, the term “streaming protocol”
includes “progressive download protocol”. In addition, the
verb “streaming” refers to using a streaming protocol, using a
progressive download protocol, or using any other protocol
enabling the receiver to begin playing the content as it is being
delivered.

[0045] The term “approximately random” as used herein
refers to, butis not limited to, random, pseudo random, and/or
based on a long list of numbers featuring very low autocor-
relation and very low correlation with other similar lists of
numbers.

[0046] In some embodiments, expressions like “approxi-
mately sequential segments” may denote one or more of the
following non-limiting options: segments that are sequential
(in time or according to a file’s order), segments that are
approximately sequential (such as segments with some inter-
lace, or segments without a great amount of non-sequential
data), segments generated sequentially and/or approximately
sequentially from different components of content (such as
storing the i-frames and p-frames of a compressed content in
different segments), and/or other sequential or approximately
sequential segmentation after classification or separation into
different components and/or elements.

[0047] Inoneembodiment,a CDN is created by the aggre-
gated bandwidth and storage capacity of the participating
erasure-coded fractional-storage servers. In one example, a
large scale CDN includes several hundreds or thousands of
fractional-storage servers connected to the Internet. These
servers send erasure-coded fragments to a large number,
potentially millions, of assembling devices. In order to keep
costs low for sending a large number of fragments from
fractional-storage servers to assembling devices, the servers
are located on the Internet backbone, or close to it.

[0048] The current Internet backbone primarily comprises
different Tier one ISP (or other) networks that interconnect at
various Internet Exchange Points (IX or IXP), using peering
agreements. Tier one ISPs, or other backbone-forming net-
work entities, can reach any portion of the Internet via other
Tier one ISPs or other backbone-forming networks, without
paying any Internet transit fee, and solely by utilizing mutual
peering agreements. In order to gain access to large amounts
of inexpensive bandwidth, the fractional-storage servers are
typically located on the Internet backbone. This means that
the servers are either co-located (and connected) with a core
switching router that interconnects the Internet backbone net-
works at an IXP, or, alternatively, co-located (and connected)
with a router which is part of the backbone network, typically
located at a data center or co-location center. Fractional-
storage servers can also be located close to the Internet back-
bone, which means that they are co-located (and connected)
with a router which is part of a Tier two ISP network, which
has a high bandwidth connection with at least one Tier one
operator, to which it pays transit fees in order to potentially
reach all portions of the Internet. FIG. 2 illustrates one
example of a fractional-storage server 3001, which is one of
a plurality of servers forming a large-scale CDN, located on
the Internet backbone by being connected to the Internet
backbone via IXP 3091. In a second example, fractional-
storage server 3002 is located on the Internet backbone by
being connected to a Tier one backbone network 3080. In a
third example, fractional-storage server 3011 is located close
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to the Internet backbone by being connected to a Tier two ISP
network 3070, which is connected to the backbone via Tier
one ISP network 3081. In one embodiment, a typical frac-
tional-storage server is located on the backbone or close to the
backbone by being attached to a switching router via a high
bandwidth port, such as a 1 Gbps, 10 Gbps, or a higher
bandwidth port, such as high-speed Ethernet port, usually
carried over a fiber, or suitable short-distance copper lines. In
one embodiment, in a typical deployment using high band-
width connections (in 2009 terms), each of about 1,000 frac-
tional-storage servers is located on the backbone or close to
the backbone and is connected to the backbone via a dedi-
cated (guaranteed bandwidth) 1 Gbps Ethernet port, resulting
in an aggregated throughput of 1,000 Gbps, which can serve
about one million subscribers of standard definition stream-
ing video, such as client device 3020, simultaneously. Such
aggregated bandwidths would have required a substantially
larger number of fractional-storage servers, had they been
connected to other locations in the Internet, such as at edges
of'the Internet (close to last mile networks), Tier 3 ISPs, or at
the user premises. Moreover, in some embodiments, the cost
of streaming the mentioned 1,000 Gbps when the fractional-
storage servers are located on the Internet backbone, or close
to the Internet backbone, is expected to be significantly lower
than what is expected when the servers are located elsewhere
as mentioned before.

[0049] Inoneembodiment, an assembling device operating
trick play modes needs to obtain new erasure-coded frag-
ments within a short period, to replace lost erasure-coded
fragments. Therefore, the new fragments are retrieved from
one or more nearby fractional-storage servers having low
latency responses to the assembling device. The nearby frac-
tional-storage servers should have sufficient bandwidth to
supply the new fragments needed for the trick play, but
because most of the fragments are not obtained from the
nearby servers, these nearby servers may have relatively low
bandwidth and may store relatively small portions of the
information.

[0050] In one example, a distant server/s stores approxi-
mately all erasure-coded fragments needed to reconstruct
segments by an assembling device. The assembling device
attempts to obtain enough of the fragments to reconstruct
segments. However, due to fragment loss conditions option-
ally resulting from the distance that the fragments need to
traverse from the server/s to the assembling device, only
about 97% of transmitted fragments actually reach the assem-
bling device. The assembling device therefore needs to
supplement the lost fragments with additional fragments
needed to reconstruct the segments. Therefore, the assem-
bling device requests an additional amount of fragments
equal to about 3% of the total fragments sent by the distant
server/s, from a nearby fractional-storage server. The addi-
tional fragments are quickly received from the nearby server,
and most likely without any fragment loss, due to the prox-
imity of the nearby server. The nearby server needs to store
only a small fraction of the fragments per segments of con-
tent, since it is required to supplement only a small portion of
lost fragments, which corresponds in percentage to the frag-
ment loss ratio. With 3% fragment loss condition, the nearby
server can store only about 3% of the fragments per segments
of content, such that if 200 fragments are needed to recon-
struct a segment, the nearby server can store only 6 or 7
fragments per segment. Moreover, the nearby server can
supplement the small fraction of the fragments with a rela-
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tively low bandwidth communication link. For example, fora
1 Mbps fragment throughput sent by the distant server, the
nearby server needs only 3%, or 30 Kbps, in order to supple-
ment the missing fragments.

[0051] In one embodiment, the nearby fractional-storage
server may store more fragments than needed just for frag-
ment loss compensation. In one example, the nearby server
stores 30% of the fragments needed for segment reconstruc-
tion. This may improve response times, reduce some of the
backbone traffic, and provide a better protection against dif-
ferent types of network failures.

[0052] In one embodiment, only certain sections of the
contents support trick play and a significant portion of the
erasure-coded fragments stored on the nearby fractional-stor-
age servers are associated with these particular sections. This
embodiment reduces the storage requirements, and, option-
ally, also the bandwidth requirements, from the nearby frac-
tional-storage servers. In one example, only 10% of the seg-
ments support trick play operation, meaning that the
assembling device can start a content presentation from only
10% of the content’s segments. In this case, and still assuming
a 3% fragment loss condition from the distant server/s, the
nearby fractional-storage server can store only 10%x3%=0.
3% of the content’s fragments. It is also estimated that in this
case the nearby server’s bandwidth requirements will be low-
ered as well.

[0053] FIG. 3 illustrates one embodiment of CDN servers
3001, 3002, and 3011—which may be fractional-storage or
may store full replicas—Ilocated close to or on the Internet
backbone, supported by fractional-storage CDN servers
2505, 2506 located on edges of the Internet. The assembling
devices attempt to obtain the required erasure-coded frag-
ments from CDN servers 3001, 3002, and 3011, which may
have high latency relative to the servers on the edge. Upon a
fragment loss, the assembling devices pull a substitute era-
sure-coded fragment from the nearby fractional-storage CDN
server, which has low latency. For example, assembling
devices 2500 and 2501 pull substitute erasure-coded frag-
ment from fractional-storage CDN server 2505, and assem-
bling device 2502 pulls from server 2506. Because the nearby
fractional-storage CDN servers 2505 and 2506 are
approached mainly after a fragment loss (or other predefined
occasions), servers 2505 and 2506 may have a much smaller
storage and bandwidth relative to the total content consumed
by the assembling devices 2500, 2501, and 2502.

[0054] FIG. 4 illustrates one embodiment of a content
delivery center 2508 housing from ten to thousands of servers
located close to or on the Internet backbone, supported by
fractional-storage CDN servers 2505, 2506 located on edges
of the Internet. Using push or pull protocols, the assembling
devices attempt to obtain the required erasure-coded frag-
ments from the content delivery center 2508, which may have
high latency relative to the servers on the edge. Upon a frag-
ment loss, the assembling devices pull a substitute erasure-
coded fragment from the nearby fractional-storage CDN
server, which has low latency. In this embodiment, fragment
loss may include a fragment that was not received, a fragment
received after a predefined duration, or an erred fragment.
[0055] In one embodiment, erasure-coded stream is
received by an assembling device from one or more distant
servers featuring high latency, which may be susceptible to
frequent fragment loss. In order to avoid requesting retrans-
missions and avoid requesting extra fragments to compensate
for the fragment loss, especially while using trick play, the
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assembling device stores a partial buffer of erasure-coded
fragments, which, in one example is used to compensate for
the fragment loss. Optionally, the erasure-coded fragments of
the partial buffer are distributed to the assembling device
before it requests the content. Optionally, the erasure-coded
fragments of the partial buffer are added to a stream transmit-
ted to the assembling device, in order to reduce the time
needed to perform a future trick play request.

[0056] In one embodiment, lost fragments associated with
segments designed for trick play are substituted by fragments
from the nearby fractional-storage CDN serves, while lost
fragments associated with segments not designed for trick
play are substituted by erasure-coded fragments from the
CDN server/s located close to or on the Internet backbone.
[0057] Inone embodiment, the streaming content is played
within a short period following a request by an assembling
device, wherein the short period comprises supplemental
fragment requests by the assembling device, and correspond-
ing reception of the supplemental fragments from nearby
servers. Optionally, the short period of time following a
request is less than 15 seconds for a high-definition full-
length movie.

[0058] FIG. 5 illustrates one example of geographically
distributed fractional-storage servers 399a to 3997, in which
servers 399q to 399¢ are located in Europe 676, servers 3994
to 399¢g are located on the east coast of the US 677, servers
399/ to 399i are located on the west coast of the US 678 and
servers 399% to 399x are located in Japan 679. Assembling
devices all over the world obtain erasure-coded fragments
from the globally distributed fractional-storage servers. The
characteristics of the fractional-storage system, according to
some embodiments, allow the globally distributed assem-
bling devices to exploit the outgoing bandwidth of the glo-
bally distributed fractional-storage servers approximately up
to the point where all servers 399a to 399 utilize their avail-
able outgoing bandwidth for content delivery.

[0059] Inone embodiment, the main demand for fragments
shifts between the different global locations as the day
elapses. For example, at 8 pm Pacific Standard Time, the main
fragment demand is generated from the US west coast. At that
time, the local time in the east coast is late evening, the time
in Europe and Japan is early morning and noon respectively,
and thus very little fragment demand is generated from these
regions. The high fragment demand load generated from the
west coast is spread across all of the fractional-storage serv-
ers. As the day elapses, the load generated from the west coast
declines, and the main load shifts to Japan as time there
becomes afternoon. When that happens, the servers are still
able to supply all content demands, as they are still able to
deliver maximal bandwidth to assembling devices in Japan.
As the cycle continues, the main load shifts again from Japan
to Europe, from Europe to the US east coast, and from there
back to the US west coast, following a 24-hour cycle. In some
embodiments, the servers are able to deliver maximal frag-
ment traffic, resulting from peak demands occurring during a
day cycle, to anywhere on the globe.

[0060] In one example, there are 14 globally distributed
fractional-storage servers; each server has a bandwidth of B,
and the total capacity of the array is 14xB. Assuming the total
global peak demand during the daily cycle does not exceed
Bg, then the system is balanced and can meet all demands
during the daily cycle if Bg<14xB, meaning that B>Bg/14. In
this example, all servers may be at, or may approach, their
peak bandwidth capabilities for a relatively long period, and



US 2010/0094962 Al

feature relatively short idle periods. In one example, the num-
ber of servers in the global array is 10,000, from which 2,500
are located on the US west coast, 2,500 on the east coast,
2,500 in Europe and 2,500 in Japan. In one example, the
number of servers in the global array is 1,000, from which 100
are located on the west coast, 700 on the east coast, 100 in
Europe and 100 in Japan.

[0061] In one embodiment, multiple contents originating
from multiple global locations (and therefore expected to
require high loads at different times of day), are all stored on
the globally distributed fractional-storage servers. Therefore,
the system’s bandwidth capacity equals the aggregated band-
width of its server members, optionally regardless of which
content generates high load, regardless of when the load is
generated during the day, and regardless of where the load is
generated from.

[0062] In one embodiment, at some point in time, some
portions of the Internet may become congested at some global
locations. The global system assures that servers not affected
by the congestion handle the excess load, such that operation
close to peak bandwidth performance is still possible.

[0063] Inoneembodiment, the globally distributed assem-
bling devices retrieve fragments from the fractional-storage
servers using a fragment pull protocol, and determining
which servers deliver fragments to which assembling devices
load balances the distributed system. In one embodiment, the
globally distributed assembling devices obtain fragments
from fractional-storage servers using a push protocol with
multiple sub-transmissions, and determining which servers
deliver fragments via the sub-transmissions to which assem-
bling devices load balances the distributed system.

[0064] FIG. 6 illustrates one embodiment in which assem-
bling devices distributed over different time zones together
induce fragment traffic having a reduced peak-to-average
traffic ratio, as compared to the fragment traffic induced by
assembling devices located in any single time zone. Graph
1602 illustrates the fragment traffic induced by assembling
devices located at a first time zone. The peak of graph 1602
occurs during the late afternoon, local time of the first time
zone. Similarly, graphs 1603 and 1604 illustrate induced traf-
fic from second and third time zones. Since the first, second
and third time zones are different, the peak traffic of each
graph occurs at a different time. The peak-to-average frag-
ment traffic ratios of graphs 1602 to 1604 are relatively high,
since most of the traffic is generated close to the peak demand.
Inthe case of video traffic, a daily peak-to-average traffic ratio
of about six is expected during one day, starting at T1 and
ending at T2. The combined traffic induced by all assembling
devices is the sum of graphs 1602 to 1604, which is schemati-
cally illustrated as graph 1601. Since the peaks of graphs
1602 to 1604 occur at different times, the combined traffic
1601 behaves much more smoothly and has peaks close to the
peaks of graphs 1602 to 1604, resulting in a much lower
peak-to-average traffic ratio, which in some embodiments is
about two or three. This means that the fractional-storage
servers can be utilized during longer periods of the day when
servicing assembling devices located at different time zones.
In one embodiment, the distribution of the assembling
devices to the different time zones results in an approximately
flat traffic during the day, having a peak-to-average traffic
ratio approaching one. Such a distribution is challenging in
real life deployments, but can be approached by engineering
the distribution of the assembling devices over the globe.
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[0065] Still referring to FIG. 6, in one embodiment, the
severs are connected to the Internet using guaranteed fixed
bandwidth communication links, and can together deliver to
the Internet fragment traffic of 1610 all day. In this case, it is
clear that traffic graph 1601 utilizes the fixed bandwidth
capacity 1610 better than any of the graphs 1602 to 1604,
since it approaches the maximal capacity for longer periods
over the day.

[0066] Inoneembodiment, the servers are spread over two
or more continents, and some of the fragments associated
with the same segments are stored on different servers located
on different continents. This achieves content placement
diversity, and results in better immunity to different network
and server faults.

[0067] FIG. 7 illustrates one embodiment in which US-
based fractional-storage servers 3994' to 3997' deliver era-
sure-coded fragments to assembling devices spread over the
globe. The assembling devices spread over the globe induce a
total fragment traffic from the US-based servers having a
reduced peak-to-average traffic ratio, as compared to the frag-
ment traffic induced by assembling devices located in any
single time zone. In one example, 5,000 fractional-storage
servers are located in the US and service 10 million assem-
bling device subscribers spread over the globe. At a first
period during the day, the servers deliver erasure-coded frag-
ments concurrently to 2 million assembling devices located
primarily in Japan. At a second period during the day, the
servers deliver erasure-coded fragments concurrently to 2
million assembling devices located primarily in Europe. At a
third period during the day, the servers deliver erasure-coded
fragments concurrently to 2.5 million assembling devices
located primarily on the East Coast, and %2 million assem-
bling devices located primarily on the West Coast. At a fourth
period during the day, the servers deliver erasure-coded frag-
ments concurrently to %2 million assembling devices located
primarily on the East Coast, and 2.5 million assembling
devices located primarily on the West Coast. According to
this example, the servers are capable of delivering a peak
fragment traffic resulting from the demand of at least 3 mil-
lion assembling devices concurrently.

[0068] In one embodiment, a distributed system is located
in a few to dozens of data centers (also known as server farm
or datacenter), located close to or on the Internet backbone,
together housing at least 100 fractional-storage CDN servers.
The servers store erasure-coded fragments associated with
approximately sequential segments of streaming contents,
with a storage gain of at least 5, and transmit the stored
fragments on demand to assembling devices approximately
according to the sequential order of the segments. In many
cases, the data centers provide a convenient place to place the
CDN servers close to or on the Internet backbone. A data
center can be also a collocation center, or an Internet
Exchange Point. In one example, a single data center can
house many fractional-storage CDN servers.

[0069] Assuming all segments have approximately the
same size and all fragments generated from the segments
have approximately the same size (without limiting any ofthe
embodiments), the term “storage gain” as used herein denotes
the following ratio: (size of a segment)/(size of an erasure-
coded fragment). If the server stores more than one erasure-
coded fragment per segment, the storage gain denotes the
following ratio: (size of segment)/((size of erasure-coded
fragment)*(number of stored erasure-coded fragments per

segment)).
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[0070] In one example, a streaming system comprising at
least several hundreds of fractional-storage CDN servers
located close to or on the Internet backbone, storing erasure-
coded fragments encoded with a redundancy factor greater
than one, and associated with approximately sequential seg-
ments of streaming contents. At least 100,000 assembling
devices concurrently obtain fragments from the CDN servers,
wherein the system achieves efficient load balancing and fault
tolerance between the various CDN servers by determining
for each of the assembling devices from which servers to
obtain the fragments.

[0071] The term “redundancy factor” as used herein
denotes the following ratio: (total size of the unique erasure-
coded fragments generated from a segment and actually
stored on the servers)/(size of the segment).

[0072] Inone example, a system comprising at least 1,000
fractional-storage CDN servers is connected to the public
Internet. The servers store erasure-coded fragments associ-
ated with approximately sequential segments of streaming
contents, with a storage gain greater than 5, and transmit the
stored fragments on demand to assembling devices approxi-
mately according to the sequential order of the segments.
Wherein the aggregated bandwidth utilized by the servers for
transmitting the fragments to the assembling devices exceeds
1 Giga bit per second times the number of the CDN servers. In
one optional example, the system comprises at least 10,000
fractional-storage CDN servers and the aggregated band-
width utilized by the servers exceeds 10 Giga bit per second
times the number of the CDN servers.

[0073] In one embodiment, the assembling device catego-
rizes the servers into two categories: (i) fastest responding
servers, and (ii) slower responding servers, and approxi-
mately avoids initial fragment requests from the fastest
responding servers, such that if additional fragments are
needed, they are quickly retrieved from the fastest responding
servers. Avoiding retrieval from the fastest responding servers
when initially requesting the fragments of a segment
increases the chances of retrieving a substitute fragment,
needed to compensate for the lost fragments, from the fastest
responding servers, and enables fast compensation that is
needed for fast presentation of the streaming content. Catego-
rizing the servers may be performed by registering measured
latencies of servers responding to fragment requests by the
assembling device.

[0074] Inoneembodiment, a plurality of fractional-storage
servers, which may be located almost anywhere around the
globe, configured to store erasure-coded fragments associ-
ated with segments of streaming content. An assembling
device, which may be located almost anywhere around the
globe, configured to request, using a fragment pull protocol
over the Internet, a set of fragments. The assembling device is
further configured to compensate for lost fragments by
requesting additional erasure-coded fragments that are
needed to reconstruct the segments. wherein the bandwidth of
the streaming content is bounded approximately only by the
incoming bandwidth of the assembling device.

[0075] Inoneembodiment, fractional-storage CDN servers
configured to store erasure-coded fragments associated with
approximately sequential segments of streaming content. An
assembling device located at a point featuring an average
one-way network-related latency of more than 50 millisec-
onds between the assembling device and the servers obtains a
first set of fragments, approximately according to the sequen-
tial order of the segments, and compensates for lost fragments
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by obtaining a second set of erasure-coded fragments that are
needed to reconstruct the segments. Wherein the bandwidth
of the streaming content is bounded approximately only by
the incoming bandwidth of the assembling device. Option-
ally, the assembling device is configured to utilize a fragment
pull protocol to obtain the fragments. Optionally, the assem-
bling device utilizes a push protocol to obtain the fragments.

[0076] Referring again to FIG. 1 with device 6610 as a
non-assembling CPE, such as a STB, PC or gaming console,
capable of performing standard request, reception, and
decoding of video over IP network. In one embodiment,
server 661s—also referred to as proxy server, assembling
server, and in some cases assembling device—performs three
primary functions: (i) receipt of content requests from non-
assembling client device 6610; (ii) assembly of content, as
requested by client 6610, from the fractional-storage servers
and optionally from the bandwidth amplification devices; (iii)
optionally, conversion of the assembled content into a stream-
ing format; and (iv) transmission of the streaming content to
the requesting client 6610. Client 6610 can then store the
content, or present it. In one embodiment, the assembled
content is a general web content, including HTML, FLASH
or any other data format that can be found in a web-based site.

[0077] In one embodiment, although server 661s is illus-
trated as being connected to network 300 on one side and to
network 300z on the other, server 661s may also be connected
to another network element, such as a router, which makes the
topological connection between networks 300 and 300%. In
that case, server 661s communicates with both networks 300
and 3007 via the other network element.

[0078] FIG. 8 illustrates one example where an assembling
server 4020 is located at the juncture 4010 between two
networks: the first network is an ISP transit network 4014 that
connects the juncture to the Internet and provides Internet
transit via a switching router 4015, and the second is a last
mile network 4041 that connects end users 4051 to the Inter-
net via a switch 4031 (located, for example, inside a Central
Office, a Head-End, or a street-level cabinet). In one embodi-
ment, the juncture 4010 is a network operated by a local ISP
that pays transit fees for Internet traffic passing through the
transit network 4014, and last mile fees for traffic passing
through the last mile network 4041. A unique property of the
juncture 4010 is that it is possible for an assembling server
4020 located at the juncture to receive erasure-coded frag-
ments sent by fractional-storage servers, such as 4001 and
4002, to assemble content, and to stream the content to a
client 4051 via the last mile network 4041, without incurring
any additional costs in comparison to other scenarios, such as
where Internet packets flow from the Internet backbone to a
Tier two ISP network to the Internet backbone and to the last
mile network. In other words, since the assembling server
4020 is located at the juncture, it does not create any extra
traffic via networks 4014 and 4041. The assembling server
can also be located at or close to an edge of the Internet, which
may include the juncture, or a point above server 4015, such
as at the transit network 4014 connecting the juncture to the
Internet. When located at or close to an edge of the Internet,
the assembling server has the potential not to incur additional
transit fees as aresult of the relaying operation, since approxi-
mately the same traffic would have to pass via the same transit
network in a normal scenario. Another beneficial location for
the assembling server is at the home premises, since, clearly,
a relaying operation performed there does not add any sig-
nificant traffic to higher levels of the network. In contrast to
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the above-suggested locations, in some cases an assembling
server may be located at an arbitrary point on the backbone, or
at other high-level points of the Internet, where it incurs
additional transit fees, as fragments assembled by the server
flow once over an Internet transit network going from a frac-
tional-storage server to the assembling server, and then a
second time when streamed by the assembling server to a
destination client over an Internet transit network.

[0079] FIG. 9 illustrates one example of a fractional-stor-
age system comprising servers 699ato 699(N) having a band-
width capability 681. In other words, no server can send data
at a rate higher than 681. Assembling device 661 can select
from which servers to obtain erasure-coded fragments for
reconstruction of a segment. In one example, each server
stores one relevant, unique, erasure-coded fragment. There-
fore, from the N servers storing N possible unique fragments,
the assembling device needs only K erasure-coded fragments
for complete reconstruction of the segment (K<N). Since it is
not important which K fragments from the N are retrieved, the
assembling device may retrieve from the least loaded servers,
s0 as to keep the load between the different servers balanced.
When many assembling devices assemble contents in paral-
lel, and since all assembling devices can select the least
loaded servers, the end effect is that the load on the servers is
balanced, with the potential for most servers to approach their
maximal bandwidth capabilities. Optionally, that load bal-
ancing is achieved without significant coordination between
the servers.

[0080] In the example of FIG. 9, assuming that K=3, the
assembling device 661 may select servers 6995, 699(N-1),
and 699q for fragment retrieval, as they have the lowest load
of'all N servers. Servers 699¢ and 699(N), as an example, will
not be chosen, as they have relatively higher loads.

[0081] The assembling device may select the least loaded
servers using any appropriate method, such as, butnot limited
to (i) accessing a central control server having data about the
load conditions on the various servers, or (ii) periodically
querying the various servers on their load conditions.

[0082] In one embodiment, instead of, or in addition to,
selecting the least loaded servers, the assembling device 661
tries a random set of K servers from the N, and retrieves
erasure-coded fragments from all servers reporting a load
below a threshold, while higher loaded servers will be
replaced by least loaded servers from the possible N servers.
The end result is that the server array is balanced because the
K erasure-coded fragments are retrieved from servers loaded
below the threshold.

[0083] Inoneembodiment, the assembling device does not
know which of the servers store erasure-coded fragments
related to the content to be retrieved, but the assembling
device knows over how many servers (from the total number)
the erasure-coded fragments are distributed. Therefore, the
assembling device compensates for the infertile requests by
enlarging the number of requests for erasure-coded frag-
ments. Optionally, the requested servers are selected based on
approximately random algorithm.

[0084] FIG. 10 illustrates one embodiment of different
servers 698a to 698(N) having different bandwidth capabili-
ties of 683a to 683(N) correspondingly. Assembling device
661 selects from which K servers, out of the possible N, to
retrieve the fragments for segment reconstruction, wherein
each server may have different unutilized bandwidth and
different bandwidth capability. When many assembling
devices assemble contents in parallel, while rejecting servers
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with a high load, the end effect is that the server array is
approximately balanced and most servers can approach their
maximal bandwidth capabilities. In one embodiment, the
server array is balanced by enabling many assembling
devices to select the least loaded servers.

[0085] Still referring to FIG. 10, in the example, and assum-
ing that K=3, servers 698a, 698(N-1) and 698(N) will be
selected, as they have the highest unutilized bandwidth. In
another example, the servers having the highest percentage of
unutilized bandwidth will be selected.

[0086] In one embodiment, servers 698a to 698(N) repre-
sent completely different types of server hardware, operating
systems and capabilities, all put together in an array, and
achieving load balance without the need for significant inter-
server coordination. In one example, the fragments are dis-
tributed to at least two different classes of servers; the first
class comprises high bandwidth CDN servers directly con-
nected to the Internet backbone, and the second class com-
prises lower bandwidth CDN servers not directly connected
to the Internet backbone.

[0087] Inoneembodiment,the servers are selected for frag-
ment retrieval according to their unutilized fragment delivery
bandwidth. For example, the servers report their unutilized
bandwidth, and the assembling devices, or a control server,
obtain the report and decide which servers to use for fragment
delivery based on the unutilized bandwidth of each server.

[0088] Inoneembodiment,the servers are selected for frag-
ment retrieval according to their ability to support additional
fragment delivery load. For example, the servers report their
ability to support additional fragment delivery loads. And the
assembling devices, or a control server, obtain the report, and
select the servers that report an ability to support additional
fragment delivery loads.

[0089] In one embodiment, the assembling device, or a
control server, looks for a pool of servers that may be used as
replacements for servers that are loaded to a degree that does
not allow continuation of fragment delivery. For example, the
assembling device looks for potential unloaded servers, while
retrieving fragments from other servers. The assembling
device may sample relevant servers approximately randomly,
and/or according to indications from a control server. The
sampling process may comprise querying the potential server
for load information, or measuring the latency or latency
variance to the servers in order to estimate the current load on
the server.

[0090] In one embodiment, it is desired to replace one or
more servers by other servers for the delivery of erasure-
coded fragments, wherein the replacement servers are
selected using a second criterion from a pool of servers iden-
tified using a first criterion. For example, the first criterion for
identifying the pool of replacement servers comprises look-
ing for servers capable of increasing their fragment delivery
throughputs, and the second criterion for selecting the
replacement servers from the pool comprises selecting the
best latency response server from the pool. In one example,
the first criterion is a latency criterion, and the second crite-
rion is a load criterion. In another example, the first criterion
is a latency criterion, and the second criterion is a latency
variance criterion. In another example, the second criterion is
an approximately random selection. In one embodiment, a
server selected using the second criterion is compared to the
server to be replaced based on the second criterion. For



US 2010/0094962 Al

example, the second criterion is latency, and the replacing
server, selected from the pool, has a smaller latency than the
server it replaces.

[0091] In one embodiment, the server to be replaced is
identified by comparing the actual performance level of the
server with a threshold performance level. For example, when
the compared performance is latency, a server having
response latency above a certain threshold is replaced. In
another example, the compared performance is the load on
the server, which may be measured in terms of the amount of
the unutilized fragment delivery bandwidth, or in terms of the
percent of the server’s unutilized fragment delivery band-
width, or measured by any other appropriate technique.
[0092] Insomeembodiments, the assembling devices use a
fragment pull protocol to retrieve the fragments and approach
the servicing servers. In some embodiments, the assembling
devices use a push protocol to obtain the fragments and
approach the servicing servers, possibly by obtaining mul-
tiple sub-transmissions comprising fragment sequences.
[0093] FIG. 11 illustrates one embodiment of a fractional-
storage system. Assembling device group 661g obtain era-
sure-coded fragments from the servers, such that the resulting
outgoing bandwidth utilizations of each server in the array is
682a to 682(N) correspondingly. FIG. 12 illustrates a case
where server 6985 has failed, its bandwidth capability 68251
is zero, and is therefore unable to provide erasure-coded
fragments. The assembling devices from group 661g, which
previously obtained fragments from server 69854, may
attempt to access it again for additional fragments, but are
now unable to get a response. These assembling devices
therefore obtain fragments from alternative servers. The end
effect is that bandwidth 6825 is now loaded on the still avail-
able servers, such that the total bandwidth 68241 to 682(N)1
approximately increases by a total amount equal to 6825,
optionally with no inter-server coordination, and simply by
the fact that each assembling device selects alternative avail-
able servers for obtaining fragment on-the-fly. In one
example, instead of obtaining from server 682541, the assem-
bling devices obtain from the least loaded available servers.
In one embodiment, a control server selects the alternative
server/s for the assembling devices. In one embodiment, the
assembling devices use a fragment pull protocol to obtain the
fragments, and approach the alternative servers. In one
embodiment, the assembling devices use a push protocol to
obtain the fragments, and approach alternative servers, pos-
sibly by obtaining multiple sub-transmissions comprising
fragment sequences. In this case, the sub-transmissions of the
faulty server are discontinued and compensated for by other
sub-transmissions from the alternative servers.

[0094] FIG. 13 illustrates an example similar to FIG. 12
with the difference that servers 698a, 6985, and 698¢ to
698(N) reside within, or get serviced via, first, second, and
third Internet backbone providers 300/, 300i, and 300/ cor-
respondingly. The group of assembling devices 661g is con-
nected to the Internet via network 300k, which has access to
all three backbones, such that communication between the
assembling devices and servers 698a to 698(N) pass via at
least one of the backbones, or more. If server 6985 is made
unavailable to the assembling devices, optionally not due to a
server failure, but rather due to congestion or a failure of the
second Internet backbone provider 3004, assembling devices
661g compensate for the lost bandwidth by switching to the
available servers on-the-fly. In one embodiment, networks
3007, 3004, and 300y, are different physical sub-nets of one
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network connected to the Internet. In one embodiment, the
assembling devices are connected to networks 30074, 3007,
and 300/, via network 300%, and then via one or more Internet
Exchange Points (“IX/IXP”).

[0095] FIG. 14 illustrates a few examples of retrieving frag-
ments according to locality. In one example, the fractional-
storage servers are connected to a data network or networks
comprising the routers 201 to 209. Assembling devices 235,
237, and 238 are connected to the same data network or
networks, and K=3, meaning that any assembling device
needs to obtain 3 erasure-coded fragments per segment from
optionally 3 different servers out of the 10 in order to suc-
cessfully reconstruct the segment.

[0096] Each assembling device tries to obtain erasure-
coded fragments from fractional-storage servers that are clos-
est to it topologically. In one embodiment, the topological
distance is a function of the number of separating routers.
Assembling device 238 can select three servers from groups
242, 248 or 249. According to the minimal path criterion, it
retrieves the erasure-coded fragments from servers 399/ to
399: of group 248, since they are only one router 208 away.
Groups 242 and 249 are three (208, 202, 203) and five (208,
202, 203, 201, 209) routers away, and are therefore not
selected for retrieval. Similarly, device 237 selects three serv-
ers out of group 242, and device 235 can select any three
servers from groups 242 and 249, since both are located four
routers away.

[0097] Inoneembodiment,iftopologically close servers do
not respond to the assembling device, or report a bandwidth
limitation, the assembling device will attempt to obtain an
erasure-coded fragment from the next topologically closest
server.

[0098] Inoneembodiment, the assembling device attempts
to obtain erasure-coded fragments from servers featuring the
lowest latency. Upon no response, for whatever reason, the
assembling device will attempt to retrieve from the next low-
est latency server. In one embodiment, the assembling device
obtains information regarding the unutilized fragment deliv-
ery bandwidths of servers, and then attempts to retrieve from
the lowest latency servers out of the servers having enough
unutilized bandwidth. In one embodiment, the assembling
device obtains information regarding the unutilized fragment
delivery bandwidths of the servers, and then attempts to
retrieve from the topologically closest servers out of the serv-
ers having enough unutilized bandwidth.

[0099] Still referring to FIG. 14, in one embodiment the
assembling devices select servers according to a latency cri-
terion, such as selecting servers with the shortest time
between fragment request and fragment delivery, or selecting
servers having latency below a dynamic or static threshold.
Assembling device 237 assembles content from servers 399c¢,
3997, 399g, and assembling device 235 assembles content
from servers 3995, 399¢, 399¢ (both use a mixture of servers
from groups 242 and 249). At a certain point in time, router
209 becomes congested or blocked, and prevents the erasure-
coded fragments from servers 3995 and 399¢ from arriving at
assembling devices 235 and 237, or causes the fragments to
arrive with an increased delay. Therefore, assembling device
235 switches to three servers of group 242, and assembling
device 237 switches from server 399¢ to server 399e.

[0100] In one embodiment, the assembling device selects
fractional-storage servers according to the following crite-
rion: first, servers with adequate unutilized fragment delivery
bandwidth are considered, then out of these, those with
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latency below a threshold are considered, and out of these, the
servers with minimal topological routing path are selected.
[0101] Insomeembodiments, the assembling devices use a
fragment pull protocol to retrieve the fragments, and
approach servers having low latency or low hop count as
compared to other servers. In some embodiments, the assem-
bling devices use a push protocol to retrieve the fragments,
and approach servers having low latency or low hop count as
compared to other servers, optionally by obtaining multiple
sub-transmissions comprising fragment sequences.

[0102] In one embodiment, a plurality of unsynchronized
retrieving assembling devices, which optionally use fragment
pull protocol, choose the least loaded servers from which to
retrieve the erasure-coded fragments. Optionally, the servers
have almost no inter-communication between them and the
load balancing calculation is performed by the retrieving
assembling devices. Because the assembling devices can
select the least loaded servers, the assembling devices man-
age the load balancing. When the erasure-coded fragments
stored by the servers are unique erasure-coded fragments, the
retrieving assembling device may retrieve erasure-coded
fragments from any relevant server. Therefore, it may be
enough for the retrieving assembling device to have indica-
tion of the load on its targeted servers, and retrieve enough
erasure-coded fragments from the least loaded servers.
[0103] In one embodiment, a server signals the retrieving
assembling device that it is close to its bandwidth limit and
the assembling device searches for an alternative server.
Optionally, the assembling device selects the server accord-
ing to one or more of the following parameters: locality, cost,
latency, or reliability. In one embodiment, the servers register
their loads on a central server, and the assembling device
selects the server to retrieve from, from the registered servers.
In one embodiment, a central server, holding the loads of the
various servers, determines for the assembling devices from
which server to retrieve the erasure-coded fragments.

[0104] In one embodiment, the assembling devices mea-
sure the latency of the different servers in responding to
fragment requests, and then use the latency information to
estimate the loads on the servers. In one example, a high
latency may indicate a high load on the server.

[0105] In one embodiment, the topological router hop
count between an assembling device and fragment delivering
servers is used to estimate the latency of the servers in
responding to fragment requests.

[0106] In one embodiment, the latency of fragment deliv-
ering servers in responding to fragment requests by an assem-
bling device is used to estimate the topological router hop
count between an assembling device and the servers.

[0107] In one embodiment, the assembling devices per-
form several latency measurements for the different servers in
responding to fragment requests, and then use the latency
variance information to estimate the loads on the servers. In
one example, a high latency variance may suggest a high load
on server.

[0108] In one embodiment, the fractional-storage servers,
from which the fragments are obtained for reconstructing a
segment, are selected based on an approximately random
selection algorithm from all of the servers storing the relevant
fragments. In one example, an approximately random selec-
tion algorithm weighted according to the unutilized band-
width of the servers is used for the approximately random
selection of servers. The weighted random selection algo-
rithm assigns servers with selection probabilities propor-
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tional to the amount of unutilized bandwidth for fragment
delivery in each of the servers, such that the probability to
select a server having a larger amount of unutilized band-
width is higher than the probability to select a server having a
lower amount of unutilized bandwidth.

[0109] The following embodiments describe processes for
on-the-fly selection and re-selection of fractional-storage
servers from which to obtain erasure-coded fragments.
[0110] Inone embodiment, a method for selecting enough
new servers from which to obtain fragments, based on the
unutilized bandwidth of the servers, includes the following
steps: (i) accessing data regarding servers storing relevant
fragments (referred to as the relevant servers); (ii) accessing
data regarding the unutilized bandwidth of the relevant serv-
ers. Optionally, the data is received by the assembling device
from the relevant servers; and (iii) obtaining fragments from
enough of the relevant servers having approximately the high-
est unutilized bandwidth; or obtaining fragments from
enough of the relevant servers selected randomly and having
unutilized bandwidth above a certain threshold.

[0111] Inone embodiment, a method for selecting enough
new servers from which to obtain fragments, based on
latency, includes the following steps: (i) accessing data
regarding the relevant servers; (ii) accessing data regarding
the latencies from the relevant servers to the assembling
device; and (iii) obtaining fragments from enough of the
relevant servers having the lowest latencies; or obtaining
fragments from enough of the relevant servers selected ran-
domly and having latencies below a certain threshold.
[0112] Inone embodiment, a method for selecting enough
new servers from which to obtain fragments, based on band-
width and latency, includes the following steps: (i) accessing
data regarding the relevant servers; (ii) accessing data regard-
ing the unutilized bandwidth of the relevant servers; (iii)
identifying more than enough relevant servers having the
most unutilized bandwidth; or randomly identifying more
than enough relevant servers having unutilized bandwidth
above a certain threshold; (iv) accessing data regarding the
latencies from the identified servers to the assembling device;
and (v) obtaining fragments from enough of the identified
servers having the lowest latencies; or obtaining fragments
from enough of the relevant servers selected randomly and
having latencies below a certain threshold.

[0113] Inone embodiment, a method for selecting enough
new servers from which to obtain fragments, based on latency
and bandwidth, includes the following steps: (i) accessing
data regarding the relevant servers; (ii) identifying more than
enough relevant servers having latencies to the assembling
device below a certain threshold; or randomly identifying
more than enough relevant servers having latencies to the
assembling device below a certain threshold; (iii) accessing
data regarding the unutilized bandwidth of the identified serv-
ers; and (iv) obtaining fragments from enough of the identi-
fied servers having the highest unutilized bandwidth; or
obtaining fragments from enough of the relevant servers
selected randomly and having the highest unutilized band-
width.

[0114] Inone embodiment, a method for selecting enough
new servers from which to obtain fragments, based on local-
ity, includes the following steps: (i) accessing data regarding
the relevant servers; (ii) accessing data regarding the network
topology distance (locality) from the relevant servers to the
assembling device; and (iii) obtaining fragments from
enough of the topologically closest relevant servers; or
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obtaining fragments from enough of the relevant servers that
are located in the same sub-network as the assembling device,
or located in the closest sub-networks.

[0115] In one embodiment, a method for selecting enough
new servers from which to obtain fragments, based on band-
width and locality, includes the following steps: (i) accessing
data regarding the relevant servers; (ii) accessing data regard-
ing the unutilized bandwidth of the relevant servers; (iii)
identifying more than enough relevant servers having the
most unutilized bandwidth; or randomly identifying more
than enough relevant servers having unutilized bandwidth
above a certain threshold; (iv) accessing data regarding the
network topology distance from the relevant servers to the
assembling device; and (v) obtaining fragments from enough
of the topologically closest relevant servers; or obtaining
fragments from enough ofthe relevant servers that are located
in the same sub-network as the assembling device, or located
in the closest sub-networks.

[0116] In one embodiment, a method for selecting enough
new servers from which to obtain fragments, based on latency
and locality, includes the following steps: (i) accessing data
regarding the relevant servers; (ii) identifying more than
enough relevant servers having latencies to the assembling
device below a certain threshold; or randomly identifying
more than enough relevant servers having latencies to the
assembling device below a certain threshold; (iii) accessing
data regarding the network topology distance from the rel-
evant servers to the assembling device; and (iv) obtaining
fragments from enough of the topologically closest relevant
servers; or obtaining fragments from enough of the relevant
servers that are located in the same sub-network as the assem-
bling device, or located in the closest sub-networks.

[0117] In one embodiment, a method for selecting enough
new servers from which to obtain fragments is based on
bandwidth, latency, locality, and, optionally, one or more
additional relevant parameters. The method may weigh the
different parameters in various ways, all of them are intended
to be covered by the embodiments. For example, the method
may include the following steps: (i) accessing data regarding
the relevant servers; (ii) receiving data regarding the unuti-
lized bandwidth latencies to the assembling device, and
topology distances to the assembling device; (iii) weighting
the received data and identifying a quantity of the most proper
relevant servers, which can provide enough fragments to
reconstruct content; and (iv) obtaining the fragments from the
identified servers. In another example, the method may
include the following steps: (i) accessing data regarding the
relevant servers; (ii) identifying a set of more than enough
relevant servers having the most unutilized bandwidth; or
randomly identifying a set of more than enough relevant
servers having unutilized bandwidth above a certain thresh-
old; (iii) from the set, identifying a sub-set of more than
enough relevant servers having latencies to the assembling
device below a certain threshold; or randomly identifying
more than enough relevant servers having latencies to the
assembling device below a certain threshold; and (iv) obtain-
ing fragments from enough of the topologically closest rel-
evant servers out of the sub-set; or obtaining fragments from
enough of the relevant servers out of the sub-sets, which are
located in the same sub-network as the assembling device, or
located in the closest sub-networks.

[0118] FIG. 15 (without the fragments marked with dashed
lines) illustrates one example of distributing the erasure-
coded fragments to ‘M’ CDN servers 399a to 399(M), con-
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nected to a network 300. Encoded fragments 310a to 310(M)
of a first segment are sent for storage in servers 399a to
399(M) respectively. Similarly, erasure-coded fragments
320a to 320(M) of a second segment are sent for storage in
servers 3994 to 399(M) respectively. In addition, other era-
sure-coded fragments associated with other segments of other
contents, illustrated as erasure-coded fragments 390a to 390
(M), are sent for storage in servers 399a to 399(M) respec-
tively. The number of unique erasure-coded fragments from
each segment that are stored on the servers (399a to 399(M))
is equal to M in this example, where M may be smaller than
the maximum number of unique erasure-coded fragments,
meaning that only a subset of the potential erasure-coded
fragments are actually stored. It is also possible to store the
maximum number of unique erasure-coded fragments, or
store more than one unique erasure-coded fragment per seg-
ment per server. The network 300 may be the Internet for
example, or any other data network connecting multiple
nodes, such as a private IP network, or a Wide Area Network
(“WAN”). In one embodiment, the fragments marked with
dashed lines illustrate one example where (N-M) additional
servers are added to the array, and (N-M) new unique era-
sure-coded fragments per segment per content (310(M+1) to
310(N), 320(M+1) to 320(N), and 390(M+1) to 390(N)) are
generated and added to the array. In one embodiment, only M
out of the maximum possible erasure-coded fragments (L) are
actually generated for storage in the first place. In one
embodiment, when the additional N-M erasure-coded frag-
ments are needed for storage (e.g., when additional servers
are made available), the remainder of the N-M erasure-coded
fragments are actually generated. Any time that additional
unique erasure-coded fragments are needed, this process of
calculating the additional erasure-coded fragments is
repeated, up to the point that all L possible erasure-coded
fragments are used.

[0119] Inoneembodiment, and especially when using rate-
less coding, I may be chosen as a sufficiently large number to
account for any realistic future growth of the server array. For
example, a segment of 96 Kbytes is expanded using a rateless
code with a ratio of 1 to 216 original symbols to encoded
data, into an encoding symbol of potential size 6.29 GBytes.
Assuming a 1500 Bytes erasure-coded fragment size, then
potentially 4.19 million unique erasure-coded fragments can
be generated. Now, it is safe to assume that for all practical
uses, the server array will not grow to more than 4.19 million
nodes, and may contain several thousands of servers, mean-
ing that the encoded data can be used in all cases where
additional unique erasure-coded fragments are needed, by
generating new erasure-coded fragments out of the segment.
Optionally, a server may store erasure-coded fragments for
only some of the segments.

[0120] In one example of redundancy factor and storage
gain (without the fragments marked with dashed lines), server
3994 stores only erasure-coded fragment 310a from a first
segment, erasure-coded fragment 320a from a second seg-
ment, and erasure-coded fragment 3904 from a third segment.
Assuming that: (i) the segment size is 1024 Kbytes; (i) the
segment is encoded using erasure code into a 4096 KByte
encoded segment; (iii) the encoded segment is segmented into
256 erasure-coded fragments of size 4096/256=16 KByte;
and (iv) the erasure-coded fragments are stored on 256 serv-
ers (M=256); it turns out that each server stores only a Y4
portion of the original size of the segment. This means that
each server can manage with only Y4 of the storage require-
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ments in comparison to a situation where it had to store the
entire segment. In addition, there are 256 erasure-coded frag-
ments altogether from each encoded segment, meaning that
an assembling device that is assembling the erasure-coded
fragments from the servers need only select slightly more
than 64 erasure-coded fragments in order to completely
reconstruct the segment, and it can select whichever slightly
more than 64 erasure-coded fragments it desires out of the
256 possibly available. The redundancy factor in this example
is approximately 256/64=4. All contents in this example
enjoy a factor of 64 in storage gains, meaning that server
3994, for example, stores only Y64 of the information associ-
ated with the first segments and any additional segments
belonging to other contents. In one example, each server
supports high volume storage of between about 500 GByte
and 500 TBytes, optionally utilizing hard drive, Solid State
Drive, or any other high volume storage device(s). In these
cases, each server may store many millions of erasure-coded
fragments, associated with millions of segments, belonging
to hundreds of thousands of different contents, and possibly
more.

[0121] In one embodiment, new content initially encoded
with a low redundancy factor is distributed to an initial num-
ber of fractional-storage servers. As the content is distributed
to more servers, additional unique fragments are encoded and
therefore the redundancy factor increases. Optionally, as the
content’s popularity increases, and/or as the load on the frac-
tional-storage servers increases, the redundancy factor is
increased, and vice versa.

[0122] Inone embodiment, multiple unique erasure-coded
fragments per segment of a new content are distributed to an
initial number of fractional-storage servers with a low storage
gain (i.e. each server stores multiple unique erasure-coded
fragments per encoded segment). As the content is distributed
to more fractional-storage servers, some of the erasure-coded
fragments stored on the initial number of fractional-storage
servers are removed and thereby the storage gain is increased.
Optionally, as the demand for the content increases, the stor-
age gain is decreased, and vice versa.

[0123] FIG. 16 illustrates three examples (each depicted by
one of the columns A-C) of changing the redundancy factor
according to the demand. Column A illustrates one simplified
example of a storage array including 16 servers (1001 to
1016). Each server stores up to 2 different erasure-coded
fragments, and can service an erasure-coded fragment trans-
mission bandwidth of up to B. Assuming three contents (#1,
#2, and #3) processed to segments and erasure-coded frag-
ments with a storage gain of 4.

[0124] Assuming content #1 is the most popular, and
requires a peak bandwidth of 11xB. Since each server can
service up to bandwidth B, at least 11 servers are needed to
service content #1 bandwidth requirements. Content #1 is
therefore encoded into 11 unique erasure-coded fragments
per segment, illustrated as group gl of erasure-coded frag-
ments stored on servers 1001 to 1011. Out ofthese 11 erasure-
coded fragments, it is sufficient to obtain slightly more than 4
erasure-coded fragments in order to reconstruct a segment of
content #1. Therefore, the resulting redundancy factor of the
stored fragments associated with content #1 is approximately
11/4=2.75. Content #2 requires less bandwidth, and manages
with a peak of 7xB. It is therefore encoded into 7 unique
erasure-coded fragments per segment, illustrated as group g2
of erasure-coded fragments on servers 1010 to 1016. There-
fore, the redundancy factor of the stored fragments associated
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with content #2 is 7/4=1.75. Content #3 requires a peak band-
width of 5xB, but for some reason (for example, being a more
critical content), it is encoded into 14 erasure-coded frag-
ments per segment, illustrated as group g3 of erasure-coded
fragments on servers 1001 to 1009 and 1012 to 1016. There-
fore, the redundancy factor of the stored fragments associated
with content #3 is 14/4=3.5. This concludes the storage avail-
ability of the servers in this example, as every server stores
two erasure-coded fragments.

[0125] Column B illustrates an example where content #2
becomes more popular than content #1, and therefore requires
more bandwidth and hence more of a redundancy factor. This
is achieved by eliminating 5 erasure-coded fragments asso-
ciated with content #1 that were previously stored on servers
1001 to 1005, and replacing them with 5 new unique erasure-
coded fragments g4 associated with content #2. This brings
the total number of erasure-coded fragments per segments of
content #1 and #2 to 6 and 12 respectively. In column C, new
content #4 is stored on servers 1001 to 1003 and 1014 to 1016
(illustrated as g5), by eliminating 3 erasure-coded fragments
of content #1 and 3 erasure-coded fragments of content #2.
[0126] Throughout the examples of FIG. 16, a record of
“what erasure-coded fragments are stored where” may be: (i)
kept in each of the servers 1001 to 1016. In this case, when an
assembling device is assembling content #2, it will send a
query to servers 1001 to 1016, asking which one is storing
erasure-coded fragments of content #2; (ii) kept in a control
server. In this case, an assembling device will ask the control
server to send back a list of all servers storing erasure-coded
fragments of its required content.

[0127] Inone embodiment, different quantities of erasure-
coded fragments are generated per different segments. In one
embodiment, some segments store data that is considered
more important than data stored in other segments, and rela-
tively more erasure-coded fragments are generated from the
segments storing the more important data than from the seg-
ments storing the less important data.

[0128] Insomeembodiments, the content is segmented into
aplurality of segments to enable beginning to play the content
as it is being obtained, and optionally enable trick play. The
different segments may or may not be of the same size.
[0129] The following embodiments discuss different meth-
ods for segmenting the content. In one embodiment, at least
one portion of the content is segmented into multiple seg-
ments in sizes within a first size range, and the remainder of
the content is segmented into a plurality of segments in sizes
within a second size range (additional size/s may be added
similarly). The sizes included in the second size are larger
than the sizes included in the first size range. Pluralities of
erasure-coded fragments are generated from each of the seg-
ments. The segments of sizes within the first size range are
better suited for fast retrieval, and the segments of sizes within
the second size range are better suited for high-gain storage.
In one example, the segments in sizes within the first size
range belong to approximately the beginning of the content.
In one example, the segments in sizes within the first size
range belong to locations within the content requiring trick
play access. In one embodiment, the segments of the first type
are encoded into fewer fragments than the segments of the
second type. This allows a fast retrieval of the shorter seg-
ments.

[0130] The term “fragment pull protocol for high latency”
as used herein denotes a protocol enabling an assembling
device to request one or more fragments from one or more
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providing sources, wherein the time to transmit the one or
more fragments in response to the assembling device request,
through the slowest communication link connecting the
responding source and the assembling device, is smaller than
the round trip communication delay between the assembling
device and the responding source, excluding the processing
time of the providing source. For example, if the round trip
communication delay between Israel and the USA is about
200 ms, the assembling device requests one fragment sized
about 1500 bytes, and the slowest communication link is an
ADSL line connecting the assembling device at 1.5 Mbps,
then the time it takes to transmit the requested fragment
through the slowest communication link is about 1500%*8/
1500000=8 ms, which is much smaller than the round trip
delay.

[0131] In one example, the content 100 is a 1 GByte
encoded H.264 file, storing a 2-hour motion picture, and is
segmented into approximately 10,000 segments of approxi-
mately 100 Kbytes each. In another example, the content 100
is a 4 MByte web-site information (HTML, FLASH, or any
other combination of information that encodes the presenta-
tion of a website), and is segmented into 4 segments of
approximately 1 MByte each.

[0132] Inone example, the content supports streaming pre-
sentation, and the segments are small enough to enable pre-
sentation shortly after beginning the reception of the first
segment(s). For example, each segment may include 96
KByte, allowing a 5 Mbps receiver to download the segment
in approximately 0.2 seconds, and optionally begin the pre-
sentation shortly thereafter. In one embodiment, the time to
play is reduced by segmenting certain portions of the content
into smaller segments, while the remaining portions are seg-
mented into larger segments. A smaller segment can be
retrieved faster, while a larger segment may be better opti-
mized for storage gain and/or efficient transmission.

[0133] In one embodiment, the short segments are 96
Kbytes in size, and the long segments are 960 Kbytes in size.
The redundancy factors used for encoding short and long
segments into fragments are 100 and 5 respectively. 1500
Bytes fragments are used for both sizes. The short segments
are therefore encoded into (96K/1500)x100=6,400 frag-
ments, from which only about 64 are needed for reconstruc-
tion, and the long segments are encoded into (960K/1500)x
5=3,200 fragments, from which only about 640 are needed
for reconstruction. Short segments are reconstructed more
quickly than long ones, as they require fewer fragments to be
decoded. Optionally, each fragment is stored on a different
server, resulting in a storage gain of 64 for short segments,
and 640 for long segments.

[0134] FIG.17 illustrates one example in which the content
100 is segmented into segments, such that the first segment
104a is smaller than the consecutive segment 1045, which is
smaller than following segments 104¢ and 1044. In another
example, the content 100 is segmented into segments, such
that the first several segments (e.g. 104aa and 1045b, which
are the same size), are smaller than consecutive segments
(e.g. 104cc and 104dd, which are the same size).

[0135] FIG. 18 illustrates one example in which the content
100 is segmented into cyclic sets of successive segments
increasing in size. For example, 1055 is equal or larger in size
than 105q, and so on, up to segment 1054; 105f'is equal or
larger in size than 105e, and so on, up to segment 105/. In one
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example, segment 105¢ is equal in size to segment 105a.
Point 105EP represents the ending of the first set, and the
beginning of the second set.

[0136] In one embodiment, the segments are created on-
the-fly, such as during a live event or when the content is made
available to the segmentation process as an on-going stream.
In one embodiment, the content supports streaming presen-
tation, and the segments are of the small size, to enable
content presentation shortly after beginning the reception of
the first segment (or any other segment). In addition, the
erasure-coded fragments are kept as small as possible, while
still enabling efficient transport over an IP network. For
example, each erasure-coded fragment is about 1500 Bytes
and can be transported using one IP packet.

[0137] Itis to be noted that streaming content may also be
manifested as an intermediate product of a process. For
example, in a case where a video camera outputs erasure-
coded fragments that can be decoded into streaming content,
the intermediate data from which the erasure-coded frag-
ments are generated is considered to be streaming content
(even if the video camera does not output that intermediate
data). Moreover, streaming content may include: content that
is produced and then immediately transmitted to a receiving
server, content that is produced but stored for any length of
time before being transmitted to a receiving server, content
that is transmitted to a receiving server and then immediately
sent from the receiving server to a client, content that is
transmitted to a receiving server, then buffered for some time
at the receiving server and then sent from the receiving server
to a client, content that is solely played at a client, and content
that is manipulated or changed or reacted to at the client while
a continuation of the content is still being played at the client.

[0138] FIG. 19 illustrates one embodiment of a server array
including fractional-storage servers 399a to 399(N) storing
erasure-coded fragments 390a to 390(N) associated with con-
tent. In order for assembling device 661 to reconstruct a
segment 101a of the content, it has to retrieve at least K
erasure-coded fragments. In one example, k=4 and the assem-
bling device 661 chooses approximately randomly from
which servers to retrieve the 4 different erasure-coded frag-
ments. [t chooses to retrieve fragments 390a, 390¢, 390(N-1)
and 390(N), which are noted as group 573, and reconstruct the
segment 101a. Consequent segments of the content are recon-
structed in a similar fashion, and the content may eventually
be fully retrieved by combining all relevant segments. If the
assembling device 661 cannot reconstruct the segment 101a,
it retrieves one or more additional unique erasure-coded frag-
ments, and tries again.

[0139] Referring back to FIG. 19, in one embodiment, the
content being distributed supports stream presentation, and
segment 101a is of small size, to enable content presentation
by assembling device 661 shortly after beginning the recep-
tion of the segment (or any other segment of the content). For
example, segment 101a is 96 KByte, allowing a 5 Mbps
download speed receiver to obtain the entire segment (by
requesting enough erasure-coded fragments to enable the
reconstruction of the segment, and such that the total size
received of all requested erasure-coded fragments is slightly
larger than the segment) after approximately 0.2 seconds
from request, and beginning the presentation shortly or right
after the successful decoding and reconstruction of segment
101a.
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[0140] The following embodiments describe processes for
on-the-fly erasure-coded fragment retrieval from fractional-
storage servers.

[0141] Inoneembodiment, a method for obtaining erasure-
coded fragments from fractional-storage servers to recon-
struct a segment includes the following steps: (i) identifying
the next segment to be obtained; optionally, the segments are
approximately sequential segments of streaming content
obtained according to their sequential order; (ii) optionally,
determining the minimum number of fragments needed to
reconstruct the segment; (iii) are enough identified relevant
servers (i.e. servers storing the required fragments) available
from the process of obtaining prior segment/s? (iv) if no,
identifying enough relevant servers; (v) if yes, requesting
enough fragments from the identified relevant servers; if less
than enough fragments are obtained from the identified rel-
evant servers, go back to step iv and identify additional rel-
evant server/s; (vi) reconstruct the segment from the obtained
fragments; and (vii) optionally, go back to step i to obtain the
next segment.

[0142] Inoneembodiment, a method for obtaining erasure-
coded fragments from fractional-storage servers to recon-
struct multiple segments includes the following steps: (i)
identifying multiple segments to be obtained, optionally
according to their sequential order; (ii) optionally, determin-
ing the minimum number of fragments needed to reconstruct
the segment; (iii) optionally, determining the number of frag-
ments to be obtained approximately in parallel; (iv) are
enough identified relevant servers available from the process
of obtaining prior segment/s? (v) if no, identifying enough
relevant servers; (vi) if yes, requesting enough fragments
from the identified relevant servers, optionally in parallel and
according to the sequential order of the segments; (vii) if less
than enough fragments are obtained from the identified rel-
evant servers, go back to step iv and identify additional rel-
evant server/s; (viii) reconstructing the segment/s from the
obtained fragments; and (ix) optionally, go back to step i to
obtain the next segments.

[0143] Inoneembodiment, a method for obtaining erasure-
coded fragments from fractional-storage servers to recon-
struct a segment in a burst mode includes the following steps:
(1) identifying the next segment to be obtained; (ii) optionally,
determining the minimum number of fragments needed to
reconstruct the segment; (iii) are more than the minimum
number of relevant servers available from the process of
obtaining prior segment/s? (iv) if no, identifying more than
the minimum relevant servers; (v) if yes, requesting more
than the minimum number of fragments needed to reconstruct
the segment; if less than enough fragments are obtained, go
back to step iv and identify additional relevant server/s; (vi)
reconstructing the segment from the obtained fragments; and
(vii) optionally, go back to step i to obtain the next segment.

[0144] The various methods for obtaining erasure-coded
fragments from the fractional-storage servers for reconstruct-
ing one or more segments may be combined as needed. In one
example, the initial segment/s are obtained using a burst mode
and the following segments are retrieved without requesting
extra fragments. In another example, the initial segment/s are
obtained approximately in parallel and optionally using a
burst mode, and the following segments are obtained one by
one and optionally without requesting extra fragments. The
fragments may be obtained using a pull protocol and/or a push
protocol. Moreover, the servers from which to retrieve the
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fragments may be selected according to one or more of the
various discussed methods for selecting the servers and/or
load balancing the servers.

[0145] In some embodiments, the fragments are small
enough to be contained in one packet. In one embodiment,
each fragment is about 1400 bytes, and can fit into one UDP
or RTP packet transmitted over Ethernet. The stateless nature
of UDP and RTP allows the servers to send one packet with
one fragment very quickly, without the need for any acknowl-
edgement or hand shaking In some embodiments, the frag-
ment pull protocol requests use one stateless packet, like UDP
or RTP. In one embodiment, the assembling device requests
about 100 fragments approximately in parallel, using 100
separate requests or one or few aggregated requests. About
100 servers respond by sending about 100 fragments, each
encapsulated in one stateless packet, after a short delay, and
the assembling device receives the fragments within a frac-
tion of a second. Assuming an Internet round trip delay of 100
ms, and server processing latency of 100 ms, then after 200
ms the assembling device starts receiving all 100 fragments.
With a modem of 5 Mbps, and assuming 1400 bytes per
fragment, all 100 fragments are received 1400x100x8/5
Mbps=224 ms after the initial delay, meaning that content can
be presented 200+224=424 ms after request (decoding and
other process time has been ignored in this example).

[0146] FIG. 20 illustrates one embodiment of real time
streaming content retrieval from fractional-storage servers,
wherein erasure-coded fragments 720a to 720(K) are
retrieved in a fast cycle, meaning that several erasure-coded
fragments are obtained approximately in parallel. As a result,
the interval T2 minus T1 is more or less limited only by the
download bandwidth of the assembling device’s modem.
Referring to the example of FIG. 21, T2 minus T1 can be
reduced from 0.77 seconds to 0.15 seconds, if the modem
operates at 5 Mbps (instead of 1 Mbps).

[0147] Inone embodiment, T1 to T2 represents a fragment
fetch cycle that corresponds to the beginning of streaming
content to be presented (in that case, segment 710aq is the first
segment of the content, and presentation 700 corresponds to
the beginning of the streaming content), or corresponds to a
certain point within the streaming content to be presented
starting this point onwards (in that case, segment 710a is a
segment within the content, and presentation 700 corresponds
to playing the content starting not from the beginning, but
rather from segment 710q, located somewhere within the
content). This is also known as trick play. In one embodiment,
erasure-coded fragments 720(a) to 720(K) are obtained such
as to result in approximately a maximum utilization of the
download capabilities of the assembling device, and such that
the rate of requesting erasure-coded fragments results in a
data arrival rate that on average utilizes the assembling
device’s maximum download bandwidth.

[0148] For example, if each erasure-coded fragment is
1500 Bytes, and the maximal download rate of the assem-
bling device is 5 Mbps, then erasure-coded fragments 720(a)
to 720(K) are requested at an average rate of a 5 Mbps/(1500
Bytesx8 bit/byte)=approximately 417 erasure-coded frag-
ment requests per second. This results in a fast retrieval time
for segment 710a. Consequent segments, such as 7105 can be
retrieved either in the same manner as segment 710q, or by
sending fragment requests at a lower rate and, possibly, at a
rate that results in a fragment data reception bandwidth that
approximately equals the average content presentation rate,
or by sending fragment requests at a rate that results in a
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fragment data reception bandwidth that is higher or slightly
higher than the average content presentation rate for accumu-
lating a content buffer throughout the presentation of the
content.

[0149] In one embodiment, more than the minimum num-
ber of unique erasure-coded fragments needed to correctly
reconstruct a segment are requested per segment, such that
even if some fragment requests are not followed by actual
fragment reception, the segment can still be reconstructed
provided that at least the minimum number of unique erasure-
coded fragments are actually received.

[0150] In one embodiment, the fragment pull protocol
request includes a priority indication. A high priority indica-
tion means that the servers should give a preference to
responding with a fragment transmission. High priority
requests are served before other requests. Optionally, high
priority requests are served even if the server’s bandwidth
quota is exceeded. In one embodiment, the high priority
requests are used by the assembling devices for receiving
priority in the reception of the first segment, or several first
segments, in order to facilitate fast starting of content presen-
tation after content request by the user (either when starting to
play a content, or in trick play mode, when starting to play a
content from a certain point).

[0151] FIG. 22 illustrates one embodiment of a fragment
pull protocol. Assembling device 861 (also represented by
protocol diagram element 8105) obtains erasure-coded frag-
ments from fractional-storage servers 899a to 899(N) (also
represented by protocol diagram element 898), utilizing the
following steps: (i) deciding 810a which segment to retrieve;
(i1) device 861 sending requests to some of the fractional-
storage servers for erasure-coded fragments associated with
the desired segment. For example, requests 880a to 880(K)
for erasure-coded fragments 890a to 890(K), from servers
899(a) to 899(K), correspondingly; and (iii) the servers
respond by sending the requested erasure-coded fragments.
For example, servers 899a to 899(K) send 881a to 881(K)
erasure-coded fragments 890a to 890(K) to device 861. The
fragment request and receipt process begins at T1c and ends
at T1d. At time T1d, device 861 has enough erasure-coded
fragments (K) to reconstruct the segment selected at 810a. In
one embodiment, the process from T1c to T1d occurs in real
time, in support of streaming content presentation.

[0152] FIG. 23 illustrates a similar process to FIG. 22,
where request 89054 fails to result in a reception of erasure-
coded fragment 8905 for any reason (such as a server fault,
network congestion, or abnormal latency conditions). Assem-
bling device 861 therefore issues another request 882(K+1)
for erasure-coded fragment 890(K+1) in response, and
receives 883(K+1) the additional erasure-coded fragment
890(K+1) needed to reconstruct the segment.

[0153] FIG. 24 illustrates a similar process to FIG. 22,
where one or more extra erasure-coded fragments (in addition
to the needed K) are requested in advance (illustrated as
request 880(K+1) for erasure-coded fragment 890(K+1)),
such that if, as an example, request 89054 fails to result in a
reception of erasure-coded fragment 8905, assembling device
861 does not have to request new erasure-coded fragments to
reconstruct the segment, since there are still at least K erasure-
coded fragments that were successfully received and there-
fore the segment can be reconstructed.

[0154] FIG. 25 illustrates a similar process to FIG. 22,
where requests for erasure-coded fragments are loaded into
one aggregated request 870, that is sent to one of the frac-
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tional-storage servers (the receiving server is illustrated as
protocol diagram element 888a, and will be also referred to as
a‘“relay server”). In one example, if the relay server is 899(N),
then, it will forward the request to additional servers 899a to
899¢ (protocol element 8885b) via new requests 870a to 870¢
(on behalf of assembling device 861). Servers 8994 to 899¢
will then respond by sending the erasure-coded fragments
890a to 890¢ (871a to 871c¢) to the assembling device 861.
Server 899(N) will send 871(N) fragment 890(N) to the
assembling device.

[0155] Inoneembodiment, the aggregated request 870 con-
tains a list of servers to be approached by the relay server
888a. In one embodiment, the aggregated request 870 does
not contain a list of servers to be approached, and it is up to the
relay server 888a to select the servers. In one embodiment,
the relay server 888a is not necessarily one of the fractional-
storage servers, and may be a control server, or other network
device like a router, or an assembling device.

[0156] Still referring to FIG. 24, in one embodiment, more
fragments than needed to reconstruct a segment are
requested, such that the additional requested fragments
approximately compensate for fragment failure conditions.
If, statistically, F fragment requests are expected not to result
in the reception of a fragment (i.e. fragment loss), out of a
total number of K+F fragment requests (wherein K is the
minimal number of fragments needed to reconstruct a seg-
ment), then it is possible to request K+F fragments instead of
just K. In one embodiment, more than K+F fragments are
requested, since the quantity of the received fragments is a
statistical variable. In this case, K+F+S fragments are
requested, wherein S is a safeguard amount of additional
requests to assure that at least K fragments are received. In
one embodiment, the fragment loss F changes over time, and
the assembling device handles the change by increasing or
decreasing the number of fragments requested per segment.
In one embodiment, the assembling device may determine F
based on previous fragment failure rates.

[0157] In one embodiment, requesting K+F+S fragments
for a segment will almost always result in the reception of at
least K fragments, and therefore the assembling device may
request K+F+S without being concerned about which frag-
ment has not arrived, and without trying to actively compen-
sate for fragment failures by issuing additional fragment
requests. In this case, the assembling device requests the
fragments in an “open loop” fashion, meaning that it requests
the K+F+S fragments, and moves on to another segment. In
one embodiment, even when requesting K+F, or K+F+S frag-
ments per segment, it is still possible not to receive the needed
K fragments. Therefore, the assembling device may compen-
sate for undelivered fragments by issuing additional fragment
requests (a “closed loop” operation).

[0158] In one embodiment, the K+F, or K+F+S fragment
requests are issued approximately in parallel, in order to
achieve the fastest response possible for reconstructing a
segment. In this case, the fragments start to arrive at the
assembling device a short while after being requested, such
that as soon as at least K out of the requested fragments arrive,
the assembling device may immediately proceed with recon-
structing the segment.

[0159] In some embodiments, a push protocol is used to
obtain fragments. A push protocol may be implemented using
one transmission carrying fragments from a source server to
a destination receiver, or may be implemented using a plural-
ity of sub-transmissions. When using sub-transmissions, each
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sub-transmission transports a fraction of the fragments
needed for segment reconstruction. Segments may be recon-
structed from fragments received via sub-transmissions after
obtaining decodable sets of erasure-coded fragments; option-
ally one set per segment. A sub-transmission may be trans-
ported using an IP stream such as RTP, an HTTPS session, or
any other protocol suitable for transporting a sequence of
fragments between a source server and a destination assem-
bling device.

[0160] FIG. 19 illustrates one embodiment, in which con-
tent is segmented and erasure-coded. Fragments 390a to 390
(N), belonging to a first segment, are distributed to servers
3994 to 399(N) respectively. Other fragments belonging to
subsequent segments are similarly distributed to servers 3994
to 399(N). The servers may use a push protocol to transport
the fragments to an assembling device. A push protocol sub-
transmission may comprise a sequence of fragments associ-
ated with multiple segments. In one example, the fragments
are ordered according to the sequential order of the segments
in a streaming content. Server 399q sends a first sub-trans-
mission to a destination assembling-device. Optionally, the
first sub-transmission comprises a sequence of fragments
starting with fragment 390a, associated with the first seg-
ment, and continuing with fragments belonging to subse-
quent segments. Server 399¢ sends a second sub-transmission
to the destination assembling-device, optionally starting with
fragment 390c¢, associated with the first segment, and con-
tinuing with fragments belonging to subsequent segments. In
a similar fashion, servers 399(N-1) and 399(N) send addi-
tional sub-transmissions to the destination assembling-de-
vice, each comprising a unique fragment sequence.

[0161] When using a push transmission, the assembling
device does not explicitly ask for each fragment, but instead
instructs each of the different servers to start sending it a
fragment sequence using a sub-transmission. The destination
assembling-device receives the sub-transmissions sent by
servers 3994, 399¢, 399(N-1) and 399(N). It gathers 573 the
first fragment from each sub-transmission to reconstruct the
first segment 101¢a. In a similar fashion, additional fragments
belonging to subsequent segments are obtained from the sub-
transmissions, and used to reconstruct the segments. It is
noted that any combination of sub-transmissions may be
used, as long as a decodable set of fragments is obtained per
each segment. It is also noted that FIG. 19 illustrates a non-
limiting embodiment and a sub-transmission may include
two or more unique erasure-coded fragments per segment.

[0162] In one embodiment, the push sub-transmissions is
synchronous (all servers sending the fragments of each seg-
ment at approximately the same time). In another embodi-
ment, the push sub-transmission is asynchronous and the
arrival of different fragments associated with a specific seg-
ment at the assembling device side may be spread over a long
period. This may occur, as an example, when some push
servers are faster than others. In one embodiment using asyn-
chronous sub-transmissions, the assembling device aggre-
gates whatever fragments it can before presentation time of
each segment, and then optionally supplements fragments
using a pull retrieval process. A server that does not send
fragments fast enough, and therefore usually causes supple-
mental requests, may be ordered to stop the sub-transmission.
Another server may be requested, optionally by the assem-
bling device, to replace the slow server by initiating a new
sub-transmission.
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[0163] In one embodiment, the push-transmissions carry
more erasure-coded fragments than needed for segment
reconstruction. In one embodiment, the push transmissions
carry fewer erasure-coded fragments than needed for segment
reconstruction, and the remaining fragments are pulled by the
assembling device.

[0164] In one embodiment, a method includes the steps of
obtaining, by an assembling device from fractional-storage
servers, erasure-coded fragments associated with a segment
of streaming content; detecting a first quantity of at least one
fragment associated with the segment, which have failed to
arrive at the assembling; requesting via a fragment pull pro-
tocol for high latency approximately the first quantity frag-
ments; and repeating the steps of detecting and requesting
until enough fragments have been obtained for reconstructing
the segment. Optionally, the steps are repeated approximately
sequentially on the segments. Optionally, the streaming con-
tent comprises approximately sequential segments. Option-
ally, detecting the failure comprises determining which frag-
ment has failed after not obtaining the fragment within a
predetermined period from issuing its request, and/or receiv-
ing a message that does not contain the actual fragment’s
payload. And optionally, the fragments are obtained via sub-
transmissions transmitted by the servers.

[0165] Inoneembodiment, amethod forretrieving erasure-
coded fragments includes the steps of: determining, by an
assembling device, the time remaining to reconstruct a seg-
ment of streaming content; estimating the probability of
receiving a sufficient quantity of already-ordered erasure-
coded fragments to reconstruct the segment during the
remaining time; and if the estimated probability is below a
predefined threshold, issuing one or more additional frag-
ment requests, using a fragment pull protocol, until the esti-
mated probability equals or passes the predefined threshold.
Optionally, the already-ordered fragments and the additional
fragment requests are received from fractional-storage CDN
servers. Optionally, the already-ordered fragments are
received via at least two sub-transmissions transmitted by the
servers. Optionally, the already-ordered fragments are
received via a fragment pull protocol. And, optionally, esti-
mating the probability includes considering the probability of
each request to result in a fragment reception during the
remaining time.

[0166] In one embodiment, the assembling device may
aggregate several fragment requests into one message. The
aggregated message is then sent to a fractional-storage server,
possibly in a payload of a single packet, and optionally in
order to conserve outgoing bandwidth and/or to reduce the
number of packets needed to convey the requests. The frac-
tional-storage server may then read the aggregated message
and act accordingly by sending a plurality of fragment
responses to the assembling device. The fragment responses
may include one fragment at each payload, as is the case of
responding to a single fragment request, or it may include an
aggregated response including multiple fragments at each
payload.

[0167] In one embodiment, fragment aggregation is used
for retrieving fragments associated with segments of stream-
ing content, and each aggregated message requests fragments
associated with a specific segment. For example, three frac-
tional-storage servers store together 12 fragments associated
with a certain segment, such that each stores four fragments.
The assembling device needs the 12 fragments in order to
reconstruct the segment and therefore issues three aggregated
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fragment request messages—one for each server. The three
servers receive the aggregated request messages, and each
server responds by sending its four fragments to the assem-
bling device. Therefore, only three aggregated request mes-
sages were needed to retrieve the 12 fragments. The assem-
bling device may request fragments associated with the next
segment(s) in a similar manner using additional aggregated
requests, optionally until receiving all required segments.
[0168] FIG. 26 illustrates various examples of aggregated
fragment request messages. In one example, the aggregated
fragment request messages 503, which may be transported
using one packet payload, uses a format (or a data structure)
comprising a segment identification 802 and the number-of-
fragments 803 requested by the assembling device. The
receiving fractional-storage server uses the segment identifi-
cation information to locate the relevant fragments associated
with the identified segment, and then uses the number-of-
fragments parameter 803 to determine how many fragments,
out of the located fragments, should be transmitted to the
requesting device as a response.

[0169] In one embodiment, the fragments are erasure-
coded fragments and the fractional-storage servers store
unique erasure-coded fragments. The assembling device
receives multiple erasure-coded fragments from multiple
servers, such that the number of received fragments is at most
the sum of all number-of-fragments 803 values as has
appeared in all of the aggregated requests messages. In this
case, the various fractional-storage servers need no inter-
coordination to respond to message 503, as the assembling
device does not care which of the fragments associated with
the identified segment were received, as long as at least the
requested number of unique erasure-coded fragments were
received. In some embodiments, aggregated fragment request
messages and single fragment requests are used concurrently.
[0170] Inanother example, an aggregated fragment request
message 502 further comprises a content identification field
801. In still another example, an aggregated fragment request
message may comprise requests for fragments associated
with different segments of streaming content. In this case, and
according to one example, the aggregated request 505 com-
prises a sequence of identified segments 902 containing the
identification of all segments for which the assembling device
requests fragments. Optionally, in the absence of additional
information in the aggregated message, the fractional-storage
server may assume that one fragment per each of the seg-
ments identified in sequence 902 is required. In this case, the
server will locate such fragment per each of the identified
segments, and will send them to the requesting device. The
requesting device may include information regarding how
many fragments are required per identified segment, as a
number-of-fragments parameter 903. The number-of-frag-
ments 903 may be a scalar value that indicates how many
fragments are requested per each identified segment, or it may
be a vector value, indicating the number of required frag-
ments per each of the identified segments in the sequence.
[0171] In one embodiment, the fractional-storage server
responds to a message, comprising aggregated requests for
fragments associated with multiple segments, by sending all
of the requested fragments to the requesting device, or by
sending all of the requested fragments to the requesting
device in a certain order. The order may follow the sequential
order of the segments in streaming content. In one example,
the fractional-storage server first sends the fragments associ-
ated with the first identified segment, and then sends the
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fragments associated with the next identified segments.
Packet payload 505 illustrates one example of an aggregated
fragment request message comprising a transmission delay
909 instructing the fractional-storage servers to incorporate
intended delays while transmitting the different fragment
responses. In one example, the transmission delay 909 sets
the desired time delay between transmission of each group of
fragments associated with the segments identified in the
sequence 902. In this case, the fractional-storage server
responds to the aggregated request message by transmitting a
sequence of fragments, associated with the identified seg-
ments, at a duty cycle determined by the transmission delay
909. In one example, the segments belong to streaming con-
tent and the effective rates at which the servers transmit their
responses are controlled using the transmission delay 909.
[0172] In one embodiment, the fragments are erasure-
coded fragments and the assembling device uses multiple
aggregated fragment request messages for obtaining the
required content. Each message comprises multiple fragment
requests associated with one sequence of segment(s) and
addressed to a different fractional-storage server storing the
relevant fragments. Each such sequence of segments may be
referred to as a portion of streaming content, whereby the
assembling device uses multiple aggregated messages to
obtain each portion of the streaming content at a time. In one
embodiment, the assembling device uses a wireless interface,
such as WiFi, to connect to the Internet and communicate
with the fractional-storage servers, and the fragment request
aggregation techniques may dramatically reduce the number
of time such an assembling device needs to gain access to the
outgoing wireless interface. Moreover, the fragment request
aggregation techniques may be combined with many of the
disclosed embodiments for retrieving erasure-coded frag-
ments.

[0173] Still referring to FIG. 26, in one embodiment,
requests for fragments are transmitted via an IP network, in
the form of packet payloads. The packet payload may be, as
an example, the payload of a UDP packet carried over IP. In
one embodiment, packet payload 501 contains a fragment
request comprising content identification 801 and segment
identification 802. A server receiving such a request uses the
content and segment identifications to locate a relevant era-
sure-coded fragment, and transmits it back to the requester.
Optionally, if no references are made as to how many frag-
ments are requested per the identified segment, the server
may assume that only one fragment is requested.

[0174] In one embodiment, the fragment responses are
transported over an IP network, using packet payloads. In one
example, packet payload 701 includes an actual requested
fragment payload 602, and, optionally, information regarding
the segment 601 to which the fragment payload belongs. The
segment information may be needed if the requester retrieves
fragments associated with more than one segment, and there-
fore it must know to which segment the fragment payload
belongs. In one example, the fragment response is transported
over UDP/IP, or TCP/IP, such that the payload 701 is a UDP
or TCP payload.

[0175] In one embodiment, multiple segments of content,
which, in one example, is streaming content, are recon-
structed by an assembling device retrieving multiple erasure-
coded fragments associated with the multiple segments.
Since a fragment request does not always result in a reception
of the fragment, some requested fragments may fail to arrive
at the assembling device. Therefore, the assembling device
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checks (from each of the segments for which fragments have
already been requested) which requested fragments have
failed to result in a correct reception of a fragment. For each
such failure, the assembling device issues an additional
request for a fragment. The additional requests are associated
with segments for which fragments have already been
requested before, and therefore, in one example, the resulting
fragment retrieval process includes the following two sub-
processes: a first sub-process of requesting fragments associ-
ated with new segments to be reconstructed, and a second
sub-process of requesting additional fragments needed to
complement already requested fragments, in order to recon-
struct the segments. The first and second sub-processes work
together, such that the second sub-process may complement
fragments associated with a first segment, while the first
sub-process runs ahead in an attempt to obtain fragments
needed to reconstruct a second segment; wherein the second
segment is located ahead of the first segment. The first and the
second sub-processes can also be described as two different
quantities of fragments being requested: a first quantity asso-
ciated with the first sub-process requests, and a second quan-
tity associated with the second sub-process requests.

[0176] FIG. 27 illustrates one example of retrieving frag-
ments and compensating the failures. Content 100 is seg-
mented into segments 102a, 1025, and 102¢, and each seg-
ment is erasure-coded into four fragments, as illustrated for
segment 102a, which is coded into fragments 3914 to 3914.
This example assumes that each segment can be recon-
structed by obtaining any three fragments associated with it.
Prior to time T1, the assembling device requests fragments
391a, 3915, and 391c¢ in order to reconstruct segment 102a.
At time T1, only two of the requested fragments 391a and
391c¢ have resulted in fragment reception, and were placed
394a, 394¢ in the buffer 398. Fragment 3915 has not yet been
received at time T1, but can still be received later, and there-
fore at time T1 the assembling device does not yet try to
complete the missing fragment with an additional fragment
request. Instead, it proceeds and requests fragments associ-
ated with segment 1025. At time T2, all of the fragments
requested for segment 1025 have arrived, and have been
placed 3954, 3955, 3954 in the bufter 398. Prior to time T2,
the assembling device transmits additional requests for frag-
ments associated with segment 102¢, and at time T3 two out
of'the requested fragments have arrived, and have been placed
3965, 396¢ in the buffer 398. At time T3, the assembling
device realizes that the chances on receiving the previously
requested fragment 391a (associated with segment 102q) are
too small. This may be concluded, for example, as a long time
having elapsed since the request, or by receiving a message
from a fractional-storage server saying it is too loaded to
respond with a fragment. Either way, the assembling device
chooses to request an additional fragment 3914, instead of the
previously requested 3915. At time T4, the additional request
is met with the reception of fragment 391d, and with its
placement 3944 in the buffer 398. At time T5, the third frag-
ment previously requested for segment 102¢ has finally
arrived and has been placed 3964 in the buffer 398, so there is
no need to complement with an additional fragment request.
Attime T5 all fragments needed to reconstruct segments 102a
to 102¢ are stored in the buffer 398. It is noted that only one
additional fragment request was needed in order to account
for the lack of reception of fragment 3915, and that this
additional fragment request was issued after consequent frag-
ments had already been requested for consequent segments.
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[0177] In one embodiment, significant communication
latency and/or other latencies between requesting and receiv-
ing a fragment exists. A significant latency may result in a
case where the average latency in responding to fragment
requests is in the order of magnitude of the total transmission
time of all fragments needed to reconstruct a segment. As an
example, if a segment needs 64 fragments of 1500 Bytes each
to be reconstructed, and the assembling device has a 1.5 Mpbs
incoming connection, then it takes about (64[fragments]x
1500[bytes per fragment]x8[bits per byte])/1.5 Mbps=0.512
seconds to transmit the fragment via the incoming connec-
tion. Ifthe average latency is 0.2 seconds (which is within the
order of magnitude of 0.512 seconds), then from the time of
requesting the first fragment to the time all fragments have
arrived, a period of no less than 0.512+0.2=0.712 seconds
may elapse. If the process takes 0.712 seconds, the resulting
effective incoming throughput will be only (64[fragments]x
1500[bytes per fragment|x8[bits per byte])/0.712[seconds]
=1.07 Mbps, which is significantly less than the potentially
1.5 Mbps. In a case where some fragments are lost, and need
to be requested again, the total time for segment retrieval may
reach as high as 0.512+0.2+0.2=0.912, and the effective
incoming throughput down to only 842 Kbps. The significant
latency therefore adversely affects the effective incoming
throughput. The effective throughput can be made to
approach the incoming bandwidth available to the assembling
device by utilizing the above-described fragment retrieving
process comprising the two sub-processes of requesting frag-
ments and complementing the failures. In this case, the first
sub-process can be made to result in an average targeted
fragment reception throughput, and span multiple segments,
without handling the lost fragments. The second sub-process
can then complement with additional needed requests,
approximately per each fragment request that seems not to
result in an actual fragment reception. According to another
view, the first sub-process is an open loop retrieval process, in
which the assembling device does not wait to check whether
enough fragments have arrived per segment. And the second
sub-process is the process, which closes the loop on frag-
ments arrival, in order to make sure that every segment has
enough fragments to enable reconstruction.

[0178] In one embodiment, the assembling device may
control the erasure-coded fragment reception throughput by
controlling the rate of fragment request. For example, each of
n fragments has a known size S1 to Sn. Therefore, issuing n
requests over a period of T will result in an average fragment
reception throughput of (S14+S2 . . . +Sn)/T. In one example,
if each fragment is 1500 Bytes, and 64 fragment requests are
issued over a period of 0.5 seconds, then the average expected
fragment arrival throughput is (64x1500x8)/0.5=1.53 Mbps.
The fragment requests do not need to be uniformly spread
over the period of 0.5 seconds, although such a spread may
result in a more stable throughput, which means that less
communication buffering will be needed. Using the above-
described rate-control technique may result in one or more of
the following: retrieving the content at a target fragment
reception throughput; preventing communication buffer spill
at the last mile network resulting from uncontrolled fragment
requests; and/or reducing fragment loss due to averaging the
fragment traffic.

[0179] In one embodiment, the controlled rate is set to an
initial value estimated to support a streaming operation, or
alternatively to a predefined initial value. The controlled rate
is then gradually increasing until the fragment loss resulting



US 2010/0094962 Al

from requesting fragments at the controlled rate reaches a
predefined threshold. At this point, the controlled rate
remains at approximately a steady state, or alternatively is
slightly reduced in order to create a margin.

[0180] In one embodiment, the fragment loss resulting
from requesting fragments at a controlled rate is monitored.
The controlled rate is then gradually decreased in order to
improve the fragment loss. The controlled rate is decreased
approximately up to the point that the fragment loss drops
below a predefined threshold.

[0181] In one embodiment, the fragment loss resulting
from requesting fragments at a controlled rate is monitored.
The controlled rate is then gradually increased in order to
improve the fragment reception rate. The controlled rate is
increased approximately up to the point that the fragment loss
rises above a predefined threshold.

[0182] Using the fragment pull protocol may result in a
significant amount of requests, which may consume a signifi-
cant percent of the outgoing bandwidth of the assembling
device. In one embodiment, the assembling device aggregates
two or more fragment pull protocol requests for erasure-
coded fragments in one aggregated request. The aggregated
request is transmitted to a relay server, which, in turn, distrib-
utes the aggregated requests between two or more fractional-
storage servers. Aggregating the requests may save band-
width and significantly reduce the number of packets needed
to convey the requests. For example, a request for a single
fragment, transported over UDP/IP or similar protocols,
requires about 60 bytes of overhead. Meaning that even if one
request, containing only several bytes of request-related pay-
load, is needed, the resulting message will probably exceed
80 bytes. Therefore, transmitting, as an example, 64 fragment
requests per single segment will result in a total uplink band-
width requests of about 80x64=5 Kbyte. Using the relay
approach can result in a much more efficient communication.
In a case where 64 fragment requests are aggregated into one
message to a relay server, and assuming that each fragment
request has a payload of about 10 bytes (the payload may
comprise segment and content information, as an example),
then one aggregated message may contain about 60+64x
10=700 bytes, instead of the 5 Kbytes. In addition, one packet
containing the aggregated requests may be used instead of 64
separate packets needed in the non-aggregated case. This may
be significant when, as an example, the assembling device is
connected to the Internet via a wireless connection, such as a
WiFi connection. In this case, instead ofhaving to gain access
to the air interface 64 times per segment, the assembling
device accesses the air interface only once per segment, under
the assumption that 64 fragment requests are loaded into one
aggregated request.

[0183] In one embodiment, the assembling device trans-
mits an aggregated message containing multiple fragment
requests to a relay server. The relay server, in turns, creates
multiple fragment requests, and transmits the requests to
multiple fractional-storage servers on behalf of the assem-
bling device.

[0184] Inoneembodiment, an aggregated fragment request
message sent to a relay server identifies the destined storage
server(s). In one example, the destined storage servers are
identified by their IP addresses. The relay server, in turn, uses
the identification information in the message to create mul-
tiple requests for fragments on behalf of the assembling
device. In this embodiment, the assembling device deter-
mines the destined servers (via the aggregated relayed mes-
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sage), and the relay server creates the multiple fragment
requests according to the assembling device’s instructions.
[0185] Referring back to FIG. 26, in one embodiment, a
single request payload 504 is used to relay multiple fragment
requests to multiple storage servers via a relay server. The
payload 504 comprises the identified content 801 and seg-
ment 802, the number of requested fragments 803, and a list
of servers 804, which contain relevant fragments. The relay
server, in turns, relays multiple fragment requests to the serv-
ers identified in the list 804, according to some embodiments.
[0186] Inoneembodiment, an assembling device transmits
aggregated messages to a relay server, including the number
of fragments needed per certain segment, but without identi-
fying the storage servers from which fragments are to be
requested. The relay server selects the appropriate storage
servers to which the fragment requests are to be transmitted,
and transmits discrete or aggregated fragment requests, cor-
responding to the number of fragments requested by the
assembling device, to the selected storage servers. The stor-
age servers receive the fragment requests from the relay
server, and transmit the requested fragment to the assembling
device.

[0187] The relay server may seclect the storage servers
according to one or more criteria, as long as the selected
storage servers store relevant fragments. Optionally, the relay
server forwards the address of the assembling device to the
selected storage servers, and/or adds the address of the assem-
bling device to the fragment requests transmitted to the
selected servers, in order to enable the storage servers to
transmit the fragment response to the assembling device.
Referring back to FIG. 26, in one example, the assembling
device transmits a single request payload 502 to the relay,
which identifies the content 801, the segment 802, and the
number of requested fragments 803. The relay server, in
turns, selects the relevant storage servers, generates the frag-
ment request messages, and transmits the messages to the
selected storage servers on behalf of the assembling device.
[0188] Shifting the process of selecting the storage servers
from the assembling device to the relay server enables the
design of a relatively thin and simple assembling device,
having a relatively simple software, since all the assembling
device has to decide in order to issue an aggregated fragment
request to the relay server is how many fragments it needs per
segment and, optionally, when it needs them.

[0189] Inoneembodiment, an assembling device transmits
aggregated messages to a relay server, comprising general
information regarding a portion of streaming content for
which fragments are needed. Optionally, the portion of the
streaming content comprises several consecutive segments.
In one embodiment, the portion is defined by a starting point
and an ending point within the streaming content, and the
relay server uses these points to determine the actual seg-
ments comprising the portion. Then the relay generates and
transmits the corresponding fragment requests to the relevant
storage servers.

[0190] In one embodiment, the starting point and ending
point are time stamps within the streaming content. In one
embodiment, the portion is indicated by including a starting
point and duration of the portion.

[0191] Inoneembodiment, an assembling device transmits
an aggregated message to arelay server, comprising fragment
pull protocol requests that identity the destined storage serv-
ers. The relay server analyzes the fragment pull protocol
requests and may change one or more of the destined storage
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servers based on the network related information it holds,
such as network congestion, server load, and/or cost.

[0192] FIG. 28 illustrates one embodiment, wherein seg-
ment 101a of content 100 is encoded into erasure-coded
fragments 390a to 390(M), such that any sufficient subset of
the fragments can be used to reconstruct segment 101a. Frag-
ments 390a to 390(N) are stored in fractional-storage servers
3994 to 399(N) respectively, and fragments 390(N+1) to 390
(M) are stored in streaming server 399S. In one example,
fragments 390(N+1) to 390(M) form a group of fragments
which are sufficient to reconstruct segment 101a. Subsequent
segments 1015 to 101/ of content 100 may be similarly
encoded into additional fragments stored on the servers (not
illustrated). Assembling device 309 uses two different proto-
cols approximately simultaneously to retrieve fragments for
segment reconstruction: (i) a push protocol, and (ii) a frag-
ment pull protocol. The push protocol 3018 is used to deliver
fragments 390(N+1) to 390(M) to assembling device 309.
The push protocol may be RTP based or TCP-connection
based, or any other type of transmission that does not require
assembling device 309 to explicitly ask for each of fragments
390(N+1) to 390(M). In one example, fragments 390(N+1) to
390(M) are delivered to the assembling device using a single
RTP stream 3018, such that upon reception of the fragments
from the stream, the assembling device can immediately
reconstruct segment 101a. The fragment pull protocol is used
by the assembling device to retrieve additional fragments that
may be needed to reconstruct segment 101a if one or more
fragments out of fragments 390(N+1) to 390(M) fail to reach
the assembling device. In one example, fragment 390(N+2)
fails to reach the assembling device due to Internet packet loss
conditions (referred to as fragment loss). The assembling
device, after concluding that fragment 390(N+2) is missing,
uses a fragment pull protocol to retrieve a substitute fragment
out of one of the fractional-storage servers 390a to 390(N),
and uses this fragment to complete the reconstruction of the
segment 1014 (any one of fragments 3904 to 390(N) will do).
For example, the assembling device chooses fragment 390a
as the one additional fragment, by requesting and receiving it
303a from server 399q, using a fragment pull protocol. If
more fragments out of fragments 390(N+1) to 390(M) fail to
reach the assembling device 309, it may compensate by pull-
ing substitute fragments from some or all of servers 3994 to
399(N), illustrated as fragment pull protocol requests and
responses 303a to 303(N)).

[0193] In one embodiment, the fragment pull protocol
requests for additional needed fragments are not made to
fractional-storage servers 399a to 399(N), but are rather made
to server 399S. In this case, the assembling device asks server
399S to retransmit the fragment which has failed to arrive. In
this embodiment, only fragments that fail to reach the assem-
bling device via the push transmission 301S cause an added
communication overhead in the form of explicit fragment pull
protocol requests, such that if no fragments are actually lost
over transmission 301S, there is no need for fragment pull
requests 303a to 303(N).

[0194] In some embodiments, the push protocol is imple-
mented using one or more sub-transmissions. Optionally, a
push protocol transmission is implemented using multiple
sub-transmissions, each transporting a fraction of the frag-
ments transmitted by the push protocol transmission. A sub-
transmission may be transported using an IP stream such as
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RTP, an HTTPS session, or any other form of transporting a
sequence of fragments between a source server and a desti-
nation assembling device.

[0195] In one embodiment, the assembling device starts
retrieving fragments using only fragment pull protocol pro-
cesses, and then, when concluding that a specific server is
responsive enough, instructs it to start sending a push-trans-
mission for the remaining segments. In this case, the assem-
bling device may start with pure pull-protocol based fragment
retrieval, and gradually switch to push-protocol transmis-
sions, up to the point that approximately all fragments are
delivered using push-transmissions, and using the pull
requests only as a means to overcome failure of obtaining
specific fragments by the assembling device. In one embodi-
ment, the fragment pull protocol and the push protocol are
used interchangeably to obtain enough fragments to recon-
struct segments. In one example, the assembling device may
start to obtain fragments using a push protocol and then
switch to a fragment pull protocol. In one example, the assem-
bling device may use both fragment pull protocol and push
protocol to obtain fragments at the same time, wherein the
assembling device may change the ratio Fpull/Fpush on-the-
fly to any value between zero and infinity, where Fpull
denotes the number of fragments associated with a certain
segment that are obtained using a fragment pull protocol, and
Fpush denotes the number of fragments associated with the
certain segment that are obtained using a push protocol.
[0196] Inthe claims, sentences such as “wherein the assem-
bling device is configured to use a fragment pull protocol to
obtain the fragments” and “wherein the assembling device is
configured to use sub-transmissions to obtain the fragments”
are to be interpreted as open claim language. Therefore, an
assembling device configured to use a fragment pull protocol
to obtain fragments may also obtain fragments using sub-
transmissions, and vice-versa.

[0197] FIG. 21 illustrates one embodiment of real time
streaming content retrieval from fractional-storage servers.
An assembling device begins a process of obtaining stream-
ing content 700 for presentation. Starting at T1, the assem-
bling device requests erasure-coded fragments 720a to 720
(K). By T2, all K erasure-coded fragments are obtained, and
attime T2buntil T4, erasure-coded fragments 720a to 720(K)
are decoded into segment 710a. The retrieval time of the
erasure-coded fragments and the segment decoding time
should be equal to or faster than the corresponding presenta-
tion time, in order to enable a continuous presentation, once
presentation begins at T5. T25 minus T2 is a short delay, and
can be fractions of a second. Subsequent erasure-coded frag-
ments 730a to 730(K) are retrieved between T2 and T3, and
are decoded into subsequent segment 7105 between T4 and
Té6.

[0198] In one example, the streaming content 700 is
encoded at 1 Mbps, and the segment size is 96 Kbytes. The
presentation of each segment takes about 0.77 seconds.
Retrieving fragments 720a to 720(K) takes no more than 0.77
seconds, meaning that the assembling device’s connection
bandwidth must be 1 Mbps or higher. Decoding segment
710a takes no more than 0.77 seconds. If a small delay of 0.2
seconds is assumed for both T25 minus T2 and T5 minus T4,
then T5 can start at 0.7740.240.7740.2=1.94 seconds after
T1, meaning that presentation can begin about 2 seconds
following request of the first erasure-coded fragment. In
another example, the retrieval process and the decoding pro-
cess are performed faster than the real time presentation
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bounds, therefore enabling a shorter time to play and a down-
load rate that exceeds the presentation rate.

[0199] FIG. 29 illustrates one embodiment where the era-
sure-coded fragments 720a to 720(K) are retrieved in
approximately random order 720(K-1), 720a, 720(K), 7205,
or any other order, as long as at least the K erasure-coded
fragments needed for decoding the segment 710q are avail-
able until time T2. Similar retrieval in random order is applied
to erasure-coded fragments 730a to 730(K) and all other
subsequent fragments.

[0200] In one embodiment, the fragments associated with
sequential segments of streaming content are delivered to an
assembling device as a plurality of sub-transmissions. In this
case, each fractional-storage server participating in the deliv-
ery of the fragments to the assembling device sends a trans-
mission to the assembling device comprising a sequence of
erasure-coded fragments. This transmission is referred to as a
sub-transmission. In one example, each sub-transmission
contains at least one fragment per each sequential segment of
the streaming content. In one example, the sub-transmission
starts at a segment indicated by the assembling device, and
continues from that point onwards, approximately according
to the sequential order of segments, until the assembling
device instructs the server to stop, or until reaching the last
segment of the content. Each sub-transmission carries only a
fraction of the fragments (per segment) needed to reconstruct
the segments of the streaming content, such that the combi-
nation of at least two sub-transmissions received by the
assembling device from the servers allows the assembling
device to obtain enough fragments needed to reconstruct each
segment.

[0201] Inoneembodiment, each sub-transmission is deliv-
ered to the assembling device via a streaming session, such as
an RTP session, wherein the RTP packets transport the frag-
ment sequence approximately according to the order of the
sequential segments. In one embodiment, each sub-transmis-
sion is delivered to the assembling device via an HTTP con-
nection, or other closed-loop data transfer mechanisms over
TCP/IP. In one embodiment, the assembling device may
change one or more transmitting servers on the fly, by
instructing the server(s) to stop sending an already active
sub-transmission—as may be needed in a case of an RTP
session, and initiating new sub-transmissions from other
servers instead. Replacement of transmitting servers on the
fly may be needed in a case of a server failure, network failure,
or high load or latency conditions.

[0202] In some embodiments, a broadcast-like effect is
achieved by distributing to and retrieving from fractional-
storage servers a broadcast channel/live content in real time,
using a combination of real time distribution and real time
retrieval techniques. In a broadcast-like effect, a given chan-
nel or content for broadcasting is distributed to at least one
assembling device, optionally by means of pushing relevant
fragments to the assembling device, or by pulling the relevant
fragments by the assembling device, and potentially to many
assembling devices at approximately the same time, which
creates a similar effect to traditional broadcasting.

[0203] In one embodiment, once starting to retrieve a
broadcast-like stream, the assembling device may use one of
the following methods to synchronize the retrieval of the
stream’s segments with the ongoing availability of new seg-
ments of the stream: (i) The assembling device retrieves addi-
tional segments such that the average rate of obtaining new
frames approximately equals the average rate of presenting
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frames. (i) The assembling device retrieves additional seg-
ments such that it does not try to retrieve segments that are not
yet indicated as being available. And (iii) The assembling
device retrieves additional segments so as to approximately
maintain a constant distance (in segments) between the most
currently available segment and the segment currently being
retrieved.

[0204] Inone embodiment, the assembling device presents
the broadcast-like stream at approximately the same frame
rate as the rate of producing new frames for the broadcast-like
stream. In one example, the frame rate is constant throughout
the stream, such as the case of fixed 24, 25, 50, or 60 frames
per second.

[0205] In one embodiment, the assembling device obtains
an indication regarding the most newly available segment
(per specific broadcast-like stream) for retrieval. The assem-
bling device then starts to retrieve from the most newly avail-
able segment. In one example, the most newly available seg-
ment is the last segment that was distributed to the fractional-
storage servers. In another example, the most newly available
segment is a segment that was recently distributed to the
fractional-storage servers, but wherein there are newer dis-
tributed segments, which are not yet indicated as being avail-
able.

[0206] Inoneembodiment, the broadcast-like stream is of a
pre-recorded content, such that it is possible to distribute the
entire content to the fractional-storage servers, and after any
period of time allow the real time consumption of the content
by any number of assembling devices. In such a case, an
indication is made to the assembling devices regarding the
real time allowance to retrieve the related segments. The
allowance can start at a certain point in time (which corre-
sponds to the beginning of the broadcast-like “transmission™)
for the first segment, and then the allowance may continue for
subsequent segments, at a rate that approximately corre-
sponds to sustaining the frame rate of the broadcast-like
stream.

[0207] By using a pull protocol or a push protocol with
multiple sub-transmissions, the assembling device can obtain
erasure-coded fragments from one, two or more different
arrays of CDN servers and/or bandwidth amplification
devices seamlessly.

[0208] In one embodiment, when a CDN server receives a
request for an erasure-coded fragment, it may supply the
erasure-coded fragment or supply an address of a bandwidth
amplification device having an image of the requested era-
sure-coded fragment. Optionally, a bandwidth amplification
device storing one erasure-coded fragment of a specific con-
tent also stores an image of some or all other erasure-coded
fragments associated with the specific content (which are
stored on the specific CDN server). Alternatively, the band-
width amplification device stores unique erasure-coded frag-
ments generated from the same segments used for generating
the erasure-coded fragments stored on the specific CDN
server. In these cases, the assembling device may approach
the bandwidth amplification devices instead of the CDN
server for the relevant erasure-coded fragments of the specific
content until (i) the end of the content; (ii) a predefined time
period elapses; (iii) receiving an appropriate message; or (iv)
a combination of the aforementioned.

[0209] In one embodiment, an assembling device tries to
obtain an erasure-coded fragment or sub-transmission from
the relevant server, and if the server does not have the neces-
sary bandwidth to respond with fragment/s, the server relays
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the fragment request/s to relevant bandwidth amplification
devices. The relevant bandwidth amplification devices can
then send the fragment/s directly to the assembling device.

[0210] In one embodiment, unique erasure-coded frag-
ments can be distributed between two types of devices: (i)
high bandwidth fractional-storage servers, suchas CDN serv-
ers, and (ii) relatively low bandwidth and storage devices
acting as bandwidth amplification devices, such as peer-to-
peer (P2P) devices. Since the fragments distributed between
the two types of devices are unique, any combination of
devices, from both types, can be used to obtain a decodable
set of fragments, if the combination of devices stores a decod-
able set of fragments. In one embodiment, there are at least
ten times more bandwidth amplification devices than high
bandwidth servers, and the redundancy factor used in decod-
ing the fragments is greater than 10. In this case, the servers
can be used all or most of the time, and the bandwidth ampli-
fication devices can be used from time to time, according to
bandwidth requirements, and according to the availability of
the bandwidth amplification devices. In one embodiment, the
processes of obtaining a fragment from a server and from a
bandwidth amplification device are essentially the same, and
the fragments are essentially identical in construction and
format. In one embodiment, the high redundancy factor
needed to support a large hybrid array of servers and band-
width amplification devices is achieved using rateless coding
techniques.

[0211] Inoneembodiment, the fractional-storage system is
approximately insensitive to the mixture of the consumed
contents as long as the aggregated throughput is below the
total throughput of the fractional-storage servers.

[0212] FIG. 30 illustrates one example of a fractional-stor-
age server array, including N servers (3994 to 399(N)), and
storing content A, which includes erasure-coded fragments
310a to 310(N), and content B, which includes erasure-coded
fragments 320a to 320(N). Each server is connected to the
network 300 with a fragment delivery bandwidth capability B
339. Therefore, the N servers have an aggregated bandwidth
of BxN. A first group of assembling devices 329a consumes
content A at an average bandwidth Ba 349a. A second group
of'assembling devices 3295 consumes content B at an average
bandwidth Bb 3495. Since all of the servers participate in the
transmission of the two contents, the first and second groups
can potentially consume all server bandwidth, up to the limit
where Ba+Bb=NxB, with any ratio of demand between the
first and second contents, and with no special provisions to be
made when storing the erasure-coded fragments related to the
two contents in the fractional-storage server array.

[0213] FIG. 31 illustrates the case where the first group
328a, which consumes content A, becomes larger than 329a,
with a larger bandwidth Ba 348a. The second group 3285,
which consumes content B, becomes smaller than 3295, with
a smaller bandwidth Bb 3485, such that Ba is about the same
as Bb. In this case, the array can still be exploited up to the
aggregated bandwidth, since, as before, Ba+Bb can still be
almost as high as NxB. FIG. 32 illustrates the case where the
first group has disappeared, allowing the second group 3275,
which consumes content B, to extract an aggregated band-
width of Bb 3475 that can potentially reach the limits of the
server array, such that Bb=NxB. Again, this is achieved with-
out updating the erasure-coded fragments associated with
content A and content B, and without using inter-server inter-
action.
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[0214] In some embodiments, the ability to utilize the
aggregated bandwidth of approximately all of the participat-
ing servers, for the delivery of about any mixture of contents
with about any mixture of content bandwidth demand, is
made possible by one or more of the following: (i) each
assembling device selecting a subgroup of the least loaded
fractional-storage servers from which to retrieve the neces-
sary number of erasure-coded fragments to reconstruct a seg-
ment or several segments (least-loaded server selection crite-
rion); or (ii) each assembling device approximately randomly
selecting a subgroup from which to reconstruct a segment or
several segments, such that when many assembling devices
select at random, the various fractional-storage servers are
selected approximately the same number of times (or in pro-
portion to their available resources, such as unutilized band-
width), which in turn balances the load between the partici-
pating servers (random server selection criterion). It is noted
that (i) the selections may be made by either the assembling
devices themselves, or may be made for the assembling
devices by a control server, which then communicates the
selections to each of the assembling devices; (ii) the selec-
tions may be made approximately for each segment, or for a
group of segments, or only once per content at the beginning
of the content; (iii) some assembling devices may use an
approximately random server selection criterion, while other
assembling devices may use least-loaded server selection
criterion; (iv) the least-loaded selected servers may be
selected out of a portion of all available fractional-storage
servers. For example, the least-loaded servers may be
selected from fractional-storage servers with low latency
response or with low hop count to the assembling device; (v)
the least-loaded servers may include servers having the most
unutilized bandwidth. Additionally or alternatively, it may
include servers having any unutilized bandwidth left to serve
additional assembling devices; (vi) an approximately random
or least-loaded selection of servers may be made such that all
servers are selected to determine a subgroup, or it can be made
such that every time selections are made, only some servers
are selected, while the others remain as before. In these cases,
the assembling device runs a process in which only a small
portion of the servers currently in the serving subgroup are
reselected. In the case of approximately random selection, the
assembling device may randomly select the number of serv-
ers in the serving subgroup for random selection (reselection
in this case, since they are replacing other servers already in
the serving subgroup of the specific assembling device), such
that eventually, over time, all servers within the serving sub-
group have the chance to be randomly reselected. In the case
of least-loaded server selection, only the most loaded servers
within the serving subgroup may be selected and replaced by
less-loaded servers.

[0215] FIG. 33 illustrates one embodiment of using the
entire aggregated bandwidth of the fractional-storage servers
for delivering multiple contents. Approximately any number
of contents having any mixture of bandwidth demand per
content may be delivered, as long as the aggregated band-
width demand does not exceed the aggregated bandwidth of
the fractional-storage servers. In one example, broadcast-like
streams 3101, 3102, and 3103 are delivered to multiple
assembling devices via multiple fractional-storage servers.
Each stream is a live TV channel carrying multiple TV pro-
grams. For example, stream 3101 comprises TV programs
3110 to 3112, each spanning a specific time interval. The
other streams comprise of multiple TV programs as well.
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Before time T1, stream 3130 has a bandwidth demand of
3130' (meaning that all assembling devices that are currently
retrieving stream 3130 use a total bandwidth of 3130' out of
the fractional-storage servers). The other streams 3120 and
3110 have bandwidth demands of 3120' and 3110' respec-
tively. The total bandwidth demand of the three streams
3130'+3120'+3110' does not exceed the aggregated band-
width of the fractional-storage servers 3150, and therefore all
streams are fully delivered to the assembling devices. The
load of the three streams is spread approximately equally
among the participating fractional-storage servers, optionally
because of a mechanism that selects the least-loaded servers
to serve each assembling device, and/or a mechanism that
approximately randomly selects servers to serve each assem-
bling device. At time T1, TV program 3120 ends, and TV
program 3121 starts. Program 3121's demand 3121’ is higher
than the previous demand 3120, and therefore a higher aggre-
gated bandwidth is drawn from the fractional-storage servers.
Still, the aggregated bandwidth demand of all three streams
(3130'+3121'+3110") is lower than the maximum possible
3150, and therefore the newly added bandwidth demand is
fully supported by the servers. Optionally, the additional
demand created by TV program 3121 (3121' minus 3120") is
caused by the addition of new assembling devices that join
stream 3102 and retrieving additional erasure-coded frag-
ments. Additionally or alternatively, the additional demand
created by TV program 3121 is caused by a higher bandwidth
demand of TV program 3121, such as 3D data or higher
resolution. Newly added assembling devices may choose
fractional-storage servers from which to retrieve, according
to a least-loaded server selection criterion and/or an approxi-
mately random server selection criterion, and therefore the
total load is still spread approximately equally among the
participating servers. At time T2, TV program 3110 ends, and
anew program 3111 begins, which is less popular, and there-
fore creates a lower bandwidth demand 3111'. The resultis a
decrease in the total delivered bandwidth. At time T3 TV
program 3130 ends, and TV program 3131 starts with a higher
bandwidth demand of 3131'. At time T4 both TV programs
3111 and 3121 end, and two new programs 3112 and 3122
start. TV program 3112 is highly popular and therefore gen-
erates a large bandwidth demand 3112'. Program 3122 is not
popular, and therefore generates a limited bandwidth demand
3122'. Some of the additional bandwidth needed by program
3112 is taken from servers that stop serving assembling
devices previously retrieving program 3121, such that the
aggregated  bandwidth of all three  streams
(3131'+3122'+3112") is still below the maximum possible
bandwidth 3150, despite the fact that program 3112 is gener-
ating a large bandwidth demand. This example illustrates how
the fractional-storage servers support almost any demand
mixture, as long as the aggregated demand of all streams is
kept below the aggregated maximum capacity of the servers
3150. Consequently, the distribution of all of the streams to
the fractional-storage servers is approximately unrelated to
the changes in bandwidth demand for programs carried by
each stream; each stream can be regarded as a sequence that
is segmented, erasure-encoded, and distributed to the partici-
pating servers. There is no need to account for demand varia-
tions during the distribution of each stream, nor is there a need
to know in advance the bandwidth demand for each stream or
for each program within each stream. It is noted that the
demand variations are illustrated as instant variations, but
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may also be gradual and may occur during a program and not
necessarily when one program ends and the other begins.

[0216] Many ofthe disclosed embodiments using fragment
pull protocol may use fragment pull protocol for high latency
for retrieving the fragments.

[0217] Inthe claims, a sentence such as “the erasure-coded
fragments support source-selection diversity” is to be inter-
preted as fragments encoded using any kind of erasure-code
that can produce N unique fragments, from which C combi-
nations of decodable sets of fragments can be selected,
wherein C is much greater than N. Standard parity checks,
standard checksums, and standard cyclic redundancy checks
(CRC) are examples of codes that do not support source-
selection diversity.

[0218] Inthis description, numerous specific details are set
forth. However, the embodiments of the invention may be
practiced without some of these specific details. In other
instances, well-known hardware, software, materials, struc-
tures and techniques have not been shown in detail in order
not to obscure the understanding of this description. In this
description, references to “one embodiment” mean that the
feature being referred to may be included in at least one
embodiment of the invention. Moreover, separate references
to “one embodiment” or “some embodiments™ in this descrip-
tion do not necessarily refer to the same embodiment. I1lus-
trated embodiments are not mutually exclusive, unless so
stated and except as will be readily apparent to those of
ordinary skill in the art. Thus, the invention may include any
variety of combinations and/or integrations of the features of
the embodiments described herein.

[0219] Although some embodiments may depict serial
operations, the embodiments may perform certain operations
in parallel and/or in different orders from those depicted.
Moreover, the use of repeated reference numerals and/or let-
ters in the text and/or drawings is for the purpose of simplicity
and clarity and does not in itself dictate a relationship between
the various embodiments and/or configurations discussed.
The embodiments are not limited in their applications to the
details of the order or sequence of steps of operation of
methods, or to details of implementation of devices, set in the
description, drawings, or examples. Moreover, individual
blocks illustrated in the figures may be functional in nature
and do not necessarily correspond to discrete hardware ele-
ments. While the methods disclosed herein have been
described and shown with reference to particular steps per-
formed in a particular order, it is understood that these steps
may be combined, sub-divided, or reordered to form an
equivalent method without departing from the teachings of
the embodiments. Accordingly, unless specifically indicated
herein, the order and grouping of the steps is not a limitation
of the embodiments. Furthermore, methods and mechanisms
of the embodiments will sometimes be described in singular
form for clarity. However, some embodiments may include
multiple iterations of a method or multiple instantiations of a
mechanism unless noted otherwise. For example, when a
controller or an interface are disclosed in an embodiment, the
scope of the embodiment is intended to also cover the use of
multiple controllers or interfaces.

[0220] Certain features of the embodiments, which may
have been, for clarity, described in the context of separate
embodiments, may also be provided in various combinations
in a single embodiment. Conversely, various features of the
embodiments, which may have been, for brevity, described in
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the context of a single embodiment, may also be provided
separately or in any suitable sub-combination.

[0221] Embodiments described in conjunction with spe-
cific examples are presented by way of example, and not
limitation. Moreover, it is evident that many alternatives,
modifications and variations will be apparent to those skilled
in the art. It is to be understood that other embodiments may
be utilized and structural changes may be made without
departing from the scope of the embodiments. Accordingly, it
is intended to embrace all such alternatives, modifications
and variations that fall within the spirit and scope of the
appended claims and their equivalents.

What is claimed is:

1) An apparatus comprising: an assembling device config-
ured to obtain erasure-coded fragments from at least one
CDN server located close to or on the Internet backbone;
upon a fragment loss, the assembling device is further con-
figured to use a fragment pull protocol to retrieve a substitute
erasure-coded fragment from a nearby fractional-storage
CDN server having low latency in responding to the assem-
bling device.

2) The apparatus of claim 1, wherein the CDN servers
located close to or on the Internet backbone are fractional-
storage CDN servers.

3) The apparatus of claim 1, wherein the assembling device
is located at the user premises.

4) The apparatus of claim 1, wherein the assembling device
is configured to use a fragment pull protocol to obtain the
fragments from the at least one CDN server located close to or
on the Internet backbone.

5) The apparatus of claim 4, wherein the erasure-coding is
rateless-coding potentially resulting in fragments having a
limitless redundancy factor.

6) The apparatus of claim 1, wherein the fragments are
generated from segments of streaming content, and the
assembling device is further configured to obtain and retrieve
the fragments approximately according to the segment pre-
sentation order.

7) The apparatus of claim 6, wherein the nearby fractional-
storage CDN server is located at the edge of the Internet.

8) The apparatus of claim 6, wherein the assembling device
is configured to obtain the erasure-coded fragments from the
at least one CDN server using a fragment pull protocol for
high latency.

9) The apparatus of claim 6, wherein the assembling device
is configured to obtain at least 5 times more erasure-coded
fragments from the at least one CDN server located close to or
on the Internet backbone than from the nearby fractional-
storage CDN server; and the assembling device is configured
to obtain the fragments from the at least one CDN server
located close to or on the Internet backbone via a push pro-
tocol.

10) The apparatus of claim 1, wherein the erasure-coded
fragments are generated from segments of streaming content;
and wherein for lost fragments associated with segments
designed for trick play, the assembling device pulls the sub-
stitute erasure-coded fragment from the nearby fractional-
storage CDN server; and for lost fragments associated with
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segments not designed for trick play, the assembling device
pulls the substitute erasure-coded fragment from the CDN
server located close to or on the Internet backbone.

11) An apparatus comprising: an assembling device con-
figured to receive erasure-coded fragments from at least one
CDN server located close to or on the Internet backbone using
apush protocol; upon a fragment loss, the assembling device
is configured to pull a substitute erasure-coded fragment from
a nearby fractional-storage CDN server having low latency.

12) The apparatus of claim 11, wherein the nearby frac-
tional-storage CDN server is located at the edge of the Inter-
net, the CDN servers located close to or on the Internet
backbone are fractional-storage CDN servers, and the quan-
tity of the pushed fragments is at least 5 times larger than the
quantity of the pulled fragments.

13) A streaming media delivery network, comprising: at
least one CDN server, located close to or on the Internet
backbone, configured to provide to an assembling device a
first set of erasure-coded fragments of streaming media; and
a plurality of fractional-storage CDN servers, located at the
edges of the Internet, configured to provide to the assembling
device a second set of erasure-coded fragments of the stream-
ing media; wherein the first set is at least 5 times larger than
the second set, and the first and second sets comprise enough
fragments to enable the assembling device to start playing the
streaming media within a short period of time following a
request.

14) The streaming media delivery network of claim 13,
wherein the second set of fragments is provided in response to
fragment pull protocol requests issued by the assembling
device.

15) The streaming media delivery network of claim 14,
wherein the erasure-coding is rateless-coding potentially
resulting in fragments having a limitless redundancy factor,
and the assembling device is located at the user premises.

16) The streaming media delivery network of claim 14,
wherein the assembling device is located at the user premises,
and the at least one CDN server located close to or on the
Internet backbone are fractional-storage CDN servers.

17) The streaming media delivery network of claim 14,
wherein the short period of time following a request is shorter
than 15 seconds for a high-definition full-length movie.

18) The streaming media delivery network of claim 14,
wherein the assembling device is configured to pull the sec-
ond set of fragments from one or more of the nearby frac-
tional-storage CDN servers upon a fragment loss.

19) The streaming media delivery network of claim 18,
wherein the fragment loss comprises not receiving an
expected fragment within a predefined period of time, and the
erasure-coded fragments support source-selection diversity.

20) The streaming media delivery network of claim 14,
wherein the erasure-coded fragments are generated from seg-
ments of the streaming media, some of the segments are
designed for trick play, and the majority of the fragments
provided by the edge servers are associated with the segments
designed for trick play.
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