wO 2016/111954 A1 |[IN I 00 00O O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

—~
é

\\

(10) International Publication Number

WO 2016/111954 A1

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

31

14 July 2016 (14.07.2016) WIPOIPCT
International Patent Classification:
GO6F 12/00 (2006.01)
International Application Number:
PCT/US2016/012102

International Filing Date:
5 January 2016 (05.01.2016)

Filing Language: English
Publication Language: English
Priority Data:
62/099,748 5 January 2015 (05.01.2015) US
PCT/US2015/053226

30 September 2015 (30.09.2015) US

Applicant: CACHEIO LLC [US/US]; 330 Valley Road,
Mason, New Hampshire 03048 (US).

Inventors: BEAVERSON, Arthur James; 37 Cobleigh
Rd, Boxborough, Massachusetts 01719 (US). CHANG,
Bang; 101 Meadowstone Court, Cary, North Carolina
27513 (US).

Agent: BENNETT, David E.; c/o Coats & Bennett,
PLLC, 1400 Crescent Green, Suite 300, Cary, North Caro-
lina 27518 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

(84)

DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ LA, LC. LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

(54) Title: METADATA MANAGEMENT IN A SCALE OUT STORAGE SYSTEM

' User Application 110

Node 120a
LUN 2ooa[
First Metadata [o5 0n
142
CID 220
s
Second Metadata 145

Node 1200
LUN 200
LBN210k
S0
Gity 20
Ref Gnit 230
PRN 240
/ Metadata 140
= - I

FlG. 2

(57) Abstract: A method for managing metadata in a scale out storage system is disclosed. The system includes a plurality of nodes,
a storage pool, first metadata that maps logical addresses of logical data blocks to corresponding content identifiers, and second
metadata that maps content identifiers to corresponding physical addresses of physical data blocks in the storage pool and maintains
a reference count. During an add-a-node operation, the processors are configured to move from the existing nodes to the new node
some of its physical data blocks, their content identitiers, and reference counts in the second metadata without accessing or altering
the first metadata. A method is also disclosed to move a logical device from one node to another by de-activating the logical device's
first metadata on the first node and activating and retrieving the logical device's first metadata on the second node.

10

15

20

25

30

35

WO 2016/111954 PCT/US2016/012102

METADATA MANAGEMENT IN A SCALE OUT STORAGE SYSTEM

RELATED APPLICATIONS
The present application claims priority to US Provisional Application No. 62/099748 filed
on January 5, 2015, and International Application No. PCT/US2015/053226 filed on September

30, 2015 which are incorporated herein in their entirety by reference.

TECHNICAL FIELD
The present disclosure relates generally to storage systems, and, more specifically, o

managing metadata in a scale out storage system.

BACKGROUND

A scale out storage system comprises a plurality of nodes connected by a network. Each
node is equipped with a processor, a memory, and a number of storage devices. The storage
devices may be hard disk drives (HDDs), solid-state devices (88Ds), or a combination of both
(Hybrid). The storage devices may be configured under a RAID (Redundant Array of
Inexpensive Disks) hardware or software for data redundancy and load balancing. The storage
devices may be local to each node or shared among multiple nodes. The processor may be
dedicated to running storage software or shared between storage software and user
applications. Storage software, such as a logical volume manager, provides storage
virtualization, capacity reduction, scale out, high availability, mobility, and performance.

Storage virtualization decouples the logical devices addressed by user applications from
the physical data placement on the storage devices. Storage virtualization allows the processor
{o oplimize physical data placement based on the characteristics of the storage devices and
provide capacity reduction such as data deduplication. User applications address a logical
device by its Logical Unit Number (LUN). A logical data block associated with a logical device is
identified by a logical block number (LBN). Thus, a complete logical address for a logical data
block comprises the LUN of the logical device and LEN for the logical biock. To support storage
virtualization, the processor translates each user /O request addressed to a LUN and a LBN to
a set of I/0 requests addressed to storage device 1Ds and physical block numbers (PBNs). That
is, the software transiates the logical addresses of the logical data blocks into corresponding
physical addresses for the physical data blocks stored in the data storage devices. In some
storage software implementations, in order to perform this translation, the processor maintains
forward map metadata that maps each data block’s LBN to its PBN. To support data
deduplication the processor maintains deduplication metadata that maps each data block’s
fingerprint (a hash of the block’s contents) to its PBN. Additional metadata may be maintained in

support of other data services such as compression and snapshot.

10

15

20

25

30

35

WO 2016/111954 PCT/US2016/012102

A data block is the smallest storage unit that the processor manages via its metadata.
The size of the data block can be as small as 4KB or as large as an entire volume. There are
advantages in employing small data block sizes in order to optimize data placement and
increase deduplication ratio. The size of the forward map metadata is determined by the data
block size and the usable capacity of the storage system. On a small capacity storage system
with a large data block size, the entire metadata may be smail enough to be cached in the
memory for fast access and stored persistently on the storage devices. However metadata is
becoming increasingly larger driven by larger physical capacity and smaller data block sizes.
Data services such as deduplication, compression, and snapshot also increase the metadata
size by many folds by increasing the usable capacity of the system. In the case where the
memory is not large enough to cache the entire metadata, the metadata is stored persistently on
the storage devices, with a portion of it cached in the memory. Caching is only effective when
metadata access has locality of reference - real world user applications tend to access related
logical device addresses frequently. User application locality of reference allows the processor
to cache frequently accessed metadata entries in the memory without significant loss of
performance. Without user application locality of reference, caching simply devolves into
thrashing, which exhausts system resources and slows down performance.

Scale out is a key requirement for a scale out storage system. One example of scale out
is add-a-node where a new node is added to the storage system to provide more storage
capacity and performance. Another example of scale out is remove-a-node where an existing
node is removed from the storage system. In both cases a large number of data blocks need to
be moved from their current physical locations to new locations in order to redistribute data
blocks across all available capacity and bandwidth. Scale out is expected to be transparent to
user applications — change in a data block’s physical location should not affect its LUN/LEBN
addressed by user applications. In some storage software implementations, the processor
maintains reverse map metadata that maps every physical data block’s PBN to the LBNs that
reference it. As part of moving a data block from PBN1 to PBN2, the processor first looks up
PBN1 in the reverse map metadata to identify all the LBNs that reference PBN1. It then looks up
these L.BNs in the forward map metadata and changes their reference from PBN1 to PBN2. The
processor then goes back to the reverse map metadata to change PBN1 to PBN2. If
deduplication is enabled, the processor determines the fingerprint of the data block and updates
the fingerprint’s entry in the deduplication metadata from referencing PBN1 to referencing
PBN2. Given that this data movement in support of scale out is not originated by a user
application and therefore does not benefit from user application locality of reference, these
numerous accesses o reverse map, forward map, and deduplication metadata cannot be
effectively cached in the memory, causing the system to thrash.

Logical device availability refers to making a logical device available on node B in the

event that its original host node A fails. Logical device mobility refers 1o moving a logical device
2

10

15

20

25

30

35

WO 2016/111954 PCT/US2016/012102

from node A to node B for load balancing. Both logical device availability and mobility can be
measured by time to access and time to performance. Time to access is defined as the time it
takes for the logical device to support the first user [/O on the node B. Time to performance is
defined as the time it takes for the logical device to restore its original performance. For storage
software implementations that support storage virtualization through forward map metadata,
time to access is relatively long as the forward map metadata needs 1o be moved from Node A
{o Node B.

Providing high performance is challenging for a scale out storage system as data blocks
are distributed across muiltiple nodes and remote access incurs network latency. Some storage
software implementations try to mitigate this network latency issue by placing most of the data
blocks referenced by a logical device on the same node as the logical device, known as data
locality. Data locality poses a number of issues. First of all, logical devices are often not load
balanced themselves across the plurality of nodes, leading to unbalanced data block placement
in terms of capacity and performance. Secondly in the event that a logical device is moved,
most of its data blocks need to be moved fo the new node, resulting in long time to
performance.

In view of the above, there is a need for more efficient metadata management in support
of storage virtualization, capacity reduction, scale out, high availability, mobility, and

performance.

SUMMARY

Methods and apparatus for managing metadata in a scale out storage system are
disclosed.

A storage system is configured to support scale ocut and logical device mobility. The
storage system comprises a plurality of nodes connected by a network. Each node comprises a
processor, a memory, and one or more storage devices. The siorage system is configured to
manage a storage pool, first metadata, and second metadata. The storage pool comprises
storage devices from the plurality of nodes and a free block list. The first metadata maps the
logical address of each logical data block to a corresponding content identifier (CID). The
second metadata maps each content identifier to a corresponding physical address within the
storage pool and maintains a reference count. Both the metadata and data blocks are stored
within the storage pool redundantly across the nodes and accessible by all the nodes. During an
add-a-node operation, the processors are configured to move from the existing nodes fo the
new node some of the data blocks, their content identifiers and reference counts without
accessing the first metadata. To move a logical device from node A to node B, the processor on
node A de-activates access to the logical device on node A and the processor on node B
activates access to the logical device on node B by retrieving its first metadata from the storage

pool. To accelerate time to access, the first metadata for the logical device can be organized in
3

10

15

20

25

30

35

WO 2016/111954 PCT/US2016/012102

a tree data structure. The processor on node B can activate access to the logical device after
retrieving the root of its tree. To accelerate time to performance, the processor on node A can
push iis local cache to node B.

In some embodiments the first metadata is stored within the storage pool and cached in
the memory based on locality of reference. In some embodiments the second metadata is
stored within the storage pool and cached entirely in the memory. In some embodiments each
first metadata entry comprises only the data block’s content identifier. LBN is not stored but can
be determined based on its metadata entry’s relative position in the first metadata. In some
embodiments entries in the first metadata are stored in metadata blocks. A content identifier is
generated for each metadata block and metadata blocks are deduplicated.

Of course, the present invention is not limited to the features, advantages, and contexts
summarized above, and those familiar with storage technologies will recognize additional
features and advantages upon reading the following detailed description and upon viewing the

accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 illustrates a block diagram of a scale out storage system.
Figure 2 illustrates a block diagram of the first and second metadata.
Figure 3 illustrates a flow diagram of servicing a read request.
Figure 4 illustrates a flow diagram of servicing a write request.
Figure 5A and 5B illustrate block diagrams of an add-a-node operation.
Figure © illustrates a flow diagram of an add-a-node operation.
Figure 7A and 7B illustrate block diagrams of LUN mobility.
Figure 8 illustrates a block diagram of the first metadata in a tree data structure.
Figure 9 illustrates a block diagram of metadata deduplication.

Figure 10A and 10B illustrate block diagrams of local caching.

DETAILED DESCRIPTION

Methods for managing metadata in a scale out storage system are disclosed to more
effectively support storage virtualization, capacity reduction, scale out, availability, mobility, and
performance. For purposes of this disclosure, similar elements are identified by similar numeric
reference numbers. A numeric reference number followed by a lowercase letter refers to a
specific instance of the element.

Fig. 1 illustrates one embodiment of a scale out storage system 100 comprising a
plurality of nodes 120 connected by a network 105. An exemplary node 120 comprises a
processor 130, a memory 135, and a plurality of storage devices 165. The processor 130 may
comprise a microprocessor, microcontroller, digital signai processor, hardware circuit, firmware,

or a combination thereof. The processors 130 at each node 120 collectively comprise a
4

10

15

20

25

30

35

WO 2016/111954 PCT/US2016/012102

distributed processing circuitry that controls the storage system. Memory 135 may comprise
both volatile and non-volatile memory for locally storing information and data used by the data
node. The storage devices 165 at different nodes 120 within the storage system 100
collectively form a shared data storage pool 160 accessible to the processors 130 at each node
120. Examples of storage devices 165 include solid-state devices (85Ds), hard disk drives
(HDDs), and a combination of S8Ds and HDDs (Hybrid). The storage devices 165 may be
configured under a RAID system data redundancy and load balancing. Examples of RAID
system include software RAID, hardware RAID card, RAID on a chip, Erasure Coding, or JBOD
(Just a Bunch of Disks). The storage devices 165 may also include a NVRAM device for write
caching and deferred writes. Examples of NVRAM devices include NVRAM cards, battery-
backed DRAM, and NVDIMM. In some embodiments the storage devices 165 may be
accessible by muitiple nodes 120, or multiple storage systems 100 as shared storage devices.

The storage system 100 provides logical device access to one or more user applications
110. In some embodiments the user application 110 and the storage system 100 may be
running on the same physical systems. in other embodiments the user application 110 may
access the storage system 100 through a storage network such as Ethernet, FibreChannel,
InfiniBand, and PCle networks.

The processors 130 provide an interface between the user applications 110 and the
storage devices 165. For example, the processors 130 may provide a set of commands for the
application 110 to read from and write {0 the storage devices 165 in the storage pool 160. The
processors 130 run storage software applications to provide storage virtualization, capacity
reduction, scale out, availability, mobility, and performance that often can’t be achieved by the
storage devices themselves. In the present disclosure, the processors 130 at different nodes
120 cooperate to manage the storage pool 160 and associated metadata 140 in a distributed
fashion. Both the data blocks and the metadata 140 are stored redundantly across storage
devices 165 at multiple nodes 120 and are accessible to each of the nodes 120. The metadata
140 can also be cached in a local cache 150, which may be stored in the memory 135 of the
nodes 120.

The present disclosure provides methods for managing the metadata 140 and storage
pool 180 as illustrated in Fig. 2. The metadata 140 comprises first metadata 142 and second
metadata 145. The first metadata 142 maps an exemplary logical data block’s LUN 200a and
LBN 210a to its unique content identifier (CiD) 220. The content ID is unique to the data block’s
content — the likelihood that two distinct blocks will have the same content [D is vanishingly
small. In some embodiments a strong hash function, such as SHA1 developed by the US
National Institute for Standards and Technology (NIST), is used to compute a block’s content ID
and make it computationally infeasible that two distinct blocks will have the same content ID.
The second metadata 145 maps every unique CID 220 to its PBN 240 within the storage pool

160. In the case where two logical data blocks have duplicate contents, both are mapped fo the
5

10

15

20

25

30

35

WO 2016/111954 PCT/US2016/012102

same CID 220/PBN 240. Data deduplication is therefore supported globally across LUNs 200
and nodes 120 without separate deduplication metadata. A Reference Count 230 is maintained
to reflect the number of LUN/LBN references to CiD 220. At a fixed block size, the size of the
first metadata 142 is proportional to the usable capacity of the storage system whereas the size
of the second metadata 145 is proportional to the system’s physical capacity. in general, the
usable capacity of the system is many times larger than its physical capacity due to data
deduplication, compression, and snapshots, rendering the first metadata 142 many times bigger
than the second metadata 145.

Fig. 3 llustrates a flow diagram for servicing a read request from the application 110:
For purposes of this example, it is assumed that the read request is received by node 120a, with
the understanding that the other nodes would operate similarly.

Step 310: The processor 130a on an exemplary node 120a receives a read request for
LUN 200a/LBN 210a;

Step 320: The processor 130a looks up LUN 200a/LBN 210a in the first metadata 142 to
obtain CiD 220;

Step 330: The processor 130a looks up CID 220 in the second metadata 145 to obtain
PBN 240;

Step 340: The processor 130a determines whether the CID 220/PBN 240 is on local
Node 1202;

Step 350: If the CID 220/PBN 240 is on local Node 120a, the processor 130a reads the
physical data block locally PBN 240 (Step 350);

Step 360: If the CID 220/PBN 240 is not on local Node 1203, the processor 130a reads
the physical data block remotely at PBN 240;

Step 350: The processor 130a acknowledges the read request to the application 110.

In some embodiments, the storage processor 130a is configured to compute the content
ID of the physical block at PBN 230 and compare that to the CID 210. If the two content IDs do
not match, the processor 130a can attempt to read from a redundant copy to correct the data
corruption.

Fig. 4 illustrates a flow diagram for servicing a write request from the application 110:
For purposes of this example, it is assumed that the read request is received by Node 120a,
with the understanding that the other nodes would operate similarly.

Step 410: The processor 130a on an exemplary node 120a receives a write request for
LUN 200a/LBN 210g;

Step 420: The processor 130a computes CID 220 of the data block in the write request;

Step 430: The processor 130a looks up CID 220 in the second metadata 145;

Step 440: If CID 220 already exists in the second metadata table 145, the processor

130a increases its corresponding Reference Count 230 by 1;

10

15

20

25

30

35

WO 2016/111954 PCT/US2016/012102

Step 450: if CID 220 does not exist in the second metadata 145, the processor 130a
allocates PBN 240 locally or asks another processor 130b to allocate PBN 240 remotely from
the free block list for the storage pool 160; the processor 130a writes the data block at PBN 240;

Step 460: The processor 130a creates a new entry for CID 220/PBN 240 in the second
metadata 145 and sets its Reference Countto 1;

Step 470: The processor 130a looks up any existing entry for LUN 200a/LBN 210a in the
first metadata table 142; decreases reference count for the CID/PBN by 1; If the reference count
is zero returns the PBN o free block list for the storage pool 160;

Step 480: The processor 130a creates a new entry for LUN 200a/LBN 210a/CID 220 in
the first metadata 142;

Step 490: The processor 130a acknowledges the completion of the write request o the
application 110.

In some embodiments, the storage processor 130a writes the data block to a local
NVRAM device at step 450 and acknowledges write completion o the application 110 before
writing the data block to PBN 240 at a later time (deferred write).

As part of servicing a read or write request, access {o the first metadata 142 based on
the logical address, e.g., LUN 200/LBN 210, benefits from user application locality of reference.
In some embodiments the first metadata is stored persistently within the storage pocl 160 and
cached in the memory 135 at each node 120 based on access frequency and recency. Access
to the second metadata 145 based on CID 220 does not benefit from locality of reference and
therefore cannot be cached effectively. In general, the second metadata 145 is many times
smaller than the first metadata 142 due to deduplication, compression, and snapshot. In some
embodiments, the second metadata 145 may be stored persistently within the storage pool 160
and cached entirely in the memory 135 at each node 120.

Fig. 5A and 5B illustrate block diagrams for an add-a-node operation in support of scale
out. When a new node 120b is added to the storage system 100 to provide more storage
capacity and performance, a large number of data blocks need to be moved from their current
physical locations to the new node 120b in order to redistribute data blocks across all available
capacity and bandwidth. Add-a-node is expected to be transparent to user applications so that a
change in a data block’s physical location from a first PBN 240a at node 120a to a second PBN
240b at node 120b should not affect its LUN 200/L.BN 210 addressed by the user application
110.

Fig. 6 Hllustrates a flow diagram for this add-a-node operation. For purposes of this
example, it is assumed that node 120a is an existing node and node 120b is a newly added
node. The processor 130a on node 120a determines which local data blocks should be moved
to the new node 120b. The process for moving an exemplary physical data block PBN 240ain a
storage device 165a at node 120a comprises:

Step 610: The processor 130a reads the data block at PBN 240g;
7

10

15

20

25

30

35

WO 2016/111954 PCT/US2016/012102

Step 620: The processor 130a determines the data block’s CID 220 by either computing
it or retrieving it from FBN 2403,

Step 630: The processor 130a looks up CID 220 in the second metadata 145;

Step 640: The processor 130a sends the data block, CID 220, and Reference Count 230
to the processor 130b on the new node 120b;

Step 650: The processor 130b aliocates PBN 240b from its free block list and writes the
data block to PBN 240b;

Step 660 The processor 130b creates new entry CID 220/Reference Count 230/PBN
240b in the second metadata 145 and acknowledges completion of these tasks to the processor
130a;

Step 670: The processor 130a removes CID 220/PBN 240a from the second metadata
145 and frees PBN 240a.

In some embodiments, the above steps for a single data block are batched to improve
performance.

It should be evident from the above description that the add-a-node operation does not
access or alter the first metadata 142 and therefore is transparent to the user application 110.
Only the second metadata 145 is accessed and updated as part of the operation. In some
embodiments, the second metadata 145 is many times smaller than the first metadata table 142
and is cached entirely in the memory 135 af each node 120 for low latency access.

Fig. 7A and 7B illustrate logical device mobility. An exemplary logical device identified by
LUN 200 is presented to the user application 110 on node 120a. The logical device is then
moved from node 120a to node 120b. Given that the metadata 140 is stored redundantly across
the nodes and is accessible to all nodes 120, the processor 130a simply de-activates or
disables access to the logical device identified by LUN 200 and the processor 130b activates or
enables access {o the logical device identified by LUN 200 by retrieving its first metadata 142
from the storage pool 160 into its memory 135b. This operation also applies to logical device
availability where the node 120a fails and access to a logical device is lost.

The size of the first metadata 142 is proportional to the usable capacity of the storage
system and can become very large due to deduplication, compression, and snapshots. Even
with locality of reference, caching the first metadata 142 can be a challenge. The present
disclosure provides methods to further reduce the time to access for logical device
mobility/availability and reduce the size of the first metadata table 142 {0 make caching more
effective. In some embodiments, a logical device’s first metadata is implemented in a tree data
structure as illustrated in Fig. 8. At the bottom of the tree is a linear sequence of data blocks Dy,
Dy, ..., Dny Dy, ..., corresponding to LBN 0, 1, ..., N, N+1, Each data block’s content (P, Q,
R) is hashed and its content ID (H(P), H(Q), H(R)) stored in a metadata block. Each metadata
block’s content (X, Y) is also hashed and its content D (H(X), H(Y)) is stored in a metadata

block. This process can be repeated recursively until a single content ID H(V) is obtained, which
8

10

15

20

25

30

WO 2016/111954 PCT/US2016/012102

represents the root of the logical device. In the case where data block D, and Dy have the same
content Q, both metadata M, and My have the same content ID H(Q), resulting in data
deduplication. LBN N for exampie is not stored in the metadata entry My but can be easily
determined based on My's relative position in the tree. This structure not only greatly reduces
the size of the first metadata table 142 but also makes it feasible {o deduplicate metadata
blocks.

Fig. 9 illustrates that metadata blocks are deduplicated between two versions of the tree.
The only difference from Version 1 to Version 2 is that the block content at LBN N is changed
from Q to S. This change results in a new metadata entry M'y, new metadata block Z, and new
metadata block W, but the metadata block X is unchanged and shared between Version 1 and
Version 2. With this tree structure in place for a logical device, the processor 120b can activate
or enable access to the logical device by simply retrieving the root of its tree, resulting in a much
shorter time to access. The rest of the free for the logical device may be retrieved and cached
as their LBNs are accessed by the user application 110.

The present disclosure also provides methods for local caching. Local caching reduces
network access latency and improves performance without data locality, which causes longer
time to performance for logical device mobility. Fig. 10A illustrates local caching for an
exemplary logical device identified by LUN 200. As LUN 200/LBN 210/CID 220 is first accessed,
its data block 250 is retrieved from the storage pool 160, possibly from a remote node. Based
on access frequency and recency, the processor 130a may decide to cache the data block 250
and its CID 220 in a local cache 150a. The next access to LUN 200/LBN 210/CID 220 results in
reading the data block 250 from the local cache 150a without network access latency. Fig. 10B
illustrates a method to shorien time o performance for logical device mobility. When a logical
device is moved from node 120a to node 120b, the processor 120a pushes its cached data
blocks for the logical device from its local cache 150a to node 120b’s local cache 150b. As a
result access performance to the logical device on node 120b is greatly improved with the
cached blocks for LUN 200 in the local cache150b on node 120b.

10

15

20

25

30

35

WO 2016/111954 PCT/US2016/012102

CLAIMS
What is claimed is:
1. A method implemented in a data storage system of moving data, said method
comprising:
storing data blocks in a data storage pool comprising a plurality of data storage devices
distributed among two or more data storage nodes, each data block associated
with a unique content identifer;
storing metadata mapping the logical addresses of logical data blocks associated with
one or more logical devices to physical addresses of corresponding data blocks
stored in said data storage device , said metadata comprising:
first metadata mapping the logical addresses of logical data blocks on said logical
devices to corresponding content identifiers; and
second metadata mapping the content identifiers {o corresponding ones of the physical
addresses of the data blocks;
adding a new data storage node having one or more additional data storage devices to
the data storage system;
moving a first data block from a first physical address in a first one of the data storage
devices located at a first one of said data storage nodes to a second physical
address in a second data storage device located at said new data storage node;
updating the second metadata to map the content identifier associated with the first data

block to the second physical address without altering the first metadata.

2. The method of claim 1 wherein storing data blocks in a data storage pool comprises
storing the data blocks redundantly in multiple data storage devices located at multiple data

storage nodes.

3 The method of claim 1 or 2 wherein storing metadata comprises storing the metadata

redundantly in muitiple data storage devices located at multiple data storage nodes.

4. The method of claims 1 wherein the data blocks and metadata are accessible to each of

the data storage nodes.

5. The method of claim 1 wherein updating the second metadata comprises:
deleting, by the first data storage node, an existing entry in the second metadata
mapping the content identifier of the first data block to the first physical address;

and

10

10

15

20

25

30

35

WO 2016/111954 PCT/US2016/012102

creating, by the new data storage node, a new entry in the second metadata mapping

the content identifier of the first data block o the second physical address.

6. The method of claim 1 further comprising caching the first metadata in local memories of

the data storage nodes based on locality of reference.

7. The method of claim 1 or 6 further comprising caching the second metadata in its

entirety in local memories at each of the data storage nodes.

8. The method of claim 1 wherein storing metadata comprises storing the first metadata in
a first metadata table comprising a plurality of entries containing content identifiers of the logical

data blocks.

9. The method of claim 8 wherein a relative position of each entry in the first metadata

table indicates a logical block number of the corresponding logical data block.

10. The method of claim 8 or 9 wherein a plurality of entries in the first metadata table are
stored in a metablock and further comprising:
generating a content identifer for each metadata block; and

dedupulicating the metablocks using the content identifiers for the metablocks.

M. A data storage system comprising:
a plurality of data storage nodes connected by a network;
a data storage pool comprising a plurality of data storage devices distributed among the
data storage nodes,
processing circuitry distributed among the data storage nodes, said processing circuitry
configured to:
store data blocks in said data storage pool, each data block associated with a
unique content identifer
store, in said data storage pool, metadata mapping the legical addresses of
logical data blocks associated with one or more logical devices o
physical addresses of corresponding data blocks stored in said data
storage device, said metadata comprising:
first metadata mapping the logical addresses of logical data blocks on said
logical devices to corresponding content identifiers; and
second metadata mapping the content identifiers to corresponding ones of the

physical addresses of the data blocks; and

1

10

15

20

25

30

35

WO 2016/111954 PCT/US2016/012102

move, responsive to the addition of a new data storage node, a first data block
from a first physical address in a first one of the data storage devices
located at a first one of said data storage nodes to a second physical
address in a second data storage device located at said new data storage
node;

update the second metadata to map the content identifer associated with the first
data block to the second physical address without altering the first

metadata.

12. The data storage system of claim 11 wherein the data blocks are stored redundantly in

multiple data storage devices located at multiple data storage nodes.

13. The data storage system of claim 11 or 12 wherein the metadata is stored redundantly in

multiple metadata storage devices located in multiple data storage nodes.

14. The data storage system of claim 11 wherein the data blocks and metadata are

accessible to each of the data storage nodes.

15. The data storage system of claim 11 wherein the processing circuitry comprises:

a first processor in the first data storage node configured to delete an existing entry in
the second metadata mapping the content identifer of the first data block to the
first physical address; and

a second processor in the new data storage node configured to create a new entry in the
second metadata mapping the content identifer of the first data block o the

second physical address.

16. The data storage system of claim 11 further comprising local memory in each data
storage node for caching the first metadata in local memories of the data storage nodes based

on locality of reference.

17. The data storage system of claim 11 further comprising local memory in each data
storage node caching the second metadata in its entirety in local memories at each of the data

storage nodes.

18. The data storage system of claim 11 wherein the processing circuitry is configured to
store the first metadata in a first metadata table comprising a plurality of eniries containing

content identifiers of the logical data blocks.

12

10

15

20

25

30

35

18.

WO 2016/111954 PCT/US2016/012102

The data storage system of claim 18 wherein the relative position of each entry in the

first metadata table indicates a logical block number of the corresponding logical data block.

20.

The data storage system of claim 18 or 19 wherein the processing circuitry is further

configured to:

21.

store a plurality of entries in the first metadata table in a metablock and further
comprising:
generate a content identifer for each metadata block; and

dedupulicate the metablocks using the content identifiers for the metablocks.

A method implemented in a data storage system of moving data, said method

comprising:

22.

23.

24.

storing data blocks in a data storage pool comprising a plurality of data storage devices
distributed among two or more data storage nodes, each data block associated
with a unique content identifer;

storing metadata mapping the physical addresses of the data blocks in the data storage
pool to corresponding logical addresses associated with one or more logical
devices, said metadata comprising:

first metadata mapping the logical addresses associated with said logical devices to
corresponding content identifiers; and

second metadata mapping the content identifiers to corresponding ones of the physical
addresses of the data blocks;

moving an access point for a first logical device from a first one of said data storage

nodes to a second one of said data storage node.

The method of claim 21 wherein moving the access point comprises:
disabling access to said logical device on the first data storage node; and

enabling access to said logical device on the second data storage node.

The method of claim 21 wherein moving the access point comprises:
detecting a failure of the first data storage node; and
enabling access to said logical device on the second data storage node responsive {o

detection of the failure.

The method of claim 21 further comprising organizing the first metadata associated with

the first logical device in a tree data structure comprising a root and a plurality of entries

associated with logical addresses on the first logical device.

13

10

15

20

25

30

35

WO 2016/111954 PCT/US2016/012102

25. The method of claim 24 wherein moving the access point comprises:
retrieving, by the second data storage node, the root of the tree data structure associated with
the first logical device; and

activating access to said logical device on the second data storage node.

26. The method of claim 15 wherein moving the access point further comprises retrieving
the entries associated with the logical addresses of the first logical device when the logical

addresses are accessed.

27. A data storage system comprising:
a plurality of data storage nodes connected by a network;
a data storage pool comprising a plurality of data storage devices distributed among the
data storage nodes, and
processing circuitry distributed among the data storage nodes, said processing circuitry
configured to:
store data blocks in said data storage pool, each data block associated with a
unique content identifer
store, in said data storage pool, metadata mapping the logical addresses of
logical data blocks associated with one or more logical devices to
physical addresses of corresponding data blocks stored in said data
storage device, said metadata comprising:
first metadata mapping the logical addresses of logical data blocks on said
logical devices to corresponding content identifiers; and
second metadata mapping the content identifiers to corresponding ones of the
physical addresses of the data blocks; and
move an access point for a first logical device from a first one of said data

storage nodes {0 a second one of said data storage node.

22. The data storage system of claim 27 wherein, to move the access point, the processing
circuitry is configured to:
disable access to said logical device on the first data storage node; and

enable access to said logical device on the second data storage node.

23. The data storage system of claim 27 wherein, to move the access point, the processing
circuitry is configured to:

detect a failure of the first data storage node,; and

enable access to said logical device on the second data storage node responsive to

detection of the failure.
14

10

15

20

WO 2016/111954 PCT/US2016/012102

24. The method of claim 27 wherein the processing circuitry is further configured to organize
the first metadata associated with the first logical device in a tree data structure comprising a

root and a plurality of entries associated with logical addresses on the first logical device.

25. The method of claim 24 wherein, to move the access point, the processing circuitry
comprises:
a processor in the second data storage node configured to retrieve the root of the tree
data structure associated with the first logical device; and

enable access 1o said logical device on the second data storage node.

26. The method of claim 25 wherein, to moving the access point, the processor in the
second data storage node is further configured to retrieve the entries associated with the logical

addresses of the first logical device when the logical addresses are accessed.
27. The method of claim 21 wherein, to move the access point, the processor in the first

data storage node is further configured to push its local cache for the first logical device to the

second data storage node.

15

PCT/US2016/012102

113

gsai seunsq] ebeioig | BGo] semna(] ebeiolg

oy e i

091 1004 8beI01S

s o s R e] e e 0 M o e i s i R o o] e s o e] e i W i a nt h ke o 0

WO 2016/111954

a1 fowery . ese1 Kowen
gOg | 10SS8204 ANoHD BOS | J0SS890Id
Buissenoid pemnguisi| i b
qog i ©PoN SO HIOMIBN 2071 SPON
| | :
001 waisAg obeinl1g

011 suoneoyddy Josn

PCT/US2016/012102

2113

m . 09t
_“ [o0d @beloig ;
e e e e e g e e 4
| Q¥ 1 eiepespy
u 0vE Ned
062 1D Joy Gyl BlEpRISN pUoDaS | |
02z a1 | W
022 Q1 022 QIO M
m E—— _ Ag)
m 4012 NET [P0RNET] peoerapy 1siig m
W 9002 NN 200E NN |

apgt epoN EQSL 2PON

WO 2016/111954

<~

011 uopesyddy Jesn

PCT/US2016/012102

313

WO 2016/111954

€ "Old

0L€
011 voneogdde 0} 1sonbai pess oyl Yoy

0Be

f 1

0vZ Ndd 12 Aljeoo) yooig peay

mm\rﬂ

Op O¥E T

. BOZ1 SPON U0 b2 Ndd S
/

0ee
02 NEd URigo o} Gy BIRpeIsi Ul 01Z 10 dn 0o

f

0ce
012 Q1D 180 01 Zvi viEpEIOW Ul BOLZ NG/B00Z NN dn Yo'

t

0Le
(L2 NE1/B00Z N 40) 1s8nbas pea) e sAloosy

PCT/US2016/012102

4113

WO 2016/111954

v 'Ol
6% — 08y
gLL uonesydde o1 1senb ajlm 4oy 21 BlepRlap Ul Ajud mBu 81esls
09y 0L
Gl BIEPRIDIA Ul AflUS mal ajeal)) Sl 21 Blepeep U Aue Bunsixe elejeg
0Sb b
HO0IG 2IM OPZ NGd S1edo|ly | AQ Dz 1UN0Y 8oURIBIeY BSESIDU]
—_
ON - ey T
| Efepeiap ulisixe 022 J10 s80
ozy

{O0|g BIER @4} O 027 1D Sindwio)

1

oLy
a0z NET/B00Z N 404 158nbat slum B sAladeY

PCT/US2016/012102

53

WO 2016/111954

vs Ol

(e e

B B B @@F m_
| {004 abrimg

2047 Nad SpL
OEE WS Jou Blepelaipy puodsg
022 QI |
0zZ QIO :

0L NET i M
EIEPEISW 18414 :

002 N ;

q0c} @PON MSN

011 uoneoyddy Jasny

PCT/US2016/012102

6/13

WO 2016/111954

S S

.:@%m.&mvﬂmzz,/, D
& j
H0P2 Ndd S|
0ge W) 19d BlEpElsiy PUQIBS
gge Al

/

/«It.

0cZ Aio

OLS Nd'

002 NOT

A
BlEpE}S| 1Si4

4021 SPON MON

2021 8popN Bunsixg

D v o o it ks Ak Akt Hr D V8B, F2 T T P e o e o o o ik o o

011 uoneaiddy iosn

PCT/US2016/012102

7113

WO 2016/111954

099
qoveZ N9d/02g Q10 Aus mau 8lesi)

049
BOVZ NEd/02g 10 Anue Buiisixe siela(

[

o

059
GOPZ Ned 01 300[q BIED 841 SUIM

09
0£2 UD jey ‘0g¢ QID Hoolg 8yl pusg

gog | 10SSe00i

]

0EY
Sy L BIBPRISI Ul 022 QID din 3007

!

029
022 QIO S0y sy suilualad

[

019
B0d Nedd WO} Hoo[d elep peay

BOE | JOSS8004d

PCT/US2016/012102

313

WO 2016/111954

, 091
1004 8beI01G

0ve Néd
gl
052 U0 Joy BIEPRION PUCD9S

0ge Qi
028410 L
gLz NE1 Bleprlop 1544
00z NI

docl epon E0Z L SPON

011 uoneanddy Jesn

PCT/US2016/012102

9713

WO 2016/111954

Ol ERpRION

D¥< N8d

0ed WD Py

Gl
RIEpRIOY PUODSSS

0cc Al

-

\%.\...1..\%\“1

02e 1O

Ad)
ejepeiap 154

G0ct 2PON

E0cl 9PON

0L uolresyddy Jesn

PCT/US2016/012102

10/13

WO 2016/111954

O (dH

A L= JWA[00R

(orl NN 8yl jo 100y

PCT/US2016/012102

1113

WO 2016/111954

H | (XH

2 UOISIap

o
-

L UOISIBA

PCT/US2016/012102

12113

WO 2016/111954

. 09L
- {004 80eI0IS |

062 >oolg Byed)|

Gi1 Blepelspy puooasg

2yl
BlepeIajy 1SJ1d

40ct 2PON

02 a0 |
m BOSL |
L1 eyoe) 8007 !
SO J
022 Q10
012 NeT
002 N
EQC| ©PON

0L} UoHEol]

ddy Jesn

PCT/US2016/012102

1313

WO 2016/111954

...

09k i
j00d abeialg |

Gy | Blepelap] puooss

cv) elepelapy 18iid

ozzal | |
qosi
ayoeq [BooT :
| ozzao
| orznen
L1002 N

40C | OPON

~

011 uoneonddy Bsn

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 16/12102

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GO6F 12/00 (2016.01)
CPC - GO6F 12/0292

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC (8) - GO6F 12/00 (2016.01)
CPC - GO6F 12/0292

Minimum documentation searched (classification system followed by classification symbols)

CPC - GO6F 12/1027; GO6F 12/10 (See Keywords below)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

USPC - 711/202, 711/209, 711/203, 718/1, 711/162, 711/100, 707/999.01, 707/999.2, 707/999.201, 707/999.001, 707/989.202

Electronic data base consulted during the international search (name of

Thomsoninnovation.com; Patbase; Google Scholar; Google Patents; Gogole.com; Freepatentsonline; ProQuest Dialog
Search Terms: Data storage, node, data block, identifier, content, address, address block, block number, logical, virtual, metadata,
mapping, physical address, add, scale, attach, expand, new, node, move, transfer, migrate, update, modify

data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 7,321,962 B1 (FAIR et al.), 22 January 2008 (22.01.2008), entire document, especially 1-20
Abstract; col 5, In 60 to col 6, In 10; col 6, In 55 to col 7, In 10; col 11, In 55 to col 12, In 2; col
12, In 20-50
v Us 2uu//uu2208/ A1 (BAHAR et al.), 25 January 2007 (25.01.2007), entire document, 1-20
especially Abstract; Para [0033], [0043)
Y US 2012/0323859 A1 (YASA et al.), 20 December 2012 (20.12.2012), entire document, 5,10, 15 and 20
especially Abstract; Para [0008], [0039]-[0042], [0047]-[0050], [0056)-[0061]
A US 2014/0068211 A1 (FISKE et al.), 06 March 2014 (06.03,2014) entire documeant, 120
A U8 6,601,100 B1 (MITAl IARA), 03 Auyust 2003 (US.UB.20U3), entire document, 1-20

D Further documents are listed in the continuation of Box C.

[

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E" earlier application or patent but published on or after the international
filing date

“L™ document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“O” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than

the priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&"” document member of the same patent family

Date of the actual completion of the international search

03 May 2016 (03.05.2016)

Date of mailing of the international search report

02JUN 2016

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-8300

Authorized officer:
Lee W. Young

PCT Helpdesk: §71-272-4300
PCT OSP: A71-272.7774

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT International application No.
PCT/US 16/12102

Box No. Il Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

L. D Claims Nos.:

because they relate to subject matter not required to be searched by this Authority, namely:

2. D (“laims Nins ;

because they relate to parts of the interational application that do not comply with the prescribed requirements to such an
extent that no meaningful international search can be carried out, specifically:

3. I:] Claims Nos.:

because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 af first sheet)

This International Searching Authority found multiplc inventions in this international application, as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive
concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Group I: Claims 1-20 directed to a method and data storage system of moving data with scalable storage.

Group II: Claims 21-27 directed to a method and data storage system of moving data by moving access point for logical devices.

-+ (Saa Continuation in Eupplemental Dua) ---

. D As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
claims.

2. D As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of
additional fees.

3. D As only some of the required additional search fecs were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.;

4. }x{ No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest I:] The additional search fees were accompanied by the applicant’s protest and, where applicable, the
payment of a protest fee.

D The additional search fees were accompanied by the applicant’s protest but the applicable protest
fee was not paid within the time limit specified in the invitation.

I___] No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (January 2015)

INTERNATIONAL SEARCH REPORT International application No.

PCT/US 16/12102

Continuation of:
Box lll. Observations where unity of invention is lacking

The inventions listed as Groups |-l do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule
13.2, they lack the same or corrosponding spccial technical features for the following reasons:

Special Technical Features:

The invention of Group | included the features of adding a new data storage node having one or more additional data storage devices to
the data storage system; moving a first data block from a first physica! address in a first one of the data storage devices located at a first
one of said data storage nodes to a second physical address in a second data storage device located at said new data storage node;
updating the second metadata to map the content identifier associated with the first data block to the second physical address without
altering the first metadata, not required by group Il.

The invention of Group Il included the features of moving an access point for a first logical device from a first one of said data storage
nodes to a second one of said data storage node, not required by group |.

Common Technical Features

Groups |-1l share the technical features of storing data blocks in a data storage pool comprising a plurality of data storage devices
distributéd among two or more data storage nodes, each data block associated with a unique content identifier; processing circuitry
distributed among the data storage nodes; storing metadata mapping the logical addresses of logical data blocks associated with one or
more logical devices to physical addresses of corresponding data blocks stored in said data storage device , said metadata comprising:
first metadata mapping the logical addresses of logica! data blocks on said logical devices to corresponding content identifiers; and
second metadata mapping the content identifiers to corresponding ones of the physical addresses of the data blocks;

However, the shared technical features does not represent a contribution over prior art as being obvious over US 2014/0068211 A1 to
Fiske et al. (hereinafter ‘FISKE') 06 March 2014 (06.03.2014) in view of US 6,604,108 81 (NITAHARA), 05 August 2003 (05.08.2003).

Fiske teaches storing data blocks in a data storage pool comprising a plurality of data storage devices distributed among two or more
data storage nodes, each data block associated with a unique content identifier (Para [0014]- storage pool; the nodes that map logical
addresses to physical locations comprise leaf nodes; maintain a free storage space pool 20 identifying storage space in the storage);
processing circuitry distributed among the data storage nodes (Para [0045]-[0046]- data processing apparatus); storing metadata
mapping the logical addresses of logical data blocks associated with one or more logical devices to physical addresses of corresponding
data blocks stored in said data storage device (Para [0019}-[0020]- a file system 66a providing information on the data stored in the
source storage 56a volumes 54a, including metadata; The first address mapping function 64 may use a fixed formula for allocating
physical space to logical addresses and allocate logical addresses) and Nitahara further teaches first metadata mapping the logical
addresses of logical data blocks on said logical devices to corresponding content identifiers (col 4, In 30-40 - The logical index identifies
each content file made available by the system using a unique content file identifier); second metadata mapping the content identifiers to
corresponding ones of the physical addresses of the data blocks (col 2, In 30-55 - associating the physical address of the locally or
remotely stored content file with the identifier of the content file).

As the common features were known in the art at the time of the invention, this cannot be considered a common technical feature that
would otherwise unify the groups.

Therefore, Groups |-l lack unity under PCT Rule 13.

Form PCT/ISA/210 (extra sheet) (January 2015)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - claims
	Page 12 - claims
	Page 13 - claims
	Page 14 - claims
	Page 15 - claims
	Page 16 - claims
	Page 17 - drawings
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - wo-search-report
	Page 31 - wo-search-report
	Page 32 - wo-search-report

