0 01/67252 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
13 September 2001 (13.09.2001)

(10) International Publication Number

WO 01/67252 Al

(51) International Patent Classification’: GO6F 12/14

(21) International Application Number: PCT/US01/06913

(22) International Filing Date: 2 March 2001 (02.03.2001)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
60/186,781 3 March 2000 (03.03.2000) US
09/625,299 25 July 2000 (25.07.2000) US
09/784,960 15 February 2001 (15.02.2001) US
(71) Applicant: WATCHGUARD TECHNOLOGIES, INC.
[US/US]; Suite 500, 505 Fifth Avenue, Seattle, WA 98104
(US).
(72) Inventors: BERG, Ryan, J.; 8 Briarwood Lane, Marl-

borough, MA 01752 (US). DANAHY, John, J.; 60 Indian
Lane, Canton, MA 02021 (US). ROSE, Lawrence, J.; 257
Boston Road, Chelmsford, MA 01824 (US).

(74) Agents: SAMPSON, Richard, L. et al.; Sampson & Asso-
ciates, P.C., 50 Congress Street, Boston, MA 02109 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ, PL, PT,RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: SECURE REMOTE KERNEL COMMUNICATION

30
A
/ A\
L e 66 CONFIGURATION 601 |~ 64
24 CMAPI 60
10
USER SPACE /
KERNEL SPACE
26
VAULTDD —~~68

(57) Abstract: Referring to figure 2, a remote communication mechanism is provided for creating a secured channel for direct
interaction with a kernel-level component (68), such as a device driver, of a designated system. By connecting directly to a managed
kernel-level device, as opposed to connecting to user space (24) software which then connects to these devices, management of those
resources is simplified, better secured, and partitioned from general system administration utilities and configuration.

WO 01/67252 PCT/US01/06913

SECURE REMOTE KERNEL COMMUNICATION

BACKGROUND OF THE INVENTION

1. Technical Field
This invention relates to computer security, and more particularly to a system and
method for providing secure communication with directly with kernel-level components
of a computer system.

2. Background Information

The concept of remote communication to computer systems has been well established
over the past thirty years. Beginning with terminal servers utilizing simple hardwired networks to
allow data input and output, and evolving to today’s pervasive Internet connectivity,
organizations have long recognized the need to access systems and system resources from
remote locations. Common to these environments, however, has been the distinction between
the origination location of the communication and the ultimate destination of that remote
communication traffic. A very simple example is the model used by email routines, existing
remote session utilities, and remote system management tools. In each and every one of these
circumstances, a user-space process on the destination machine, one that authorizes the remote
access and then actually translates the remote commands into local action, brokers the remote
connection. In so doing, the brokering application must, itself, be subject to protections and
network configurations that are created for the system as a whole. This creates a potential
security exposure, since without additional hardening, the application-level administrative control
functions of this application may be suborned, or otherwise compromised, thereby providing
unauthorized access. As a result, it is necessary to define a new method of remote

communications that can ensure resource protection while facilitating remote management.

WO 01/67252 PCT/US01/06913

SUMMARY

An embodiment of this invention includes a method of providing secure communication
with kernel-level components of a computer system having an operating system that includes user
space and kernel space. The method includes the step oflocating an authentication module in the
kernel space, in communicably coupled relation with the kemel-level components, to selectively
encrypt and decrypt communications between the kernel-level components and a remote site.
The method also includes locating a transport module in the kemel space, in communicably
coupled relation with the authentication module, to selectively transmit and receive the
communications. The authentication module and the transport module are selectively actuated to
convey the communications to and from the kernel-level components.

An alternate embodiment of the present invention includes a method of providing secure
communication with kernel-level components of a computer system having an operating system
that includes user space and kernel space. This method includes the step of locating a filter driver
in the kernel space to selectively permit and prevent communications with the kernel-level
components. In addition, an authentication module is placed in the kemel space, in
communicably coupled relation with the filter driver, to selectively encrypt and decrypt the
communications. The method further includes placing a transport module in the kernel space, in
communicably coupled relation with the authentication module, to selectively transmit and
receive the communications. The filter driver, authentication module, and transport module are
actuated to respectively convey received and transmitted communications to and from the kernel-
level components.

In an alternate embodiment, a system is provided for securing communication between a
remote site and kernel-level components of a computer having user space and kernel space. The
system includes a filter driver located in the kernel space to selectively permit and prevent
communications with the kernel-level components. An authentication module is also located in
the kernel space, in communicably coupled relation with the filter driver, to selectively encrypt
and decrypt the communications. In addition, a transport module is located in the kernel space,

in communicably coupled relation with the authentication module, to selectively transmit and

WO 01/67252 PCT/US01/06913

receive the communications. A remote authentication module is located in the remote site, in
communicably coupled relation with the transport module, to selectively decrypt and encrypt the
communications in cooperation with the authentication module. During operation of the system,
communications from the remote site to the kernel-level components are sequentially encrypted
by the remote authentication module, received by the transport module, decrypted by the
authentication module, and selectively permitted to reach the kernel-level components by the
filter driver. Similarly, communications generated by the kernel-level components are
sequentially permitted by the filter driver, encrypted by the authentication module, transmitted by
the transport module, and decrypted by the remote authentication module.

A further embodiment of the present invention includes an article of manufacture for
providing secure communications with kernel-level components of a computer system having an
operating system that includes user space and kernel space. The article of manufacture includes a
computer usable medium having computer readable program code embodied therein, the
computer usable medium having computer readable program code for defining an authentication
module in the kernel space, in communicably coupled relation with the kernel-level components,
to selectively encrypt and decrypt communications between the kernel-level components and a
remote site. Computer readable program code is also provided for defining a transport modulein
the kernel space, in communicably coupled relation with the authentication module, to selectively
transmit and receive the communications. The article of manufacture also includes computer
readable program code for selectively actuating the authentication module and the transport
module to convey the communications to and from the kernel-level components.

In a still further embodiment, the present invention includes computer readable program
code for providing secure communications with kernel-level components of a computer system
having an operating system that includes user space and kernel space. The computer readable
program code includes computer readable program code for defining an authentication module in
the kernel space, in communicably coupled relation with the kemel-level components, to
selectively encrypt and decrypt communications between the kernel-level components and a
remote site. Computer readable program code is also provided for defining a transport modulein
the kernel space, in communicably coupled relation with the authentication module, to selectively

3

WO 01/67252 PCT/US01/06913

transmit and receive the communications. In addition, computer readable program code is
provided for selectively actuating the authentication module and the transport module to convey

the communications to and from the kernel-level components.
BRIEF DESCRIPTION OF THE DRAWINGS

The above and other features and advantages of this invention will be more
readily apparent from a reading of the following detailed description of various aspects of
the invention taken in conjunction with the accompanying drawings, in which:

Fig. 1A is functional block diagram including a kernel-communication system of
the present invention;

Fig. 1B is a block diagram of a host system incorporating the kernel-
communication system of Fig. 1A into a computer security system;

Fig. 2 is a block diagram, at a generally higher level, of the computer security
system of Fig. 1B;

Fig. 3 is a block diagram, in greater detail, of various components of the
computer security system of Fig. 2;

Fig. 4 is a functional block diagram of operation of various components of the
computer security system of Figs. 1-3;

Fig. 5 is flow chart of various operations of the computer security system of Figs.
1B-4;

Fig. 6 is a block diagrammatic representation of a data packet generated by the
computer security system of Figs. 1-5;

Fig. 7 is a block diagrammatic representation of an IRP path of the prior art; and

Fig. 8 is a view similar to that of Fig. 7, of an IRP path of a host system

incorporating the computer security system of the present invention.

WO 01/67252 PCT/US01/06913

DETAILED DESCRIPTION

Referring to the figures set forth in the accompanying drawings, the illustrative
embodiments of the present invention will be described in detail hereinbelow. For clarity
of exposition, like features shown in the accompanying drawings shall be indicated with
like reference numerals and similar features as shown in alternate embodiments in the
Drawings shall be indicated with similar reference numerals.

Where used in this disclosure, the term ‘service context’ refers to a computer '
system’s current and intended use. When the system is providing data or other
content related services to users, it is in an ‘operational context’. When this system is
being upgraded or is undergoing some level of administrative change, it is considered
to be in an ‘administrative context’. The terms ‘shim” and “filter’ or “filter driver’
shall be used interchangeably herein to describe enhanced or divergent portions of
computer code that are introduced into the data flow of a software module. The
terms ‘remote site’ and ‘remote system’ interchangeably refer to a logic element,
computer, or portion thereof which is disposed outside of the kernel space of a host
computer, as further defined herein.

Referring to Figures, the principles of the present invention are shown.
Turning now to Fig. 1A, the invention includes a communication system 9 that
includes various components located within the kernel 26 of a protected (i.e.,
secured) computer system 11. This system 9 advantageously enables authenticated
and/or encrypted communication between a remote application (e.g., management
application 35 disposed on a remote system 13 or on a local system 11) and an
underlying device driver(s) 31 on the host system 11.

Advantageously, as shown, instead of (or in addition to) using existing
concepts of system trust, network filtering, and access control, to effect
(administrative) access, the present invention enables protected communication to
take place at a level below any administrative control and configuration, i.e., in the
actual kernel space 26 of a protected system 11. As mentioned above, these
components of system 9 located within kernel space 26 may be used for secure

5

WO 01/67252 PCT/US01/06913

communication with various remote sites, including remote system 13 and/or user
space 24 of system 11. Accordingly, for brevity, many aspects of communication
system 9 of the present invention will be described herein with respect to
communicating with one of system 13 and user space 24, with the understanding that
such aspects are similarly applicable to the other.

As shown, in one embodiment, system 9 includes a transport module 27
communicably coupled to an authentication module 29, both modules 27 and 29 being
located in the kernel space 26 of a protected computer system 11. As also shown,
modules 27 and 29 are logically located within the communication path 33 between
the remote site (e.g., system 13 and/or user space 24) and protected kernel-level
components 31.

In a preferred embodiment, shown in phantom, transport module 27 includes a
kernel-level communication API (also referred to as socket or KSOCKS) 74, which
provides a kernel-based server (e.g., a TCP server) 76 and a conventional
communication thread 78. Socket 74, server 76, and thread 78 are discussed in
greater detail hereinbelow, e.g., with respect to Fig. 3. Described briefly, KSOCKS
includes a set of routines that translate data and requests from packet-level network
traffic into usable requests for authentication module (KCMAPI) 29. This use of
KSOCKS 74 and module 29 advantageously enables communication to occur directly
with the kernel space 26 without the need for any user-space 24 intermediary on the
destination system. The KSOCKS implementation is shown and described for use
with Microsoft™ NT™™ systems, as it serves to provide access into existing (i.e.,
TDI) interfaces in the Microsoft kernel. The skilled artisan will recognize, however,
that the present invention may be similarly adapted for use in other platforms, such as
UNIX. Ina UNIX environment, KSOCKS may be replaced with a conventional
UNIX sockets implementation.

Module (i.e., KCMAPI) 29 preferably includes a kernel-level version of
Configuration and Management APl (CMAPI) 60 (CMAPI is discussed in greater
detail hereinbelow with respect to Fig. 2). KCMAPI functions substantially similarly

6

WO 01/67252 PCT/US01/06913

to CMAPI 60, though doing so at the kernel-end of communications path 33, i.e.,
within the kernel space 26. Briefly described, calls to KCMAPI implement driver
routines and management functions to initiate, establish, and conduct communications
within the kernel, i.e., at the kernel-end of the communication path 33. Similar,
reverse operations are completed by CMAPI calls made in user-space 24 of system 11
and/or user space 24’ of remote system 13. In addition to these functions, KCMAPI
29 includes encryption module 37 which enables authentication of both the source and
destination of these communications, and encryption. Encryption module 37 thus
provides the authentication and encryption functions of KCMAPI in a manner similar
to that described hereinbelow with respect to CMAPI 60. In a preferred embodiment,
module 37 includes a PKI (Public Key Infrastructure, including a trust hierarchy,
encryption, and/or digital signature services), such as a version of the “Certicom
PKI™” (Certicom Corporation of Vancouver, Canada) which has been modified
pursuant to the present invention for kernel-level operation. Module 37 thus provides
hooks for making the actual communication private. This PKI is also enhanced to
provide easy connectivity for the calling routines within the remote communications
library of KSOCKS 74. Moreover, although the PKI encryption module has been
discussed, in the alternative, encryption module 37 may include substantially any other
encryption approach known to those skilled in the art, including DES (the U.S.
Federal Government’s Digital Encryption Standard), as discussed in greater detail
hereinbelow.

As also shown in phantom, authentication module 29 is preferably
incorporated within a filter driver (i.e., kernel-level shim(s)) 68. The filter
driver/shim(s) 68 serves to suborn operating system control paths to recognize and/or
permit some communications with driver 31, e.g., those originating from application
35, while it serves to block other communications. This configuration, including shim
68, provides a mechanism through which a prescribed set of actions, devices, and

objects can be conveniently isolated from any administrator privilee-driven

WO 01/67252 PCT/US01/06913

modification activity, i.e., to nominally prevent undesired communications with
kernel-level component(s) 31. Shim 68 is described in greater detail hereinbelow.

Examples of kernel-level components 31 include dynamic content 40,
protected content 42, system executables 44, devices 46, and user accounts 48, which
are discussed in greater detail hereinbelow with respect to Fig. 1B.

In operation, transport module 27 receives communications from a remote site
(i.e., management application 35) destined for driver 31, and transmits
communications generated by driver 31. Authentication module 29 serves to
authenticate and/or encrypt and decrypt communications between the kernel-level
components 31 and the remote site. Thus, during operation of system 9,
communications destined for the protected components 31 are received by the
transport module 27, then routed to authentication module 29 for decryption and/or
authentication, and ultimately routed to components 31. Communications originating
from components 31 are handled in a similar, reverse manner, being encrypted by
authentication module 29, then routed to transport module 27, which serves to
transmit the communication to the remote site.

As described hereinabove, system 9 may be implemented to provide secure,
direct, kernel-level communication with either a remote system 13 or with user space
24 of a host system 11. Moreover, although system 9 has been described as a stand-
alone or independent system, it may be incorporated into other systems, such as a
context management system 10 described hereinbelow, in which system 9 may be
used to communicate with user space 24.

Turning now to Fig. 1B, such an alternate embodiment is shown, in which
system 9 as incorporated into a host-based intrusion protection system 10 designed to
prevent damage after a break-in has occurred. In order to create a robust and secure
operating environment for a host system 11, i.e., a (internet) web server, instead of
applying an increasingly complex hierarchical security model to maintain all of the
current permutations of object access and user privilege, the present invention
includes a mechanism for creating two distinct system service contexts. The first such

8

WO 01/67252 PCT/US01/06913

context is an “administrative” context, in which conventional system protection and
privileges apply. This means that well-known operating system protection, logging,
etc. can be utilized for management of the system 11. Recognizing that for the
majority of its useful life, however, the machine is in an operational context, and is not
being modified, the present invention provides a second “operational” service context,
where system resources, key content, user accounts, and other data are all protected
from any changes. Similarly, by recognizing the differing level of monitoring and
messaging associated with administrative and operational functions, the present
invention creates a simpler information flow associated with activities in both
contexts. Through this implementation, the present invention removes vulnerabilities
created by the presence of the additional and unnecessary management functionality
during normal operation, vulnerabilities which are at the heart of most system attacks
and ¢ompromises.

In addition, the present invention provides several mechanisms to protect itself to
help ensure that it is not circumvented or otherwise compromised. This self-protection is
accomplished using several mechanisms/techniques. One such technique is to secure the
device driver of the present invention, i.e., by requiring user authentication (including
pre-authentication) and providing a secure channel for communications between user
space and kernel space. Another technique is to effectively prevent bypass of the device
driver of the present invention, and/or installation of other device drivers, by hooking
system service calls. Registry keys, binaries, and files are also protected, i.e., using a
filter driver (i.e., shim) and system service hooking. The present invention is further
protected from conventional mechanisms for device driver management (e.g., “stop” and
“unload”), and can nominally only be stopped by an authenticated request during the
process of deinstallation.

The level of protection offered by the present invention is significantly superior to
current technologies, both in security and in ease of operation. The host-level integrity
assurance of the present invention fills the recognized gaps in existing technologies. Thus,
while intrusion detection systems simply inform of ongoing and/or prior attacks, the present

9

WO 01/67252 PCT/US01/06913

invention advantageously serves to protect the integrity of protected data in the event of
such an attack, by substantially eliminating vulnerabilities inherent in standard operating
system access controls.

In developing the intrusion protection product of the present invention, the
aforementioned weaknesses were addressed and overcome. Using a new form of
host-based security, data integrity and system viability can be protected against
inappropriate system modifications, whether from hostile internal users or aggressive
hackers. The invention nominally prohibits modification of key system resources and
customer-specified data, denying efforts at alteration or deletion, even those executed
with privileged system authority.

Referring to Figs. 1B-8, the present invention will be more thoroughly
described. Turning now to Fig. 1B, the present invention includes a mechanism for
security that creates a functional differentiation of security and administrative control.

As shown, this mechanism includes a Service Context Manager 16 which implements
an enforced system service context as shown at 18, to differentiate between an
Administrative Context 20 and an Operational Context 22. This enforcement includes
operating system enhancements, logging and auditing changes, and secured preclusion
mechanisms installed on conventional general purpose computer systems, as will be
discussed in greater detail hereinbelow.

Fig. 1B includes some examples of these enforcement aspects. As shbwn,
instructions passing from user space 24 into kernel space 26 are generally effected by
a system administrator 28, using an administrative toolset (also referred to as a
Configuration Client) 30. The toolset 30 typically enables at least three types of
operations, i.e., Manipulation of System Configurations 32, Updating of Executables
34 and Alteration of Content 36. These instructions then pass from user space 24
into kernel space 26 where they are intercepted using kernel-level shim(s) (i.e., filter
driver 68 (Fig. 2)), which is integrated with Service Context Manager 16, and will be
discussed in greater detail hereinbelow. The Service Context Manager 16 thus
intercepts the instructions passing into kernel space 26 and either permits or denies

10

WO 01/67252 PCT/US01/06913

the requested operation. For example, as shown, instructions transmitted by Alter
Content block 36 to alter dynamic content 40 are permitted in either administrative
context 20 or operational context 22. Similar attempts by update executables 34
and/or alter content 36 to affect protected co.ntent 42 are permitted in administrative
context 20, and denied in operational context 22. System Executables 44 may be
altered in administrative context 20, while being denied in operational context 22.
Similarly, instructions forwarded by Manipulate System Configuration 32 to affect
raw devices 46 and/or user accounts 48 are respectively permitted and denied in
Administrative and Operational Contexts 20 and 22. These and other examples of
functionality provided within the administrative and operational contexts of the

present invention as compared with the functionality of the prior art are shown in the

following Table I.
Table I
Function Prior Art Administrative | Operational
(No service context) | Context Context
Add/Modify/Delete Permitted Permitted Denied
Users
Modify/Delete Permitted Permitted Denied
System Executables
Access Raw Devices Permitted Permitted Denied
Modify Read-only Permitted Permitted Denied
Files
Modify/Delete Permitted Permitted Denied
Application Executables
and Static Content
Read Files Permitted Permitted Permitted
Create Files Permitted Permitted Permitted
Modify Dynamic Data | Permitted Permitted Permitted
Disable the present N/A Permitted Permitted
invention Protection

As also shown, system 10 preferably includes an Event Log 52. To effect the
above-described functionality, the system 10 includes several components. One

component, mentioned briefly hereinabove, includes one or more kernel-level shims, i.e.,

11

WO 01/67252 PCT/US01/06913

filter driver 68, disposed integrally with service context manager 16. This shim(s) serves
to suborn operating system control paths between user space 24 and kernel space 26. In
the case of the present invention, the shims 68 reside in the operating system kernel, as
shown in Fig. 2, between the user space 24 processes and the underlying device drivers
(not shown), i.e., drivers associated with content 40, 42, executables 44, raw devices 46
and user accounts 48. In so doing, the present invention creates a mechanism through
which a prescribed set of actions, devices, and objects can be isolated from any
administrator privilege-driven modification activity when the system 10 is in its
operational context.

This shim 68 (Fig. 2) may include one or more modified versions of commercially
available shim products. For example, conventional shims are readily available to
provide various types of enhanced operating system functionality, such as Storm
Technologies’ “Performance Shim™”, Computer Associates’ “Access Control Shim™”,
and the ClickNet host-based “Intrusion Detection Shim™”, These shims do not operate
in a manner to create two separate service contexts, but do suborn the operating system
to enhance performance, access control, and intrusior detection, respectively. However,
these shim technologies may be modified and/or integrated to provide the functionality of
the preseht invention.

For example, to effect the administrative context 20, service context manager 16
may disable the Storm™ and ClickNet™ shims, while enabling the CA™ shim. In
administrative mode there is little need for performance enhancement or intrusion
detection such as provided by the Storm and ClickNet shims. At the same time, there is
a pressing need for improved access control granularity as provided by the CA shim.
The converse is also true, as operational systems require better performance and better
intrusion monitoring, and generally permit scarce system access that would require more
granular access control. Thus, to effect operational context 22, service context manager
16 may enable the Storm™ and ClickNet™ shims, while disabling the CA™ shim as it is
no longer needed. A preferred embodiment of shims useful in the present invention is
discussed in greater detail hereinbelow with respect to filter driver (i.e., VaultDD) 68.

12

WO 01/67252 PCT/US01/06913

System 10 of the present invention also preferably includes a mechanism
(discussed in greater detail hereinbelow) for providing encrypted kernel-level
communication. In particular, this mechanism may include PKI-enabled kernel
communication mechanisms. In this regard, in order to guarantee the consistency of the
operational context, inter-process communications between kernel-level drivers should
be both private and irrefutable. The kernel communication mechanism of the present
invention provides such consistency and security. In one embodiment, the present
invention may include “Certicom PKI™” (hereinafter, “PKI”) available from Certicom
Corporation of Vancouver, Canada, as modified for kernel operation using KSOCKS as
discussed hereinbelow. However, other products, such as that provided by RSA, Inc.
could be integrated through the expense of only moderate effort to recompile the RSA
product.

In addition, for reasons similar to those discussed above with respect to the
kernel-space communication issues, communications relating to administration, i.e.,
between the Administrative Toolset 30 or management console, and kernel space 26, are
preferably secured. The mechanism for this is CMAPI 60, which is preferably a PKI-
enabled implementation of kernel-space to user-space authentication and channel
encryption. CMAPI 60 will be discussed in greater detail hereinbelow.

Turning now to Fig. 2, system 10 of the present invention resides within a basic
structure of three main components: configuration clients (i.e., administrative toolset)
30, a Configuration Manager API (CMAPI) 60, and a device driver (i.e., filter driver or
VaultDD) 68. As shown, configuration client 30 may include a suite of tools including a
Configuration GUI 64 and a command line interface (CLIDE) 66. These are used for
such operations as adding rules (discussed hereinbelow) and turning protection on and
off. Administrative toolset 30 is thus used to enable, disable, and configure constructs
(i.e., shim modules), associated with both service contexts 20 and 22. Moreover, toolset
30 is preferably integratable into well-known enterprise management frameworks such as

HP OpenView and CA Unicenter. From these platforms, the setting of service context

13

WO 01/67252 PCT/US01/06913

may be conveniently undertaken, i.e., from a menu operation on a selected representative
icon or group of icons.

CMAPI 60 is an object-based library, which provides a secure mechanism for
communications between configuration clients and the device driver 68, as will be discussed
in greater detail hereinbelow. Device driver (i.e., VaultDD) 68 is integrated with Service
Context Manager 16 (Fig. 1B) and thus provides the aforementioned dual context
protection to the host computer system (not shown). As also shown, configuration client 30
and CMAPI 60 both exist in user space 24, while VaultDD 68 exists in kernel space 26.

As mentioned hereinabove, individual components of system 10 of the present
invention use standard protocols and well-known techniques. This will become evident
throughout the following discussion. For example, as discussed, the authentication
techniques used for communication between CMAPI 60 and VaultDD 68 include a PKI
(e.g., Certicom PKI™) and DES. Filter drivers (shims) and system service hooking
(described hereinbelow) are also well known to those skilled in the art of NT™
programming,.

A significant aspect of system 10 of the present invention is providing security to the
system 10 itself. System 10 provides this protection by using secure and authenticated
communications between the configuration tools 30 and device driver 68, to nominally
prevent system 10 from being replaced and and/or circumvented. This self-protection is

now discussed in detail.

Configuration

Any configuration command, such as adding a new rule (discussed hereinbelow) or
turning on machine protection, will be issued from CMAPI 60. Neither the Configuration
GUI 64 nor CLIDE 66 will communicate directly with VaultDD 68. Before any
configuration operations occur, the user wishing to apply the changes must be authenticated.
The basis for authentication is the Management Authentication Key (MAK) 70 (Fig. 3),

which 1s created from a password. Once authenticated, the user is capable of making any

14

WO 01/67252 PCT/US01/06913

changes. Optionally, the password required to create MAK 70 may be supplemented by a
SecurlD, as will be discussed hereinbelow.

In order to configure VaultDD 68, a user must know the management password.
Not only must VaultDD 68 configuration be protected through use of a password, but also
the password itself must be protected. The initial password cannot be created without the
product installation media. An application run during installation prompts the user for
password entry. Password strength will be strictly enforced at password creation and
modification time.

During password creation, a user enters the desired password. If the password
passes the strength test, (i.e., the password is sufficiently random) it is then hashed using a
suitable hashing algorithm, such as the algorithm commonly known as “MD5” developed by
Professor Ronald L. Rivest of MIT. A commercially available version of the MDS5 is
identified as the “RSA Data Security, Inc., MD5 Message-Digest Algorithm” available from
RSA Data Security, Inc. The skilled artisan will recognize that such a hashing algorithm is
preferably used because it is relatively difficult to reverse, i.e., in the event one were to
intercept the hashed value, it would be relatively difficult to derive the original (clear text)
password therefrom. The hashed password serves as the Management Authentication Key
(MAK) 70. The MAK is thus created to further enforce protection of the password. The
password itself (i.e., the clear text version) is not stored within system 10. Only MAK 70 is
stored. MAK 70 is stored in a hidden registry key(s) within VaultDD 68 to substantially
prevent any type of read-only or read/write access. The MAK once created, is securely
transferred to VaultDD using CMAPI.

Subsequent changes to the password will require knowledge of the old password.

As mentioned hereinabove, CMAPI 60 is provided to communicate with VaultDD
(device driver) 68 from user space. In the embodiment shown, CMAPI 60 is a static library,
which provides an object, which in the example described herein, is called
NTegCMSecurityPlatform. Asused herein, the term CMAPI 60 is used to interchangeably
refer to both CMAPI and the NTegCMSecurityPlatform object.

15

WO 01/67252 PCT/US01/06913

As mentioned hereinabove, a core component of CMAPI is its set of security tools.
The major portion of these tools is provided through Certicom™ libraries available from
Certicom Corporation. These libraries provide functionality for DES, PKI, and other
security features such as SecurID. CMAPI implements these mechanisms, hiding the details
from configuration client(s) 30. CMAPY’s additional functionality, such as functions 32, 34
and 36 discussed hereinabove, are exposed to, i.e., selectable by, a user or system
administrator 28. In a preferred example, additional exposed functionality provided by
CMAPI include:
e Connect: establishes the initial connection between CMAPI and the device
driver
e PreAuthenticate: encrypts the user-supplied password with VaultDD’s public
key
e Authenticate: authenticates the user to VaultDD
e SetMachineProtection: sets the protection of the machine, i.e. on or off
e SetMachineRules: creates new rules
e QueryMachineRules: queries existing rule set

e Disconnect: closes connection to VaultDD

Preferably, CMAPI 60 changes state as different methods are called. For instance, CMAPI
60 rejects all commands until it sees a Connect request. After a successful Connect, CMAPI
60 will only accept a PreAuthenticate request. 1t will then reject all other commands until a
successful Authenticate is performed. Once a user is authenticated, then commands such as
SetMachineProtection can be issued.

The PreAuthenticate and Authenticate functions are separated to provide for
enhanced password protection. As discussed above, at some point a password must be
entered by the user. This means that the clear text password must exist in memory for some
discrete period of time. This is clearly unavoidable. However, the time that the clear text
password exists should preferably be minimized. Since the authentication process, especially

in the case of remote configuration, may be lengthy and potentially lead to a time-out
16

WO 01/67252 PCT/US01/06913

situation, it is undesirable to store the password in memory while this operation is
completed. Thus, in a preferred embodiment, a first operation configuration tool 64 or 66
performs with the password is to call PreAuthenticate, which encrypts the password with
the public key of the device driver 68. The clear text password is then zeroed out. This
advantageously minimizes the time that the clear text password remains in memory.

Turning now to Fig. 3, the components of system 10 residing in kernel space 26 are
described in greater detail. VaultDD 68 and MAK 70 were described hereinabove. In
addition thereto, Rule Set 72 is communicably coupled to VaultDD 68 and also resides in
kernel space 26. Rule Set 72 determines which files, registry settings, and the like, are
protected by system 10. In particular, Rule Set 72 is used by Service Context Manager 16
(Fig. 1B) as described hereinabove to implement the enforced system service context shown
at 18 (Fig. 1B), i.e., to differentiate between Administrative and Operational Contexts 20
and 22, respectively (Fig. 1B). Remaining kernel space components include a kernel socket,
i.e., kernel socket library 74 integrally coupled to VaultDD 68 as shown. Kernel socket 74,
in turn, is communicably coupled to a server 76, which in turn starts a client thread 78.
Server 76 is preferably a conventional TCP (or TCP/IP) Server program. As shown, socket
74, server 76 and client thread 78 are all disposed within kernel space 26 and provide a
communications path to device driver 68.

With respect to kernel socket 74, the skilled artisan will recognize that Microsoft®
Windows NTT™ creates user and kernel space in an attempt to protect kernel memory space
and processes. This means that communicating between these two spaces is not trivial. One
approach to provide such communication, especially given the possibility of remote
configuration, is to use a well-known protocol such as TCP/IP. However, the Windows™
implementation of sockets (Winsock™) for TCP/IP communication is available only in user
space. Opening sockets for communication in the kernel is thus not inherently supported in
Windows NT™. To overcome this difficulty, system 10 of the present invention
incorporates the aforementioned kernel socket 74, which in a preferred embodiment,
includes a kernel sockets library sold under the designation KSOCKS™ by Open System
Resources (OSR). KSOCKS™ is based on BSD (Berkeley Software Distribution UNIX)

17

WO 01/67252 PCT/US01/06913

sockets. KSOCKS™ has been extensively tested and found to provide a robust solution for
socket implementation in the kernel. With the inclusion of KSOCKS 74, VaultDD 68 has a
standard communication protocol with which to talk to user space.

Turning now to Fig. 4, operation of establishing a communication connection or path
between CMAPI 60 and kernel space portions of system 10 is discussed. When VaultDD
68 (Fig. 3)is loaded, it starts the TCP/IP server 76, which in turn, manages communications
with CMAPI 60. When the TCP server 76 is started, it performs three operations: bind,
listen, and accept. The bind operation binds the server to a specified port (i.e., a software
port) of the host computer system. Listen sets up the server for connection requests,
performing operations such as setting up the listening queue to receive incoming
communications. Accept is a blocking operation such that when an incoming request is
received, Accept does not return control until it is finished receiving the request. Accept
returns a socket for use in communications with CMAPI 60. The TCP server 76 then
launches a separate thread, Client Thread 78, to handle communications on the newly
assigned socket.

Thereafter, as shown in Fig. 4, a user may issue a connection request 1 to CMAPI
60, for example, using Configuration GUI 64 as shown. An initial connection 2 between
CMAPI 60 and Server 76 is then established. After Accept has been returned by Server 76,
Server 76 starts Client Thread 78. Client Thread 78, in turn, communicates 4 bi-
directionally with CMAPI 60. Thus, while from the perspective of CMAPI 60, it is
communicating with the TCP server 76, CMAPI 60 is actually communicating with a
separate thread 78 launched from server 76.

At this point, the connection has been established, but it is not yet secure. There are
at least two steps to this security. A first is authenticating the user, i.e., verifying that the
person wishing to perform some configuration is authorized to do so. A second step

includes hardening the connection. These steps are part of the authentication protocol.

18

WO 01/67252 PCT/US01/06913

Authentication Protocol

Referring now to Fig. 5, the aforementioned authentication protocol will be
discussed in greater detail. As mentioned hereinabove, an important aspect of enabling
system 10 to protect itself, is ensuring that only authenticated users can perform
configuration. This means that there is not only the issue of authenticating a user, but also
of protecting the entire authentication process. Also, the protection is not limited to
authentication; but all commands sent to VaultDD 68 preferably must be secure. The
protocol for secure communications between CMAPI 60 and VaultDD 68 specifically takes
place between CMAPI 60 and Client Thread 78, as shown in Fig. 3.

Securing the connection

As discussed hereinabove, the security of the connection is predicated on PKI and
DES. PKI encryption is used until the initial authentication is complete. After
authentication, the encryption model preferably changes from PKI to DES. The reason for
using DEST™ is that it is faster and thus tends to reduce processing time, particularly with
rule intensive queries. For example, if there is a query for 4,000 rules, the encryption of
these rules is significantly faster using DES than PKI. The skilled artisan should recognize,
however, that any encryption model, regardless of processing speed, may be used in
conjunction with the present invention without departing from the spirit and scope of the
present invention.

During the Connect operation 1 (Fig. 4), CMAPI 60 and VaultDD (i.e., Client
Thread) exchange public keys. Next, the configuration client (i.e., Configuration GUI 64)
will call PreAuthenticate. PreAuthenticate occurs independently of VaultDD. Rather, as
discussed above, PreAuthenticate simply serves to encrypt the password using the public
key of the VaultDD 68. Thereafter, the CMAPI-VaultDD (i.e., CMAPI-Client Thread)
channel is authenticated and hardened. This is accomplished by signing 80 the encrypted
password held by CMAPI (from PreAuthenticate), with CMAPI’s private key and
encrypting 82 with VaultDD’s public key. The CMAPI Authenticate operation bundles up

19

WO 01/67252 PCT/US01/06913

the password using a suitable communication protocol (i.e., TCP in the embodiment shown
and described herein) and sends it to client thread 78.

Upon receiving the password bundle, the Client Thread first decrypts 84 the
password using VaultDD’s private key. It then verifies 86 the signature using CMAPI’s
public key. Next, the Client Thread generates 88 a new MAK by hashing the decrypted
password. The thread then compares 90 the newly generated MAK to the stored MAK 70
(Fig. 3). Ifthis MAK verification fails, then the client notifies CMAPI 60, as shown at 90,
which in turn will send an appropriate return code to the configuration client 64. Itisup to
the client 64 how to handle that failure (i.e. re-prompt for password, etc.). There are at
least three failure scenarios:

e Some operation on the local machine (where the client resides) failed,

e.g., failure of a malloc operation, Certicom initialization failure, etc.;

e Authentication failed, usually meaning a bad password; and

e Authentication timed out.

If the MAK comparison is successful, a DES™ structure is generated 92. This structure
includes a DES key (i.e., a shared secret session key used to encrypt session
communications post authentication, such as to effect protection and rules changes) and
conventional information about how DES will work, such as type of DES, etc. The DES
structure is signed 94 with VaultDD’s private key. It is then encrypted 96 with
CMAPTI’s public key. This packet is then bundled up and sent back to CMAPI 60.
CMAPI then which decrypts 98 the structure with CMAPI’s private key, checks 100 the
signature with VaultDD’s public key and stores 102 the DES key. All subsequent
commands, i.e. SetMachineProtection, will be encrypted with DES. The DES key only
operates for that particular session. If the session is disconnected, Authenticate must be

called, restarting the process.

20

WO 01/67252

PCT/US01/06913

Security Bundle Packet

The forego

ing discussion mentions a bundle being passed between CMAPI and the client

thread. Turning now to Fig., 6, this bundle will be described in greater detail. As shown,

the fields are defined as follows:

MD5 Checksum 104 is a hash of the data header. This MD5 is a commercially
available hashing algorithm, such as the “RSA Data Security, Inc., MD5
Message-Digest Algorithm” discussed hereinabove. It is used in a conventional
manner to provide additional randomness to help prevent spoofing of a
command and signature.

Version 106 is the version of this protocol being used.

Reserved 108 is a field that is reserved for future use.

CMD/RSP 110 is a conventional union field, i.e., a structure that can be used to
represent the same data in different ways (such as (4) 8 bit char vs. (1) 32 bit
int). When CMAPI uses it, it includes a command, such as Connect. When
VaultDD 68 uses it, it returns the success or failure of that command.

Data Length 112 is the length of the unencrypted data, since data length is
variable.

Encrypted Block Length 114 is the block length that was used during
encryption. This is necessary since a fixed block size is used in encryption,
meaning that padding is sometimes necessary. Decryption requires knowledge
of the data length encrypted.

Reserved 116 is a field that is reserved for future use.

Signature 118 is the signature generated using the sending entity’s private key.
When CMAPI sends an Authenticate command, it will sign with its private key,
as discussed hereinabove, to help ensure that the packet came from CMAPIL
Encrypted data 120 is the payload, i.e., the DES structure used during
authentication, or a rule set. The data is encrypted using the receiving entity’s

public key during Authenticate or with DES key for subsequent commands. For

21

WO 01/67252 PCT/US01/06913

instance, when VaultDD generates the DES structure during authentication, it

encrypts it using CMAPI’s Public Key.

It is important to note that after a successful authentication as shown and described
hereinabove with respect to Fig. 5, subsequent commands such as setting machine
protection, adding rules, etc., will use DES encryption, while PKI will be used only for
signatures. However, the steps performed (Fig. 5) and the packets built (Fig. 6) are
substantially identical as those for Authentication. The skilled artisan will recognize that all
of these commands follow the same protocol, so understanding how one is issued (i.e., with

respect to Authentication) clarifies how all are used.

Rule Set Management

With authentication complete, configuration is possible. One important aspect of
this configuration is adding, deleting, and querying rule set 72 (Fig. 3). As mentioned
hereinabove, such rules, for example, include instructions used by service context manager
16 (Fig. 1B) to determine which communications and/or operations will be permitted/denied
in administrative and operational contexts 18 and 20 (Fig. 1B), respectively. The VaultDD
kernel device driver 68 (Fig. 2) needs a mechanism to store, retrieve, and update an in
memory representation of the configured rule set. In particular, a kernel rules interface (not
shown) is needed to support the rules, the format of the rules, how the on disk rules are
secured against tampering, and how rules are initialized from their on disk representation.
This kernel rules interface (API) preferably supports at least the following functionality:

e A fetch operation that returns all rules currently loaded into memory by

VaultDD

e A query operation that checks for a single rule.

e An add operation that adds both single and lists of rules

e A delete operation that deletes either a single rule or a list of rules

e A store operation that stores the rules on a permanent storage device

22

WO 01/67252 PCT/US01/06913

* A cache operation which stores recently added rules to a temporary cache file
until a store operation is completed

¢ Aninitialize operation that builds the initial in memory rules representation from
the rules file stored on the permanent storage device, including the cache file if'it

exists

VaultDD Rules Table Structure

The kernel rules are implemented using a global hash table. The hashing algorithm uses a
universal hash function with pseudo random numbers to achieve adequate key dispersion.
The average probability of a collision between two distinct keys for a table of size M is

approximately 1/M.
An exemplary hash table implementation defines the following structures:

/ISTATUS codes enumeration

typedef enum {
STATUS OK,
STATUS_MEM_EXHAUSTED,
STATUS RULE NOT FOUND,
STATUS RULE FOUND,
STATUS_GENERIC_ERROR

} RLS_STATUS;

//KEY definition
typedef UNICODE STRING KEY;

//RECORD definition

typedef struct RECORD {
long flags,

} RECORD, *PRECORD;

//RULES definition

typedef struct VLT RULE {
KEY key[MAX PATH+1];
RECORD rec;

} VLT _RULE, *PVLT_RULE;

23

WO 01/67252 PCT/US01/06913

typedef struct HASHNODE {
struct HASHNODE *next;
RULE rule;

} HASHNODE, *PHASHNODE,;

typedef struct HASHTABLE {
PHASHNODE *pRulesTable;
ERESOURCE hashTableRes; ’
long hashTableSize;
long numHashTableRules;
long numHashCollisions;
TABLE TYPE tType,
} HASHTABLE, *PHASHTABLE;

As should be clear by the HASHNODE definition, the hashing algorithm uses separate
chaining to handle collisions. The method of separate chaining creates a linked list of
rules whenever a rules collision occurs. For example, in the event a rule A and rule C
hash to the same value, a collision is caused in the rules table. A link list of rules is then
created at the collision point with each rule in the collision chained off the list’s “next
pointer”. The rules engine must detect the collision and follow the linked list searching
for a direct match of each text (pre-hashed) rule in the list. If the text rule matches, then

there is a rule match.

VaultDD Rules API
The following are exemplary functions provided within the rules API of VaultDD 68 to

affect the aforementioned rules operations:

e RLS_STATUS VIt _QueryRule (IN PHASHTABLE pHashTable, IN
VLT_RULE rule); -

e RLS_STATUS VIt DelRule (OUT PHASHTABLE pHashTable, IN
VLT_RULE rule),

e RLS_STATUS Vlit_DelRules (OUT PHASHTABLE pHashTable, IN PVOID
pInBuf);

e RLS STATUS Vit _AddRule (OUT PHASHTABLE pHashTable, IN
VLT _RULE rule;

e RLS_STATUS VIt_AddRules (OUT PHASHTABLE pHashTable, INPVOID
pInBuf);

e RLS_STATUS Vlt_FetchRules (OUT PHASHTABLE pHashTable);

24

WO 01/67252 PCT/US01/06913

e RLS _STATUS Vit DumpRulesToDisk JN PHASHTABLE pHashTable, IN
PUNICODE_STRING outputFile),

e RLS STATUS Vlt_InitializeRules (OUT PHASHTABLE pHashTable, long
size);

VaultDD Rules Permanent Storage and File Caching

The VaultDD device driver 68 (Fig. 2) is responsible for maintaining an on disk
representation of the in memory rules structure. In order to maximize performance for a
large rule set, two files are used:

1. A cache file is used to store any rule changes that have occurred
before the complete rule set has been saved to disk. This file is
preferably removed whenever a successful call to
VIt_DumpRulesToDisk has been completed. The hidden registry
key HKLM\SYSTEM\Services\VaultDD\cachefile points to the
name and location of the cache file and must be created during the
initial installation of the product. The hidden registry key
HKLM\SYSTEM\Services\VaultDD\cachefilecksm points to the
MDS5 checksum of the cache file. This key is updated by dumping
the rules cache table (pointed to by the pRulesCache member of the
HASHTABLE structure) whenever a rule change request is received
by the GU1 64 (Fig. 2).

2. A conventional binary file is used to contain the complete rules since
the last successful call to VIt DumpRulesToDisk. This file is
updated whenever the driver is unloaded or a call to
VIt_DumpRulesToDisk is completed. The hidden registry key
HKLM\SYSTEM\Services\VaultDD\rules points to the name and
location of the rules file and must be created during initial installation
of the product. The hidden registry key

HKLM\SYSTEM\Services\VaultDD\rulescksm points to the MD5

25

WO 01/67252 PCT/US01/06913

checksum of the rules file. This registry key is updated whenever the

rules are dumped to disk.

VaultDD Permanent Storage Integrity

The integrity of the permanent storage files, both the default rules file and the rules
cache file, is ensured by storing a MD5 checksum of the file in the registry as a hidden key
and protected by the device driver 68 (Fig. 2). This protection substantially ensures that the
MDS5 can only be updated by the driver 68. During the initialization of the rules the MDS5 of
the file is computed. If the MDS5 file does not match that which is stored in memory, then
the device driver loads only the default rules and a notification is sent to the NT Event Log
52 (Fig. 1B) that a MD5 mismatch of the rules has occurred. At this point, it is up to the
administrator to reconfigure the device driver 68 from the rules file(s) created at installation
time.
System Protection Mechanisms

In addition to the enforced security contexts and the secure communication
protocols used to communicate between user space 24 and kernel space 26, several other
protection mechanisms and/or techniques may be preferably used by system 10. These
additional protection mechanisms are used to protect both the host system and also system
10 itself. System 10 provides protection of files (user files, binaries, system files, etc.) and
also of registry keys. File system protection is accomplished using a filter driver or shim,
while registry protection is afforded by hooking system service calls. The following will first
provide generic NT™ background on each of these methods and then provide greater detail

relating to how system 10 uses the methods.

NT Device Drivers

The development of the kernel component of the present invention, i.e. the device
driver 68, faced many challenges. As discussed hereinabove, one of the primary tasks of the
driver 68 is to perform the shim (filter) functions, i.e., to intercept all requests to write files
to disk. In order to perform this operation successfully, the driver has to be loaded and

26

WO 01/67252 PCT/US01/06913

perform certain operations in an exact sequence every time. In order to understand how and
why this is the case, it is necessary to understand the Windows NT architecture of drivers,
devices, and IRP’s (1/0 Request Packets). The following provides an introduction to these
concepts and explains their significance to the system 10.

The skilled artisan will recognize that at a basic level, a device driver is a piece of
software that is loaded into the kernel space to handle I/0 operations between the OS and
its associated hardware (i.e. the devices). In NT™, there are essentially three types of
drivers:

e Hardware device drivers that handle 1/0 via HAL to hardware such as hard

drives and NICs (Network Interface Cards).

e File system drivers that handle I/O request at a file level and forward them to a

device. This group also includes network redirectors.

o Filter drivers that intercept /0 and requests and perform additional processing,

such as VaultDD device driver 68 (Fig. 1B).

Internally, NT represents these drivers as ‘driver objects’. The NT I/O manager can
then keep track of the various drivers for forwarding requests. NT also uses ‘device
objects,” which represent the physical (driven) device itself. ‘Device objects’ are created by
‘driver objects.” This is logical as the driver manages a device, so the driver object manages
the device object. For instance, at boot time, the driver for a hard disk is loaded into the
kernel. A driver object is then created to represent this driver. Then, the driver object will
create a device object that represents the disk itself. The result is a driver object
representing the driver and a device object representing the device.

The I/O Request Packet (IRP) is simply a data structure representing a request for
some sort of /0. Thus, conceptually, the device object represents the device that is being
written to. The driver object handles how that write will take place. The IRP then is the
request that the write take place. For example, from an application such as Microsoft®
Word™, a user hits the Save icon. This initiates a function call that finds its way down to

the I/O Manager in kernel space. The I/0 Manager has to decide where to send this save

27

WO 01/67252 PCT/US01/06913

request, i.e. which device should receive this save. The 1/O Manager will construct an IRP
containing the save request and send it on its way to the target device object.

To understand how an IRP finds its way to the correct device, it is first necessary to
comprehend the concept of attaching one device to another. A representative example of
this concept is shown in Fig. 7. Referring to Fig. 7, consider a hard disk as the destination
of I/0O. As shown, there is a disk device object 140 representing the disk. Up one level,
there is also a logical volume device object 142 created by the Windows™ file system driver
(not shown) that represents a logical volume on this disk. For instance, if a disk has C:\ and
D:\ volumes, there needs to be some sort of representation of these entities. In Windows
NTT™, this is accomplished by representing each of the logical volumes as discrete device
objects. Since the file system is a driver and is responsible for managing these logical
volumes, the file system driver object (not shown) creates and manages the logical volume
device objects.

At this point, there are device objects representing the physical disk and the logical
volumes. The concept of attaching devices is used to ensure that a request (i.e., to write C:)
gets where it needs to go. In this regard, when a logical volume device object (i.e., 142) is
created, it is attached to the disk device object (i.e., 140). The attached objects then form a
sort of stack. (The stack is actually a linked list, but the stack concept is useful.) The last
device to attach itself to another is inserted at the head of the linked list, such as shown as
Other Device Objects 144. Thinking of the list as a stack, this means that the last device
attached is at the top of the stack.

When the I/0 Manager (located within kernel space 26) receives a request to write
to disk, it determines a target device object to send the request to (this request is the IRP).
It identifies the disk device object as the target and looks at its attached device list. It then
sends the IRP to the first device object in that list (the top of the stack). This means that the
last device to attach is actually the first to get the IRP. The IRP is then passed though the
stack to the target device. However, it is important to note that each device object has the

option of processing the IRP or passing it on. This is critical to how a filter driver operates.

28

WO 01/67252 PCT/US01/06913

In the example shown in Fig. 7, any requests to write to the hard disk will propagate
down this stack, in the direction 146 with each layer having the option to process or pass on
the IRP before reaching the hard disk. Some IRP’s may never reach the hard disk

depending on actions taken by the above device objects.

Device Driver (VaultDD) 68

As discussed hereinabove, VaultDD 68 (Fig. 2) includes a file system filter driver for
protecting the file system and in addition, performs system call hooking to protect the
registry. One of its primary tasks is to protect writes to given files. This task is
accomplished by inserting a VaultDD Device Object 146 in the IRP stack of a logical
volume as shown in Fig. 8, where it intercepts write requests to disk. By intercepting these
requests, VaultDD 68 (Fig. 2) can take a write request, check if the file is protected, (i.e.,
the system 10 is disposed in Operational Context 22 and the particular rule is set to “Deny”
in Service Context Manager 16) and deny the write if it is. Ifthe file is not protected, (i.e.,
the operation is set to “Permit” in Service Context Manager 16) the IRP is passed along and

the write is successful.

It is helpful at this point to clarify some of the operations that typically occur with
respect to the Windows™ file system driver as the system boots. When the file system
driver is loaded, it generally creates several device objects. For example, it creates a file
system device object representing the file system itself. It also creates, as previously
discussed, device objects (i.e., 142) representing logical volumes. Additional processing is
also generally required to set up conventional data structures. For example, some of these
data structures are preprocessing for the mount operation, during which the file system
device mounts the Logical Volume, i.e., the Volume Device Object 142. The actual mount
operation is triggered by an IRP sent from the Windows™ I/O Manager (not shown).

The present invention must be informed of which logical volumes exist on the
host system. This may be accomplished by requiring users to specify logical volumes
during initial installation of the system 10. It may also be feasible to have system 10

29

WO 01/67252 PCT/US01/06913

make such a determination automatically at various intervals, to help ensure that system

10 is aware of any logical volumes created after its initial installation.

Hooking System Service Calls

Once installed as set forth hereinabove, system 10 provides the aforementioned
protection to the device driver 68 using system service hooking. One skilled in the art will
recognize that the conventional Windows NT™ kernel provides a number of system services
(functions) that are core to any operating system. User space applications do not call these
functions directly. Rather, they call corresponding functions in NT™ provided user space
DLL’s. For instance, an application that wishes to open a file will generate a call to
CreateFile in KERNEL32.DLL, a user space DLL. This in turn will make a call to
NTDLL.DLL, also in user space. It is here that a system service call is actually made. In
this case, the corresponding system service to CreateFile is NtCreateFile. NtCreateFile in
turn triggers a series of steps by the /O manager.

For NTDLL.DLL to call the system service, a context switch from user space to
kernel space is necessitated. This is accomplished by generating an INT 2E instruction,
which generates an interrupt. In order to call the appropriate kernel function, the kernel
exports a system service table called KeSystemServiceTable. This is basically an array,
indexed by ID, of function pointers. Each system service has a corresponding pointer in the
table. The NTDLL.DLL specifies the specific ID of the service it needs to call, hence the
interrupt handler calls the appropriate function.

The idea behind system service hooking performed by the present invention is to
intercept calls to the system services. This is performed by replacing the pointer in the
KeSystemServiceTable corresponding to the system service with a different pointer. For
example, RegCreateKey is a conventional system service used to create Windows™ registry
keys. In the event one wanted to prevent the creation of any registry keys, one may write a
separate function with the same prototype (i.e., with the same call signature including name
and parameter definitions) as the WindowsNT™ RegCreateKey. Next, the pointer in the

30

WO 01/67252 PCT/US01/06913

system table to the original RegCreateKey is replaced with a pointer to the newly written
function. Now, when RegCreateKey is called, it actually calls the newly written function,

which, in this example, denies key creation. This is system service call hooking.

Registry protection

With an understanding of system call hooking, it is now possible to understand
aspects of the protection of the NT™ registry provided by system 10. There are ten
conventional system services for dealing with the registry. They are:

e RegOpenKey

e RegQueryKey

e RegQueryValueKey

e RegEnumerateValueKey

e RegSetValueKey

¢ RegCreateKey

e RegDeleteValueKey

e RegDeleteKey

e RegFlushKey

When VaultDD 68 is loaded, it modifies the system service table by replacing all ten of the
above function pointers to point to functions of VaultDD. Therefore, any attempt to modify
the registry will first call a function of system 10. Each function will check for a violation of
the rules of system 10 (i.e., an attempt to implement a function that is to be ‘Denied’ by
Service Context Manager 16 (Fig. 1B), such as trying to write to a protected location. If
there is no violation, then the original NT™ system services are called, all transparent to the
user. However, in the event there is a rule violation, the original registry function.is never
called and the operation is denied.

This approach thus advantageously secures the configuration of VaultDD 68. In
addition, such service call hooking is also preferably used to prevent installation of other

drivers, ie., malicious drivers intended to circumvent or disable system 10. This is
31

WO 01/67252 PCT/US01/06913

accomplished by hooking a call to RegCreateKey when the path specified by the user is the
location of keys used by device drivers, (ie.,
HKEY LOCAL_MACHINE\CurrentControlSet\Services in NT™).

The service hooking operation of the present invention continues to operate
effectively even in the event other device drivers modify the system service table to provide
similar service hooking. There are two such possibilities, a device driver that modifies the
system service table before VaultDD or one that hooks after VaultDD. In the ‘before’ case,
VaultDD is replacing someone else’s function, not the NT™ system service. In this
instance, in the event there is no rule violation, VaultDD will be calling someone else’s
function, instead of the system service. However, protection is still enforced since VaultDD
has processed the call. In the ‘after’ case, someone else’s function has replaced VaultDD’s
function in the system service table. However, after this other function performs its
processing, it will still call VaultDD. Thus, in this instance, protection is still enforced by
VaultDD.

Thus, as discussed hereinabove, the present invention provides increased protection
for a host computer system by providing alternative Administrative and Operational
Contexts 20 and 22, which selectively permit and deny specific enumerated operations. In
addition, the present invention provides several mechanisms to protect itself to help ensure
that system 10 is not circumveilted or otherwise compromised. As also discussed
hereinabove, this self-protection is accomplished in four general ways:

e Securing configuration of VaultDD, i.e., by requiring user (pre)authentication
and providing a secure channel for communications between user space and
kernel space;

e Preventing bypass of VaultDD and/or installation of other device drivers, i.e., by
hooking system service calls;

e Protecting registry keys, binaries, and files, i.e., using a filter driver and system
service hooking; and

e Providing no unload functionality (to protect system 10 from being unloaded,

except during a re-boot).

32

WO 01/67252 PCT/US01/06913

While embodiments set forth hereinabove have been described as implemented on
a Windows NT® platform, the skilled artisan will recognize that the teachings hereof
may be used in combination with any operating system having both user space and kernel
space, such as UNIX®, LINUX™, SOLARIS™, etc., without departing from the spirit
and scope of the present invention.

The foregoing description is intended primarily for purposes of illustration.
Although the invention has been shown and described with respect to an exemplary
embodiment thereof, it should be understood by those skilled in the art that the foregoing
and various other changes, omissions, and additions in the form and detail thereof may be

made therein without departing from the spirit and scope of the invention.

Having thus described the invention, what is claimed is:

33

WO 01/67252 PCT/US01/06913

CLAIMS

1. A method of providing secure communication with kernel-level components of a
computer system having an operating system that includes user space and kernel
space, said method comprising the steps of:

(a) disposing an authentication module in the kernel space, in communicably
coupled relation with the kernel-level components, to selectively encrypt and
decrypt communications between the kernel-level components and a remote
site;

(b) disposing a transport module in the kernel space, in communicably coupled
relation with the authentication module, to selectively transmit and receive
the communications; and

©) selectively actuating the authentication module and the transport module to
convey the communications to and from the kernel-level components.

2. The method of claim 1, comprising the step of communicably coupling the remote
site to the kernel-level device by a network, and conveying the communications
between the remote site and the kernel-level components while maintaining the
communications free from the user space.

3. The method of claim 1, wherein the remote site is disposed within the user space of
the computer system, and the communications pass from user space to the kernel-
level components while encrypted.

4. The method of claim 1, further comprising the step of (d) disposing a filter driver in

the kernel space in communicably coupled relation with the kernel-level components

34

WO 01/67252 PCT/US01/06913

10.

to intercept and selectively permit and prevent the communications from flowing to
and from the kernel-level components.

The method of claim 4, comprising the steps of sequentially receiving
communications from the remote site with the transport module, decrypting the
communications with the authentication module, and alternatively permitting and
preventing the communications from reaching the kernel-level components with the
filter driver.

The method of claim 4, comprising the steps of sequentially actuating the filter
driver to permit communications to pass from the kernel-level components,
encrypting the communications with the authentication module, and transmitting the
communications with the transport module.

The method of claim 4, further comprising the step of (e) providing a management
module to selectively actuate the filter driver, the authentication module, and the
transport module to convey the communications to and from the kernel-level
components.

The method of claim 7, comprising the step of disposing the management module in
the kernel space.

The method of claim 1, wherein the transport module comprises a kernel sockets
module and a communication server, the kernel sockets module and the
communication server being disposed within the kernel space.

The method of claim 4, further comprising the steps of:

35

WO 01/67252

11.

12.

13.

14.

PCT/US01/06913

(f) providing a service context module to define a plurality of operational states
in which the computer may perform a plurality of operations; and
(g) configuring the filter driver to selectively permit and prevent the performance
of the operations by permitting and preventing communications pertaining to the
operations when the computer system is disposed in each of the operational
states, wherein at least one of the plurality of operations is permitted when the
computer system is disposed in a first one of the operational states and
prevented when the computer system is disposed in a second one of the
operational states.
The method of claim 10, wherein the plurality of states comprise an operational state
and an administrative state.
The method of claim 10, further comprising the step of using a user interface to
selectively place the computer system into one of the states.
The method of claim 12, wherein the user interface effects the using a user interface
step, using encrypted communication with a service context manager disposed in the
kernel space.
A method of providing secure communication with kernel-level components of a
computer system having an operating system that includes user space and kernel
space, said method comprising the steps of:
(a) disposing a filter driver in the kernel space to selectively permit and prevent

communications with the kernel-level components;

36

WO 01/67252 PCT/US01/06913

15.

(b) disposing an authentication module in the kernel space, in communicably
coupled relation with the filter driver, to selectively encrypt and decrypt the
communications; and

(c) disposing a transport module in the kernel space, in communicably coupled
relation with the authentication module, to selectively transmit and receive the
communications;

(d) actuating the filter driver, authentication module, and transport module to
respectively convey received and transmitted communications to and from the
kernel-level components.

A system for providing secure communication between a remote site and kernel-

level components of a computer having user space and kernel space, the system

comprising:

a filter driver disposed in the kernel space to selectively permit and prevent
communications with the kernel-level components;

an authentication module disposed in the kernel space, in communicably
coupled relation with the filter driver, to selectively encrypt and decrypt the
communications;

a transport module disposed in the kernel space, in communicably coupled
relation with the authentication module, to selectively transmit and receive the

communications; and

37

WO 01/67252 PCT/US01/06913

16.

17.

18.

a remote authentication module disposed in the remote site, in communicably
coupled relation with the transport module, to selectively decrypt and encrypt the
communications in cooperation with the authentication module;

wherein communications from the remote site to the kernel-level components
are sequentially encrypted by the remote authentication module, received by the
transport module, decrypted by the authentication module, and selectively permitted
to reach the kernel-level components by the filter driver, and communications
generated by the kernel-level components are sequentially permitted by the filter
driver, encrypted by the authentication module, transmitted by the transport module,
and decrypted by the remote authentication module.

The system of claim 15, wherein the remote site is discrete from the computer and
the communications are conveyed between the remote site and the kernel-level
components while being free from the user space.

The system of claim 15, wherein the remote site is disposed within the user space of
the computer and the communications are conveyed between the user space and the
kernel-level components while encrypted.

An article of manufacture for providing secure communications with kernel-level
components of a computer system having an operating system that includes user
space and kernel space, said article of manufacture comprising:

a computer usable medium having computer readable program code embodied
therein, said computer usable medium having:

computer readable program code for defining

38

WO 01/67252 PCT/US01/06913

19.

an authentication module in the kernel space, in communicably coupled relation with
the kernel-level components, to selectively encrypt and decrypt communications
between the kernel-level components and a remote site;

computer readable program code for defining a transport module in the
kernel space, in communicably coupled relation with the authentication module, to
selectively transmit and receive the communications; and

computer readable program code for selectively actuating the authentication
module and the transport module to convey the communications to and from the
kernel-level components.
Computer readable program code for providing secure communications with kernel-
level components of a computer system having an operating system that includes
user space and kernel space, said computer readable program code comprising:‘

computer readable program code for defining an authentication module in
the kernel space, in communicably coupled relation with the kernel-level
components, to selectively encrypt and decrypt communications between the kernel-
level components and a remote site;

computer readable program code for defining a transport module in the
kernel space, in communicably coupled relation with the authentication module, to
selectively transmit and receive the communications; and

computer readable program code for selectively actuating the authentication
module and the transport module to convey the communications to and from the

kernel-level components.

39

WO 01/67252 PCT/US01/06913

20.

21.

22.

The computer readable program code of claim 19, comprising computer readable
program code for intercepting communications from the remote site to destinations
within kernel space and selectively permitting and preventing the communications
from reaching the destinations.

The computer readable program code of claim 20, comprising one or more shims
disposed within the kernel space to intercept the communications.

The computer readable program code of claim method of claim 19, comprising
computer readable program code for using encrypted communications to selectively

place the computer system into one of said states.

40

PCT/US01/06913

WO 01/67252

89 63 PBL L2
! | \
.. !
ﬁ||w| h [

To N0 || IR

IE Gl J/ d ||| m A 96
| Y [| 1N __A

TE e b [

To W y_\ | mmm Sz

IE 3im31084 1 _rulm,u‘lﬂl_sm/_--._ N
m--@--,_ “
et sl <
S8 |

WILSAS (QIDYNVIN) NOILYNILSIQ ~_ 5z
II 6

WIVLS
NYOMLIN WLSAS

NOILYDNddY
SE€~— INIWIIYNYW

W31SAS I10W3Y

&I

\.%N

SUBSTITUTE SHEET (RULE 26)

PCT/US01/06913

WO 01/67252

21

91 or 4 4 97 8
/ [N
INIING IN3ING STIgYINIaNE
AN SIWYNAC G3L3104d WAISAS S
AN I ./ W VA
ée oo [umad | wao | wae | g g
ST~ e N ="] et P----=- ——-| %
L auvswigy [wed [uwed | oowed | uwed uwid | [LW
0
o 309ds TINU3N
\ 30vasyasn (| ININOD WA | STI@YIND3NA ILvadn 914N09 WILSAS JLVINAINYA
&g \ \ \
98 129 43
o1 7 57 < 08~ 31001 INVUISINIWOY
03153038 NOILY¥34D
HOLVALSININGY .
e~ *ihish g1 o1

IT

SUBSTITUTE SHEET (RULE 26)

PCT/US01/06913

WO 01/67252

31

o1

¢ OIA

89— aarninva _
9¢
334dS TINYIN
30vdS ¥3sN
09 IdYWI |74
P9~ In9 NOILYYNIIINDD 99— n
\ /

SUBSTITUTE SHEET (RULE 26)

WO 01/67252 PCT/US01/06913

4/1
START CLIENT THREAD
CLIENT THREAD Y 78
76
70
g ')"' VAULTDD
74— % || b | 68
s |||
26
Eig
conriGuraion cui |-— 64
CONNECTION REGUEST
24 60
USER SPACE
KERNEL SPACE
26
78 76

FIG. 4

SUBSTITUTE SHEET (RULE 26)

WO 01/67252 PCT/US01/06913

31

EXCHANGE PUBLIC KEYS 78
60
CMFPI/ DURING CONNECT __ o1 1EnT THREAD
80~ 516N PASSWORD WITH CMAPI PRIVATE KEY
{ 78
82~ ENGRYPT PASSWORD WITH VAULTDD PUBLIC KEY CLIENT THREAD
84 ~{ DECRYPT PASSWORD WITH VAULTDD PRIVATE KEY
!
86 ~{ " VERIFY SIGNATURE WITH CMAPI'S PUBLIC KEY
!
88 ~{" GENERATE MAK FROM DECRYPTED PASSWORD 91
; \
90 IF FAILURE,
~] COMPARE GENERATED MAK TO STORED AOTIFY Cheb
92 ‘
~~ IFSUCCESS, GENERATE DES STRUCTURE
94 +
~ SIGN WITH VAULTDD PRIVATE KEY
60 ;
CHARI ENCRYPT WITH CMAPI PUBLIC KEY
98 96
~~| " DECRYPT STRUCTURE WITH CMAPI PRIVATE KEY
{
100~ ¢yeck SIGNATURE WITH VAULTDD PUBLIC KEY
{
102~ sy0Re DES KEY, RETURN SUGCESS TO CLIENT

FIG. 5

SUBSTITUTE SHEET (RULE 26)

WO 01/67252

PCT/US01/06913

6/1
[MD5 CHECKSUM 1 —104
HEADER) VERSION (PROTOCOL) +—106
L RESERVED | —108
([CMD/RSP —110
DATA HEADER < DATA LENGTH —112
ENCRYPTED BLOCK LENGTH ~ +— 114
RESERVED L —116
SIGNATURE { SIGNATURE 1 —-118
DATA < ENCRYPTED DATA' | _-120

FIG. 6

SUBSTITUTE SHEET (RULE 26)

WO 01/67252

PCT/US01/06913

1/1
144 [OTHER DEVICE OBJECTS 146
142 C: DEVICE OBJECT IRP PATH
1404 HARD DISK DEVICE OBJECT
PRIOR ART

144 - OTHER DEVICE OBJECT

— s 146
148] VAULTDD DEVICE OBJECT
1421 | C: DEVICE OBJECT IRP PATH
1404 HARD DISK DEVICE OBJECT

SUBSTITUTE SHEET (RULE 26)

International application No.

INTERNATIONAL SEARCH REPORT

PCT/US01/06913
A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) 1 GOG6F 12/14
USCL 1 713/164, 168

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 713/164, 168

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
EAST

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of docunuent, with indication, where appropriate, of the rzlevant passages Relevant to claim No.
| -aleg £
X US 5,737,523 A (CALLAGHAN et al.) 07 April 1998, column 11, line 21-column 12, line | 1-22
12.
Y US 5,560,008 A (JOHNSON et al.) 24 September 1996, column 11, line 60-column 12, 1-22
line 55.
Y US 5,481,720 A (LOUCKS et al.) 02 January 1996, column 6, lines 28-50 and column 6, 1-22

line 56-column 7, line 4.

D Further documents are listed in the continuation of Box C. D See patent family annex.

* Special categories of cited documents: “T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
“A” document defining the general state of the art which is not considered to be principle or theory underlying the invention
of particular relevance
“X" document of particular relevance; the claimed invention cannot be
“E” earlier application or patent published on or after the international filing date considered novel or cannot be considered to involve an inventive step

when the document is taken alone
“L" document which may throw doubts on priority claim(s) or which is cited to

establish the publication date of another citation or other special reason (as “Y” document of particular relevance; the claimed invention cannot be
specified) considered to involve an inventive step when the document is
combined with one or inore other such dc such combination
“Q” document referring to an oral disclosure, use, exhibition or other means being obvious to a person skilled in the art
“P” document published prior to the international filing date but later than the “&" document member of the same patent family
priority date claimed

Date of the actual completion of the international search Date of mailingdfihe Htj’xﬁ‘jo?bmch report

07 May 2001 (07.05.2001)

Name and mailing address of the ISA/US Authorized officer

Commissioner of Patents and Trademarks . ﬁ M %’—fr@
Box PCT Gilberto Barron, Jr. 2 -
305-3900

Washington, D.C. 20231
Facsimile No. (703)305-3230 Telephone No. (703

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

