
M. E. MARCUSE. Sheet metal can.

(Application filed Sept. 20, 1897.)

(No Model.)

UNITED STATES PATENT OFFICE.

MILTON E. MARCUSE, OF RICHMOND, VIRGINIA, ASSIGNOR TO THE HASKER & MARCUSE MANUFACTURING COMPANY, OF SAME PLACE.

SHEET-METAL CAN.

SPECIFICATION forming part of Letters Patent No. 633,524, dated September 19, 1899.

Application filed September 20, 1897. Serial No. 652,296. (No model.)

To all whom it may concern:

Be it known that I, MILTON E. MARCUSE, of Richmond, in the county of Henrico and State of Virginia, have invented a new and 5 useful Improvement in Sheet-Metal Cans, of which the following is a specification.

My invention is an improved can for use in packing tobacco and other commodities. The desiderata of such cans are cheapness, strength, rigidity, close-sealing, and security of fastening of the lids or covers, along with adaptation for convenient detachment of the same for access to the contents of the cans. In embodying these qualities and features I have adopted the improved construction and combination of parts hereinafter described, and shown in the accompanying drawings, in which—

Figure 1 is a perspective view of the can. 20 Fig. 2 is a perspective view of the can, showing the cover removed. Fig. 3 is an enlarged vertical section of the top portion of the can. Fig. 4 is a plan view of the sheet from which the body of the can is formed. Fig. 5 is a 25 detail section illustrating the construction of the body of the can. Fig. 6 is a perspective view illustrating the application of a tool in forming loops on the can-body. Fig. 7 is a perspective view of the said tool.

 My invention pertains mainly to the construction of the body of the can and to the means of attachment of the lid or cover thereto.

The body A is constructed from a single piece a, Fig. 4, of sheet metal, preferably tinned iron, in which piece two, three, or more slits a' are cut in the operation of separating it from the commercial sheet. The next step consists in bending or doubling the top portion of such body or piece a upon itself, thus forming a lap or fold a^2 , as shown in Figs. 2, 3, and 5. In such operation the double edge d is bent inward to form a narrow horizontal shoulder or flange. The next step consists in curving such flanged piece a into circular shape, Fig. 5, as required to form the body of a can. A suitable-pointed tool, Figs. 6 and 7, is then inserted in the slits a' to bend outward the sub-50 jacent portions of the lap or fold a^2 , so as to form loops a^3 for secure attachment of the cover B.

The cover B is cut out as one piece, with lugs or tongues b attached, from a flat metal sheet and formed up in dies into the required 55 shape. (Shown in Fig. 5.) These tongues b are spaced apart like the loops a^3 of the canbody and are adapted to pass through the latter. When the cover B is applied to the body a of the can, its lugs or tongues b enter 60 the slits a' and project through the same and below the edge of the body lap or fold a^2 . The double inturned flange serves as a bed for an elastic packing-ring c, which is laid thereon preparatory to applying the cover B. 65 When the tongues b are bent up, they clasp and lock over the loops a^3 , as shown in Fig. 1. It is obvious that the cover B is thereby locked securely, as well as hermetically closed.

It will be seen that the formation of the loops a^3 integrally with the integral lap a' of the can-body a and the similar formation of the lugs or tongues b relative to the body of the cover B effects a considerable economy 75 in manufacture and a great security and durability of fastening or connection between the parts. The can is also rendered very strong and durable as a whole.

What I claim is-

A sheet-metal can comprising a suitable body portion the material of which is bent over upon itself to form a double thickness at the upper end of the can, and extending down a short distance below the said upper 85 edge thereof, the doubled portion being turned inwardly all around at the upper edge of the can to form a seat for a packing-strip, and the outer thickness of the metal being provided with apertures at suitable points around go the can, in combination with a removable cover, which latter is formed with tongues which are designed to extend through the apertures in the body of the can and then turned up to draw the cover tightly in con- 95 tact with the packing-strip and hold it in such position, the body portion of the can being made of a single piece of material and the cover of the can being also made of a single piece of material, substantially as described. 100 MILTON E. MARCUSE.

Witnesses:

T. W. FOLKES, M. J. STRAUS.