0 02/097676 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

5 December 2002 (05.12.2002) PCT WO 02/097676 A2
(51) International Patent Classification”: GO6F 17/30 (US). NGAI, Gary; 20012 Puente Court, Saratoga, CA
95070 (US).
(21) International Application Number: PCT/US02/16885
(74) Agents: BINGHAM, Marcel; Hickman Palermo Truong

(22) International Filing Date: 29 May 2002 (29.05.2002)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

09/871,476 30 May 2001 (30.05.2001) US

(71) Applicant: ORACLE INTERNATIONAL CORPORA-
TION [US/US]; 500 Oracle Parkway, Redwood Shores,
CA 94065 (US).
(72) Inventors: MUKKAMALLA, Sreedhar; 101 Lau-
rie Meadows, San Mateo, CA 94403 (US). LAHIRI,
Tirthankar; 2067 Litchfield Place, Santa Clara, CA
95051 (US). PAREEK, Alok; 141 Kestrel Court, Bris-
bane, CA 94005 (US). LOAIZA, Juan; 53 Maple Way,
San Carlos, CA 94070 (US). LEE, J. William; 1200 E.
Hillsdale Boulevard, Apt. 37B, Foster City, CA 94404

& Becker, LLP, 1600 Willow Street, San Jose, CA 95125

et al. (US).
(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR,BY,BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN,
YU, ZA, ZM, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

[Continued on next page]

(54) Title: INTEGRATING TABLESPACES WITH DIFFERENT BLOCK SIZES

Table | | Table
Space | | Space
130 140 Table
Space
130
Buffer 392
Block Size
Mapping Entries 332
Buffer 394
Buffer
396 Database-Relative
Number Mapping
Entries 322
Buifer Cache 190

Database System 101
Database Metadata
110
Block Size Mapping 330
DRFN 336 Block Size 334
Database-Relative Number Mapping 320
TSN 328 TRFN 326 DRFN 324

(57) Abstract: Provided herein is a mechanism that allows a given database system to access data blocks from another database
system, where data blocks from the given database system and data blocks from the other database system have different sizes.
According to an aspect of the present invention, a tablespace in the other database system contained the data blocks. The tablespace
is detached from the other database system and integrated into the given database, which is capable of processing data stored in data

blocks of a different sizes.

wO 02/097676 A2 NIRRT R0

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— without international search report and to be republished ance Notes on Codes and Abbreviations"” appearing at the begin-
upon receipt of that report ning of each regular issue of the PCT Gazette.

WO 02/097676 PCT/US02/16885

INTEGRATING TABLESPACES WITH DIFFERENT BLOCK SIZES

FIELD OF THE INVENTION
The present invention relates to database systems, and in particular, to techniques

for efficiently moving data between database systems.

BACKGROUND OF THE INVENTION

The ability to store and retrieve large amounts of data are some of the most
important functions of computers in today's society. To carry out these functions,
database systems are typically used to retrieve and store data in databases. Database
systems have performed these functions very successfully, creating for society the ability
to retrieve data at speeds and quantities previously unimagined, and bestowing onto
society an unprecedented level of access to information. The success of database systems
has unleashed an insatiable demand for even faster and more efficient database systems
that process even greater quantities of data.

One mechanism that provides efficient access to large amounts of data is a data
warchouse. A data warehouse represents a transformation of raw data. The raw data used
by the warehouse typically comes from a “source” database system, such as an online
transaction processing (“OLTP”) database. The OLTP database system is oriented
towards the “real time” operation of a business, while the data warehouse is oriented
toward answering longer range, management oriented, questions about the business. To
stay current, the data warehouse house is periodically updated with information from the
OLTP database system. These updates entail transfers of large quantities of data.

A conventional technique for transferring data is the command generation
technique. Under the command generation technique, an “exporting” database system
generates a file of insert commands. The insert commands conform to a database
language, such as the structured query language (“SQL”). For each record being exported,
an insert command specifies the creation of a record with the values needed to generate a
copy of the record being exported. To import the data, an “importing” database system,
which is capable of executing commands written in the database language, scans the file,
executing each insert command.

Executing an insert command for each record to export is typically a slow process,
one which may span days for larger databases. While data is being exported, access to

the data is restricted. Consequently, the database user, who requires access to the data,

WO 02/097676 PCT/US02/16885

may be significantly impacted. Thus, conventional techniques for exporting data may be
significantly burdensome.

Another conventional technique for moving data into a data warehouse involves
the use of tools available in applications used to manage data warehouses. These tools
transfer data between a source database and a data warehouse using a process that has
three stages: extracting data from the source database system, transforming the extracted
data, and loading the transformed data into the data warehouse. These stages are referred
to collectively as ETL, which stands for extraction, transformation, and loading. In
general, ETL tools extract data from a source database system by issuing queries to the
source database system to retrieve data. ETL tools load data in the data warehouse by
issuing insert commands to the data warehouse to load the data retrieved from the source
database system. While the use of ETL tools may be more efficient than the command
generation technique, the process of transferring data may still require undesirably long
periods of time.

A novel technique that is much more efficient than the conventional techniques
for transferring data is referred to as transportable tablespaces. A tablespace is a
collection of storage containers (e.g. data files) used to store data for database objects.
Database objects are objects managed by a database system. Transportable tablespaces is
a technique that allows tablespaces to be copied and integrated into another database
system, or in other words, “plugged into” the other database system. This capability
allows data to be copied using operating system utilities for copying files, which run
much faster than the process of extracting and loading data by executing queries and
insert statements.

Unfortunately, it is not always possible to plug in a tablespace from one database
system to another because the database systems may not be configured to handle the same
data block size. A data block is an atomic unit of storage space allocated to store one or
more database records (e.g. rows). Typically, a database system is configured to operate
upon a database composed of data blocks of one particular size. In some systems, the
particular size may be configured by a user when a database is created. Once a database is
created, however, the data block size may not be changed. Consequently, a tablespace
composed of data blocks of a given size may not be plugged into a database system that
expects data blocks of a different block size.

It is possible to overcome this limitation by managing the data block sizes of both
the data warehouse and its source database systems. The source database system and the

data warehouse may be configured for the same data block size. However, for purposes of

2-

WO 02/097676 PCT/US02/16885

efficiency, it is usually desirable to have larger block sizes for data warehouses and
smaller block sizes for OLTP systems. For this reason, data warehouses typically have
larger block sizes than OLTP systems.

Based on the foregoing, it is clearly desirable to provide a mechanism that allows
a tablespace or any collection of data blocks of a given size to be plugged into a database

system that operates on data blocks of a different size.

SUMMARY OF THE INVENTION

Described herein is a mechanism that allows a given database system to access
data blocks from another database system, where the data blocks from the given database
system and data blocks from the other database system have different sizes. According to
an aspect of the present invention, the data blocks in the other database system are
contained in a tablespace. The tablespace is detached from the other database system and
integrated into the given database, which is capable of processing data stored in data

blocks of different sizes.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and not by way of
limitation, in the figures of the accompanying drawings and in which like reference
numerals refer to similar elements and in which:

Fig. 1 is a block diagram of a database system used to illustrate an embodiment of
the present invention;

Fig. 2 is a block diagram of tablespaces and data structures used to support a
relative addressing scheme according to an embodiment of the present invention;

Fig. 3 is a block diagram of structures used to support a buffer cache system that
handles multiple size data blocks according to an embodiment of the present invention;

Fig. 4 is a flow chart depicting a process for integrating a tablespace into a
database system, where data blocks in the tablespace and data blocks in the database
system have different block sizes according to an embodiment of the present invention,;
and

Fig. 5 is a block diagram depicting a computer system that may be used to

implement an embodiment of the present invention.

WO 02/097676 PCT/US02/16885

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

A method and apparatus for transferring data between databases is described. In
the following description, for the purposes of explanation, numerous specific details are
set forth in order to provide a thorough understanding of the present invention. It will be
apparent, however, to one skilled in the art that the present invention may be practiced
without these specific details. In other instances, well-known structures and devices are
shown in block diagram form in order to avoid unnecessarily obscuring the present
invention.

Described herein is a mechanism that allows a given database system to access
data blocks from another database system, where data blocks from the given database
system and data blocks from the other database system have different sizes. According to
an embodiment of the present invention, the techniques involve the use of a database
system that handles databases with data blocks that have different sizes. These techniques

are illustrated using an exemplary database system.

EXEMPLARY DATABASE SYSTEM

Fig. 1 is a block diagram that provides an overview of an exemplary database
system used to illustrate an embodiment of the present invention. Database system 101
processes and stores data in database objects. Database objects are objects managed by a
database system for the purpose of storing, retrieving, and processing data. Examples of
database objects include tables, indexes, and code modules which may be executed by a
database system. Typically, the database objects are stored in static storage, in one or
more data blocks in a data file.

Database system 101 performs operations to data in a database object by
performing operations on data blocks that hold the data. Operations on data blocks
are carried out on copies of data blocks read into buffer cache 190 from static
storage. Copies of the data blocks are stored in buffers in the buffer cache 190. The
buffers are shared by all user processes concurrently connected to database system
101. A copy of a data block is loaded into buffer cache 190 whenever database
system 101 performs an operation involving a data item stored in the data block,
such as a row in a table. If the operation changes the data item, the change is made
to the copy of the data block stored in buffer cache 190. Afterwards, a database
writer writes the modified blocks of data from buffer cache 190 to the data files on
disk.

WO 02/097676 PCT/US02/16885

Data for a particular set of database objects may be stored in space allocated from
one or more tablespaces, such as tablespaces 130, 140, and 150. A tablespace is a
collection of storage containers (e.g. data files) used to store data for database objects. For
example, tablespace 130 contains data files 130-1 to 130-4. A database object may be
referred to as being in a particular tablespace when the tablespace holds data for the
database object.

Database metadata 110 is metadata that describes the configuration of a database
system. Database metadata 110 defines, for example, database objects (e.g. tables and
indexes for tables), tablespaces, and what tablespaces to use to store data for a table or
index. Database metadata is generated in response to receiving data definition commands
from a user. A user issues database commands to a database system to modify the
configuration of a database system to define, for example, the database objects in the
database system, the attributes of database objects, and the tablespaces that hold data for
the database objects. Data definition commands must conform to a data definition
language recognized by a database system, such as SQL.

Database system 101 may encounter problems that can halt the operation of a
database or affect the writing of database information to disk. Common types of failures
include process failures, involving a failure in a user, server, or background process of a
database instance, or media failures, involving a physical problem reading or writing
physical files needed for normal database operation. A major aspect of database operation
and administration involves the recovery of the database from the various types of
failures encountered.

One mechanism that database system 101 uses to manage recovery from failures
is a logging mechanism. A logging mechanism entails recording all changes made to a
database system by maintaining a log for the database system. Several different operation
logs are maintained to perform various database maintenance functions. Specifically, a
redo log is used to store database operations so that the operations can be re-performed to
restore the database to its pre-failure state after a failure. For example, when a
transaction modifies data in the buffer cache 190, a redo entry that specifies the
modification is stored in a redo log on disk. If a failure occurs before the updated data
within the buffer cache has been stored to disk, the modified data in the buffer cache 190
may be lost. Under these conditions, during the recovery process, the database may be
modified to include the lost change based on the redo entry.

The basic component of a log system is a group of one or more log files used to

store redo and undo entries. Log files group 180 includes data files 150-1 to 150-4 in

-5-

WO 02/097676 PCT/US02/16885

tablespace 150. Redo and undo entries store low-level representations of database
changes. Redo entries contain the information necessary to redo changes made by data
operations such as INSERT, UPDATE, DELETE, CREATE, ALTER, or DROP.
Conversely, undo entries contain the information necessary to undo changes made by
data operations. The redo or undo entries in the redo log file group in static storage are

referred to as redo logs.

USING TRANSPORTABLE TABLESPACES

Transportable tablespaces refers to a technique for transferring data between
database systems that is based on integrating copies of tablespaces from a “source
database system” into a “target database system”. Integrating a copy of a tablespace
involves altering the database metadata of the target database by modifying or adding
data to define the tablespace as any other tablespace used by the database system, as shall
be described in greater detail. Examples of techniques for integrating tablespaces are
described in Pluggable Tablespaces and Tablespace-Relative Database Pointers.

The database metadata may be altered using a variety of techniques. Utilities
available on the source database system may be executed to export the metadata into an
“export control file”, and utilities on the target database system may be executed to
reconstruct metadata from the export control file. Alternately, exported metadata could be
included with the data being transported in the tablespace, and the target database would
reconstruct the metadata from the data included in the tablespace. A user could manually
reconstruct the metadata on the target database system. Finally, utilities on the source
database system could examine the data in the tablespaces to derive the metadata.

The term “copy,” as used herein, refers to both the source data and a duplicate of
the source data. For example, a copy of a source data file may be the source data file
itself, or another data file that is a duplicate generated using readily available copy
utilities, such as operating system utilities for creating copies of data files.

A tablespace may be integrated into a database by detaching the tablespace from
the original source database or by creating a separate copy to integrate. While the copy is
being made, operations on the tablespace should be restricted to read-only operations.

If the copy of the tablespace to integrate is a detached source tablespace, then the
source database may need to be configured so that the source database system no longer
uses the tablespace to store data. Configuring the source database may entail altering

database metadata in the source database system, by, for example, removing data defining

WO 02/097676 PCT/US02/16885

the tablespace as part of the source database system, or setting a flag to indicate that the
tablespace is no longer used.

A reason a detached tablespace or a separate copy of it is integrated is that many
database systems are not configured to directly access a data file concurrently with other
database systems. The term “directly access” refers to accessing data in a data container,
such as data in a data file, without having to request that another database system provide
the data. An example of a database system directly accessing a data container is a
database system running on a computer invoking an operating system function to access a
data file residing on either a disk drive connected to a bus of the computer or a disk drive
connected to a server coupled to the computer via a network. An example of not directly

accessing a data file is issuing a query to another database requesting data from a table.

REFERENCE SCHEMES FOR TRANSPORTABLE DATABASES

A reference is data that indicates the location of a particular data item stored in a
database. References are used by database systems in many scenarios. For example, a
database system may use references in an index of a column of a table. The index maps
values for the column to rows in the table containing those values. Each entry in the index
maps a particular value to a row, and stores a reference to the location of the row.

A reference for a data item may contain information identifying the particular data
container that contains the data item. Such information may include a database-relative 4
file number. A database-relative file number is a number used by a database system to
uniquely identify a data file relative to any other data files used by the database system.
For example, a reference to a particular data item, such as a row or an object, may include
a data file number of the data file containing the data block holding the data item. In
addition, the reference may include an offset into the file to identify a data block’s
location within the file.

Unfortunately, transferring data files between database systems that use references
based on database-relative file numbers creates complications. These complications stem
from the fact that a database-relative file number may not be unique between database
systems. A database-relative file number on one database system may be used to identify
a different data file on another database system. This problem may be overcome by using
several measures. First, data files transferred to another database system could be
assigned new database-relative file numbers. Second, because the transferred data files
may contain data objects with references holding database-relative file numbers, these

references would have to be modified to reflect the newly assigned database-relative file

-

WO 02/097676 PCT/US02/16885

numbers. For example, a set of data files is transferred from one database system to
another database system. The data files are assigned new database-relative file numbers.
The data files may hold a portion of a table and an index indexing rows in the table. The
references in the index may contain database-relative file numbers that should be changed

to reflect newly assigned database-relative file numbers.

TABLESPACE RELATIVE ADDRESSING SCHEME

The problem and measures attendant database-relative file numbers may be
avoided by the use of a relative addressing scheme that addresses data files relative to the
tablespace that contains the data file. The use of a relative addressing scheme also
facilitates transportable tablespace processing, which as mentioned before, is a technique
for transferring data between database systems using a process that includes moving or
copying a tablespace. Examples of such techniques are described in Pluggable
Tablespaces and Tablespace-Relative Database Pointers. Fig. 2 is a block diagram that
depicts a relative addressing scheme used to illustrate an embodiment of the present
invention. Fig. 2 illustrates identifiers used to identify tablespaces and data files, and the
relationship between them, and other elements upon which the relative addressing scheme
hinges.

Referring to Fig. 2, database system 101 (not shown) associates tablespace
numbers (TSNs) 9 and 8 with tablespaces 130 and 140, respectively. When database
system 101 defines a tablespace, it associates a tablespace number with the tablespace.
Within a given database system, a tablespace number uniquely identifies a tablespace.

Within a tablespace, database system 101 associates a tablespace-relative file
number (TRFN) with each data file in a tablespace. For a given data file in a tablespace, a
tablespace-relative file number is unique relative to other data files in the tablespace, but
not to other data files in other tablespaces. For tablespace 130, the tablespace-relative file
numbers assigned to data files 130-1, 130-2, 130-3 and 130-4 are 1, 2, 3 and 4,
respectively. For tablespace 140, the tablespace-relative file numbers assignéd to data
files 140-1, 140-2, 140-3 and 140-4 are 1, 2, 3 and 4, respectively.

Database system 101 associates a control file with each tablespace. For each
tablespace, the control file maps a tablespace-relative file number to a database-relative
file number, and hence maps a data file within a tablespace to a database-relative file
number. Control file 210 is associated with tablespace 130, while control file 220 is
associated with tablespace 140. Control file 210 includes two fields: (1) tablespace-
relative file number 212 (“TRFN 212”) and database-relative file number (DRFN 214),

-8-

WO 02/097676 PCT/US02/16885

(2) and entries 210-1 through 210-4, which each contain a value for TRFN 212 and
DRFN 214. Entry 210-1 maps tablespace-relative file number ‘1’ to database-relative file
number ‘12’. Control file 220 is structured similarly relative to tablespace 140.

Any data file in a tablespace can be identified by a tablespace number and a
tablespace-relative file number. For example, a “data block pointer” in an index entry
refers to the data block containing a particular row. The data block resides in data file
130-1. The data block pointer contains the value ‘9’ as the tablespace reference number
and the value ‘1’ as the tablespace-relative file number, thereby identifying tablespace
130 and data file 130-1. The data file can be identified using the following procedure.
Given the tablespace number and tablespace-relative file number, the control list
associated with the tablespace-relative file number is accessed to find the database-
relative file number mapped to the tablespace-relative file number. In control file 210,
entry 210-4 maps the tablespace-relative file number ‘4’ to database-relative file number
42, which identifies data file 130-4.

Transporting data files between database systems is not only facilitated by use of a
relative addressing scheme, but also by use of self contained tablespaces. A set of
tablespaces is self contained when there are no references to any data item in the set that
refer to any data item outside the set. For example, if the tablespace holds data for an
index of a table in another tablespace, then the tablespace is not self contained. If a set of
tablespaces is not self-contained, several measures may be used to render the tables self
contained. The data in the tablespace may be modified to make the set of tablespaces self
contained. In addition, the makeup of the set of tablespaces can be modified by, for
example, removing tablespaces from the set or adding additional tablespaces.

Database metadata 110 stores data mapping tablespace numbers to tablespaces,
data files to database-relative file numbers, and, for a particular tablespace, tablespace-
relative file numbers to database-relative file numbers of data files. When database
system 101 is configured to access a data file, database system 101 generates a new
database-relative file number for the file and updates database metadata 110 accordingly.
When database system 101 is configured to access a data file as part of a tablespace,
database system 101 generates for the data file a new tablespace-relative file number that
is unique relative to other data files in the tablespace and updates database metadata 110
accordingly.

It should be understood that the present invention is not limited to any particular
technique for transportable tablespaces, or any technique for integrating data files from a

database system into another database system.

9.

WO 02/097676 PCT/US02/16885

MULTI-SIZED DATA BLOCK DATABASE SYSTEMS

To integrate a tablespace into a database system that stores data in data blocks of a
different size than those of the tablespace, the database system should support data blocks
of different sizes. A database system that supports multi-size data blocks may have
several capabilities. These include the capability to manage a buffer cache that can store
copies of different sized data blocks, and the capability to generate undo records for data
that is stored in different sized data blocks.

Fig. 3 depicts components of database system 101 used to manage caching
different sized data blocks in buffer cache 190. Referring to Fig. 3, buffer cache 190 has
buffers of different sizes for storing data blocks of different sizes: buffer 392 has block
size A, buffer 394 has block size B, buffer 396 has block size C, buffer 398 has block size
D. A buffer in buffer cache 190 may be any of a number of discrete data block sizes
defined by database metadata 110. Database system 101 may also define a default data
block size to use as shall be further described.

According to an embodiment of the present invention, all data blocks within a
tablespace have the same size. When a user submits DDL commands to define a
tablespace, the commands may include a parameter that specifies the data block size of
data blocks in the tablespace. If no size is specified for the tablespace, then the default
data block size is the data block size for the tablespace.

Block size mapping 330 is used to map data files to data block sizes. Specifically,
block size mapping 330 maps the “database-relative” file number of a data file to the
block size of data blocks contained in the data file. Block size mapping 330 includes
block size mapping entries 332 and columns database-relative file number 336 and block
size 334. An entry in block size mapping entries 332 maps the database-relative file
number value in column database-relative file number 336 to the block size value in block
size 334,

Database-relative number mapping 320 maps the tablespace number and
tablespace-relative file number of a data file to the database-relative number of the data
file. Database-relative number mapping 320 includes database-relative number mapping
entries 322 and columns tablespace number 325, tablespace-relative file number 326, and
database-relative number 324. An entry in database-relative number mapping entries 322
maps the pair of values in columns tablespace number 325 and tablespace-relative file

number 326 to the database-relative number in database-relative number 324,

-10-

WO 02/097676 PCT/US02/16885

Database system 101 may use both the database-relative number mapping 320 and
block size mapping 330 to determine what size buffer is needed to store a data block
before reading a data block from static storage. Given a tablespace number and
tablespace-relative number of a data file, the block size can be found by initially
examining database-relative number mapping 320 to find the database-relative number.
From the database-relative number, the block size can be determined by examining block
size mapping 330.

For example, database system 101 receives a request to read a data block DBR
pointed to by data block pointer R. Data block pointer R specifies the tablespace number
and tablespace-relative file number of the tablespace and data file containing the data
block, and an offset indicating where the data block begins within the data file. Database
system 101 examines the database-relative number mapping 320 and block size mapping
330 to determine that blocks size C is the data block size of the data block DBR. Database
system 101 then loads the data block from static storage into a buffer in buffer cache 190
of block size C.

Likewise, a data block pointer may contain a database-relative file number.
Database system 101 uses only block size mapping 330 to determine the block size for
the buffer needed to store the data block referred to by the data block pointer.

UNDO RECORDS FOR MULTIPLE-SIZED DATA BLOCK DATABASE
SYSTEMS

As mentioned previously, undo entries contain the data (“undo data”) needed to
undo a change made by database operations. More data blocks may be needed to store
undo data than are needed to store the data that has been changed. There are at least
several causes for this. First, in terms of storage space needed to store data, the amount of
undo data may be inherently greater than the amount of changed data. In other words, a
change to all user data in one data block of size X may require more undo data than can
be stored in one data block of the same size X.

Second, the changed data is stored in data blocks that have a greater size than the
data blocks used to store the undo log. Specifically, in database system 101, tablespace
150 holds log file 150. Tablespace 150 may be configured for data block sizes that are
less than the data block size for which tablespace 130 is configured. Because of the
difference in data block sizes, undo data for a data block in tablespace 130 may require
more data blocks in tablespace 150 than would be needed if the data block sizes for the

tablespaces were equal.

-11-

WO 02/097676 PCT/US02/16885

For changes made to a particular data block for a transaction, database system 101
is configured to store undo data in more than one data block. This feature allows database
system 101 to handle differences in sizes between the undo data and the corresponding
changed data, whether the size of the undo data is inherently greater than that of the
changed data, or is stored in data blocks smaller in size than the data blocks that store the

changed data.

INTEGRATING TABLESPACES FROM ANOTHER DATABASE SYSTEM

Fig. 4 is a flowchart depicting the steps of a process for integrating a tablespace
into a target database system from a source database system, where the tablespace
includes data blocks that have a different data block size than at least a subset of data
blocks used by the target database system to store data. The process is illustrated using
database system 101.

Referring to Fig. 4, at step 410, database system 101 determines the block size of
the tablespace to integrate into database system 101. The determination may be made in
any of a variety of ways. For example, database system 101 may examine an export
control file generated for the tablespace to determine the data block size. Alternately,
database system 101 may examine the tablespace, scanning for data structures that mark
the boundaries of data blocks, and determining the amount of data that lies within the
boundaries. Finally, database system 101 may prompt the user for the data block size.

At step 420, database system 101 determines whether it may integrate a tablespace
of the data block size determined at step 410. If database system 101 determines that it
cannot integrate a tablespace of the data block size, then execution of the steps proceeds
to step 490, where database system 101 aborts the process of integrating the tablespace.
Otherwise, execution proceeds to step 430.

The determination of whether a database system 101 may integrate a tablespace of
the data block size may be made using a variety of techniques. If database system 101
supports discrete data block sizes defined by database metadata 110, then database system
101 examines the database metadata to determine whether the data block size in question
is one of the supported discrete block sizes. If database system 101 is hard coded to
support discrete block sizes, then database system 101 may simply be hard coded to
compare the data block size in question to one of the supported discrete block sizes.

At step 430, the database system 101 integrates the tablespace into database
system 101. The tablespace is integrated using any of the techniques for integrating

tablespaces into database systems discussed earlier.

-12-

WO 02/097676 PCT/US02/16885

The techniques for transporting data blocks of a given size to a database system
having data blocks of a different size offer advantages over conventional techniques for
transporting data between database systems. Use of transportable tablespaces allows data
to be moved between databases much more quickly than conventional techniques for
importing data. Furthermore, because the data blocks in the tablespace do not have to be
the same size as that of the data blocks of a target database, the target database is not
restricted to using the same data block size as the source database, and may be configured
to use data block sizes that are optimal for the target database. For example, a data
warehouse may be configured to hold data in bigger data blocks than OLTP source
databases.

Of course, if transported data remains in the tablespaces used to transport the data,
data contained therein may be stored in data blocks of a size that is not optimal for the
target database. However, it is not necessary that transported data remain in the
tablespace used to transport the data.

Once a tablespace is integrated, data from the tablespace may be extracted and
loaded into a tablespace having an optimal data block size. For example, the tables
contained in a transported tablespace, once integrated into a data warehouse, may serve as
staging tables. Data from the staging tables is extracted, transformed, and loaded into
tables that serve as the primary online repository for the data warehouse. Extracting data
from tables internal to a database system is typically performed far more efficiently than

extracting data from another database’s table.

HARDWARE OVERVIEW

Figure 5 is a block diagram that illustrates a computer system 500 upon which an
embodiment of the invention may be implemented. Computer system 500 includes a bus
502 or other communication mechanism for communicating information, and a processor
504 coupled with bus 502 for processing information. Computer system 500 also includes
a main memory 506, such as a random access memory (RAM) or other dynamic storage
device, coupled to bus 502 for storing information and instructions to be executed by
processor 504. Main memory 506 also may be used for storing temporary variables or
other intermediate information during execution of instructions to be executed by processor
504. Computer system 500 further includes a read only memory (ROM) 508 or other static
storage device coupled to bus 502 for storing static information and instructions for
processor 504. A storage device 510, such as a magnetic disk or optical disk, is provided

and coupled to bus 502 for storing information and instructions.

-13-

WO 02/097676 PCT/US02/16885

Computer system 500 may be coupled via bus 502 to a display 512, such as a
cathode ray tube (CRT), for displaying information to a computer user. An input device
514, including alphanumeric and other keys, is coupled to bus 502 for communicating
information and command selections to processor 504. Another type of user input device is
cursor control 516, such as a mouse, a trackball, or cursor direction keys for communicating
direction information and command selections to processor 504 and for controlling cursor
movement on display 512. This input device typically has two degrees of freedom in two
axes, a first axis (e.g., x) and a second axis (e.g., y), that allows the device to specify
positions in a plane.

The invention is related to the use of computer system 500 for implementing the
techniques described herein. According to one embodiment of the invention, those
techniques are performed by computer system 500 in response to processor 504 executing
one or more sequences of one or more instructions contained in main memory 506. Such
instructions may be read into main memory 506 from another computer-readable
medium, such as storage device 510. Execution of the sequences of instructions
contained in main memory 506 causes processor 504 to perform the process steps
described herein. In alternative embodiments, hard-wired circuitry may be used in place
of or in combination with software instructions to implement the invention. Thus,
embodiments of the invention are not limited to any specific combination of hardware
circuitry and software.

The term “computer-readable medium” as used herein refers to any medium that
participates in providing instructions to processor 504 for execution. Such a medium may
take many forms, including but not limited to, non-volatile media, volatile media, and
transmission media. Non-volatile media includes, for example, optical or magnetic disks,
such as storage device 510. Volatile media includes dynamic memory, such as main
memory 506. Transmission media includes coaxial cables, copper wire and fiber optics,
including the wires that comprise bus 502. Transmission media can also take the form of
acoustic or light waves, such as those generated during radio-wave and infra-red data
communications.

Common forms of computer-readable media include, for example, a floppy disk, a
flexible disk, hard disk, magnetic tape, or any other magnetic medium, a CD-ROM, any
other optical medium, punchcards, papertape, any other physical medium with patterns of
holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, any other memory chip or
cartridge, a carrier wave as described hereinafter, or any other medium from which a

computer can read.

-14-

WO 02/097676 PCT/US02/16885

Various forms of computer readable media may be involved in carrying one or more
sequences of one or more instructions to processor 504 for execution. For example, the
instructions may initially be carried on a magnetic disk of a remote computer. The remote
computer can load the instructions into its dynamic memory and send the instructions over
a telephone line using a modem. A modem local to computer system 500 can receive the
data on the telephone line and use an infra-red transmitter to convert the data to an infra-red
signal. An infra-red detector can receive the data carried in the infra-red signal and
appropriate circuitry can place the data on bus 502. Bus 502 carries the data to main
memory 506, from which processor 504 retrieves and executes the instructions. The
instructions received by main memory 506 may optionally be stored on storage device 510
either before or after execution by processor 504.

Computer system 500 also includes a communication interface 518 coupled to bus
502. Communication interface 518 provides a two-way data communication coupling to
a network link 520 that is connected to a local network 522. For example,
communication interface 518 may be an integrated services digital network (ISDN) card
or a modem to provide a data communication connection to a corresponding type of
telephone line. As another example, communication interface 518 may be a local area
network (LAN) card to provide a data communication connection to a compatible LAN.
Wireless links may also be implemented. In any such implementation, communication
interface 518 sends and receives electrical, electromagnetic or optical signals that carry
digital data streams representing various types of information.

Network link 520 typically provides data communication through one or more
networks to other data devices. For example, network link 520 may provide a connection
through local network 522 to a host computer 524 or to data equipment operated by an
Internet Service Provider (ISP) 526. ISP 526 in turn provides data communication
services through the world wide packet data communication network now commonly
referred to as the “Internet™ 528. Local network 522 and Internet 528 both use electrical,
electromagnetic or optical signals that carry digital data streams. The signals through the
various networks and the signals on network link 520 and through communication
interface 518, which carry the digital data to and from computer system 500, are
exemplary forms of carrier waves transporting the information.

Computer system 500 can send messages and receive data, including program
code, through the network(s), network link 520 and communication interface 518. In the
Internet example, a server 530 might transmit a requested code for an application program

through Internet 528, ISP 526, local network 522 and communication interface 518.

-15-

WO 02/097676 PCT/US02/16885

The received code may be executed by processor 504 as it is received, and/or
stored in storage device 510, or other non-volatile storage for later execution. In this
manner, computer system 500 may obtain application code in the form of a carrier wave.

In the foregoing specification, the invention has been described with reference to
specific embodiments thereof. It will, however, be evident that various modifications and
changes may be made thereto without departing from the broader spirit and scope of the
invention. The specification and drawings are, accordingly, to be regarded in an

1llustrative rather than a restrictive sense.

-16-

WO 02/097676 PCT/US02/16885

CLAIMS

What is claimed is:

1. A method for database systems to access data from other database systems, the
method comprising the steps of:
a first database system directly storing first data in first data blocks having a first
data block size;
said first database system directly accessing a copy of second data blocks in which
a second database system directly stored second data; and
said second data blocks having at least one data block with a second data block

size different than said first data block size.

2. The method of Claim 1, wherein the method further includes the step
of integrating said copy of said second data blocks within said first
database system as a tablespace that includes said copy of said

second data blocks

3. The method of Claim 1, wherein the step of accessing a copy of
second data blocks includes storing user data in said copy of said

second data blocks.

4. The method of Claim 1, wherein the method further includes the step of detaching
one or more tablespaces from said second database system, wherein said one or

more tablespaces include said second data blocks.

5. The method of Claim 1, wherein each data block of said copy of said second data

blocks has said second data block size.
6. The method of Claim 1, further including the step of generating metadata that

specifies a plurality of block sizes for data blocks directly accessible to said first

database system.

-17-

WO 02/097676 PCT/US02/16885

10.

11.

12.

The method of Claim 6, wherein:

said metadata defines tablespaces and specifies for each tablespace of said
tablespaces a particular data block size for all data blocks in said
tablespace; and

the method further includes the step of integrating said copy of said second data
blocks within said first database system as at least one tablespace that
includes said copy of said second data blocks, and

wherein the step of integrating includes modifying said metadata to reflect said

second data block size for said at least one tablespace.

The method of Claim 1, wherein said first database system is a data warehouse
and said second database system is a source database system for said data

warehouse.

The method of Claim 8, further including the step of integrating said copy of said
second data blocks within said data warehouse as a tablespace that includes said

copy of said second data blocks.

The method of Claim 1,

wherein first data files contain said first data blocks and second data files contain
said second data blocks; and |

wherein the method further includes the step of generating a mapping:
between said first data files and said first data block size, and

between said second data files and said second data block size.

The method of Claim 1,

wherein a first tablespace contains said first data blocks and a second tablespace
contains said second data blocks; and

wherein the method further includes the step of generating a mapping:
between said first tablespace and said first data block size, and

between said second tablespace and said second data block size.

The method of Claim 1,
wherein said first database system includes a buffer cache in which said first

database system stores data blocks of multiple sizes; and

-18-

WO 02/097676 PCT/US02/16885

13.

14.

15.

16.

17.

18.

wherein said method further includes the step of storing said first data blocks and

said second data blocks in said buffer cache.

A computer-readable medium carrying one or more sequences of instructions for

database systems to access data from other database systems, wherein execution of

the one or more sequences of instructions by one or more processors causes the

one or more processors to perform the steps of:

a first database system directly storing first data in first data blocks having a first
data block size;

said first database system directly accessing a copy of second data blocks in which
a second database system directly stored second data; and

said second data blocks having at least one data block with a second data block

size different than said first data block size.

The computer-readable medium of Claim 13, wherein the computer-
readable medium further includes instructions for performing the
step of integrating said copy of said second data blocks within said
first database system as a tablespace that includes said copy of said

second data blocks.

The computer-readable medium of Claim 13, wherein the step of
accessing a copy of second data blocks includes storing user data in

said copy of said second data blocks.

The computer-readable medium of Claim 13, wherein the computer-readable
medium further includes instructions for performing the step of detaching one or
more tablespaces from said second database system, wherein said one or more

tablespaces include said second data blocks.

The computer-readable medium of Claim 13, wherein each data block of said

copy of said second data blocks has said second data block size.

The computer-readable medium of Claim 13, further including instructions for
performing the step of generating metadata that specifies a plurality of block sizes

for data blocks directly accessible to said first database system.

-19-

WO 02/097676 PCT/US02/16885

19.

20.

21.

22.

23.

The computer-readable medium of Claim 18, wherein:

said metadata defines tablespaces and specifies for each tablespace of said
tablespaces a particular data block size for all data blocks in said
tablespace; and

the computer-readable medium further includes instructions for performing the
step of integrating said copy of said second data blocks within said first
database system as at least one tablespace that includes said copy of said
second data blocks, and

wherein the step of integrating includes modifying said metadata to reflect said

second data block size for said at least one tablespace.

The computer-readable medium of Claim 13, wherein said first database system is
a data warehouse and said second database system is a source database system for

said data warehouse.

The computer-readable medium of Claim 20, further including instructions for
performing the step of integrating said copy of said second data blocks within said

data warehouse as a tablespace that includes said copy of said second data blocks.

The computer-readable medium of Claim 13,

wherein first data files contain said first data blocks and second data files contain
said second data blocks; and

wherein the computer-readable medium further includes instructions for
performing the step of generating a mapping:
between said first data files and said first data block size, and

between said second data files and said second data block size.

The computer-readable medium of Claim 13,

wherein a first tablespace contains said first data blocks and a second tablespace
contains said second data blocks; and

wherein the computer-readable medium further includes instructions for
performing the step of generating a mapping:
between said first tablespace and said first data block size, and

between said second tablespace and said second data block size.

220-

WO 02/097676 PCT/US02/16885

24. The computer-readable medium of Claim 13,
wherein said first database system includes a buffer cache in which said first
database system stores data blocks of multiple sizes; and
wherein said computer-readable medium further includes the step of storing said

first data blocks and said second data blocks in said buffer cache.

21-

PCT/US02/16885

WO 02/097676

1/5

Lo .~ EEEEEE— A ~
ogrdmorny L ! | | N v - |
| || 7-0S1 €-0GH| 11 v-0€} €-0€!1
EIELL _ H __ " __ __

) 9|l
" __ ol all4 __" | a4 a4 _ * mﬁﬂn_ .mw_mmn_ _
| _ eleQ eleqg X [eleq eleq ! | d aj.
_ | _ !
_ | 'l
| [0 [rost i ! | [zoer] [voer]
_ _ I _ | _
| | end ad |11 | e aid |+ 1| e ol | |
“ __ eleg Bleg |: | eeg eeq | ! | ereg eleq | |
|||||||||||||| _ _ _ _
| | ! ! _
_
wremsane, | TVSH 0 reisame |
06T
ayoen Jayng
OTT elepela}y aseqeieq
TOT woisAs aseqeleq

WO 02/097676

Control File 210

210-1 TRFN 212 DRFN 214
~
210-2 1 12
21 0-3% 2 26
210-4 3 30
21 0-5\ 4 12
o 1—'ab_le§p;ce—l§_0_ o
: TSN=9
| Data Data
| File File
l 130-1 130-2
|
1
: DRFN=12 DRFN=26
| TRFN=1 TRFN=2
|
|
| Data Data
; File File
| 130-3 130-4
|
|
| oRRN=30 DRFN=42
| TRFN=3 TRFN=4

L —m —_- _— —_— e e - — e — —

2/5

TRFN DRFN
1 15
2 27
3 33
4 49
T TaeSpae
TSN=8
Data Data
File File
140-1 140-2
DRFN=15 DRFN=27
TRFN=1 TRFN=2
Data Data
File File
140-3 140-4
DRFN=33 DRFN=49
TRFN=3 TRFN=4

b e e e — e — — —— —

FIG. 2

PCT/US02/16885

Control File 220

PCT/US02/16885

WO 02/097676

3/5

€ 'Ol

\ 061 8yoed Jayng
22 o3 86E
Y Buiddeyy JaquinN
aANejey-aseqeleq 96¢
oyng
¥2€ N4HA O2¢ N4HL GZENSL
02¢ Buiddeyy JequunN aAilejay-aseqeleq %
¥6€ Jolng
76T souug buiddepy
9ZIS %009
C6¢ Joyng
FEE 9215 X009 98¢ N4Hd
Buidd 0
0€€ buldae 8z|S %o0ig 0T
aoedg
olQeL 1j28 138
1T soedg | |eoeds
elepelajy aseqeled olQeL °9lqel
TOF WalsAg asegeleq

WO 02/097676

PCT/US02/16885

4/5

Integrate table space with data blocks of a different block size
than data block size of data blocks in target database system

490

»

v

Determine data block size of table space 410
to be integrate

Abort process of
integrating table space

!

May database
system integrate
data blocks
of that size?

420

Integrate table space into target database | 430
system

Fig. 4

PCT/US02/16885

WO 02/097676

1SOH
0¢s
e \
YN
MHOML3AN
W90 MHOML3N
w0 9cS
w
dSl
JINH31INI
8¢S
0ES
H3IAH3S

918
TOHINOO
"4osHNO

00S
0]
ERVALSEIL ¥09

NOILVDINNWINOD HOSS300Hd

205
sng
01% B80S 905
301A3d AHOW3IW
JOVHOLS WoH NIVIN

>

28]
301A3Q LNdNI

o5
AV1dSia

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

