
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau
(10) International Publication Number

(43) International Publication Date WO 2013/089576 Al
20 June 2013 (20.06.2013) W P O P C T

(51) International Patent Classification: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
G06F 21/56 (2013.01) HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,

KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
(21) International Application Number: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,

PCT/RO20 12/000020 NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW,

(22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,

5 September 2012 (05.09.2012) TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

(25) Filing Language: English
(84) Designated States (unless otherwise indicated, for every

(26) Publication Language: English kind of regional protection available): ARIPO (BW, GH,

(30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,

61/554, 859 2 November 201 1 (02. 11.201 1) US UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

13/3 12,686 6 December 201 1 (06. 12.201 1) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,

(71) Applicant (for all designated States except US): BITDE- MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
FENDER IPR MANAGEMENT LTD [CY/CY]; Kreon- TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
tos 12, PC 1076, Nicosa (CY). ML, MR, NE, SN, TD, TG).

(72) Inventors; and Declarations under Rule 4.17 :
(75) Inventors/Applicants (for US only): TOFAN, I. Vlad

— as to applicant's entitlement to apply for and be granted a
[RO/RO]; Str. Albert Einstein nr.4, Cluj-Napoca, jud. Cluj

patent (Rule 4.1 7(H))
(RO). DUDEA, V. Sorin [RO/RO]; Str. Sold, Ene Modor-
an nr. 10, bl. M90, sc.2. et 6, ap. 88, Sector 5, Bucuresti — as to the applicant's entitlement to claim the priority of the
(RO). CANJA, D. Viroel [RO/RO]; Sat. Petresti (Com. earlier application (Rule 4.1 7(in))
Corbeanca) jud. Ilfov, Ale. Gardenia nr. 22 (RO).

Published:
(74) Agent: TULUCA, Doina; Bd. Lacul Tei nr. 56, bl. 19, — with international search report (Art. 21(3))

sc.B, ap. 52, sector 2, RO-020392 Bucuresti (RO).
— before the expiration of the time limit for amending the

(81) Designated States (unless otherwise indicated, for every claims and to be republished in the event of receipt of
kind of national protection available): AE, AG, AL, AM, amendments (Rule 48.2(h))
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

(54) Title: FUZZY WHITELISTING ANTI-MALWARE SYSTEMS AND METHODS

FIG. 1

l

00
©

(57) Abstract: In some embodiments, an anti-malware system accounts for benign differences between non- malicious data objects,
such as differences introduced by compilers and other polymorphisms. A target object is separated into a multitude of code blocks,

o and a hash is calculated for each code block. The obtained set of target hashes is then compared against a database of hashes corres -
ponding to code blocks extracted from whitelisted objects. A target object may be labeled as whitelisted (trusted, non -malicious) if it

o has a substantial number of hashes in common with a whitelisted object. Objects which are slightly different from known whitelisted
objects may still receive whitelisting status. By allowing a certain degree of mismatch between the sets of hashes of distinct objects,
some embodiments of the present invention increase the efficiency of whitelisting without an unacceptable decrease in safety.



Fuzzy Whitelisting Anti-Malware Systems and Methods

CROSS REFERENCE TO RELATED APPLICATION(S)

[0001] This application claims the benefit of the filing date of U.S. Provisional Patent

Application No. 61/554,859, filed on 11/02/201 1, which is hereby incorporated by reference in

its entirety.

BACKGROUND

[0002] The invention relates to systems and methods for protecting users from malicious

software, and in particular to software whitelisting.

[0003] Malicious software, also known as malware, affects a great number of computer systems

worldwide. In its many forms such as computer viruses, worms, Trojan horses, and rootkits,

malware presents a serious risk to millions of computer users, making them vulnerable to loss o f

data, identity theft, and loss of productivity, among others.

[0004] Computer programs dedicated to malware scanning employ various methods of detecting

and eliminating malware from user computer systems. Such methods include behavior-based

techniques and content-based techniques. Behavior-based methods may involve allowing a

suspected program to execute in an isolated virtual environment, identifying malicious behavior,

and blocking the execution of the offending program. In content-based methods, the contents of

a suspected file are commonly compared to a database of known malware-identifying signatures.

If a known malware signature is found in the suspected file, the file is labeled as malicious.

[0005] Other methods of combating malware employ application whitelisting, which comprises

maintaining a list of software and behaviors that are allowed on a user's computer system, a d

blocking all other applications from executing. Such methods are particularly effective agairut



polymorphic malware, which is able to randomly modify its malware-identifying signature,

rendering conventional content-based methods ineffective.

[0006] Some whitelisting applications employ hash values to identify and ensure the integrity of

whitelisted software. A cryptographic hash may be created for a file or group of files affiliated

with a whitelisted application and stored for reference. The respective application is then

authenticated by comparing the stored hash to a new hash generated at runtime.

[0007] The performance of anti-malware whitelisting methods may depend on the capability to

maintain and update whitelist databases in a efficient and flexible manner.

SUMMARY

[0008] According to one aspect, a method comprises performing at a client computer system an

initial malware scan of a plurality of target objects of the client computer system; and, in

response to a tentative determination by the initial malware scan that the target object is

suspected of being malicious: generating at the client computer system a plurality of target

hashes of the target object, each target hash representing a distinct code block of the target

object, each distinct code block consisting of a sequence of processor instructions of the target

object; sending from the client computer system the plurality of target hashes to a server

computer system connected to the client computer system over a wide area network; and

receiving at the client computer system from the server computer system a server-side indicator

of whether the target object is malicious. The server-side indicator is generated by the server

computer system by: for at least a target hash of the plurality of target hashes, retrieving a

plurality of reference hashes of a reference object, the reference object selected from a set of

whitelisted objects according to the target hash, and when the plurality of target hashes is not

identical to the plurality of reference hashes, determining a similarity score according to a count

of hashes common to both the plurality of target hashes and the plurality of reference hashes; and

when the similarity score exceeds a predetermined threshold, designating the target object as

non-malicious.

[0009] According to another aspect, a method comprises receiving at a server computer system a

plurality of target hashes of a target object of a client computer system connected to the server



computer system over a wide area network; generating at the server computer system a server-

side indicator of whether the target object is malicious; and sending to the client computer

system the server-side indicator of whether the target object is malicious. The plurality of target

hashes are generated at the client computer system in response to a tentative determination by the

client computer system that the target object is suspected of being malicious, the tentative

determination resulting from an initial malware scan of a plurality of target objects of the client

computer system. Generating at the server computer system a server-side indicator of whether

the target object is malicious comprises: for at least a target hash of the plurality of target hashes,

retrieving a plurality of reference hashes of a reference object, the reference object selected from

a set of whitelisted objects according to the target hash, and when the plurality of target hashes is

not identical to the plurality of reference hashes, determining a similarity score according to a

count of hashes common to both the plurality of target hashes and the plurality of reference

hashes, and when the similarity score exceeds a predetermined threshold, designating the target

object as non-malicious.

[0010] According to another aspect, a method comprises receiving at a server computer system a

plurality of target hashes of a target object, each target hash representing a distinct code block of

the target object, each distinct code block consisting of a sequence of processor instructions of

the target object; for at least a target hash of the plurality of target hashes, employing the server

computer system to: retrieve a plurality of reference hashes of a reference object, the reference

object selected from a set of whitelisted objects according to the target hash, and when the

plurality of target hashes is not identical to the plurality of reference hashes, determine a

similarity score according to a count of hashes common to both the plurality of target hashes and

the plurality of reference hashes; and when the similarity score exceeds a predetermined

threshold, employing the server computer system to label the target object as non-malicious.

[0011] According to another aspect, a computer system comprises at least a processor

programmed to receive a plurality of target hashes, each target hash representing a distinct code

block of a target object, each distinct code block consisting of a sequence of processor

instructions of the target object; for at least a target hash of the plurality of target hashes: retrieve

a plurality of reference hashes of a reference object, the reference object selected from a set of



whitelisted objects according to the target hash, and when the plurality of target hashes is not

identical to the plurality of reference hashes, determine a similarity score according to a count of

hashes common to both the plurality of target hashes and the plurality of reference hashes; and

when the similarity score exceeds a predetermined threshold, label the target object as non-

malicious.

[0012] According to another aspect, a non-transitory computer-readable storage medium encodes

instructions which, when executed on a processor, cause the processor to perform the steps of:

receiving a plurality of target hashes, each target hash representing a distinct code block of a

target object, each distinct code block consisting of a sequence of processor instructions of the

target object; for at least a target hash of the plurality of target hashes, retrieving a plurality of

reference hashes of a reference object, the reference object selected from a set of whitelisted

objects according to the target hash; when the plurality of target hashes is not identical to the

plurality of reference hashes, determining a similarity score according to a count of hashes

common to both the plurality of target hashes and the plurality of reference hashes. When the

similarity score exceeds a predetermined threshold, the target object is non-malicious.

[0013] According to another aspect, a computer system comprises: means for receiving a

plurality of target hashes, each target hash representing a distinct code block of a target object,

each distinct code block consisting of a sequence of processor instructions of the target object;

means for retrieving a plurality of reference hashes of a reference object, the reference object

selected from a set of whitelisted objects according to a selected target hash of the plurality of

target hashes; means for determining a similarity score according to a count of hashes common

to both the plurality of target hashes and the plurality of reference hashes; and means for labeling

the target object as non-malicious according to the similarity score.

[0014] According to another aspect, a method comprises receiving at a server computer system a

plurality of target hashes, each target hash representing a distinct data block of a target object,

each distinct code block consisting of a sequence of processor instructions of the target object; in

response to receiving the plurality of target hashes, retrieving a plurality of reference hashes

representing a whitelisted data object, and when the plurality of target hashes is not identical to



the plurality of reference hashes, when the plurality of target hashes and the plurality of reference

hashes share a majority of items, labeling the target object as non-malicious.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] The foregoing aspects and advantages of the present invention will become better

understood upon reading the following detailed description and upon reference to the drawings

where:

[0016] Fig. 1 shows an exemplary anti-malware system according to some embodiments of the

present invention.

[0017] Fig. 2 illustrates an exemplary hardware configuration of a client computer system

according to some embodiments of the present invention.

[0018] Fig. 3 shows an exemplary hardware configuration of an anti-malware server system

according to some embodiments of the present invention.

[0019] Fig. 4 shows a diagram of an exemplary anti-malware application executing on the client

computer system according to some embodiments of the present invention.

[0020] Fig. 5 shows exemplary applications executing on the anti-malware server system

according to some embodiments of the present invention.

[0021] Fig. 6 illustrates an exemplary sequence of steps performed by the client anti-malware

application of Fig. 4 according to some embodiments of the present invention.

[0022] Fig. 7 shows an example of code normalization according to some embodiments of the

present invention.

[0023] Fig. 8 shows an exemplary memory representation of a processor instruction according to

some embodiments of the present invention.

[0024] Fig. 9 shows an exemplary code block and an exemplary opcode pattern corresponding to

the code block according to some embodiments of the present invention.



[0025] Fig. 10 illustrates an exemplary fragment of code comprising a plurality of code blocks

and an exemplary object data indicator (ODI) corresponding to the fragment of code, according

to some embodiments of the present invention.

[0026] Fig. 11 shows an exemplary sequence of steps performed by the server anti-malware

application of Fig. 5 according to some embodiments of the present invention.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

[0027] In the following description, it is understood that all recited connections between

structures can be direct operative connections or indirect operative connections through

intermediary structures. A set of elements includes one or more elements. Any recitation of an

element is understood to refer to at least one element. A plurality of elements includes at least

two elements. Unless otherwise required, any described method steps need not be necessarily

performed in a particular illustrated order. A first element (e.g. data) derived from a second

element encompasses a first element equal to the second element, as well as a first element

generated by processing the second element and optionally other data. Making a determination

or decision according to a parameter encompasses making the determination or decision

according to the parameter and optionally according to other data. Unless otherwise specified,

an indicator of some quantity/data may be the quantity/data itself, or an indicator different from

the quantity/data itself. Computer programs described in some embodiments of the present

invention may be stand-alone software entities or sub-entities (e.g., subroutines, code objects) of

other computer programs. Unless otherwise specified, a target object is a file or a process

residing on a client computer system. An identifier of a target object comprises data that allows

the selective identification and retrieval of the target object itself, not merely as part of a larger

data structure such as the entire memory of a client computer system. Unless otherwise

specified, an object data indicator (ODI) of a target object comprises features of the target object

data (e.g., a code block, an opcode pattern, a hash) conducive to determining whether the target

object is malicious, e.g. infected with malware. Unless otherwise specified, a hash is an output

of a hash function. Hash functions are mathematical transformations mapping sequences of

symbols (e.g. characters, bits) into shorter sequences of numbers or bit strings. A target hash is a

hash computed on data of a target object. Unless otherwise specified, the term whitelisted is



understood to mean trusted to be clean, i.e. not containing malware. A first set is identical to a

second set when all elements of the first set are contained in the second set, and all elements of

the second set are contained in the first set. Computer readable media encompass non-transitory

media such as magnetic, optic, and semiconductor storage media (e.g. hard drives, optical disks,

flash memory, DRAM), as well as communications links such as conductive cables and fiber

optic links. According to some embodiments, the present invention provides, inter alia,

computer systems comprising hardware (e.g. one or more processors) programmed to perform

the methods described herein, as well as computer-readable media encoding instructions to

perform the methods described herein.

[0028] The following description illustrates embodiments of the invention by way of example

and not necessarily by way of limitation.

[0029] Fig. 1 shows an exemplary malware detection system 10 according to some embodiments

of the present invention. System 10 comprises a set of anti-malware (AM) server systems 20a-c

and a set of client computer systems 30a-b. Client computer systems 30a-b may represent end-

user computers each having a processor, memory, and storage, and running an operating system

such as Windows®, MacOS® or Linux. Some client computer systems 30a-b may represent

mobile computing and/or telecommunication devices such as tablet PCs and mobile telephones.

In some embodiments, client computer systems 30a-b may represent individual customers, or

several client computer systems may belong to the same customer. In some embodiments, one

of systems 30a-b may be a server computer such as a mail server, in which case malware

detection services may be used to identify malware present in emails or other messages sent to

multiple clients, and to take appropriate action (e.g. remove or quarantine malware-infected

items) before the messages are delivered to the clients. A network 12 connects client computer

systems 30a-c and anti-malware server systems 20a-c. Network 12 may be a wide-area network

such as the Internet. Parts of network 12, for example a part of network 12 interconnecting client

computer systems 30a-b, may also include a local area network (LAN).

[0030] Fig. 2 shows an exemplary hardware configuration of a client computer system 30. In

some embodiments, system 30 comprises a processor 24, a memory unit 26, a set of input



devices 28, a set of output devices 32, a set of storage devices 34, and a communication interface

controller 36, all connected by a set of buses 38.

[0031] In some embodiments, processor 24 comprises a physical device (e.g. multi-core

integrated circuit) configured to execute computational and/or logical operations with a set of

signals and/or data. In some embodiments, such logical operations are delivered to processor 24

in the form of a sequence of processor instructions (e.g. machine code or other type of software).

Memory unit 26 may comprise volatile computer-readable media (e.g. RAM) storing data/signals

accessed or generated by processor 24 in the course of carrying out instructions. Input

devices 28 may include computer keyboards and mice, among others, allowing a user to

introduce data and/or instructions into system 30. Output devices 32 may include display

devices such as monitors. In some embodiments, input devices 28 and output devices 32 may

share a common piece of hardware, as in the case of touch-screen devices. Storage devices 34

include computer-readable media enabling the non-volatile storage, reading, and writing of

software instructions and/or data. Exemplary storage devices 34 include magnetic and optical

disks and flash memory devices, as well as removable media such as CD and/or DVD disks and

drives. Communication interface controller 36 enables system 30 to connect to a computer

network and/or to other machines/computer systems. Typical communication interface

controllers 36 include network adapters. Buses 38 collectively represent the plurality of system,

peripheral, and chipset buses, and/or all other circuitry enabling the inter-communication of

devices 24-36 of computer system 30. For example, buses 38 may comprise the northbridge bus

connecting processor 24 to memory 26, and/or the southbridge bus connecting processor 24 to

devices 28-36, among others.

[0032] Fig. 3 shows a hardware configuration of an exemplary AM server system 20 of

systems 20a-c, according to some embodiments of the present invention. AM server system 20

may be a computer system comprising a server processor 124, a server memory 126, a set of

server storage devices 134, and a server communication interface controller 136, all connected to

each other via a set of server buses 138. Although some details of hardware configuration may

differ between server system 20 and client computer system 30, the scope of devices 124, 126,



134, 136 and 138 may be similar to that of devices 24, 26, 34, 36 and 38 described above,

respectively.

[0033] Client computer system 30 may include a client anti-malware (AM) application 40 and a

client-side cache- 56, as shown in Fig. 4 . In some embodiments, client AM application 40 may

be a stand-alone application, or may be an anti-malware module of a security suite having

antivirus, firewall, anti-spam, and other modules. Client AM application may comprise an active

AM scanner 42, a static AM scanner 44, an emulator 46 connected to static AM scanner 44, a

code normalization engine 48 connected to scanners 42 and 44, a client AM communication

manager 52 and a hashing engine 54 connected to communication manager 52 and code

normalization engine 48.

[0034] In some embodiments, client AM application 40 is configured to conduct a client-side

part of a client-server collaborative scan to detect malware stored on computer-readable media

forming part of client computer system 30 (e.g. memory, hard drive), or on computer-readable

media connected to system 30 (e.g. memory stick, external hard drive, network devices, etc.). As

part of a client-server collaborative scan, client AM application 40 is configured to send a target

object data indicator (ODI) 100 to AM server systems 20a-c and to receive a scan report 50 from

systems 20a-c.

[0035] Target objects scanned by AM application 40 include computer files and processes. Each

process may include a set of loaded memory modules (i.e. loaded images of a target executable

file and its referenced dynamic linked libraries), as well as any additional files corresponding to

the loaded memory modules. A target object may be considered malware if it contains at least a

part of a malicious software entity (e.g. virus, worm, Trojan).

[0036] In some embodiments, ODI 100 comprises a plurality of code block indicators, each code

block indicator indicative of a distinct code block of the target object. Exemplary contents and

formats of ODI 100 will be discussed in detail in relation to Figs. 7-9.

[0037] In some embodiments, scan report 50 includes an identifier (e.g. , tag, file ID) of the target

object, a malware status indicator (e.g. , infected, clean, unknown) of the target object, and/or a



set of identifiers of malware agents infecting the target object, such as names of individual

malware agents (e.g., Win32.Worm.Downadup.Gen), malware class indicators (virus, rootkit,

etc.), or pointers to the respective agents in a malware knowledgebase. In some embodiments, a

single scan report may be compiled for a batch of target objects.

[0038] In some embodiments, server communication manager 52 is configured to manage

communication with server AM systems 20a-c. For example, manager 52 may establish

connections over network 12, send and receive data to/from AM servers 20a-c, maintain a list of

ongoing scan transactions, and associate target ODIs 100 with AM servers carrying out the

server-side scanning.

[0039] Active AM scanner 42 and static AM scanner 44 enable client AM application 40 to rua a

preliminary anti-malware scan of the target object, as shown in more detail below. If the

preliminary scan detects malicious content, the offending target object is reported to the user

directly, without having to go through client-server scanning, thus saving time and computer

resources. In some embodiments, file target objects are handled by static AM scanner 44, while

process target objects are handled by active AM scanner 42. In some embodiments, static AM

scanner 44 may use emulator 46 to unpack a file and execute it in a protected environment, apart

from main memory. Scanners 42, 44 may use behavior-based methods, various heuristics,

content-based methods (e.g. signature matching), or a combination thereof, to determine whether

the target object is malware. Examples of heuristic criteria for determining whether a target

object is malicious comprise, among others, the relative sizes of various sections in the portable

executable (PE) file of the target object, the information density in each section, the presence of

specific flags and flag groups in the PE header, information about the packer/protector (if any ,

and the presence of certain text patterns inside the executable.

[0040] Client AM application 40 may employ code normalization engine 48 and hashing

engine 54 to produce target ODI 100. The operation of code normalization engine 48 will be

discussed below in relation to Fig. 7 . Hashing engine 54 is configured to receive an opcode

pattern and to generate a hash of the respective opcode pattern, as shown in relation to Figs. - .

In some embodiments, a hash is the output of a hash function, a mathematical transformation



mapping a sequence of symbols (e.g. characters, bits) into a sequence of numbers or bit string.

Exemplary hash functions employed by hashing engine 54 include cyclic redundancy check

(CRC), message digest (MD), or secure hashing (SHA), among others. An exemplary hash is the

4-byte CRC32.

[0041] Some embodiments of client-side cache 56 comprise, at any given time, a repository of

ODIs corresponding to target objects residing on the respective client system 30, objects having

already been scanned for malware. In some embodiments, cache 56 may comprise a set of

hashes of target object ODIs; each ODI received from client systems 30 may be hashed, with

duplicate hashes removed, and resulting hashes stored as unique indicators of the respective

ODIs. Cache 56 allows for a speed-up of malware scanning. If the ODI or hash thereof of a

target object is found in client cache 56, indicating that the respective target object has already

been scanned at least once, the malware status of the target object may be retrieved directly from

cache 56 and reported to the user, a process considerably faster than performing a new scan of

the target object. For every ODI, some embodiments of cache 56 may comprise an object

identifier (e.g. , tag, file ID), and an indicator of malware status of the respective target object.

[0042] Fig. 5 shows exemplary applications executing on AM server system 20 according to

some embodiments of the present invention. In some embodiments, system 20 comprises a

server AM application 60, a server-side cache 68, a whitelist database 65, a malware

database 66, and an outbreak database 67b, all connected to AM server application 60.

[0043] In some embodiments, AM server application 60 is configured to perform a plurality of

malware detection transactions with client computer systems 30a-b. For each such transaction,

server AM application 60 is configured to conduct a server-side part of a collaborative scan to

detect malware residing on the respective client computer system, as described in detail below.

As part of a client-server transaction, application 60 receives target ODI 100 from the client

computer system, and transmits scan report 50 to the respective client computer system. Server

AM application 60 may comprise a server AM communication manager 62 and a code

comparator 64 connected to communication manager 62.



[0044] In some embodiments, server communication manager 62 is configured to manage

communication with client computer systems 30a-b. For example, manager 62 may establish

connections over network 12, send and receive data to/from clients, maintain a list of ongoing

scan transactions, and associate target ODIs 100 with originating client computer systems 30a-b.

Code comparator 64 is configured to compute a similarity score indicating a degree of similarity

between a target object and a set of reference objects stored in databases 65-67, as described in

detail below.

[0045] In some embodiments, server-side cache 68 comprises a repository of ODIs of target

objects having already been scanned for malware, ODIs received from various client computer

systems 30a-b in the course of previous client-server collaborative scans. As discussed further

below, if the ODI of a target object is found in server cache 68, indicating that the respective

target object has already been scanned at least once, the malware status (e.g. clean, infected, etc.)

of the target object may be retrieved from cache 68 without performing a new scan of the target

object. Along with target ODIs, some embodiments of server cache 68 may store the malware

status (e.g. clean, infected) of the respective target object.

[0046] Databases 65-67 are maintained as repositories of current malware-related knowledge. In

some embodiments, each database 65-67 comprises a set of data indicators corresponding to a

collection of reference objects (files and processes) of known malware status. In some

embqdiments, databases 65-67 store data in the form of opcode pattern hashes (described further

below in relation to Figs. 7-10). Whitelist database 65 includes a set of hashes retrieved from

objects which are trusted to be clean (i .e., whitelisted items). Malware database 66 comprises

malware-identifying hashes retrieved from objects known as malware. In some embodiments,

outbreak database 67 comprises hashes computed for objects which are of unknown malware

status (not yet recognized as malware or clean).

[0047] In some embodiments, all opcode pattern hashes stored in databases 65-67 have the same

size (e.g. 4 bytes). They may be stored sequentially in the memory and/or computer-readable

media of server systems 20a-c. In some embodiments, a second data structure comprising object

identifiers (e.g., file IDs also represented as 4 byte numbers) is stored alongside the set of



reference hashes. A bi-directional mapping stored in the memory of the respective AM server is

used to relate each hash to the file ID of the object it was retrieved from. This allows server AM

application to selectively retrieve reference hashes, to determine whether target objects received

from client computer systems are similar to any reference objects stored in databases 65-67.

Databases 65-67 are being kept up-to-date by addition of target object data received from client

computer systems 30a-b, as further described below.

[0048] Fig. 6 shows an exemplary sequence of steps performed by client AM application 40

according to some embodiments of the present invention. In a step 202, application 40 selects a

target object to scan for malware. In some embodiments, target objects may be specified directly

or indirectly by a user (on-demand scanning). For example, the user may instruct AM

application 40 to scan a certain file, or the contents of a certain folder, or the contents stored on a

certain computer-readable medium (e.g. CDROM, flash memory device). Other exemplary

target objects are selected during on-access scanning, wherein application 40 is configured to

scan certain types of files or processes before reading/loading/launching them. In some

embodiments, a set of target objects may be compiled for the purpose of a scheduled scan of the

client computer system running application 40. Such an exemplary set of target objects residing

on a client system running Microsoft Windows® may include executable files from the WINDIR

folder, executables from the WINDIR/system32 folder, executables of the currently running

processes, dynamic link libraries (DLL) imported by the currently running processes, and

executables of all installed system services, among others. In some embodiments, target objects

may also include files/processes targeted by malware programs of interest, for example malware

programs considered most widespread and active at the time of initiation of the respective

malware scan.

[0049] In some embodiments, an identifier (e.g. , file ID) is used to uniquely tag the respective

target object. The identifier comprises data allowing a selective identification of the target object

itself (e.g. , a file or process), and not as part of a larger structure such as e.g. the entire memory

of the respective client computer system. Exemplary target object identifiers comprise file paths

and memory addresses, among others. The identifier also allows client AM application 40 to



selectively retrieve the target object, in order to compute target ODI 100, as well as to

unambiguously perform client-server scan transactions with multiple target objects.

[0050] In a step 204 (Fig. 6), client AM application 40 may run a preliminary anti-malware scan

of the target object. In some embodiments, file target objects are handled by static AM

scanner 44, while process target objects are handled by active AM scanner 42. Scanners 42, 44

may use behavior methods (e.g., emulation), various heuristics (e.g., the geometry of a portable

executable header of the target object), content-based methods (e.g. signature matching), or a

combination thereof, to determine whether the target object is maiware. In some embodiments,

scanners 42, 44 may produce an indicator of the maiware status of the target object. Exemplary

status indicators include malicious, suspected of being malicious, and clean, among others.

[0051] In some embodiments, a target object may be suspected of being malicious when the

target object has some features in common with known malicious objects, but not enough to be

considered maiware. Exemplary suspicious features include the presence within the PE header

of the target object of certain values/value pairs, the presence within the target object of certain

code sequences (e.g., code that checks whether the target object is executing within a virtual

environment), and the presence of malware-identifying text patterns (signatures) such as

common passwords and names and/or path indicators of anti-malware software, among others.

Other suspicious features may comprise certain malware-identifying behavior patterns of the

target object.

[0052] In some embodiments, scanners 42, 44 compute a maiware score for the respective target

object, wherein each malware-identifying feature may be given a specific weight. When the

maiware score exceeds a first threshold, the respective target object may be suspected of being

malicious; when the score exceeds a second, higher threshold, the target object may be labeled as

maiware. An exemplary target object containing strings specific to the IRC protocol, names of

antivirus programs, common Windows® passwords, and code sequences specific to exploits may

receive a comparatively high maiware score, and may therefore be labeled maiware, while

another exemplary target object, which only contains the names of some anti-malware

applications, may receive a relatively low score, but may still be suspected of being malicious.



[0053] In a step 206, application 40 determines whether the target object is malicious according

to the preliminary malware scan. If no, the operation of application 40 proceeds to a step 210

described below. If yes, in a step 208, AM application 40 labels the target object as malware and

updates client-side cache 56 accordingly, in a step 230. Next, client AM application 40 outputs

the result of the malware scan in a step 232.

[0054] In some embodiments, step 232 may comprise issuing an alert (e.g., a pop-up window) to

inform the user that the respective client computer system may be infected. Alternatively,

application 40 may document the malware scan in a system og. Some embodiments of AM

application 40 may display a scan report to the user, the report comprising, among others, the

name (or object identifier) of the target object, an indicator of the type of malware detected, and

additional information regarding the respective malware (e.g. possible cleanup methods).

[0055] In step 210, client AM application 40 may determine whether the target object is

suspected of being malicious according to a result of the preliminary scan (see step 204 above).

If yes, the operation proceeds to a step 212 discussed below. If no, in a step 228, application 40

may label the target object as non-malicious (clean) and proceed to step 230.

[0056] In step 212, when the target object is a file, application 40 may load the target file in a

protected environment provided by emulator 46, to remove any layers of packing and/or

encryption protecting the code of the target object. When the target object is a process, the

operation of application 40 may skip step 212, since the target object will already be loaded into

system memory.

[0057] In a step 214, code normalization engine 48 performs a code normalization of the target

object. Compilers can generate different machine code from the same block of source code

depending on the compilation parameters used, particularly due to code optimization. Additional

code variations may be introduced by protector/polymorphic malware. In some embodiments,

code normalization comprises transforming the set of processor instructions forming the target

object into a standardized set of processor instructions, to remove variations of computer code

introduced by compilation and/or other polymorphisms. An exemplary code normalization

operation may proceed as follows:



[0058] 1. The compiler used to build the target object is detected according to certain

features of the target object. When the compiler is known, a location of the object-specific code

inside the memory image of the target object is determined. When the compiler cannot be

determined, the target areas for code extraction are selected so as to cover as many potential

object-specific code locations as possible (e.g., entry point, beginning of first section, beginning

of all sections etc.).

[0059] 2. Code disassembly begins at the location found in the previous step. In some

embodiments, code disassembly follows code branches (e.g., JMP/Jxx/CALL in x86 code). The

disassembled instructions are processed in sequence. As part of the normalization process, some

instructions are left unchanged and others are altered. Exemplary alterations include:

a. register IDs are replaced, based on the order in which they appear inside the function

block;

b. constant values and offsets are eliminated;

c. PUSH followed by POP sequences are replaced with MOV instructions;

d. Sequences which set the value of a variable/register/memory address to 0 (e.g. XO

<item>, <item>) are replaced with MOV <item>, 0;

e. Addition/subtraction of 1 or 2 is replaced with one or two INC DEC instructions,

respectively.

f. JZ JNZ instructions are replaced with JE/JNE instructions, respectively;

g. Function prologues and epilogues are removed;

h. Instruction classes CMP, MOV and TEST are removed;

i. Non-operations (ADD and SUB with 0; NOP etc.) are removed.

[0060] Fig. 7 shows an example of code normalization, according to some embodiments of tie

present invention. A fragment of code disassembled from an exemplary target object comprises



a function block 70. In some embodiments, function blocks start with a PUSH EBP; MOV EBP,

ESP instruction sequence and they end with POP EBP. Each line of code (processor instruction)

from function block 70 is modified according to the prescription listed on the right, to produce a

corresponding normalized function block 72.

[0061] In a step 216 (Fig. 6), client AM application 40 computes an object data indicator (ODI)

of the target object. In some embodiments, the ODI comprises a plurality of code block

indicators, each code block indicator indicative of a distinct code block of the target object. An

exemplary code block indicator comprises an opcode pattern of the respective code block.

[0062] In some embodiments, a code block comprises a sequence of consecutive processor

instructions, the sequence extracted from the normalized code of the target object. In some

embodiments, code blocks comprise a predetermined, code-independent number of instructions.

Alternatively, the count of instructions within a code block varies within a predetermined range.

Exemplary code blocks comprise between 5 and 50 contiguous instructions. In soine

embodiments, the size (e.g., number of instructions) of code blocks is substantially smaller than

the size of function blocks, so that a function block may comprise more than one code block. En

some embodiments, code blocks start either at the start of a function block, or at a CALL

instruction. An exemplary code block 74 is shown in Fig. 7.

[0063] In some embodiments, step 216 comprises separating the target object into code blocks,

and extracting a set of opcode indicators from each such code block. Fig. 8 shows an exemplary

binary memory representation of a processor instruction 80 (illustrated for the Intel® 86, 32bit

family of processors). In some embodiments, each processor instruction is stored in memory a s

a sequence of bytes, the sequence comprising a set of instruction fields, such as a Prefix

field 82a, a couple of Opcode fields 82b-c, a Mod/Reg/R/M field 82d, and a Displacement/Data

field 82e. In some embodiments, Opcode fields 82b-c encode the type of instruction (e.g.,

MOV, PUSH, etc.), while fields 82a, 82d-e encode various instruction parameters (e.g. register

names, memory addresses, etc.). In some embodiments, such as the x86 format, the byte size

and content of instruction fields are instruction-dependent, and therefore the instructions for t e

x86 architecture are of varying lengths. The instruction illustrated in Fig. 8 (XOR CL, 12I



comprises only the first Opcode byte (10000000 for XOR), the Mod Reg R M byte ( 1 10001

for register CL), and the Displacement/Data byte (00010010 is binary for 12H), while other

instructions may comprise both opcode fields, or other combinations of Prefix, Opcode, Mod,

Reg and/or Data fields.

[0064] Fig. 9 shows an exemplary opcode pattern 90 corresponding to code block 74. In some

embodiments, opcode pattern 90 is a data structure (e.g. byte sequence, list, etc.) comprising a

set of opcode indicators 92, each opcode indicator corresponding to a processor instruction of

normalized code block 74. Exemplary opcode indicators 92 comprise the contents of the Opcode

fields of the respective processor instruction, in which case opcode pattern 90 comprises a

sequence of instruction types making up the respective code block. In the embodiment

illustrated in Fig. 9, each opcode indicator 92 comprises a combination of opcode bytes and

parameter bytes (for example, the opcode indicator for instruction PUSH EDX is 52 in hex).

[0065] Fig. 10 illustrates a fragment of normalized code and an exemplary ODI 100 of the

fragment, according to some embodiments of the present. ODI 100 comprises a plurality o f

codeblock indicators 104a-c, each codeblock indicator providing a digest (e.g., fingerprint,

signature) of a respective code block 74a-c. An exemplary codeblock indicator 104a-c

comprises the respective opcode pattern 90a-c. In some embodiments, codeblock

indicators 104a-c comprise hashes of opcode patterns 90a-c, respectively, as illustrated i n

Fig. 10. Beside codeblock indicators 104a-c, some embodiments of ODI 100 may comprise a

object identifier 102 (e.g. a file ID) tagging the respective target object, and/or a set of object

feature indicators 106 of the target object. Exemplary object feature indicators comprise a fie

size (e.g. 130kB), an indicator of file type (e.g. whether a file is an executable, a DLL, etc.), a

memory address of the target object, and a set of numbers indicating an outcome of a set of anti-

malware heuristic tests (e.g., whether the target object displays certain malware-specific

behaviors or content), among others. In some embodiments, object feature indicators 106 y

be computed by AM scanners 42-44, e.g. during the preliminary scan of the target object

(step 202).



[0066] For simplicity, the rest of the Specification will assume that codeblock indicators 104a-c

comprise hashes of opcode patterns 90a-c. Execution of step 216 (Fig. 6) then proceeds as

follows. Client AM application 40 may separate the target object into distinct code blocks

(illustrated by code blocks 74a-c in Fig. 10). For each code block 74a-c, application 40 may

proceed to calculate an opcode pattern 90a-c, respectively, as shown in Fig. 9 . Application 40

may then invoke hashing engine 54 to compute a hash of opcode pattern 90a-c, to produce the

respective codeblock indicator (i.e., target hash) 104a-c. Hashing engine 54 may employ a

hashing algorithm such as cyclic redundancy check (CRC), message digest (MD), or secure

hashing (SHA), among others.

[0067] After computing target ODI 100, in a step 218 (Fig. 6), client AM application 40

performs a lookup of the ODI in client-side cache 56. If the ODI matches a cache record (cache

hit), indicating that the respective target object has already been scanned for malware at least

once, application 40 proceeds to a step 220, to label the target object according to the cache

record (e.g., clean or malware), and advances to step 232 discussed above.

[0068] If target ODI 100 is not matched in client-side cache 56, in a step 222 application 40 may

invoke client AM communication manager 52 to initiate a client-server scanning transaction.

Communication manager 52 transmits target ODI 100 to AM servers 20a-c, and in a step 224

receives scan report 50 from servers 20a-c. In some embodiments, each ODI may form part of a

distinct client-server scanning transaction, or multiple ODIs may be transmitted simultaneously,

within the same transaction (batch processing).

[0069] In a step 226, application 40 determines whether the target object is whitelisted (clean)

according to scan report 50. If yes, the target object is labeled as non-malicious (step 228). If the

target object is malicious according to scan report 50, application 40 labels the target object as

malware (step 208).

[0070] Fig. 11 shows an exemplary sequence of steps performed by server AM application 60

(Fig. 5) according to some embodiments of the present invention. In a step 302, server AM

communication manager 62 receives target ODI 100 from client computer system 30. In a

step 304, application 60 performs a lookup of ODI 100 in server-side cache 68. If the ODI



matches a cache record (cache hit), indicating that the respective target object has already been

scanned for malware at least once, application 60 proceeds to a step 306, to label the target

object according to the cache record (e.g., clean or malware). In a step 308, communication

manager 62 compiles scan report 50 and transmits report 50 to the respective client computer

system 30.

[0071] If no record of ODI 100 is found in server-side cache 68, in a step 310 server AM

application 60 filters the hashes of ODI 100 to produce a relevant subset of hashes. In some

embodiments, hashes of opcode patterns which are not object-specific may be discarded from

ODI 100 to improve the performance of malware scanning. Such non-specific opcode patterns

correspond for example to unpacker code (e.g. installer, self-extractor) and/or library code, or are

present in both clean and malware objects.

[0072] In a step 312, for each hash of ODI 100, server AM application 60 may query whitelist

database 65 to retrieve a set of whitelisted reference objects containing the respective hash. In

some embodiments, a heap-based algorithm is used to rank the retrieved reference objects

according to their similarity with the target object.

[0073] In a step 314, server AM application 60 invokes code comparator 64 to compute a

similarity score characterizing how similar the target object is to each whitelisted reference

object retrieved in step 312. In some embodiments, the similarity score is computed according to

the formula:

C
5 = 100 · -

N + Ns) [ ]

wherein C denotes the number (count) of hashes common to both the target object and the

respective reference object, Ντ denotes t e number (count) of hashes of the target ODI, filtered

as discussed in step 310 above, and wherein N denotes the number (count) of hashes of the

reference object.

[0074] Alternative embodiments may compute the similarity score according to formulas such

as:



S = 200 * C / (NT + NR) [2]

or

S = 50 * (C/NT + C/NR) · [3]

[0075] In a step 316, application 60 compares the similarity score (e.g., formula [1]) to a

predetermined threshold. When the similarity score exceeds the threshold, indicating that the

target object is similar to at least one whitelisted object, some embodiments of server AM

application 60 may label the target object as non-malicious (clean) in a step 318. An exemplary

value of the whitelisting threshold is 50, indicating that a target object is whitelisted when it

shares more than 50% of its opcode patterns with a whitelisted object.

[0076] Next, a step 320 updates whitelist database 65 with a record of the current target object,

and a step 322 updates server-side cache 68 with a record of the target object and an indicator of

the scan result (e.g., clean).

[0077] When the whitelisting similarity score (step 318) does not exceed the threshold,

indicating that the target object is not sufficiently similar to any known whitelisted object, server

AM application moves on to a step 324, wherein target ODI 100 is compared to a set of records

of malware objects. In some embodiments, the set of hashes of ODI 100 is further filtered to

remove all hashes which matched records from whitelist database 65 (see step 312 above),

therefore retaining a subset of hashes which are not found in any known whitelisted object. For

each such unrecognized hash of the target object, code comparator 64 may query malware and/or

outbreak databases 66-67 to retrieve a set of malware objects containing the respective hash. In

a step 326, code comparator 64 may then proceed to compute a malware similarity score

indicating how similar the target object is to each such malware object. In some embodiments,

code comparator 64 uses any of the formulae [1-3] described above to compute the malware

similarity score.

[0078] A step 328 compares the malware similarity score to a preset threshold. When the

malware similarity score exceeds the threshold, indicating that the target object is similar to at



least one malware object stored in databases 66-67, in a step 330 the target object is labeled as

malware. An exemplary threshold for classification as malware is 70 (i.e., the target object

shares at least 70% of opcode patterns with a known malware object). Next, malware and/or

outbreak databases 66-6 are updated to include a record of the target object. Server-side

cache 68 is updated to include a record of the target object and an indicator of its malware status

(e.g., infected), and a scan report is compiled and transmitted to the client computer system

(step 308).

[0079] When the malware similarity score does not exceed the threshold, indicating that the

target object is not similar to known malware objects, some embodiments of server AM

applications may label the target object as whitelisted/non-malicious (step 318), and update

whitelist database 65 accordingly.

[0080] Target ODI 100 may also trigger a malware outbreak alert. In some embodiments, server

AM application 60 counts the reference objects from outbreak database 67, objects which are

similar to the target object and have been received by AM server systems 20a-c within a

predetermined timeframe (e.g., the latest 6 hours). When the count exceeds a threshold (e.g.,

10), a malware outbreak is assumed and the target object, as well as all reference objects similar

to it, are marked as infected. Malware and/or outbreak databases 66-67 are then updated

accordingly.

[0081] T e exemplary systems and methods described above allow an anti-malware system to

maintain a flexible whitelist database, and to use the whitelist database to improve the malware

detection performance.

[0082] In conventional whitelisting applications, a hash of a target object (computer file or

process) is compared to a set of hashes corresponding to whitelisted objects (objects trusted to be

clean). If the hash of the target object matches a whitelisted hash, indicating that the target

object is identical to at least one of the whitelisted objects, the target object is trusted and e.g. ,

allowed to execute. Due to certain mathematical properties of hash functions, conventional

whitelisting does not allow for variations in the code of whitelisted objects: if two objects differ

by as little as one bit, the hashes of the two objects no longer match. Meanwhile, legitimate



computer files and processes may display substantial variations, due for example to differences

between compilers or between successive versions of the same software.

[0083] Some embodiments of the systems and methods described above allow an anti-malware

system to account for benign differences between data objects, such as differences introduced by

compilers and other polymorphisms. A target object is separated into a multitude of code blocks,

and a hash is calculated for each code block. The obtained set of target hashes is then compared

against a database of hashes corresponding to code blocks extracted from whitelisted objects. A

target object may be labeled as whitelisted (trusted) if it has a substantial number of hashes in

common with a whitelisted object. Objects which are slightly different from known whitelisted

objects may still receive whitelisting status. By allowing a certain degree of mismatch between

the sets of hashes of distinct objects, some embodiments of the present invention increase the

efficiency of whitelisting without an unacceptable decrease in data safety.

[0084] The size of a code block may be decided according to several criteria. Small code blocks

(e.g., a few processor instructions each) may lead to a large number of hashes per target object,

which may increase the storage and processing load of the anti-malware server and slow down

scanning. On the other hand, small code blocks offer a significant degree of flexibility: if two

objects differ only slightly, the differences will be picked up only by a small fraction of hashes,

producing a high similarity score. Large code blocks (e.g., several hundreds of processor

instructions) produce on average fewer (e.g. several) hashes per target object, and therefore are

advantageous from a storage and processing perspective. However, large code blocks suffer the

same disadvantage as conventional hashing: small differences between two objects may be

picked up by a large proportion of hashes, producing a low similarity score. Testing revealed an

optimal code block size of between 5 and 50 processor instructions, and in particular about 5-15

(e.g. -10) instructions, in some embodiments.

[0085] The exemplary systems and methods described above allow an anti-malware system to

conduct a collaborative client-server scanning transaction, and to assess the malware status of the

target object according to the results of the server-side scan of the target object. Conducting a



part of the malware scan on a remote anti-malware server has a number of advantages over local

scanning of target objects on a client computer system.

[0086] The proliferation of malware agents and software in general has contributed to a steady

increase in the size of whitelist and malware hash databases, which may amount to several

megabytes to several gigabytes of data. The exemplary methods and systems described above

allow storing the hash databases on the anti-malware server, thus avoiding the delivery of data-

heavy software updates from a corporate server to a large number of customers on a regular

basis.

[0087] By performing a significant fraction of malware scanning centrally on the server, the

systems and methods described above allow for the timely incorporation of hashes of newly

detected malware and of new legitimate software. By contrast, in conventional malware

detection wherein scanning is predominantly distributed to client computer systems, information

gathering about new security threats and new whitelisted software may involve indirect methods,

taking significantly longer to reach the anti-malware software producers.

[0088] The size of files exchanged between client and anti-malware server systems described

above is kept to a minimum. Instead of sending entire target objects from the client to the server

for server-side scanning, the exemplary methods and systems described above are configured t o

exchange hashes, which may amount to several bytes to several kilobytes per target object, thus

significantly reducing network traffic.

[0089] It will be clear to one skilled in the art that the above embodiments may be altered i

many ways without departing from the scope of the invention. Accordingly, the scope of the

invention should be determined by the following claims and their legal equivalents.



CLAIMS

What is claimed is:

1. A method comprising:

performing at a client computer system an initial malware scan of a plurality of target

objects of the client computer system; and

in response to a tentative determination by the initial malware scan that the target object

is suspected of being malicious:

generating at the client computer system a plurality of target hashes of the target

object, each target hash representing a distinct code block of the target

object, each distinct code block consisting of a sequence of processor

instructions of the target object;

sending from the client computer system the plurality of target hashes to a server

computer system connected to the client computer system over a wide area

network; and

receiving at the client computer system from the server computer system a server-

side indicator of whether the target object is malicious, wherein the server-

side indicator is generated by the server computer system by:

for at least a target hash of the plurality of target hashes, retrieving a

plurality of reference hashes of a reference object, the reference

object selected from a set of whitelisted objects according to the

target hash, and when the plurality of target hashes is not identical

to the plurality of reference hashes, determining a similarity score

according to a count of hashes common to both the plurality of

target hashes and the plurality of reference hashes; and

when the similarity score exceeds a predetermined threshold, designating

the target object as non-malicious.



2. The method of claim 1, wherein generating the server-side indicator by the computer

server system comprises:

when the similarity score does not exceed the predetermined threshold, generating a

filtered set of target hashes of the target object by filtering all target hashes

which appear in a database of clean hashes out of the plurality of target hashes

of the target object; and

comparing the filtered set of target hashes to a database of malware-identifying

hashes specific to malware.

3. The method of claim 1, wherein generating the server-side indicator by the computer

server system comprises:

when the similarity score does not exceed the predetermined threshold, generating a

filtered set of target hashes of the target object by filtering all target hashes

which appear in a database of clean hashes out of the plurality of target hashes

of the target object; and

comparing the filtered set of target hashes to a database of outbreak-detection hashes

specific to unknown objects reported within a predetermined recent period y

a plurality of distinct client computer systems connected to the server

computer system.

4 . A method comprising:

receiving at a server computer system a plurality of target hashes of a target object of a

client computer system connected to the server computer system over a wide are a

network, wherein the plurality of target hashes are generated at the client

computer system in response to a tentative determination by the client computer

system that the target object is suspected of being malicious, the tentative

determination resulting from an initial malware scan of a plurality of target

objects of the client computer system;

generating at the server computer system a server-side indicator of whether the target

object is malicious by:



for at least a target hash of the plurality of target hashes, retrieving a plurality of

reference hashes of a reference object, the reference object selected from a

set of whitelisted objects according to the target hash, and when the

plurality of target hashes is not identical to the plurality of reference

hashes, determining a similarity score according to a count of hashes

common to both the plurality of target hashes and the plurality of

reference hashes, and

when the similarity score exceeds a predetermined threshold, designating the

target object as non-malicious; and

sending to the client computer system the server-side indicator of whether the target

object is malicious.

5. The method of claim 4, wherein generating the server-side indicator by the computer

server system comprises:

when the similarity score does not exceed the predetermined threshold, generating a

filtered set of target hashes of the target object by filtering all target hashes

which appear in a database of clean hashes out of the plurality of target hashes

of the target object; and

comparing the filtered set of target hashes to a database of malware-identifyitig

hashes specific to malware.

6. The method of claim 4, wherein generating the server-side indicator by the computer

server system comprises:

when the similarity score does not exceed the predetermined threshold, generating a

filtered set of target hashes of the target object by filtering all target hashes

which appear in a database of clean hashes out of the plurality of target hashes

of the target object; and

comparing the filtered set of target hashes to a database of outbreak-detection hashe s

specific to unknown objects reported within a predetermined recent period

a plurality of distinct client computer systems connected to the server

computer system.



1 7. A method comprising:

2 receiving at a server computer system a plurality of target hashes of a target object, each

3 target hash representing a distinct code block of the target object, each distinct

4 code block consisting of a sequence of processor instructions of the target object;

5 for at least a target hash of the plurality of target hashes, employing the server computer

6 system to:

7 retrieve a plurality of reference hashes of a reference object, the reference object

8 selected from a set of whitelisted objects according to the target hash, and

9 when the plurality of target hashes is not identical to the plurality of reference

10 hashes, determine a similarity score according to a count of hashes

common to both the plurality of target hashes and the plurality of

12 reference hashes; and

13 when the similarity score exceeds a predetermined threshold, employing the server

computer system to label the target object as non-malicious.

15

1 8. The method of claim 7, wherein the target hash comprises a hash of an opcode

2 pattern, the opcode pattern comprising a sequence of instruction indicators, each

3 instruction indicator indicative of a processor instruction of the distinct code block.

4

1 9. The method of claim 7, wherein the sequence of processor instructions consists of

2 between 5 and 50 consecutive processor instructions.

3

1 10. The method of claim 9, wherein the sequence of processor instructions consists of

2 between 5 and 15 consecutive processor instructions.

3

1 11. The method of claim 7, wherein the sequence of processor instructions starts with a

2 CALL instruction.

3

4

5



12. The method of claim 7, further comprising:

performing a code normalization procedure on the target object to produce a

normalized target object, and wherein each distinct code block consists of a

sequence of computer instructions of the normalized target object; and

applying a hash function to the distinct code block to produce the target hash.

13. The method of claim 7, wherein the similarity score is determined as a function of:

C /max(N , NR)

wherein C denotes the count of hashes common to both the plurality of target hashes

and the plurality of reference hashes, while N and N R denote the cardinality of the

plurality of target hashes and the cardinality of the plurality of reference hashes,

respectively.

14. The method of claim 7, wherein the similarity score is determined as a function of:

C/(N + NR)

wherein C denotes the count of hashes common to both the plurality of target hashes a d

the plurality of reference hashes, while N and NR denote the cardinality of the plurality

of target hashes and the cardinality of the plurality of reference hashes, respectively.

15. The method of claim 7, wherein the similarity score is determined as a function of:

wherein C denotes the count of hashes common to both the plurality of target hashes and

the plurality of reference hashes, while N and NR denote the cardinality of the plurality

of target hashes and the cardinality of the plurality of reference hashes, respectively.

16. The method of claim 7, wherein the target object comprises a computer file.

17. The method of claim 7, wherein the target object comprises a computer process.



18. A computer system comprising at least a processor programmed to:

receive a plurality of target hashes, each target hash representing a distinct code block of

a target object, each distinct code block consisting of a sequence of processor

instructions of the target object;

for at least a target hash of the plurality of target hashes:

retrieve a plurality of reference hashes of a reference object, the reference object

selected from a set of whitelisted objects according to the target hash, and

when the plurality of target hashes is not identical to the plurality of reference

hashes, determine a similarity score according to a count of hashes

common to both the plurality of target hashes and the plurality of

reference hashes; and

when the similarity score exceeds a predetermined threshold, label the target object as

non-malicious.

19. The system of claim 18, wherein the target hash comprises a hash of an opcode

pattern, the opcode pattern comprising a sequence of instruction indicators, each

instruction indicator indicative of a processor instruction of the distinct code block.

20. The system of claim 18, wherein the sequence of processor instructions consists of

between 5 and 50 consecutive processor instructions.

21. The system of claim 20, wherein the sequence of processor instructions consists of

between 5 and 15 consecutive processor instructions.

22. The system of claim 18, wherein the sequence of processor instructions starts with a

CALL instruction.

23. The system of claim 18, wherein the processor is further programmed to:

perform a code normalization procedure on the target object to produce a normalized

target object, wherein each distinct code block consists of a sequence of

computer instructions of the normalized target object; and



apply a hash function to the distinct code block to produce the target hash.

24. The system of claim 18, wherein the similarity score is determined as a function of:

C/max(NT, .NR)

wherein C denotes the count of hashes common to both the plurality of target hashes

and the plurality of reference hashes, while Ν γ and NR denote the cardinality of the

plurality of target hashes and the cardinality of the plurality of reference hashes,

respectively.

25. The system of claim 18, wherein the similarity score is determined as a function of:

C/(NT +NR)

wherein C denotes the count of hashes common to both the plurality of target hashes

and the plurality of reference hashes, while Ντ a d N R denote the cardinality of the

plurality of target hashes and the cardinality of the plurality of reference hashes,

respectively.

26. The system of claim 18, wherein the similarity score is determined as a function of:

C/N + C/N R

wherein C denotes the count of hashes common to both the plurality of target hashes

and the plurality of reference hashes, while Ν τ and N R denote the cardinality of the

plurality of target hashes and the cardinality of the plurality of reference hashes,

respectively.

27. The system of claim 18, wherein the target object comprises a computer file.

28. The system of claim 18, wherein the target object comprises a computer process.



29. A computer system comprising:

means for receiving a plurality of target hashes, each target hash representing a distinct

code block of a target object, each distinct code block consisting of a sequence of

processor instructions of the target object;

means for retrieving a plurality of reference hashes of a reference object, the reference

object selected from a set of whitelisted objects according to a selected target hash

of the plurality of target hashes;

means for determining a similarity score according to a count of hashes common to both

the plurality of target hashes and the plurality of reference hashes; and

means for labeling the target object as non-malicious according to the similarity score.

30. A non-transitory computer-readable storage medium encoding instructions which,

when executed on a processor, cause the processor to perform the steps of:

receiving a plurality of target hashes, each target hash representing a distinct code

block of a target object, each distinct code block consisting of a sequence of

processor instructions of the target object;

for at least a target hash of the plurality of target hashes:

retrieving a plurality of reference hashes of a reference object, the

reference object selected from a set of whitelisted objects according to the

target hash, and

when the plurality of target hashes is not identical to the plurality of

reference hashes, determining a similarity score according to a count of

hashes common to both the plurality of target hashes and the plurality of

reference hashes; and

when the similarity score exceeds a predetermined threshold, labeling the target object as

non-malicious.

31. A method comprising:

receiving at a server computer system a plurality of target hashes, each target hash

representing a distinct data block of a target object of a client computer system



connected to the server computer system, each distinct code block consisting of a

sequence of processor instructions of the target object;

in response to receiving the plurality of target hashes, employing the server computer

system to retrieve a plurality of reference hashes representing a whitelisted data

object, and

in response to determining that the plurality of target hashes is not identical to the

plurality of reference hashes, and determining that the plurality of target hashes

and the plurality of reference hashes share a majority of items, labeling the target

object as non-malicious.



















A. CLASSIFICATION OF SUBJECT MATTER
INV. G06F21/56
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

G06F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal , WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

US 2008/263669 Al (ALME CHRISTOPH [DE] ) 1,2,5,
23 October 2008 (2008-10-23) 7-11,

13-22,
24-31

paragraph [0015] - paragraph [0116]

US 2011/093426 Al (H0GLUND MICHAEL GREGORY 1-31
[US]) 21 April 2011 (2011-04-21)
paragraph [0017] - paragraph [0082]

US 2008/040804 Al (OLIVER IAN [AU] ET AL) 1-31
14 February 2008 (2008-02-14)
paragraph [0135] - paragraph [0146]

US 2008/209557 Al (HERLEY C0RMAC E [US] ET 1-31
AL) 28 August 2008 (2008-08-28)
paragraph [0021] - paragraph [0045]

□ Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents :
"T" later document published after the international filing date or priority

date and not in conflict with the application but cited to understand
"A" document defining the general state of the art which is not considered the principle or theory underlying the invention

to be of particular relevance
"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be

filing date considered novel or cannot be considered to involve an inventive
"L" documentwhich may throw doubts on priority claim(s) orwhich is step when the document is taken alone

cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later than
the priority date claimed "&" document member of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report

3 May 2013 15/05/2013

Name and mailing address of the ISA/ Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016 Jascau, Adrian



Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2008263669 Al 23-10-2008 EP 1986120 Al 29-10-2008
ES 2400623 T3 11-04-2013
US 2008263669 Al 23-10-2008

US 2011093426 Al 21-04 -2011 AU 2010263263 Al 19 -01 -2012
CA 2765485 Al 29 -12 -2010
EP 2446363 Al 02 -05 -2012
US 2011093426 Al 21-04 -2011
O 2010151332 Al 29 -12 -2010

US 2008040804 Al 14 -02 -2008 NONE

US 2008209557 Al 28 -08 -2008 T 200842716 A 01-11 -2008
US 2008209557 Al 28 -08 -2008
O 2008106296 Al 04 -09 -2008


	abstract
	description
	claims
	drawings
	wo-search-report

