wo 2017/132399 A1 I} 00O O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2017/132399 Al

3 August 2017 (03.08.2017) WIPO I PCT
(51) International Patent Classification: (74) Agents: MEYER, Sheldon, R. et al.; Tucker Ellis LLP,
GO6F 9/455 (2006.01) HO4L 29/12 (2006.01) One Market Plaza, Steuart Tower, Suite 700, San Fran-
HO4L 12/931 (2013.01) cisco, California 94105 (US).
(21) International Application Number: (81) Designated States (uniess otherwise indicated, for every
PCT/US2017/015169 kind of national protection available). AE, AG, AL, AM,
. . AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(22) International Filing Date: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM,
26 January 2017 (26.01.2017) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT.
(25) Filing Language: English HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN,
. KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA,
(26) Publication Language: English MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG,
(30) Priority Data: NIL NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS,
62/287,712 27 January 2016 (27.01.2016) Us RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, 8V, 8Y,
15/415,668 25 January 2017 (25.01.2017) US TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
ZA, M, ZW.

(71) Applicant: ORACLE INTERNATIONAL CORPORA- . L
TION [US/US]; 500 Oracle Parkway, M/S 5op7, Redwood (84) Designated States (uniess otherwise indicated, for every
Shores, California 94065 (US). kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
(72) Inventors: JOHNSEN, Bjern Dag; Vilberggrenda 9, 0687 TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,

Oslo (NO). HOEG, Harald; P.O. Box 384, 1326 Lysaker
(NO). HOLEN, Line; Vitasen 17, 1900 Fetsund (NO).

TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: SYSTEM AND METHOD FOR DEFINING VIRTUAL MACHINE FABRIC PROFILES OF VIRTUAL MACHINES
IN A HIGH-PERFORMANCE COMPUTING ENVIRONMENT

VHCA Instance ID* 1514
VM-id* 1502

VM-id* 1502
Logical Name 1504
Profile Type 1506
Profile ID 1508
CUE 1510

vHCA Instance ID* 1514

vGUID* 1522

vHCA Port No. 1520

Fabric Database 1500

FIGURE 15

(57) Abstract: Systems and methods for defining virtual
machine fabric profiles of virtual machines which can con-
tain a virtual machine identifier, a virtual host channel ad-
apter instance ID, and a virtual globally unique identifier.
The virtual machine identifier, virtual host channel adapter
instance ID, and virtual globally unique identifier can be
mapped to each other so that the virtual host channel adapter
instance ID, and virtual globally unique identifier can be re-
trieved through access to the virtual machine identifier. Fur-
ther, a relationship can be created between a P_Key that
defines an admin partition and the virtual globally unique
identifier, where the relationship between the P_Key and the
virtual globally unique identifier defines the virtual globally
unique identifier as a member of the admin partition defined
by the P_Key.

WO 2017/132399 A1 WK 00T 00T AR AR

Published:
— with international search report (Art. 21(3))

10

15

20

25

30

35

WO 2017/132399 PCT/US2017/015169

SYSTEM AND METHOD FOR DEFINING VIRTUAL MACHINE FABRIC PROFILES OF
VIRTUAL MACHINES IN A HIGH-PERFORMANCE COMPUTING ENVIRONMENT

COPYRIGHT NOTICE
A portion of the disclosure of this patent document contains
material which is subject to copyright protection. The copyright
owner has no objection to the facsimile reproduction by anyone
of the patent document or the patent disclosure, as it appears
in the Patent and Trademark Office patent file or records, but

otherwise reserves all copyright rights whatsoever.

Field of Invention

[001] The present invention is generally related to computer systems, and is particularly

related to defining virtual machine fabric profiles of virtual machines.

Background
[002] As larger cloud computing architectures are introduced, the performance and

administrative bottlenecks associated with the traditional network and storage have become
a significant problem. There has been an increased interest in using high performance
lossless interconnects such as InfiniBand™ (IB) technology as the foundation for a cloud
computing fabric. This is the general area that embodiments of the invention are intended to

address.

Summary
[003] Described herein are systems and methods for defining virtual machine fabric

profiles of virtual machines. An exemplary embodiment can provide a virtual machine
identifier, a virtual host channel adapter instance ID, and a virtual globally unique identifier.
The virtual machine identifier, virtual host channel adapter instance ID, and virtual globally
unique identifier can be mapped to each other so that the virtual host channel adapter
instance ID, and virtual globally unique identifier can be retrieved through access to the
virtual machine identifier. Further, a relationship can be created between a P_Key that
defines an admin partition and the virtual globally unique identifier, where the relationship
between the P_Key and the virtual globally unique identifier defines the virtual globally

unique identifier as a member of the admin partition defined by the P_Key.

Brief Description of the Figures

[004] Figure 1 shows an illustration of an InfiniBand™ environment, in accordance with

-1-

10

15

20

25

30

35

WO 2017/132399 PCT/US2017/015169

an embodiment.

[005] Figure 2 shows an illustration of a partitioned cluster environment, in accordance
with an embodiment

[006] Figure 3 shows an illustration of a tree topology in a network environment, in
accordance with an embodiment.

[007] Figure 4 shows an exemplary shared port architecture, in accordance with an
embodiment.

[008] Figure 5 shows an exemplary vSwitch architecture, in accordance with an
embodiment.

[009] Figure 6 shows an exemplary vPort architecture, in accordance with an
embodiment.

[0010] Figure 7 shows an exemplary vSwitch architecture with prepopulated LIDs, in
accordance with an embodiment.

[0011] Figure 8 shows an exemplary vSwitch architecture with dynamic LID assignment, in
accordance with an embodiment.

[0012] Figure 9 shows an exemplary vSwitch architecture with vSwitch with dynamic LID
assignment and prepopulated LIDs, in accordance with an embodiment.

[0013] Figure 10 shows an exemplary multi-subnet InfiniBand™ fabric, in accordance with
an embodiment.

[0014] Figure 11 shows an exemplary InfiniBand™ fabric and subnet including exemplary
physical and logical subnet resources, in accordance with an embodiment.

[0015] Figure 12 an exemplary InfiniBand™ fabric and subnet including exemplary subnet
resources as members of different admin partitions, in accordance with an embodiment.
[0016] Figure 13 shows an exemplary InfiniBand™ fabric and subnet including exemplary
subnet resources as members of a hierarchical management scheme, including both admin
partitions and resource domains, in accordance with an embodiment.

[0017] Figure 14 is a flowchart for a method for assigning mutual access rights to
members and associated resources of an admin partition associated with a fabric-level
resource domain, in accordance with an embodiment.

[0018] Figure 15 shows an exemplary database structure for storing VM fabric profile
information, in accordance with an embodiment.

[0019] Figure 16 is a flow chart for making a VM fabric profile available to subnet
resources, in accordance with an embodiment.

[0020] Figure 17 is a flow chart for creating a virtual machine fabric profile for a virtual

machine, in accordance with an embodiment.

10

15

20

25

30

35

WO 2017/132399 PCT/US2017/015169

Detailed Description

[0021] The invention is illustrated, by way of example and not by way of limitation, in the
figures of the accompanying drawings in which like references indicate similar elements. It
should be noted that references to “an” or “one” or “some” embodiment(s) in this disclosure
are not necessarily to the same embodiment, and such references mean at least one. While
specific implementations are discussed, it is understood that the specific implementations are
provided for illustrative purposes only. A person skilled in the relevant art will recognize that
other components and configurations may be used without departing from the scope and
spirit of the invention.

[0022] Common reference numerals can be used to indicate like elements throughout the
drawings and detailed description; therefore, reference numerals used in a figure may or may
not be referenced in the detailed description specific to such figure if the element is
described elsewhere.

[0023] Described herein are systems and methods for defining virtual machine fabric
profiles of virtual machines.

[0024] The following description of the invention uses an InfiniBand™ (IB) network as an
example for a high performance network. Throughout the following description, reference can
be made to the InfiniBand™ specification (also referred to variously as the InfiniBand
specification, IB specification, or the legacy IB specification). Such reference is understood
to refer to the InfiniBand® Trade Association Architecture Specification, Volume 1, Version
1.3, released March, 2015, available at http://www.inifinibandta.org, which is herein
incorporated by reference in its entirety. It will be apparent to those skilled in the art that
other types of high performance networks can be used without limitation. The following
description also uses the fat-tree topology as an example for a fabric topology. It will be
apparent to those skilled in the art that other types of fabric topologies can be used without

limitation.

InfiniBand™

[0025] InfiniBand™ (IB) is an open standard lossless network technology developed by the
InfiniBand™ Trade Association. The technology is based on a serial point-to-point full-duplex
interconnect that offers high throughput and low latency communication, geared particularly
towards high-performance computing (HPC) applications and datacenters.

[0026] The InfiniBand™ Architecture (IBA) supports a two-layer topological division. At the
lower layer, IB networks are referred to as subnets, where a subnet can include a set of
hosts interconnected using switches and point-to-point links. At the higher level, an IB fabric
constitutes one or more subnets, which can be interconnected using routers.

[0027] Within a subnet, hosts can be connected using switches and point-to-point links.

-3-

10

15

20

25

30

35

WO 2017/132399 PCT/US2017/015169

Additionally, there can be a master management entity, the subnet manager (SM), which
resides on a designated device in the subnet. The subnet manager is responsible for
configuring, activating and maintaining the IB subnet. Additionally, the subnet manager (SM)
can be responsible for performing routing table calculations in an IB fabric. Here, for
example, the routing of the IB network aims at proper load balancing between all source and
destination pairs in the local subnet.

[0028] Through the subnet management interface, the subnet manager exchanges control
packets, which are referred to as subnet management packets (SMPs), with subnet
management agents (SMAs). The subnet management agents reside on every IB subnet
device. By using SMPs, the subnet manager is able to discover the fabric, configure end-
nodes and switches, and receive notifications from SMAs.

[0029] In accordance with an embodiment, intra-subnet routing in an IB network can be
based on linear forwarding tables (LFTs) stored in the switches. The LFTs are calculated by
the SM according to the routing mechanism in use. In a subnet, Host Channel Adapter (HCA)
ports on the end-nodes and switches are addressed using local identifiers (LIDs). Each entry
in an LFT consists of a destination LID (DLID) and an output port. Only one entry per LID in
the table is supported. When a packet arrives at a switch, its output port is determined by
looking up the DLID in the forwarding table of the switch. The routing is deterministic as
packets take the same path in the network between a given source-destination pair (LID
pair).

[0030] Generally, all other subnet managers, excepting the master subnet manager, act in
standby mode for fault-tolerance. In a situation where a master subnet manager fails,
however, a new master subnet manager is negotiated by the standby subnet managers. The
master subnet manager also performs periodic sweeps of the subnet to detect any topology
changes and reconfigures the network accordingly.

[0031] Furthermore, hosts and switches within a subnet can be addressed using local
identifiers (LIDs), and a single subnet can be limited to 49151 unicast LIDs. Besides the
LIDs, which are the local addresses that are valid within a subnet, each IB device can have a
64-bit global unique identifier (GUID). A GUID can be used to form a global identifier (GID),
which is an IB layer three (L3) address.

[0032] The SM can calculate routing tables (i.e., the connections/routes between each pair
of nodes within the subnet) at network initialization time. Furthermore, the routing tables can
be updated whenever the topology changes, in order to ensure connectivity and optimal
performance. During normal operations, the SM can perform periodic light sweeps of the
network to check for topology changes. If a change is discovered during a light sweep or if a
message (trap) signaling a network change is received by the SM, the SM can reconfigure

the network according to the discovered changes.

-

10

15

20

25

30

35

WO 2017/132399 PCT/US2017/015169

[0033] For example, the SM can reconfigure the network when the network topology
changes, such as when a link goes down, when a device is added, or when a link is
removed. The reconfiguration steps can include the steps performed during the network
initialization. Furthermore, the reconfigurations can have a local scope that is limited to the
subnets in which the network changes occurred. Also, the segmenting of a large fabric with
routers may limit the reconfiguration scope.

[0034] An example InfiniBand™ fabric is shown in Figure 1, which shows an illustration of
an InfiniBand™ environment 100, in accordance with an embodiment. In the example shown
in Figure 1, nodes A-E, 101-105, use the InfiniBand™ fabric 120 to communicate, via the
respective host channel adapters 111-115. In accordance with an embodiment, the various
nodes, e.g.,, nodes A-E 101-105, can be represented by various physical devices. In
accordance with an embodiment, the various nodes, e.g., nodes A-E 101-105, can be

represented by various virtual devices, such as virtual machines.

Data Partitions in InfiniBand™

[0035] In accordance with an embodiment, IB networks can support partitioning as a
security mechanism to provide for isolation of logical groups of systems sharing a network
fabric. Each HCA port on a node in the fabric can be a member of one or more partitions. In
accordance with an embodiment, the present disclosure provides for two types of partitions
that can be defined within an IB subnet — data partitions (discussed in detail in the following
paragraphs) and admin partitions (discussed in detail later in the disclosure).

[0036] Data partition memberships are managed by a centralized partition manager, which
can be part of the SM. The SM can configure data partition membership information on each
port as a table of 16-bit partition keys (P_Keys). The SM can also configure switch and router
ports with the data partition enforcement tables containing P_Key information associated with
the end-nodes that send or receive data traffic through these ports. Additionally, in a general
case, data partition membership of a switch port can represent a union of all membership
indirectly associated with LIDs routed via the port in an egress (towards the link) direction.
[0037] In accordance with an embodiment, data partitions are logical groups of ports such
that the members of a group can only communicate to other members of the same logical
group. At host channel adapters (HCAs) and switches, packets can be filtered using the data
partition membership information to enforce isolation. Packets with invalid partitioning
information can be dropped as soon as the packets reaches an incoming port. In partitioned
IB systems, data partitions can be used to create tenant clusters. With data partition
enforcement in place, a node cannot communicate with other nodes that belong to a different
tenant cluster. In this way, the security of the system can be guaranteed even in the

presence of compromised or malicious tenant nodes.

-5-

10

15

20

25

30

35

WO 2017/132399 PCT/US2017/015169

[0038] In accordance with an embodiment, for the communication between nodes, Queue
Pairs (QPs) and End-to-End contexts (EECs) can be assigned to a particular data partition,
except for the management Queue Pairs (QP0 and QP1). The P_Key information can then
be added to every IB transport packet sent. When a packet arrives at an HCA port or a
switch, its P_Key value can be validated against a table configured by the SM. If an invalid
P_Key value is found, the packet is discarded immediately. In this way, communication is
allowed only between ports sharing a data partition.

[0039] An example of IB data partitions is shown in Figure 2, which shows an illustration of
a data partitioned cluster environment, in accordance with an embodiment. In the example
shown in Figure 2, nodes A-E, 101-105, use the InfiniBand™ fabric, 120, to communicate,
via the respective host channel adapters 111-115. The nodes A-E are arranged into data
partitions, namely data partition 1, 130, data partition 2, 140, and data partition 3, 150. Data
partition 1 comprises node A 101 and node D 104. Data partition 2 comprises node A 101,
node B 102, and node C 103. Data partition 3 comprises node C 103 and node E 105.
Because of the arrangement of the data partitions, node D 104 and node E 105 are not
allowed to communicate as these nodes do not share a data partition. Meanwhile, for
example, node A 101 and node C 103 are allowed to communicate as these nodes are both

members of data partition 2, 140.

Virtual Machines in InfiniBand™

[0040] During the last decade, the prospect of virtualized High Performance Computing
(HPC) environments has improved considerably as CPU overhead has been practically
removed through hardware virtualization support; memory overhead has been significantly
reduced by virtualizing the Memory Management Unit; storage overhead has been reduced
by the use of fast SAN storages or distributed networked file systems; and network 1/O
overhead has been reduced by the use of device passthrough techniques like Single Root
Input/Output Virtualization (SR-IOV). It is now possible for clouds to accommodate virtual
HPC (vHPC) clusters using high performance interconnect solutions and deliver the
necessary performance.

[0041] However, when coupled with lossless networks, such as InfiniBand™ (IB), certain
cloud functionality, such as live migration of virtual machines (VMs), still remains an issue
due to the complicated addressing and routing schemes used in these solutions. IB is an
interconnection network technology offering high bandwidth and low latency, thus, is very
well suited for HPC and other communication intensive workloads.

[0042] The traditional approach for connecting IB devices to VMs is by utilizing SR-IOV
with direct assignment. However, achieving live migration of VMs assigned with IB Host

Channel Adapters (HCAs) using SR-IOV has proved to be challenging. Each IB connected

-6-

10

15

20

25

30

35

WO 2017/132399 PCT/US2017/015169

node has three different addresses: LID, GUID, and GID. When a live migration happens,
one or more of these addresses change. Other nodes communicating with the VM-in-
migration can lose connectivity. When this happens, the lost connection can be attempted to
be renewed by locating the virtual machine’s new address to reconnect to by sending Subnet
Administration (SA) path record queries to the IB Subnet Manager (SM).

[0043] IB uses three different types of addresses. A first type of address is the 16 bits Local
Identifier (LID). At least one unique LID is assigned to each HCA port and each switch by the
SM. The LIDs are used to route traffic within a subnet. Since the LID is 16 bits long, 65536
unique address combinations can be made, of which only 49151 (0x0001-0OxBFFF) can be
used as unicast addresses. Consequently, the number of available unicast addresses
defines the maximum size of an IB subnet. A second type of address is the 64 bits Global
Unique Identifier (GUID) assigned by the manufacturer to each device (e.g. HCAs and
switches) and each HCA port. The SM may assign additional subnet unique GUIDs to an
HCA port, which is useful when SR-IOV is used. A third type of address is the 128 bits Global
Identifier (GID). The GID is a valid IPv6 unicast address, and at least one is assigned to each
HCA port. The GID is formed by combining a globally unique 64 bits prefix assigned by the
fabric administrator, and the GUID address of each HCA port.

Fat-Tree (FTree) Topologies and Routing

[0044] In accordance with an embodiment, some of the IB based HPC systems employ a
fat-tree topology to take advantage of the useful properties fat-trees offer. These properties
include full bisection-bandwidth and inherent fault-tolerance due to the availability of multiple
paths between each source destination pair. The initial idea behind fat-trees was to employ
fatter links between nodes, with more available bandwidth, as the tree moves towards the
roots of the topology. The fatter links can help to avoid congestion in the upper-level switches
and the bisection-bandwidth is maintained.

[0045] Figure 3 shows an illustration of a tree topology in a network environment, in
accordance with an embodiment. As shown in Figure 3, one or more end-nodes 201-204 can
be connected in a network fabric 200. The network fabric 200 can be based on a fat-tree
topology, which includes a plurality of leaf switches 211-214, and multiple spine switches or
root switches 231-234. Additionally, the network fabric 200 can include one or more
intermediate switches, such as switches 221-224.

[0046] Also as shown in Figure 3, each of the end-nodes 201-204 can be a multi-homed
node, i.e., a single node that is connected to two or more parts of the network fabric 200
through multiple ports. For example, the node 201 can include the ports H1 and H2, the node
202 can include the ports H3 and H4, the node 203 can include the ports H5 and H6, and the
node 204 can include the ports H7 and H8.

10

15

20

25

30

35

WO 2017/132399 PCT/US2017/015169

[0047] Additionally, each switch can have multiple switch ports. For example, the root
switch 231 can have the switch ports 1-2, the root switch 232 can have the switch ports 3-4,
the root switch 233 can have the switch ports 5-6, and the root switch 234 can have the
switch ports 7-8.

[0048] In accordance with an embodiment, the fat-tree routing mechanism is one of the
most popular routing algorithm for IB based fat-tree topologies. The fat-tree routing
mechanism is also implemented in the OFED (Open Fabric Enterprise Distribution — a
standard software stack for building and deploying IB based applications) subnet manager,
OpenSM.

[0049] The fat-tree routing mechanism aims to generate LFTs that evenly spread shortest-
path routes across the links in the network fabric. The mechanism traverses the fabric in the
indexing order and assigns target LIDs of the end-nodes, and thus the corresponding routes,
to each switch port. For the end-nodes connected to the same leaf switch, the indexing order
can depend on the switch port to which the end-node is connected (i.e., port humbering
sequence). For each port, the mechanism can maintain a port usage counter, and can use
this port usage counter to select a least-used port each time a new route is added.

[0050] In accordance with an embodiment, in a partitioned subnet, nodes that are not
members of a common data partition are not allowed to communicate. Practically, this means
that some of the routes assigned by the fat-tree routing algorithm are not used for the user
traffic. The problem arises when the fat tree routing mechanism generates LFTs for those
routes the same way it does for the other functional paths. This behavior can result in
degraded balancing on the links, as nodes are routed in the order of indexing. As routing can
be performed oblivious to the data partitions, fat-tree routed subnets, in general, provide poor
isolation among data partitions.

[0051] In accordance with an embodiment, a Fat-Tree is a hierarchical network topology
that can scale with the available network resources. Moreover, Fat-Trees are easy to build
using commodity switches placed on different levels of the hierarchy. Different variations of
Fat-Trees are commonly available, including k-ary-n-trees, Extended Generalized Fat-Trees
(XGFTs), Parallel Ports Generalized Fat-Trees (PGFTs) and Real Life Fat-Trees (RLFTSs).
[0052] A k-ary-n-tree is an n level Fat-Tree with k" end-nodes and n - k"' switches, each
with 2k ports. Each switch has an equal number of up and down connections in the tree.
XGFT Fat-Tree extends k-ary-n-trees by allowing both different number of up and down
connections for the switches, and different number of connections at each level in the tree.
The PGFT definition further broadens the XGFT topologies and permits multiple connections
between switches. A large variety of topologies can be defined using XGFTs and PGFTs.
However, for practical purposes, RLFT, which is a restricted version of PGFT, is introduced

to define Fat-Trees commonly found in today’s HPC clusters. An RLFT uses the same port-

-8-

10

15

20

25

30

35

WO 2017/132399 PCT/US2017/015169

count switches at all levels in the Fat-Tree.

Input/Output (1/0) Virtualization

[0063] In accordance with an embodiment, 1/O Virtualization (IOV) can provide availability

of I/O by allowing virtual machines (VMs) to access the underlying physical resources. The
combination of storage traffic and inter-server communication impose an increased load that
may overwhelm the I/O resources of a single server, leading to backlogs and idle processors
as they are waiting for data. With the increase in number of I/O requests, IOV can provide
availability; and can improve performance, scalability and flexibility of the (virtualized) 1/O
resources to match the level of performance seen in modern CPU virtualization.

[0054] In accordance with an embodiment, IOV is desired as it can allow sharing of 1/O
resources and provide protected access to the resources from the VMs. IOV decouples a
logical device, which is exposed to a VM, from its physical implementation. Currently, there
can be different types of IOV technologies, such as emulation, paravirtualization, direct
assignment (DA), and single root-I/O virtualization (SR-I0V).

[0065] In accordance with an embodiment, one type of IOV technology is software
emulation. Software emulation can allow for a decoupled front-end/back-end software
architecture. The front-end can be a device driver placed in the VM, communicating with the
back-end implemented by a hypervisor to provide 1/0O access. The physical device sharing
ratio is high and live migrations of VMs are possible with just a few milliseconds of network
downtime. However, software emulation introduces additional, undesired computational
overhead.

[0056] In accordance with an embodiment, another type of IOV technology is direct device
assignment. Direct device assignment involves a coupling of I/O devices to VMs, with no
device sharing between VMs. Direct assignment, or device passthrough, provides near to
native performance with minimum overhead. The physical device bypasses the hypervisor
and is directly attached to the VM. However, a downside of such direct device assignment is
limited scalability, as there is no sharing among virtual machines — one physical network card
is coupled with one VM.

[0057] In accordance with an embodiment, Single Root IOV (SR-IOV) can allow a physical
device to appear through hardware virtualization as multiple independent lightweight
instances of the same device. These instances can be assigned to VMs as passthrough
devices, and accessed as Virtual Functions (VFs). The hypervisor accesses the device
through a unique (per device), fully featured Physical Function (PF). SR-IOV eases the
scalability issue of pure direct assignment. However, a problem presented by SR-IOV is that
it can impair VM migration. Among these IOV technologies, SR-IOV can extend the PCI

Express (PCle) specification with the means to allow direct access to a single physical

-0-

10

15

20

25

30

35

WO 2017/132399 PCT/US2017/015169

device from multiple VMs while maintaining near to native performance. Thus, SR-IOV can
provide good performance and scalability.

[0068] SR-IOV allows a PCle device to expose multiple virtual devices that can be shared
between multiple guests by allocating one virtual device to each guest. Each SR-IOV device
has at least one physical function (PF) and one or more associated virtual functions (VF). A
PF is a normal PCle function controlled by the virtual machine monitor (VMM), or hypervisor,
whereas a VF is a light-weight PCle function. Each VF has its own base address (BAR) and
is assigned with a unique requester ID that enables I/O memory management unit (IOMMU)
to differentiate between the traffic streams to/from different VFs. The IOMMU also apply
memory and interrupt translations between the PF and the VFs.

[0059] Unfortunately, however, direct device assignment techniques pose a barrier for
cloud providers in situations where transparent live migration of virtual machines is desired
for data center optimization. The essence of live migration is that the memory contents of a
VM are copied to a remote hypervisor. Then the VM is paused at the source hypervisor, and
the VM’s operation is resumed at the destination. When using software emulation methods,
the network interfaces are virtual so their internal states are stored into the memory and get
copied as well. Thus the downtime could be brought down to a few milliseconds.

[0060] However, migration becomes more difficult when direct device assignment
techniques, such as SR-IQV, are used. In such situations, a complete internal state of the
network interface cannot be copied as it is tied to the hardware. The SR-IOV VFs assigned to
a VM are instead detached, the live migration will run, and a new VF will be attached at the
destination. In the case of InfiniBand™ and SR-IOV, this process can introduce downtime in
the order of seconds. Moreover, in an SR-IOV shared port model the addresses of the VM
will change after the migration, causing additional overhead in the SM and a negative impact

on the performance of the underlying network fabric.

InfiniBand™ SR-IOV Architecture — Shared Port
[0061] There can be different types of SR-IOV models, e.g. a shared port model, a virtual

switch model, and a virtual port model.

[0062] Figure 4 shows an exemplary shared port architecture, in accordance with an
embodiment. As depicted in the figure, a host 300 (e.g., a host channel adapter) can interact
with a hypervisor 310, which can assign the various virtual functions 330, 340, 350, to a
number of virtual machines. As well, the physical function can be handled by the hypervisor
310.

[0063] In accordance with an embodiment, when using a shared port architecture, such as
that depicted in Figure 4, the host, e.g., HCA, appears as a single port in the network with a

single shared LID and shared Queue Pair (QP) space between the physical function 320 and

-10-

10

15

20

25

30

35

WO 2017/132399 PCT/US2017/015169

the virtual functions 330, 350, 350. However, each function (i.e., physical function and virtual
functions) can have their own GID.

[0064] As shown in Figure 4, in accordance with an embodiment, different GIDs can be
assigned to the virtual functions and the physical function, and the special queue pairs, QPO
and QP1 (i.e., special purpose queue pairs that are used for InfiniBand™ management
packets), are owned by the physical function. These QPs are exposed to the VFs as well, but
the VFs are not allowed to use QPO (all SMPs coming from VFs towards QPO are discarded),
and QP1 can act as a proxy of the actual QP1 owned by the PF.

[0065] In accordance with an embodiment, the shared port architecture can allow for highly
scalable data centers that are not limited by the number of VMs (which attach to the network
by being assigned to the virtual functions), as the LID space is only consumed by physical
machines and switches in the network.

[0066] However, a shortcoming of the shared port architecture is the inability to provide
transparent live migration, hindering the potential for flexible VM placement. As each LID is
associated with a specific hypervisor, and shared among all VMs residing on the hypervisor,
a migrating VM (i.e., a virtual machine migrating to a destination hypervisor) has to have its
LID changed to the LID of the destination hypervisor. Furthermore, as a consequence of the

restricted QPO access, a subnet manager cannot run inside a VM.

InfiniBand™ SR-IOV Architecture Models — Virtual Switch (vSwitch)

[0067] Figure 5 shows an exemplary vSwitch architecture, in accordance with an

embodiment. As depicted in the figure, a host 400 (e.g., a host channel adapter) can interact
with a hypervisor 410, which can assign the various virtual functions 430, 440, 450, to a
number of virtual machines. As well, the physical function can be handled by the hypervisor
410. A virtual switch 415 can also be handled by the hypervisor 401.

[0068] In accordance with an embodiment, in a vSwitch architecture each virtual function
430, 440, 450 is a complete virtual Host Channel Adapter (vHCA), meaning that the VM
assigned to a VF is assigned a complete set of IB addresses (e.g., GID, GUID, LID) and a
dedicated QP space in the hardware. For the rest of the network and the SM, the HCA 400
looks like a switch, via the virtual switch 415, with additional nodes connected to it. The
hypervisor 410 can use the PF 420, and the VMs (attached to the virtual functions) use the
VFs.

[0069] In accordance with an embodiment, a vSwitch architecture provide transparent
virtualization. However, because each virtual function is assigned a unique LID, the number
of available LIDs gets consumed rapidly. As well, with many LID addresses in use (i.e., one
each for each physical function and each virtual function), more communication paths have

to be computed by the SM and more Subnet Management Packets (SMPs) have to be sent

-11-

10

15

20

25

30

35

WO 2017/132399 PCT/US2017/015169

to the switches in order to update their LFTs. For example, the computation of the
communication paths might take several minutes in large networks. Because LID space is
limited to 49151 unicast LIDs, and as each VM (via a VF), physical node, and switch
occupies one LID each, the number of physical nodes and switches in the network limits the

number of active VMs, and vice versa.

InfiniBand™ SR-I0V Architecture Models — Virtual Port (vPort)

[0070] Figure 6 shows an exemplary vPort concept, in accordance with an embodiment.

As depicted in the figure, a host 300 (e.g., a host channel adapter) can interact with a
hypervisor 410, which can assign the various virtual functions 330, 340, 350, to a number of
virtual machines. As well, the physical function can be handled by the hypervisor 310.

[0071] In accordance with an embodiment, the vPort concept is loosely defined in order to
give freedom of implementation to vendors (e.g. the definition does not rule that the
implementation has to be SRIOV specific), and a goal of the vPort is to standardize the way
VMs are handled in subnets. With the vPort concept, both SR-IOV Shared-Port-like and
vSwitch-like architectures or a combination of both, that can be more scalable in both the
space and performance domains, can be defined. A vPort supports optional LIDs, and unlike
the Shared-Port, the SM is aware of all the vPorts available in a subnet even if a vPort is not

using a dedicated LID.

InfiniBand™ SR-IOV Architecture Models — vSwitch with Prepopulated LIDs

[0072] In accordance with an embodiment, the present disclosure provides a system and

method for providing a vSwitch architecture with prepopulated LIDs.

[0073] Figure 7 shows an exemplary vSwitch architecture with prepopulated LIDs, in
accordance with an embodiment. As depicted in the figure, a number of switches 501-504
can provide communication within the network switched environment 600 (e.g., an IB subnet)
between members of a fabric, such as an InfiniBand fabric. The fabric can include a number
of hardware devices, such as host channel adapters 510, 520, 530. Each of the host
channel adapters 510, 520, 530, can in turn interact with a hypervisor 511, 521, and 531,
respectively. Each hypervisor can, in turn, in conjunction with the host channel adapter it
interacts with, setup and assign a number of virtual functions 514, 515, 516, 524, 525, 526,
534, 535, 536, to a number of virtual machines. For example, virtual machine 1 550 can be
assigned by the hypervisor 511 to virtual function 1 514. Hypervisor 511 can additionally
assign virtual machine 2 551 to virtual function 2 515, and virtual machine 3 552 to virtual
function 3 516. Hypervisor 531 can, in turn, assign virtual machine 4 553 to virtual function 1
534. The hypervisors can access the host channel adapters through a fully featured physical

function 513, 523, 533, on each of the host channel adapters.

-12-

10

15

20

25

30

35

WO 2017/132399 PCT/US2017/015169

[0074] In accordance with an embodiment, each of the switches 501-504 can comprise a
number of ports (not shown), which are used in setting a linear forwarding table in order to
direct traffic within the network switched environment 600.

[0075] In accordance with an embodiment, the virtual switches 512, 522, and 532, can be
handled by their respective hypervisors 511, 521, 531. In such a vSwitch architecture each
virtual function is a complete virtual Host Channel Adapter (vHCA), meaning that the VM
assigned to a VF is assigned a complete set of IB addresses (e.g., GID, GUID, LID) and a
dedicated QP space in the hardware. For the rest of the network and the SM (not shown),
the HCAs 510, 520, and 530 look like a switch, via the virtual switches, with additional nodes
connected to them.

[0076] In accordance with an embodiment, the present disclosure provides a system and
method for providing a vSwitch architecture with prepopulated LIDs. Referring to Figure 7,
the LIDs are prepopulated to the various physical functions 513, 523, 533, as well as the
virtual functions 514-516, 524-526, 534-536 (even those virtual functions not currently
associated with an active virtual machine). For example, physical function 513 is
prepopulated with LID 1, while virtual function 1 534 is prepopulated with LID 10. The LIDs
are prepopulated in an SR-IOV vSwitch-enabled subnet when the network is booted. Even
when not all of the VFs are occupied by VMs in the network, the populated VFs are assigned
with a LID as shown in Figure 7.

[0077] In accordance with an embodiment, much like physical host channel adapters can
have more than one port (two ports are common for redundancy), virtual HCAs can also be
represented with two ports and be connected via one, two or more virtual switches to the
external IB subnet.

[0078] In accordance with an embodiment, in a vSwitch architecture with prepopulated
LIDs, each hypervisor can consume one LID for itself through the PF and one more LID for
each additional VF. The sum of all the VFs available in all hypervisors in an IB subnet, gives
the maximum amount of VMs that are allowed to run in the subnet. For example, in an IB
subnet with 16 virtual functions per hypervisor in the subnet, then each hypervisor consumes
17 LIDs (one LID for each of the 16 virtual functions plus one LID for the physical function) in
the subnet. In such an IB subnet, the theoretical hypervisor limit for a single subnet is ruled
by the number of available unicast LIDs and is: 2891 (49151 available LIDs divided by 17
LIDs per hypervisor), and the total number of VMs (i.e., the limit) is 46256 (2891 hypervisors
times 16 VFs per hypervisor). (In actuality, these numbers are actually smaller since each
switch, router, or dedicated SM node in the IB subnet consumes a LID as well). Note that
the vSwitch does not need to occupy an additional LID as it can share the LID with the PF
[0079] In accordance with an embodiment, in a vSwitch architecture with prepopulated

LIDs, communication paths are computed for all the LIDs the first time the network is booted.

-13-

10

15

20

25

30

35

WO 2017/132399 PCT/US2017/015169

When a new VM needs to be started the system does not have to add a new LID in the
subnet, an action that would otherwise cause a complete reconfiguration of the network,
including path recalculation, which is the most time consuming part. Instead, an available
port for a VM is located (i.e., an available virtual function) in one of the hypervisors and the
virtual machine is attached to the available virtual function.

[0080] In accordance with an embodiment, a vSwitch architecture with prepopulated LIDs
also allows for the ability to calculate and use different paths to reach different VMs hosted
by the same hypervisor. Essentially, this allows for such subnets and networks to use a LID
Mask Control (LMC) like feature to provide alternative paths towards one physical machine,
without being bound by the limitation of the LMC that requires the LIDs to be sequential. The
freedom to use non-sequential LIDs is particularly useful when a VM needs to be migrated
and carry its associated LID to the destination.

[0081] In accordance with an embodiment, along with the benefits shown above of a
vSwitch architecture with prepopulated LIDs, certain considerations can be taken into
account. For example, because the LIDs are prepopulated in an SR-IOV vSwitch-enabled
subnet when the network is booted, the initial path computation (e.g., on boot-up) can take

longer than if the LIDs were not pre-populated.

InfiniBand™ SR-IOV Architecture Models — vSwitch with Dynamic LID Assignment

[0082] In accordance with an embodiment, the present disclosure provides a system and

method for providing a vSwitch architecture with dynamic LID assignment.

[0083] Figure 8 shows an exemplary vSwitch architecture with dynamic LID assignment, in
accordance with an embodiment. As depicted in the figure, a number of switches 501-504
can provide communication within the network switched environment 700 (e.g., an IB subnet)
between members of a fabric, such as an InfiniBand fabric. The fabric can include a number
of hardware devices, such as host channel adapters 510, 520, 530. Each of the host
channel adapters 510, 520, 530, can in turn interact with a hypervisor 511, 521, 531,
respectively. Each hypervisor can, in turn, in conjunction with the host channel adapter it
interacts with, setup and assign a number of virtual functions 514, 515, 516, 524, 525, 526,
534, 535, 536, to a number of virtual machines. For example, virtual machine 1 550 can be
assigned by the hypervisor 511 to virtual function 1 514. Hypervisor 511 can additionally
assign virtual machine 2 551 to virtual function 2 515, and virtual machine 3 552 to virtual
function 3 516. Hypervisor 531 can, in turn, assign virtual machine 4 553 to virtual function 1
534. The hypervisors can access the host channel adapters through a fully featured physical
function 513, 523, 533, on each of the host channel adapters.

[0084] In accordance with an embodiment, each of the switches 501-504 can comprise a

number of ports (not shown), which are used in setting a linear forwarding table in order to

-14-

10

15

20

25

30

35

WO 2017/132399 PCT/US2017/015169

direct traffic within the network switched environment 700.

[0085] In accordance with an embodiment, the virtual switches 512, 522, and 532, can be
handled by their respective hypervisors 511, 521, 531. In such a vSwitch architecture each
virtual function is a complete virtual Host Channel Adapter (vHCA), meaning that the VM
assigned to a VF is assigned a complete set of IB addresses (e.g., GID, GUID, LID) and a
dedicated QP space in the hardware. For the rest of the network and the SM (not shown),
the HCAs 510, 520, and 530 look like a switch, via the virtual switches, with additional nodes
connected to them.

[0086] In accordance with an embodiment, the present disclosure provides a system and
method for providing a vSwitch architecture with dynamic LID assignment. Referring to
Figure 8, the LIDs are dynamically assigned to the various physical functions 513, 523, 533,
with physical function 513 receiving LID 1, physical function 523 receiving LID 2, and
physical function 533 receiving LID 3. Those virtual functions that are associated with an
active virtual machine can also receive a dynamically assigned LID. For example, because
virtual machine 1 550 is active and associated with virtual function 1 514, virtual function 514
can be assigned LID 5. Likewise, virtual function 2 515, virtual function 3 516, and virtual
function 1 534 are each associated with an active virtual function. Because of this, these
virtual functions are assigned LIDs, with LID 7 being assigned to virtual function 2 515, LID
11 being assigned to virtual function 3 516, and LID 9 being assigned to virtual function 1
534. Unlike vSwitch with prepopulated LIDs, those virtual functions not currently associated
with an active virtual machine do not receive a LID assignment.

[0087] In accordance with an embodiment, with the dynamic LID assignment, the initial
path computation can be substantially reduced. When the network is booting for the first time
and no VMs are present then a relatively small number of LIDs can be used for the initial
path calculation and LFT distribution.

[0088] In accordance with an embodiment, much like physical host channel adapters can
have more than one port (two ports are common for redundancy), virtual HCAs can also be
represented with two ports and be connected via one, two or more virtual switches to the
external IB subnet.

[0089] In accordance with an embodiment, when a new VM is created in a system utilizing
vSwitch with dynamic LID assignment, a free VM slot is found in order to decide on which
hypervisor to boot the newly added VM, and a unique non-used unicast LID is found as well.
However, there are no known paths in the network and the LFTs of the switches for handling
the newly added LID. Computing a new set of paths in order to handle the newly added VM
is not desirable in a dynamic environment where several VMs may be booted every minute.
In large IB subnets, computing a new set of routes can take several minutes, and this

procedure would have to repeat each time a new VM is booted.

-15-

10

15

20

25

30

35

WO 2017/132399 PCT/US2017/015169

[0090] Advantageously, in accordance with an embodiment, because all the VFs in a
hypervisor share the same uplink with the PF, there is no need to compute a new set of
routes. It is only needed to iterate through the LFTs of all the physical switches in the
network, copy the forwarding port from the LID entry that belongs to the PF of the hypervisor
—where the VM is created— to the newly added LID, and send a single SMP to update the
corresponding LFT block of the particular switch. Thus the system and method avoids the
need to compute a new set of routes.

[0091] In accordance with an embodiment, the LIDs assigned in the vSwitch with dynamic
LID assignment architecture do not have to be sequential. When comparing the LIDs
assigned on VMs on each hypervisor in vSwitch with prepopulated LIDs versus vSwitch with
dynamic LID assignment, it is notable that the LIDs assigned in the dynamic LID assignment
architecture are non-sequential, while those prepopulated in are sequential in nature. In the
vSwitch dynamic LID assignment architecture, when a new VM is created, the next available
LID is used throughout the lifetime of the VM. Conversely, in a vSwitch with prepopulated
LIDs, each VM inherits the LID that is already assigned to the corresponding VF, and in a
network without live migrations, VMs consecutively attached to a given VF get the same LID.
[0092] In accordance with an embodiment, the vSwitch with dynamic LID assignment
architecture can resolve the drawbacks of the vSwitch with prepopulated LIDs architecture
model at a cost of some additional network and runtime SM overhead. Each time a VM is
created, the LFTs of the physical switches in the subnet are updated with the newly added
LID associated with the created VM. One subnet management packet (SMP) per switch is
needed to be sent for this operation. The LMC-like functionality is also not available, because
each VM is using the same path as its host hypervisor. However, there is no limitation on the
total amount of VFs present in all hypervisors, and the number of VFs may exceed that of the
unicast LID limit. Of course, not all of the VFs are allowed to be attached on active VMs
simultaneously if this is the case, but having more spare hypervisors and VFs adds flexibility
for disaster recovery and optimization of fragmented networks when operating close to the

unicast LID limit.

InfiniBand™ SR-IOV Architecture Models — vSwitch with Dynamic LID Assignment and

Prepopulated LIDs
[0093] Figure 9 shows an exemplary vSwitch architecture with vSwitch with dynamic LID

assignment and prepopulated LIDs, in accordance with an embodiment. As depicted in the
figure, a number of switches 501-504 can provide communication within the network
switched environment 800 (e.g., an IB subnet) between members of a fabric, such as an
InfiniBand fabric. The fabric can include a number of hardware devices, such as host
channel adapters 510, 520, 530. Each of the host channel adapters 510, 520, 530, can in

-16-

10

15

20

25

30

35

WO 2017/132399 PCT/US2017/015169

turn interact with a hypervisor 511, 521, and 531, respectively. Each hypervisor can, in turn,
in conjunction with the host channel adapter it interacts with, setup and assign a number of
virtual functions 514, 515, 516, 524, 525, 526, 534, 535, 536, to a number of virtual
machines. For example, virtual machine 1 550 can be assigned by the hypervisor 511 to
virtual function 1 514. Hypervisor 511 can additionally assign virtual machine 2 551 to virtual
function 2 515. Hypervisor 521 can assign virtual machine 3 552 to virtual function 3 526.
Hypervisor 531 can, in turn, assign virtual machine 4 553 to virtual function 2 535. The
hypervisors can access the host channel adapters through a fully featured physical function
513, 523, 533, on each of the host channel adapters.

[0094] In accordance with an embodiment, each of the switches 501-504 can comprise a
number of ports (not shown), which are used in setting a linear forwarding table in order to
direct traffic within the network switched environment 800.

[0095] In accordance with an embodiment, the virtual switches 512, 522, and 532, can be
handled by their respective hypervisors 511, 521, 531. In such a vSwitch architecture each
virtual function is a complete virtual Host Channel Adapter (vHCA), meaning that the VM
assigned to a VF is assigned a complete set of IB addresses (e.g., GID, GUID, LID) and a
dedicated QP space in the hardware. For the rest of the network and the SM (not shown),
the HCAs 510, 520, and 530 look like a switch, via the virtual switches, with additional nodes
connected to them.

[0096] In accordance with an embodiment, the present disclosure provides a system and
method for providing a hybrid vSwitch architecture with dynamic LID assignment and
prepopulated LIDs. Referring to Figure 9, hypervisor 511 can be arranged with vSwitch with
prepopulated LIDs architecture, while hypervisor 521 can be arranged with vSwitch with
prepopulated LIDs and dynamic LID assignment. Hypervisor 531 can be arranged with
vSwitch with dynamic LID assignment. Thus, the physical function 513 and virtual functions
514-516 have their LIDs prepopulated (i.e., even those virtual functions not attached to an
active virtual machine are assigned a LID). Physical function 523 and virtual function 1 524
can have their LIDs prepopulated, while virtual function 2 and 3, 525 and 526, have their
LIDs dynamically assigned (i.e., virtual function 2 525 is available for dynamic LID
assignment, and virtual function 3 526 has a LID of 11 dynamically assigned as virtual
machine 3 552 is attached). Finally, the functions (physical function and virtual functions)
associated with hypervisor 3 531 can have their LIDs dynamically assigned. This results in
virtual functions 1 and 3, 534 and 536, are available for dynamic LID assignment, while
virtual function 2 535 has LID of 9 dynamically assigned as virtual machine 4 553 is attached
there.

[0097] In accordance with an embodiment, such as that depicted in Figure 9, where both

vSwitch with prepopulated LIDs and vSwitch with dynamic LID assignment are utilized

-17-

10

15

20

25

30

35

WO 2017/132399 PCT/US2017/015169

(independently or in combination within any given hypervisor), the number of prepopulated
LIDs per host channel adapter can be defined by a fabric administrator and can be in the
range of 0 <= prepopulated VFs <= Total VFs (per host channel adapter) , and the VFs
available for dynamic LID assignment can be found by subtracting the number of
prepopulated VFs from the total number of VFs (per host channel adapter).

[0098] In accordance with an embodiment, much like physical host channel adapters can
have more than one port (two ports are common for redundancy), virtual HCAs can also be
represented with two ports and be connected via one, two or more virtual switches to the

external IB subnet.

InfiniBand™ — Inter-Subnet Communication

[099] In accordance with an embodiment, in addition to providing an InfiniBand™ fabric
within a single subnet, embodiments of the current disclosure can also provide for an
InfiniBand™ fabric that spans two or more subnets.

[0100] Figure 10 shows an exemplary multi-subnet InfiniBand™ fabric, in accordance with
an embodiment. As depicted in the figure, within subnet A 1000, a number of switches 1001-
1004 can provide communication within subnet A 1000 (e.g., an IB subnet) between
members of a fabric, such as an InfiniBand™ fabric. The fabric can include a number of
hardware devices, such as, for example, channel adapter 1010. Host channel adapters 1010
can in turn interact with a hypervisor 1011. The hypervisor can, in turn, in conjunction with
the host channel adapter it interacts with, setup a number of virtual functions 1014. The
hypervisor can additionally assign virtual machines to each of the virtual functions, such as
virtual machine 1 1015 being assigned to virtual function 1 1014. The hypervisor can access
their associated host channel adapters through a fully featured physical function, such as
physical function 1013, on each of the host channel adapters.

[0101] With further reference to Figure 10, and in accordance with an embodiment, a
number of switches 1021-1024 can provide communication within subnet B 1040 (e.g., an IB
subnet) between members of a fabric, such as an InfiniBand™ fabric. The fabric can include
a number of hardware devices, such as, for example, host channel adapter 1030. Host
channel adapter 1030 can in turn interact with a hypervisor 1031. The hypervisor can, in turn,
in conjunction with the host channel adapter it interacts with, setup a number of virtual
functions 1034. The hypervisors can additionally assign virtual machines to each of the
virtual functions, such as virtual machine 2 1035 being assigned to virtual function 2 1034.
The hypervisor can access their associated host channel adapters through a fully featured
physical function, such as physical function 1033, on each of the host channel adapters. It is

noted that, although only one host channel adapter is shown within each subnet (i.e., subnet

-18-

10

15

20

25

30

35

WO 2017/132399 PCT/US2017/015169

A and subnet B), it is to be understood that a plurality of host channel adapters, and their
corresponding components, can be included within each subnet.

[0102] In accordance with an embodiment, each of the host channel adapters can
additionally be associated with a virtual switch, such as virtual switch 1012 and virtual switch
1032, and each HCA can be set up with a different architecture model, as discussed above.
Although both subnets within Figure 10 are shown as using a vSwitch with prepopulated LID
architecture model, this is not meant to imply that all such subnet configurations must follow
a similar architecture model.

[0103] In accordance with an embodiment, at least one switch within each subnet can be
associated with a router, such as switch 1002 within subnet A 1000 being associated with
router 1005, and switch 1021 within subnet B 1040 being associated with router 1006.

[0104] In accordance with an embodiment, when traffic at an originating source, such as
virtual machine 1 within subnet A, is addressed to a destination at a different subnet, such as
virtual machine 2 within subnet B, the traffic can be addressed to the router within subnet A,

i.e., router 1005, which can then pass the traffic to subnet B via its link with router 1006.

Fabric Manager
[0105] As discussed above, a network fabric, such as an InfiniBand™ fabric, can span a

plurality of subnets through the use of interconnected routers in each subnet of the fabric. In
accordance with an embodiment, a fabric manager (not shown) can be implemented on a
host which is a member of the network fabric and can be employed within the fabric to
manage both physical and logical resources that are part of the fabric. For instance,
management tasks such as discovering fabric resources, controlling connectivity between
physical servers, collecting and viewing real-time network statistics, disaster recovery, and
setting quality of service (QoS) settings, among others, may be performed by a user through
the fabric manager. In accordance with an embodiment, the fabric manager may span all
subnets defined in the fabric. That is, the fabric manager can manage physical and logical
resources that are members of, or associated with, the fabric at large, regardless of which
subnet the resources are a member of.

[0106] In accordance with an embodiment, the fabric manager can include a graphical user
interface (GUI) through which a user can perform administration functions. The fabric
manager GUI can incorporate visualization tools that allow a user to monitor and control
fabric resources. For example, in an embodiment, a user can view server connections,
configuration settings and performance statistics for servers across the fabric through the
fabric interface. Other examples of fabric functionality that can be monitored and/or managed
through the fabric manger GUI include discovering inter-subnet fabric topology, viewing

visual representations of these topologies, creating fabric profiles (e.g., virtual machine fabric

-19-

10

15

20

25

30

35

WO 2017/132399 PCT/US2017/015169

profiles), and building and management of a fabric manager database that can store fabric
profiles, metadata, configuration settings and other data required by, and related to, the
network fabric. In accordance with an embodiment, the fabric manager database is a fabric-
level database.

[0107] In addition, the fabric manager can define legal inter-subnet connectivity in terms of
which subnets are allowed to communicate via which router ports using which partition
numbers. In accordance with an embodiment, the fabric manager is a centralized fabric
management utility. The above examples are not meant to be limiting.

[0108] In accordance with an embodiment, some of the fabric manager’s functionality can
be initiated by a user, and other functionality can be abstracted from the user, or be
automated (e.g., some functionality may be performed by the fabric manager upon startup, or
at other predetermined events).

[0109] In an exemplary embodiment of a management event, a user may initiate, at the
fabric manger interface, a configuration change directed towards a network fabric device.
After receiving the configuration change request, the fabric manager may, in turn, ensure that
the configuration change request is properly carried out. For example, the fabric manager
may communicate the request to the device and ensure that the configuration change is
written to the device’s configuration. In one embodiment, the physical device acknowledges
to the fabric manager that the configuration change has successfully completed. In
accordance with an embodiment, the fabric manager may then update the interface to give a
visual confirmation that the request has been carried out. Further, the fabric manager may
persist the configuration of the device to the fabric manager database, e.g., for disaster
recovery or other purposes.

[0110] In accordance with an embodiment, the fabric manager can have other interfaces,

such as a command line interface, that includes some, all, or more functionality than the GUI.

Fabric-Level Resource Domains

[0111] As discussed above, a fabric manager can allow users to perform administrative
tasks throughout the network fabric through an interface of the fabric manager. In
accordance with an embodiment, an additional function of the fabric manager is facilitation of
hierarchical role-based access control. In an embodiment, role-based access control is
achieved through fabric-level resource domains.

[0112] In accordance with an embodiment, role-based access control is based on the
concept of fabric users. Access from both human administrators and external management
applications can represent an authenticated context that defines legal operations on all or a
subset of the fabric infrastructure or fabric resources. For example, a user can be

represented in the fabric by a user profile. That is, within the fabric a user can be defined by

-20-

10

15

20

25

30

35

WO 2017/132399 PCT/US2017/015169

creating a profile of the user and assigning attributes to the profile. A user profile can be
assigned a username attribute, and a password attribute, where the username is unique
within the fabric, thereby uniquely identifying the user. Further, the user profile may be
associated with certain roles defined in the fabric that assign certain access levels to different
resources within the fabric. In accordance with an embodiment, setting up user profiles can
be accomplished through the fabric manager interface. All or part of the user profile can be
stored in the fabric manger database. Moreover, in an embodiment, the fabric manager can
integrate with well-known user directories, such as Microsoft's® Active Directory or LDAP
directories, or with, e.g., the RADIUS networking protocol for remote authentication.

[0113] In accordance with an embodiment, the fabric manager can manage fabric
resources that it discovers through fabric-level resource domains (also referred to as
“resource domains”, or simply “domains” herein). A resource domain is a logical grouping of
fabric resources defined at the fabric level. Fabric resources include both physical and logical
resources. Some examples of resources include fabric devices (such as HCAs, physical
nodes, and switches), fabric profiles (such as virtual machine fabric profiles, and user
profiles), virtual machines, clouds, and I/O modules, among others.

[0114] In accordance with an embodiment, all fabric resources discovered and managed by
the fabric manager reside in the default domain, which exists by default (i.e., without the
need to setup or configure it) in the fabric, and can be accessed through the fabric manager
interface. The default domain is the highest level domain — that is, it is the parent domain to
all other resource domains, and all other resource domains exist within the default domain.
The default domain is associated with a fabric-level administrator, which also exists by
default, and is configured with administrative privileges in the default domain by default.
[0115] In accordance with an embodiment, resource domains represent a hierarchical form
of resource management. For example, the process of configuring and managing the default
domain is available only to the fabric-level administrator. However, child domains can be
created within the default domain by the fabric-level administrator. For instance, the fabric-
level administrator can create a child domain and can add domain resources to the child
domain. Additionally the fabric-level administrator can create domain-level “domain admin”
users and add (i.e., associate) the domain admin users to the child domain. Making the
domain admin user a member of the resource domain allows the domain admin user to
manage the child domain and its contained subset of the fabric resources. In accordance
with an embodiment, the domain admin user cannot manage resources outside of the child
domain (i.e., resources at a parallel or a higher level than the domain admin is associated
with). However the domain admin can manage resources contained in resource domains that

have been created as child domains of the resource domain. In accordance with an

-21-

10

15

20

25

30

35

WO 2017/132399 PCT/US2017/015169

embodiment, the fabric manager is responsible for providing the security that ensures that
resource domain boundaries are strictly enforced.

[0116] Figure 11 shows the hierarchical structure of resource domains. As shown, default
domain 1102 exists within network fabric 1100. Fabric-level administrator 1110 has access
rights to manage fabric-level resources 1112, 1124, and 1134. Fabric-level administrator
1110 can also create and administer new resource domains within default domain 1102.
Fabric-level administrator 1110 has created resource domain 1120 and 1130, and
corresponding domain-level domain admin users 1122 and 1132. Domain admin user 1122
has access rights to manage fabric resources 1124 (assigned to resource domain 1120 by
fabric-level administrator 1110), but has no access rights to manage fabric resources 1112
(at a higher level) or domain resources 1134 (at a parallel level). Likewise, Domain admin
user 1132 has access rights to manage fabric resources 1134 (assigned to resource domain
1130 by Fabric-level administrator 1110), but has no access rights to manage fabric

resources 1112 (at a higher level) or domain resources 1124 (at a parallel level).

Admin Partitions

[0117] In accordance with an embodiment, a resource domain can be represented at the

subnet level by an administration, or “admin” partition (as they are referred to herein). An
admin partition represents a group membership which grants access rights at the subnet
level to subnet resources. Members of an admin partition are considered privileged, in that
the members have access rights to any subnet resources that are associated with the admin
partition, in accordance with an embodiment. At the fabric manager level, an admin partition
is associated with a resource domain and a corresponding domain admin user. Thus, user-
role separation can be ensured in multi-tenant environments at the subnet level. Further,
resource domain membership can be correlated with admin partition membership, so that
resources that are members of an admin partition that is associated with a particular
resource domain are also members of the resource domain.

[0118] In accordance with an embodiment, an admin partition can be defined at the subnet
level in the same way that a data partition is defined, but with an additional attribute
specifying that the partition being created is an admin partition. Like data partitions
(discussed in detail, above), admin partitions can be created by an administrator through the
fabric manager interface, in accordance with an embodiment. In an embodiment, the fabric
manager can support an “admin partition” flag as an optional parameter during the creation
of a partition. If selected by the creating administrator, the fabric manager will include the
additional attribute specifying that the newly created partition is an admin partition, and will

be treated as an admin partition by the fabric manager and the local master subnet manager.

-22-

10

15

20

25

30

35

WO 2017/132399 PCT/US2017/015169

[0119] In accordance with an embodiment, the fabric manager can be configured to
automatically create a corresponding admin partition for each resource domain that is
created, and associate the automatically created partition with the corresponding resource
domain. In such an embodiment, when fabric-level resources are added to the resource
domain, the fabric manager also associates them with the admin partition that was
automatically created and associated with the resource domain. Thus, resources added to
the resource domain will have subnet-level access rights to each other upon being added to
the resource domain, with no further action being taken by the administrator (e.g., the fabric-
level administrator or the domain admin).

[0120] Moreover, in accordance with an embodiment, entire subnets of the network can
represent a special resource domain in a domain hierarchy that has a top-level domain (e.g.,
the default domain). For instance, in a domain hierarchy, where the default domain
represents the top-level domain, each subnet of the network fabric can then be recognized
by the fabric manager as a child domain of the default domain. Recognition of entire subnets
as child domains of a top-level domain can be configured as default behavior of the fabric
manager, or these default domains can be manually defined by an administrator. Here again,
in order to have user role separation and enforcement of domain boundaries and resource
associations at the subnet level, admin partitions corresponding to entire-subnet resource
domains can be defined. In accordance with an embodiment, an admin partitions that is
defined in a subnet and includes each resource in that subnet (as either a member, or
associated with the admin partition) can be termed a "domain global" admin partition, since in
this configuration, every resource in the subnet would have access rights to every other
resource.

[0121] In accordance with an embodiment, an admin partition can be transparent to a
domain admin. As noted above, a domain global admin partition can be created
automatically for a resource domain at the fabric manager level, and then all resources
assigned to or created within the scope of this domain can automatically be associated with
the corresponding admin partition. In another embodiment, however, the domain admin can
explicitly create different admin partitions within the relevant resource domain, and then
resources within the domain can be explicitly associated with the explicitly created admin
partition instead of with the admin partition that was created by default for the resource
domain.

[0122] In accordance with an embodiment, the fabric manager can support the creation of
both shared and private admin partitions. Admin partitions created by a fabric-level
administrator in the default domain can be shared partitions that can be made available to
individual resource domains. Admin partitions created by a domain admin (i.e., a user with

credentials associated with a specific resource domain) in the domain in which the domain

-23-

10

15

20

25

30

35

WO 2017/132399 PCT/US2017/015169

admin is a member can be private partitions associated with and available only to the specific
resource domain in whose context the admin partitions were created.

[0123] In accordance with an embodiment, end-ports of HCAs and vHCAs can be
members of an admin partition, just as they can be members of a data partition. Admin
partitions are differentiated from data partitions, however, in that admin partitions can be
associated with other subnet resources, in accordance with an embodiment. For example, a
data partition can be associated with an admin partition. Further, an admin partition can be
associated with another admin partition, as a child or as a parent, thus making admin
partitions a hierarchical concept and able to correspond with the hierarchy of the resource
domains they are associated with, in accordance with an embodiment.

[0124] As a technical matter, end-ports of HCAs (and vHCASs) can be referred to as
‘members” of partitions, in traditional terminology, and other resources can be “associated
with” admin partitions, in accordance with an embodiment. The technical differences in these
two concepts are explained below. For convenience and readability, however, this document
may occasionally, in reference to admin partitions, use the terms “member” and “associated
with” interchangeably. Notwithstanding the use of these terms interchangeably, it is to be
understood that the technical differences between end-port/HCA membership in, and
resource association with, admin partitions is meant to be consistently applied by the reader.

[0125] In accordance with an embodiment, an admin partition is defined by a P_Key, just
as a data partition is defined. However, while an end-port is aware of the data partitions that
it is a member of, it is not necessary that end-ports be aware of what admin partitions they
are members of. Thus, in one embodiment, a P_Key defining an admin partition is not
entered in the P_Key table of member end-ports. In this way the creation of an admin
partition does not waste P_Key table entries — which are a limited resource — if an admin
partition is not used for IB packet traffic. In another embodiment, however, an admin partition
may function as both an admin partition and a data partition. In such an embodiment, all
P_Key tables of end-ports that are members of the admin partition can have a P_Key entry
for the admin partition in their respective P_Key tables. In accordance with an embodiment, a
data partition may be defined as any partition that is not also an admin partition.

[0126] In accordance with an embodiment, a data partition can be associated with one or
more admin partitions. For example, a data partition, being defined by a P_Key value, can be
associated with an admin partition that is defined by its own distinct P_Key value. Moreover,
the data partition can be associated with a second admin partition defined by yet another
distinct P_Key value. In accordance with an embodiment, the association of a data partition
with a specific admin partition can define the maximum membership level for end-ports that

are members of the specific admin partition.

24-

10

15

20

25

30

35

WO 2017/132399 PCT/US2017/015169

[0127] As noted above, an admin partition represents a group membership which grants
access rights to subnet resources. In accordance with an embodiment, any end-port member
of an admin partition has access rights to any subnet resource that is associated with the
same admin partition based solely on the end-ports membership in the admin partition.
Thus, any end-port that is a member of an admin partition has access rights to any data
partition that is associated with that same admin partition. Notably, this does not necessarily
mean that the member end-port is a member of the associated data partition, but that it has
access rights to the associated data partition, and therefore could be a member of the data
partition.

[0128] Such a scheme obviates the need for administrators to grant end-ports access to,
e.g., data partitions by manually including the data partition’s P_Key in the P_Key table of the
end-port. In an embodiment, when an end-port is initialized in the subnet, the master subnet
manager can query a data store (e.g., an admin partition registry, as discussed below) that
holds admin partition definitions (e.g., P_Keys), and relationships that define membership in
the defined admin partitions and that define associations with the defined admin partitions, to
determine which admin partitions the end-port is a member of. The subnet manager can then
further check to see if there are any data partitions associated with the admin partitions of
which the end-port is a member. If the SM finds that 1) the end-port is a member of an admin
partition, and 2) that that admin partition is associated with a data partition, then the SM can
automatically place the P_Key of the associated data partition in the P_Key table of the end-
port, thereby automatically granting the end-port access to the data partition. Thus, the
admin partition represents a simpler, more scalable solution than manual partition mapping
by administrators.

[0129] Figure 12 shows an exemplary network fabric having both admin partitions and data
partitions. As shown in Figure 12, admin partitions 1230, 1240, and 1250 have been defined
within the fabric. Nodes A-E 1201-1205, are physically connected to the fabric by their
respective HCAs 1211-1215. Additionally, each HCA is a member of at least one admin
partition. HCA 1211 and HCA 1214 are members of admin partition 1230. HCA 1211 is also
a member of admin partition 1240, along with HCAs 1212 and 1213. HCA 1213 is,
additionally, a member of admin partition 1250, along with HCA 1215.

[0130] With further reference to Figure 12, and in accordance with an embodiment, data
partitions 1232, 1242, and 1252 have been defined within the fabric. Data partition 1232 is
associated with admin partition 1230, data partition 1242 is associated with admin partition
1240, and data partition 1252 is associated with admin partition 1250. In accordance with an
embodiment, HCA 1211 and HCA 1214 have access rights to membership in data partition
1232 based on their membership in admin partition 1230. Likewise, HCAs 1211-1213 have

access rights to membership in data partition 1242 based on their membership in admin

-25-

10

15

20

25

30

35

WO 2017/132399 PCT/US2017/015169

partition 1240. Moreover, HCAs 1213 and 1215 have access rights to membership in data
partition 1252 based on their membership in admin partition 1250.

[0131] In accordance with an embodiment, admin partitions can also be used to determine
whether a vHCA can be registered with the virtual function of a physical HCA. A vHCA
describes a host channel adapter which is planned and configured for a specific virtual
machine (VM), in accordance with an embodiment. A vHCA differs from a virtual function
(VF) in that a vHCA migrates with a VM, while a VF stays with the physical adapter. As
discussed above, however, both physical HCAs and vHCAs (and, at a lower level, the end-
ports of these (v)HCAs) can be members of admin partitions. Thus, in accordance with an
embodiment, admin partition membership can be used by the SM to determine whether a
request from a physical HCA to register a vHCA with a virtual function of the requesting
physical HCA is permissible.

[0132] Figure 13 shows an exemplary network fabric having HCAs and vHCAs as
members of admin partitions. As shown in Figure 13, subnet 1302 is part of network fabric
1300. HCA 1310, 1324, 1332, and 1344 represent physical HCAs physically connected
through their respective end-ports to network fabric 1300 in subnet 1302. HCA 1310 is
associated with physical function (PF) 1312 and with virtual functions (VFs) 1314 and 1316.
HCA 1324 is associated with PF 1326 and with VFs 1328 and 1329. HCA 1332 is associated
with PF 1334 and with VFs 1336 and 1338. HCA 1344 is associated with PF 1346 and with
VFs 1348 and 1349. Further, vHCA 1320 is depicted as registered with VF 1314, and
associated with Virtual machine (VM) 1318 (i.e., VM 1318 obtains access to network fabric
1300 through vHCA 1320, and ultimately through physical HCA 1310). vHCA 1340 is
registered VF 1337, and associated with VM 1338.

[0133] With continued reference to Figure 13, as shown, HCAs 1310 and 1324, and vHCA
1320 are members of admin partition 1350. Additionally, HCA 1332 and 1344, and vHCA
1340 are members of admin partition 1360. Consequently, vVHCA 1320 can be legally
registered with VF 1314 or 1316 of HCA 1310, or with VF 1328 or 1329 of HCA 1324, by
virtue of the fact that HCA 1310 and 1324, and vHCA 1320 are each members of admin
partition 1350. Similarly, vHCA 1340 can be legally registered with VF 1336 or 1338 of HCA
1330, or with VF 1348 or 1349 of HCA 1344, by virtue of the fact that HCA 1332 and 1324,
and vHCA 1340 are each members of admin partition 1360.

[0134] As noted above, the fabric-level fabric database holds information related to the
fabric and fabric resources, and is managed by the fabric manager. In accordance with an
embodiment, the fabric database can have “complete knowledge” of the fabric resource
inventory (i.e., every resource that is a part of the network fabric is represented, at least, by a

record held in the fabric database). Further, the access rights and name spaces associated

-26-

10

15

20

25

30

35

WO 2017/132399 PCT/US2017/015169

with each resource in the fabric can be either stored in the fabric database, or derived from
information and relationships contained in the fabric database.

[0135] For example, in accordance with an embodiment, information pertaining to admin
partition membership and/or resource association with an admin partition can be stored in
the fabric database. The tables holding this information and the relationships that link these
tables together can be a subset of the fabric database, and can be referred to as the admin
partition registry. In accordance with an embodiment, the admin partition registry is a
collection of admin partition group resources. For example, an admin partition group within
the admin partition registry can be a collection of HCA members (including vHCAs) and
associated resources of a particular admin partition, where the group is looked up by the
P_Key that defines the particular admin partition. Moreover, admin partition group members
and associated resources can be looked up in the registry using keys such as GUID or
vGUID for member HCAs or vHCAS, respectively, or P_Keys for associated data partitions.
Relationships between the P_Key of an admin partition and the unique identifier of members
or associated resources define membership or association, respectively, in the admin
partition, and are maintained by the admin partition registry, and by the fabric database, at a
higher level.

[0136] In accordance with an embodiment, all or part of the admin partition registry may
held as records in a cache of the SM. For instance, records of the admin partition registry
that correspond to resources of a particular subnet can be duplicated in a cache in a resident
memory of a subnet manager (e.g., the master subnet manager) of the particular subnet. The
admin partition registry records can either be retrieved (i.e., copied) from the fabric database
by the SM (e.g., when the SM boots), or be placed in the cache before it is persisted to the
fabric database. The cache can be a volatile or non-volatile memory. Regardless of when the
registry records are placed in the cache, synchronization can then occur between the cached
copy of the admin partition registry and the copy of the admin partition registry found in a
fabric-level data base.

[0137] By holding all, or a subnet-relevant part, of the admin partition registry in a high-
speed cache on the SM, rather than retrieving admin partition information from a persisted
state (i.e., from the fabric database) every time a query is received, the lookup of admin
partition information can impose minimal overhead on the SM. This can be especially
important during subnet initialization, when access rights among subnet resources are being
automatically assigned.

In accordance with an embodiment, logical names or identifiers can be assigned to
resources within a resource domain (by, e.g., the fabric-level or domain-level admin user).

These logical names can be private to the resource domain. The fabric manager, through the

-27-

10

15

20

25

30

35

WO 2017/132399 PCT/US2017/015169

fabric database, can create relationships that map unique identifiers used within the fabric
(e.g., vGUIDs and P_Keys) to logical or symbolic names given to resources within the fabric.

[0138] For instance, the fabric database, in accordance with an embodiment, can store
records of resources, and domain membership and/or admin partition membership of
resources. Logical names can be assigned to the resources upon discovery of the resources
by the fabric manger. These names can be linked to the unique identifiers of the fabric
resources in the fabric database. Moreover, the fabric manager can keep track of each
resource’s membership in resource domains and admin partitions through a relationship in
the fabric manager database. With these records and relationships, the fabric manager can
allow like logical names across disparate resource domains and admin partitions. In
accordance with an embodiment, the logical domain name scheme can reflect the hierarchy
of the resource domain or domains that a particular domain resource is a member of. In such
an embodiment, logical resource names can be unique to the highest level resource domain
that the resource is a member of.

[0139] In accordance with an embodiment, the identifier of a resource in the fabric —
regardless of what the identifier is — can be unique within the scope of the admin partition.
Then, global uniqueness (i.e., at the fabric level) can be achieved by prefixing the resource
name with the corresponding admin partition.

[0140] Figure 14 shows an exemplary network fabric having both resource domains and
admin partitions. As shown in Figure 14, fabric manager 1402 is executing on network fabric
1400. In accordance with an embodiment, fabric manager 1402 can execute from a node
(not shown) of network fabric 1400. Fabric manager 1402 is administered by fabric-level
administrator 1404, and includes fabric manager database 1414. Admin partition registry
1416 is part of fabric manager database 1414, as is a logical name table 1418.

[0141] With continued reference to Figure 14, subnet 1420 is defined within network fabric
1400. Subnet manager 1422 is associated with subnet 1420, and, in accordance with an
embodiment, performs the semantic runtime operations required by subnet 1420 for
operation in network fabric 1400. Setup and administrative tasks required by subnet 1420
can be performed by fabric-level administrator 1404 and fabric manager 1402.

[0142] Node 1444, 1454, 1474 and 1484 are part of subnet 1420. HCA 1446 is associated
with node 1444, and includes PF 1448 and VFs 1450 and 1452. Similarly, HCA 1456 is
associated with node 1454, and includes PF 1458 and VFs 1460 and 1462. HCA 1476 is
associated with node 1474, and includes PF 1478 and VFs 1480 and 1482. Further, HCA
1486 is associated with node 1484, and includes PF 1488 and VFs 1490 and 1492. VM 1440
is executing on node 1444, and VM 1470 is executing on node 1474. vHCA 1442 has been
planned and configured for VM 1440, is associated with VM 1440, and is registered with

28-

10

15

20

25

30

35

WO 2017/132399 PCT/US2017/015169

virtual function 1452 of HCA 1446. vHCA 1472 has been planned and configured for VM
1470, is associated with VM 1470, and is registered with virtual function 1482 of HCA 1476.
[0143] In accordance with an embodiment, HCAs 1446, 1456, 1476, and 1486 are
considered domain resources, and a record of each is stored in fabric manager database
1414. The record can include an identifier, such as a GUID, which is used to identify the HCA
resource in the fabric. Further, vHCAs 1442 and 1472 are also considered domain
resources, and a record of each is stored in fabric manager database 1414. The record can
include an identifier, such as a GUID, which is used to identify the vHCA.

[0144] With further reference to Figure 14, and in accordance with an embodiment,
resource domain 1410 and resource domain 1412 have been created within fabric manager
1402. In accordance with an embodiment, fabric-level administrator 1404 is responsible for
the creation of resource domain 1410 and resource domain 1412. Additionally, domain
admin 1406 is a domain-level administrator associated with resource domain 1410. Likewise,
domain admin 1408 is a domain-level administrator associated with resource domain 1412.
In accordance with an embodiment, fabric-level administrator 1404 can create domain
admins 1406 and 1408, as admins of their respective resource domains, adhering to the
hierarchical nature of resource domains.

[0145] In accordance with an embodiment, admin partition 1424 and admin partition 1426
have been defined in subnet 1420. Admin partition 1424 is associated with resource domain
1410, and admin partition 1426 is associated with resource domain 1412.

[0146] As shown in Figure 14, vHCA 1442 and HCAs 1446 and 1456 are members of
resource domain 1410. In accordance with an embodiment, because admin partition 1424 is
associated with resource domain 1410, when vHCA 1442 and HCAs 1446 and 1456 are
added as members of resource domain 1410, they also become members of admin partition
1424, and a relationship is created in admin partition registry 1416 between the P_Key
defining admin partition 1424 and the identifiers of HCAs 1446 and 1456, and vHCA 1442. In
accordance with an embodiment, this relationship defines HCAs 1446 and 1456, and vHCA
1442 as members of admin partition 1424.

[0147] Likewise, vHCA 1472 and HCAs 1476 and 1486 are members of resource domain
1412. In accordance with an embodiment, because admin partition 1426 is associated with
resource domain 1410, when vHCA 1472 and HCAs 1466 and 1486 are added as members
of resource domain 1412, they also become members of admin partition 1426, and a
relationship is created in admin partition registry 1416 between the P_Key defining admin
partition 1426 and the identifiers of HCAs 1476 and 1486, and vHCA 1472. In accordance
with an embodiment, this relationship defines HCAs 1476 and 1486, and vHCA 1472 as

members of admin partition 1426.

-20-

10

15

20

25

30

35

WO 2017/132399 PCT/US2017/015169

[0148] As noted above, VM 1440 (including vVHCA 1442), node 1444 (including HCA 1446)
and node 1454 (including HCA 1456) are members of resource domain 1410, in accordance
with an embodiment. In an embodiment of the invention, fabric-level administrator 1404 is
responsible for adding node 1444 and node 1454 to resource domain 1410. For example,
fabric-level administrator 1404 can, through the interface of fabric manager 1402, add nodes
1444 and 1454 to resource domain 1410. Once fabric-level administrator 1404 has added
nodes 1444 and 1454 to resource domain 1410, domain admin 1406 can perform
administrative tasks on nodes 1444 and 1454. In keeping with the hierarchical scheme of
resource domains, however, domain admin 1406 could not perform administrative tasks on
nodes 1444 and 1454 before they were added to resource domain 1410 (i.e., while they were
a member of the higher-level default domain (not shown). Further, in accordance with an
embodiment, domain admin 1408 cannot perform administrative tasks on nodes 1444 and
1454, because nodes 1444 and 1454 are members of a parallel-level resource domain that
domain admin 1408 is not associated with.

[0149] With continued reference to Figure 14, and in accordance with an embodiment,
admin partitions 1424 and 1426 have been defined within subnet 1420. In keeping with the
hierarchical scheme of resource domains, in one embodiment admin partitions 1424 and
1426 were defined by fabric-level administrator 1404. In another embodiment, domain admin
1406 defined admin partition 1424, and domain admin 1408 defined admin partition 1426. In
accordance with an embodiment, admin partition 1424 is associated with resource domain
1410, and admin partition 1426 is associated with resource domain 1412. As discussed
above, admin partitions 1424 and 1426 represent resource domains 1410 and 1412,
respectively, at the subnet level, in accordance with an embodiment. In addition to being
associated with their respective resource domains, admin partitions 1424 and 1426 are
associated with domain admins 1406 and 1408, respectively (i.e., the corresponding admin
user of the resource domains each of the admin partitions is associated with). As noted
above, this association between admin partitions and domain-level admins can ensure user-
role separation in multi-tenant environments at the subnet level, in accordance with an
embodiment.

[0150] Data partitions 1428 and 1430 have been defined in subnet 1420, in accordance
with an embodiment. In keeping with the hierarchical scheme of resource domains, in one
embodiment data partitions 1428 and 1430 were defined by fabric-level administrator 1404.
In another embodiment, domain admin 1406 defined data partition 1428, and domain admin
1408 defined data partition 1430. As shown in figure 14, data partition 1428 is associated
with admin partition 1424, and data partition 1430 is associated with admin partition 1426.
Moreover, as noted above and shown in Figure 14, HCAs 1446 and 1456 and vHCA 1442

are members of admin partition 1424. Consequently, in accordance with an embodiment,

-30-

10

15

20

25

30

35

WO 2017/132399 PCT/US2017/015169

HCAs 1446 and 1456 and vHCA 1442 have access permissions to data partition 1428
because they are members of an admin partition (i.e., admin partition 1424) that data
partition 1428 is associated with.

[0151] In accordance with an embodiment, when data partition 1428 is associated with
admin partition 1424, a relationship between the identifier of data partition 1428 (e.g., the
P_Key of data partition 1428) and the P_Key of admin partition 1424 is created in the admin
partition registry 1416. This relationship defines data partition 1428 as associated with admin
partition 1424. Likewise, when data partition 1430 is associated with admin partition 1426 a
relationship between the identifier of data partition 1430 (e.g., the P_Key of data partition
1430) and the P_Key of admin partition 1426 is created in the admin partition registry 1416.
This relationship defines data partition 1430 as associated with admin partition 1426.

[01562] In accordance with an embodiment, if a request were received from either of HCAs
1446 and 1456 or vHCA 1442 to join data partition 1428, SM 1422 could check with admin
partition registry 1416, and find that HCAs 1446 and 1456 and vHCA 1442 are members of
admin partition 1424, and that data partition 1428 is associated with admin partition 1424.
Then, SM 1422 could allow HCAs 1446 and 1456 and vHCA 1442 to become members of
data partition 1428 based on HCAs 1446 and 1456 and vHCA 1442 being members of admin
partition 1424 and data partition 1428 being associated with admin partition 1424. No manual
mapping from either fabric-level administrator 1404 or domain-level administrator 1406 would
be necessary to allow HCAs 1446 and 1456 and vHCA 1442 to join data partition 1428.
[0163] Moreover, vHCA 1442 can be registered with either of VF 1452 or 1450 of HCA
1446, or either of VF 1462 or 1460 of HCA 1456, because HCAs 1446 and 1456 and vHCA
1442 are members of admin partition 1424 (vHCA 1442 is depicted as registered with VF
1452). Here again, SM 1422 could check with admin partition registry 1416, and find that
HCAs 1446 and 1456 and vHCA 1442 are members of admin partition 1424. Upon finding
that HCAs 1446 and 1456 and vHCA 1442 are members of admin partition 1424, SM 1422
could allow registration of vVHCA 1442 with any of VFs 1452, 1450 1462, and 1460 without

intervention from any fabric user.

Virtual Machine Fabric Profiles

[0154] As discussed above, virtual machines (VMs) can be employed in a fabric, such as
an IB fabric in order to improve efficient hardware resource utilization and scalability. Yet, live
migration of virtual machines (VMSs), still remains an issue due to the addressing and routing
schemes used in these solutions. In accordance with an embodiment, methods and systems
provide for facilitating pre-defined, highly available, and physical-location independent virtual
machine fabric profiles that can support addressing schemes aimed at overcoming such VM

migration issues. In accordance with an embodiment, VM fabric profiles enable centralized

-31-

10

15

20

25

30

35

WO 2017/132399 PCT/US2017/015169

setup and configuration administration for VMs using fabric connectivity, and support
optimized VM migration for VMs based on SR-IOV. In accordance with an embodiment, a
VM fabric profile represents a single, centralized repository of detailed fabric configuration
information for a virtual machine. A database associated with the fabric manager (e.g., the
fabric database) can persist the information that makes up a VM fabric profile.

[0155] In accordance with an embodiment, a VM fabric profile can be identified in a
network fabric, such as an IB fabric, through a virtual machine identifier (VM-id). In one
embodiment, the VM-id is a unique 128-bit humber that is a universally unique identifier
(UUID), that can be unique across the entire fabric. However, uniqueness of the VM-id is
only necessary across differently administered VM manager domains (e.g., a VM-id can be
unique within an admin partition). Therefore, in other embodiments, the VM-id can be some
other appropriate type of ID that is at least unique across such domains. In accordance with
an embodiment, all management entities, at either the fabric or the subnet level, look up
information about a VM fabric profile by referencing the VM-id of the profile.

[0156] Figure 15 shows an exemplary database structure for storing VM fabric profile
information. Figure 15 depicts several tables in a traditional relational database design.
However, any suitable data structure can be used to store VM fabric profile data (e.g., a flat-
file table, or a delimited structure, etc.). In Figure 15, an asterisk (*) denotes a key value.
Figure 15 depicts VM fabric profile data as being part of a larger fabric database 1500, but in
other embodiments, VM profile data may be contained in its own database, or may be a
separate database with access to fabric database 1500.

[0157] As shown in Figure 15, the contents of a VM fabric profile may include, but are not
limited to: a virtual machine identifier (VM-id) 1502 used as a lookup key; a logical name
1504 for ease of use and improved quality in administration of the fabric; a profile type 1506
used to distinguish between, e.g., a VM fabric profile and other profiles that have been
defined for the fabric; a profile ID 1508 — a unique id within the set of all profiles defined for
the fabric; and a content update enumerator (CUE) 1510, which can be a sequence number
for a profile where the highest sequence represents the most recent update. As shown in
Figure 15, this VM fabric profile content can be stored in a VM profile table 1512, where the
VM-id acts as a unique key for identifying each VM fabric profile.

[0168] As discussed above, virtual HCAs (VHCAs) may be used in conjunction with the
virtual functions of a physical HCA to provide network access to VMs. In accordance with an
embodiment, each VM fabric profile is also associated with at least one vHCA. A vHCA can
be planned and configured for a specific VM, and this configuration can also be included in
and stored with the fabric profile of the VM for which the vHCA is configured. The configured
vHCA can then migrate with the virtual machine — in contrast to virtual functions, which can

be defined by, and can stay with, the physical HCA. With further reference to Figure 15, a

-32-

10

15

20

25

30

35

WO 2017/132399 PCT/US2017/015169

vHCA can be represented in the fabric manager database as a unique combination of a VM-
id 1502 and a vHCA Instance ID 1514. Moreover, this combination can be stored in a vHCA
table related to the VM Profile table 1512 through the VM-id key 1502.

[0169] Like a physical HCA, a vHCA can have a plurality of (virtual) ports. In accordance
with an embodiment, these virtual ports can act as end-ports in the network environment, just
as physical ports do. As an example, all end-ports, including vHCA ports, can be assigned a
GUID (e.g., a 64-bit GUID as used in an IB network). This GUID can be used to request a
LID destination address from the routing tables of a SM. In accordance with an embodiment,
a virtual GUID (vGUID) can represent the current fabric address of each vHCA port. In one
embodiment, vGUIDs can be assigned to the vHCA ports from a list of GUIDs allocated to,
and stored with, the VM fabric profile, as discussed above. vGUIDs can be assigned to a
fabric profile from a dedicated pool of GUIDs owned and controlled by the fabric manager in
accordance with fabric manager GUID policy. For instance, a free and fabric-wide unique
vGUID can be allocated to a vHCA configured for a VM when the fabric profile is created in
the fabric manager.

[0160] With continued reference to Figure 15, and in accordance with an embodiment, a
vHCA port can be represented in the fabric manager database as the unique combination of
a vHCA Instance ID 1514, and a vGUID 1522. A vHCA configuration can also include a
vHCA port number 1520. This configuration can be stored in the vHCA port table 1518,
which can be related the vHCA table through the vHCA Instance ID* 1514 key, and ultimately
to the VM profile table 1512 through the VM-id key 1502.

[0161] In accordance with an embodiment, a vVHCA can be a member of both data
partitions and admin partitions. Partition membership of a vHCA can be represented in a VM
fabric profile by relationships in the fabric database linking the vHCA record to partitions
(both admin and data partitions) that the vHCA is a member off. In one embodiment, for
example, the vGUID key 1522 can be related to tables (not shown) containing data and
admin partitions P_Keys that have been defined in the network fabric. In an embodiment, the
vGUID key is linked, through a relationship, to the admin partition registry (discussed above).
In an embodiment, there is alternatively, or also, a relationship linking the admin partition
registry to a vHCA Instance ID 1514. These relationships allow fabric components to identify
which data and admin partitions the vHCA is a member of.

[0162] Figure 15 has been provided for exemplary purposes only, and one skilled in the art
will appreciate that there are numerous ways to design and manage the storage of the data
that make up a VM fabric profile. Further, the foregoing list of VM fabric profile contents is
meant to be exemplary, not limiting, and other embodiments of virtual machine fabric profiles
may include more, less, or other contents. In accordance with an embodiment, the database

components depicted in Figure 15 can be a part of a much larger fabric manager database

-33-

10

15

20

25

30

35

WO 2017/132399 PCT/US2017/015169

that holds other relevant information about the fabric and can be interrelated with other tables
to enhance the functionality of the fabric manager and other fabric components.

[0163] In one embodiment, a user interacts with virtual machine fabric profiles through an
interface of the fabric manager. For instance, a user may create, edit, and delete VM fabric
profiles through the fabric manager. In accordance with an embodiment, some of the fabric
profile information is supplied by a user creating or editing the VM fabric profile (e.g., the
logical name of the VM fabric profile), while other of the information is generated or supplied
by the fabric manager or the local SM of the subnet in which the fabric manager is being
created (e.g., the VM-id, the vHCA instance ID, or the vGUID).

[0164] In accordance with an embodiment, the creation of the virtual machine fabric profile
can take place in a management context that represents administrative privileges of the
fabric resources the VM fabric profile is associated with. For example, a domain admin
creates a VM fabric profile for use by nodes having HCAs that are a member of the same
resource domain(s) (and the same admin partition(s)) as the vHCAs being configured for the
VM fabric profile. The created VM fabric profile is considered a (logical) resource, and a
member of the resource domain in which it is created. Thus, by virtue of being a member of
the same admin partition, the vHCA of the VM fabric profile has permission to be registered
with any of the VF’s of the HCAs that are also members of the resource domain, thereby
easing administrative overhead.

[0165] In accordance with an embodiment, a fabric-level or domain-level administrator user
can use a component of the fabric manager termed the “Virtual Machine Manager” (VMM) to
set up and configure VM fabric profiles. VMM can use a fabric REST API in the creation of a
VM fabric profile. A user can access VMM, for example, through a GUI of the fabric manager.
In accordance with an embodiment, the administrative user can supply certain parameters
related to the VM fabric profile (such as logical name, profile type, and the number of vHCASs
that will be associated with the profile), and other parameters can be automatically generated
and assigned by the VMM (such as VM-id, and vGUIDs and vHCA instance IDs of each
vHCA associated with the profile). Other CRUD actions, such as updating and deleting VM
fabric profiles can also be available to the administrator user through the fabric manager, and
VMM, specifically.

[0166] In accordance with an embodiment, once all of the parameters necessary to build a
VM fabric profile have been supplied via the VMM, the fabric manager can create an
instance of the VM fabric profile object having the attributes specified by the administrator
user and VMM, and persist the VM fabric profile object to the fabric level database.

[0167] In accordance with an embodiment, in an operational network fabric, a VM fabric
profile can be held as one or multiple records in a cache of a SM. The VM fabric profile can
either be retrieved (i.e., copied) from the fabric database by the SM (e.g., when the SM

-34-

10

15

20

25

30

35

WO 2017/132399 PCT/US2017/015169

boots), or be placed in the cache before it is persisted to the fabric database. The cache can
be a volatile or non-volatile memory. The VM-id can be used as a key for querying the cache
to retrieve attributes of a specific VM fabric profile.

[0168] By holding the VM fabric profiles in a high-speed cache on the SM rather than
retrieving them from a persisted state (i.e., from the fabric database) every time a query is
received, the lookup of VM fabric profile attributes can impose minimal overhead on the SM.
This is especially important during VM and host boot-up, when fabric profile data will be
needed to establish which HCAs VMs can and will be paired with.

[0169] Figure 16 is a flow chart for making a VM fabric profile available to subnet
resources.

[0170] At step 1610, a VM fabric profile including setup parameters and configuration of the
VM is defined.

[0171] At step 1620, the VM fabric profile is stored in a fabric-level database.

[0172] At step 1630, the VM fabric profile is made available through a high-speed memory
cache on the subnet manager.

[0173] At step 1640, VM fabric profile data is returned from the subnet manger based on
VM-id lookup requests directed to the high-speed memory cache.

[0174] Figure 17 is a flow chart for creating a virtual machine fabric profile for a virtual
machine.

[0175] At step 1710, a virtual machine identifier (VM-id) is generated.

[0176] At step 1720, a virtual host channel adapter instance ID that identifies a virtual host
channel adapter (vHCA) is generated.

[0177] At step 1730, a virtual globally unique identifier (vGUID) is assigned as a current
fabric address of a virtual port of the vHCA, from a pool of globally unique identifiers.

[0178] At step 1740, a first relationship between a P_Key that defines an admin partition
and the vGUID is created, where the relationship between the P_Key and the vGUID defines
the virtual port for which the vGUID is assigned as the current fabric address as a member of
the admin partition defined by the P_Key.

[0179] At step 1750, a second relationship between the VM-id and the vHCA instance ID is
created, where the second relationship allows the vHCA instance ID to be retrieved through
access to the VM-id.

[0180] At step 1760, a third relationship between the VM-id and the vGUID is created,
where the third relationship allows the vGUID to be retrieved through access to the VM-id.
[0181] At step 1770, the VM-id, the virtual host channel adapter instance ID, the vGUID,
the first relationship, the second relationship, and the third relationship is persisted in a
format that preserves the VM-id, the virtual host channel adapter, the vGUID, the first

relationship, the second relationship, and the third relationship.

-35-

10

15

20

25

30

35

WO 2017/132399 PCT/US2017/015169

[0182] Many features of the present invention can be performed in, using, or with the
assistance of hardware, software, firmware, or combinations thereof. Consequently, features
of the present invention may be implemented using a processing system (e.g., including one
Or more processors).

[0183] Features of the present invention can be implemented in, using, or with the
assistance of a computer program product which is a storage medium (media) or computer
readable medium (media) having instructions stored thereon/in which can be used to
program a processing system to perform any of the features presented herein. The storage
medium can include, but is not limited to, any type of disk including floppy disks, optical
discs, DVD, CD-ROMs, microdrive, and magneto-optical disks, ROMs, RAMs, EPROMs,
EEPROMs, DRAMSs, VRAMSs, flash memory devices, magnetic or optical cards, nanosystems
(including molecular memory ICs), or any type of media or device suitable for storing
instructions and/or data.

[0184] Stored on any one of the machine readable medium (media), features of the present
invention can be incorporated in software and/or firmware for controlling the hardware of a
processing system, and for enabling a processing system to interact with other mechanism
utilizing the results of the present invention. Such software or firmware may include, but is
not limited to, application code, device drivers, operating systems and execution
environments/containers.

[0185] Features of the invention may also be implemented in hardware using, for example,
hardware components such as application specific integrated circuits (ASICs).
Implementation of the hardware state machine so as to perform the functions described
herein will be apparent to persons skilled in the relevant art.

[0186] Additionally, the present invention may be conveniently implemented using one or
more conventional general purpose or specialized digital computer, computing device,
machine, or microprocessor, including one or more processors, memory and/or computer
readable storage media programmed according to the teachings of the present disclosure.
Appropriate software coding can readily be prepared by skilled programmers based on the
teachings of the present disclosure, as will be apparent to those skilled in the software art.
[0187] While various embodiments of the present invention have been described above, it
should be understood that they have been presented by way of example, and not limitation. It
will be apparent to persons skilled in the relevant art that various changes in form and detail
can be made therein without departing from the spirit and scope of the invention.

[0188] The present invention has been described above with the aid of functional building
blocks illustrating the performance of specified functions and relationships thereof. The
boundaries of these functional building blocks have often been arbitrarily defined herein for

the convenience of the description. Alternate boundaries can be defined so long as the

-36-

10

WO 2017/132399 PCT/US2017/015169

specified functions and relationships thereof are appropriately performed. Any such alternate
boundaries are thus within the scope and spirit of the invention.

[0189] The foregoing description of the present invention has been provided for the
purposes of illustration and description. It is not intended to be exhaustive or to limit the
invention to the precise forms disclosed. The breadth and scope of the present invention
should not be limited by any of the above-described exemplary embodiments. Many
modifications and variations will be apparent to the practitioner skilled in the art. The
modifications and variations include any relevant combination of the disclosed features. The
embodiments were chosen and described in order to best explain the principles of the
invention and its practical application, thereby enabling others skilled in the art to understand
the invention for various embodiments and with various modifications that are suited to the
particular use contemplated. It is intended that the scope of the invention be defined by the

following claims and their equivalents.

-37-

10

15

20

25

30

35

WO 2017/132399 PCT/US2017/015169

Claims

What is claimed is:

1. A method of creating a virtual machine (VM) fabric profile for a virtual machine
comprising the steps of:

generating a virtual machine identifier (VM-id);

generating a virtual host channel adapter instance ID that identifies a virtual host
channel adapter (vHCA);

assigning, from a pool of globally unique identifiers, a virtual globally unique identifier
(vGUID) as a current fabric address of a virtual port of the vHCA;

creating a first relationship between a P_Key that defines an admin partition and the
vGUID, wherein the relationship between the P_Key and the vGUID defines the virtual port
for which the vGUID is assigned as the current fabric address as a member of the admin
partition defined by the P_Key;

creating a second relationship between the VM-id and the vHCA instance ID, wherein
the second relationship allows the vHCA instance ID to be retrieved through access to the
VM-id;

creating a third relationship between the VM-id and the vGUID, wherein the third
relationship allows the vGUID to be retrieved through access to the VM-id; and

persisting the VM-id, the virtual host channel adapter instance ID, the vGUID, the first
relationship, the second relationship, and the third relationship in a format that preserves the
VM-id, the virtual host channel adapter, the vGUID, the first relationship, the second

relationship, and the third relationship.

2. The method of Claim 1, further comprising the steps of:
placing the VM-id, the vHCA instance ID, the vGUID, the first relationship, the second
relationship, the third relationship, and the P_Key in a cache of a subnet manager of a

subnet, wherein the admin partition defined by the P_Key is defined within the subnet.
3. The method of Claim 2, wherein the VM-id, the virtual host channel adapter instance
ID, the vGUID, the first relationship, the second relationship, the third relationship, and the

P_Key placed in the cache are copies.

4. The method of Claim 2 or 3 wherein the cache is a volatile memory.

-38-

10

15

20

25

30

35

WO 2017/132399 PCT/US2017/015169

5. The method of any preceding Claim, further comprising the steps of:
using the VM-id as a lookup key to access the vHCA instance ID, the vGUID, and the
P_Key.

6. The method of Claim 5, wherein the using the VM-id as a lookup key is initiated by a
physical host channel adapter attempting to register the vHCA instance ID with a virtual

function of the physical host channel adapter.

7. The method of any of Claims 2 to 6, further comprising the steps of:

retrieving from the cache, by the subnet manager, the vHCA instance ID and the
vGUID; and

sending the vHCA instance ID and the vGUID to the physical host channel adapter.

8. A system for creating and accessing a virtual machine (VM) fabric profile for a virtual
machine comprising:

a node, including a processor;
a memory accessible to the node; and
wherein the node operates to:

generate a virtual machine identifier (VM-id);

generate a virtual host channel adapter instance ID that identifies a virtual
host channel adapter (vHCA);

assign, from a pool of globally unique identifiers, a virtual globally unique
identifier (vGUID) as a current fabric address of a virtual port of the vHCA,;

create a first relationship between a P_Key that defines an admin partition and
the vGUID, wherein the relationship between the P_Key and the vGUID defines the
virtual port for which the vGUID is assigned as the current fabric address as a
member of the admin partition defined by the P_Key;

create a second relationship between the VM-id and the vHCA instance ID,
wherein the second relationship allows the vHCA instance ID to be retrieved through
access to the VM-id;

create a third relationship between the VM-id and the vGUID, wherein the third
relationship allows the vGUID to be retrieved through access to the VM-id; and

persist the VM-id, the virtual host channel adapter instance ID, the vGUID, the
first relationship, the second relationship, and the third relationship to the memory in a
format that preserves the VM-id, the virtual host channel adapter, the vGUID, the first

relationship, the second relationship, and the third relationship.

-30-

10

15

20

25

30

35

WO 2017/132399 PCT/US2017/015169

9. The system of Claim 8, further comprising a subnet manager of the subnet, wherein
the VM-id, the vHCA instance ID, the vGUID, the first relationship, the second relationship,
the third relationship, and the P_Key are placed in a cache of the subnet manager, and

wherein the admin partition defined by the P_Key is defined within the subnet.

10. The system of Claim 9, wherein the VM-id, the virtual host channel adapter instance
ID, the vGUID, the first relationship, the second relationship, the third relationship, and the

P_Key placed in the cache are copies.

11. The system of Claim 9 or 10 wherein the cache is a volatile memory.

12. The system of any of Claims 8 to 11, wherein the VM-id is used as a lookup key to
access the vHCA instance ID, the vGUID, and the P_Key.

13. The system of Claim 12, wherein a physical host channel adapter initiates the lookup
in an attempt to register the vHCA instance ID with a virtual function of the physical host

channel adapter.

14. The system of any of Claims 9 to 13, wherien the subnet manager retrieves the vHCA
instance ID and the vGUID from the cache; and
wherein the subnet manager sends the vHCA instance ID and the vGUID to the

physical host channel adapter.

15. A non-transitory computer readable storage medium, including instructions stored
thereon for creating a virtual machine (VM) fabric profile for a virtual machine, which when
read and executed by one or more computers cause the one or more computers to perform
steps comprising:

generating a virtual machine identifier (VM-id);

generating a virtual host channel adapter instance ID that identifies a virtual host
channel adapter (vHCA);

assigning, from a pool of globally unique identifiers, a virtual globally unique identifier
(vGUID) as a current fabric address of a virtual port of the vHCA;

creating a first relationship between a P_Key that defines an admin partition and the
vGUID, wherein the relationship between the P_Key and the vGUID defines the virtual port
for which the vGUID is assigned as the current fabric address as a member of the admin
partition defined by the P_Key;

creating a second relationship between the VM-id and the vHCA instance ID, wherein

-40-

10

15

20

25

30

35

WO 2017/132399 PCT/US2017/015169

the second relationship allows the vHCA instance ID to be retrieved through access to the
VM-id;

creating a third relationship between the VM-id and the vGUID, wherein the third
relationship allows the vGUID to be retrieved through access to the VM-id; and

persisting the VM-id, the virtual host channel adapter instance ID, the vGUID, the first
relationship, the second relationship, and the third relationship in a format that preserves the
VM-id, the virtual host channel adapter, the vGUID, the first relationship, the second

relationship, and the third relationship.

16. The non-transitory computer readable storage medium of Claim 15, the steps further
comprising:

placing the VM-id, the vHCA instance ID, the vGUID, the first relationship, the second
relationship, the third relationship, and the P_Key in a cache of a subnet manager of a

subnet, wherein the admin partition defined by the P_Key is defined within the subnet.

17. The non-transitory computer readable storage medium of Claim 16, wherein the VM-
id, the virtual host channel adapter instance ID, the vGUID, the first relationship, the second

relationship, the third relationship, and the P_Key placed in the cache are copies.

18. The non-transitory computer readable storage medium of Claim 16 or 17, wherein the

cache is a volatile memory.

19. The non-transitory computer readable storage medium of any of Claims 15 to 18, the
steps further comprising:

using the VM-id as a lookup key to access the vHCA instance ID, the vGUID, and the
P_Key, wherein the using the VM-id as a lookup key is initiated by a physical host channel
adapter attempting to register the vHCA instance ID with a virtual function of the physical

host channel adapter.

20. The non-transitory computer readable storage medium of any of Claims 16 to 19, the
steps further comprising:

retrieving from the cache, by the subnet manager, the vHCA instance ID and the
vGUID; and

sending the vHCA instance ID and the vGUID to the physical host channel adapter.

41-

WO 2017/132399 PCT/US2017/015169

21. A computer program comprising program instructions in machine-readable format that

when executed by a computer system cause the computer system to perform the method of

any of Claims 1to 7.

22. A computer program product comprising the computer program of Claim 21 stored in

a non-transitory machine readable data storage medium.

-42-

WO 2017/132399 PCT/US2017/015169

117
100

Node A Node B Node C

101 102 103
HCA 111 HCA 112 HCA 113

InfiniBand Fabric
120

Node D Node E

104 105
HCA 114 HCA 115

FIGURE 1

WO 2017/132399

PCT/US2017/015169
2/17
77N
/ N e _
/- —\\— - Partition 2 140
Node B
102
\\l HCA 111 ‘\ HCA 112
| T~ |
| T~ [
I t————_ - — -
[|
Partiion 1130 \!
|
|
l‘ InfiniBand Fabric
| 120
1 Node D Node E I
\ 104 105]
\ I
\ /
\ !
\ /
\ | HCA114 HCA115 |
\ /
\\ /
/
\ / \ /
N_ - N_ 7

FIGURE 2

WO 2017/132399 PCT/US2017/015169
317
200
Roo_t Switch u Roo} Switch 232 Root Switch 233 Root Switch 234
{13 {2 {33 {4} {5y {6 {731 {8’
‘._‘,, ~.__,.\ Seager e N L ’-.‘__. Seap _ e ._.__.
\ —— =< ~ - [_— - 1
Switch 221 Switch 222 Switch 223 Switch 224
=~ —_1 ~— — T
Leaf Switch Leaf Switch Leaf Switch Leaf Switch
211 212 213 214
~ —
~ o =~ P \
~ -~
~ - /\A/\ -~ - _ P \\
® ® 1®®
Node 201 Node 202 } Node 203 Node 204

FIGURE 3

PCT/US2017/015169

WO 2017/132399

4117

¥ 3¥NOI4

0c€ uonouny [eoisAud

0L JosiniedAH

0G€ N uonoun [enuiA

0vE ¢ uonound [eniiA

N_/ S
;7N ean)
,on_O v ~—_—
N 7/

0EE | uonound [eniliA

00¢ (Je)depy [suueyQ jsoH “6'e) jsoH

PCT/US2017/015169

WO 2017/132399

517

g ¥NOI4

0Zi uohound [eoisAud

0L JosiniedAH

Gy YOUMS [ENUIA

D
”O

0S¥ N uonoun [enuiA

()2
‘-

Oby ¢ uonound [eniIA

‘ q:aIo
‘ £:an

0ty | uonound [eniiA

00v (edepy [puueyQ jsoH “6'e) jsoH

PCT/US2017/015169

WO 2017/132399

6/17

9 FHNOI4

0ze uohound [eoisAud

0L JosiniedAH

0G€ N uonoun [enuiA

0vE ¢ uonound [eniiA

0EE | uonound [eniliA

00¢ (Je)depy [suueyQ jsoH “6'e) jsoH

WO 2017/132399

Switch 501

_————

Switch 503

L

i

Switch 502

Switch 504

PCT/US2017/015169

[®2]
(=]
(]

Virtual Switch 512

PF513 VF1514
LID (1) LID (2)
VM1 550
VF2 515 VF3 516
LID (3) LID (4)
VM2 551 VM3 552
Hypervisor 511

Virtual Switch 522

PF 523 VF1524
LID (5) LID (6)
VF2 525 VF3 526

|| LID (7) LID (8)

Hypervisor 521

Virtual Switch 532

PF 533 VF1 534
LID (9) LID (10)
VM4 553
VF2 535 VF3 536
LID (11) LID (12)
Hypervisor 531

Host Channel Adapter 510

Host Channel Adapter 520

Host Channel Adapter 530

FIGURE 7

WO 2017/132399

Switch 501

_————

Switch 503

L

8/17

Switch 502

Switch 504

PCT/US2017/015169

~
o
S

Virtual Switch 512

PF513 VF1514
LID (1) LID (5)
VM1 550
VF2 515 VF3 516
LID (7) LID (11)
VM2 551 VM3 552
Hypervisor 511

Virtual Switch 522
PF 523 VF1524
LID (2)
VF2 525 VF3 526
Hypervisor 521

Virtual Switch 532

PF 533 VF1 534
LID (3) LID (9)
VM4 553
VF2 535 VF3 536
Hypervisor 531

Host Channel Adapter 510

Host Channel Adapter 520

Host Channel Adapter 530

FIGURE 8

WO 2017/132399

Switch 501

Switch 503

L |

_————

97

Switch 502

Switch 504

PCT/US2017/015169

(o]
(=]
(]

Virtual Switch 512

PF513 VF1514
LID (1) LID (2)
VM1 550
VF2 515 VF3 516
LID (3) LID (4)
VM2 551
Hypervisor 511

Virtual Switch 522

PF 523 VF1524
LID (5) LID (6)
VF2 525 VF3 526
LID (11)
VM3 552
Hypervisor 521

Virtual Switch 532

PF 533 VF1534
LID (7)

VF2 535 VF3 536

LID (9)

VM4 553

Hypervisor 531

Host Channel Adapter 510

Host Channel Adapter 520

Host Channel Adapter 530

FIGURE 9

PCT/US2017/015169

WO 2017/132399

10/17

0L NOIL

0£0T Jo1depy [puuey) 1SOH

TE0T JoSINRAAH

Ge0T
TNA
(A)an (x)an
YEOT T4A €€0T 4d

ZEOT YoUMS [eNLIA

00T g I’uqgns

¥ZOT Youms £Z0T YoUMs
T20T Youms TZOT YoUMS
f
(zanm)
900T J91N0Y

0707 J91depy [puuey) 1SOH

TTOT JosSInRdAH

ST0T

TINA

(@) an (T)an
¥TOT T4A €707 4d

ZTOT YoUMS [enMIA

¥00T YoUMs €00T Youms
Z0OT Youms TOOT YoUMS
7
(gan)

S00T 42IN0Y

000T V 1dugns

PCT/US2017/015169

WO 2017/132399

11/17

L1 F¥NOId

00TT 21qe YIoMIaN

QETT Wewo(q 923Jn0say

PETT
$924N0SaJ dlige

CETT ulwpy

ulewoq

CO0TT ulewoq jjhejaq

OCTT wlewo(92JNn0Say

jZan"
$3924N0SaJ dliged

[y
$924N0SaJ dlige

CCTT wwpy

ulewoq

OTTT
JoleJisiuiwpy
[9A97-01qeS

WO 2017/132399 PCT/US2017/015169
12/17
Admin Partition 1240
7N PN
/ N e] - / \
/- 3—\’ -~ Data Partition 1242 T~ \\
=7
- /]
4 / Node B
! 1202
/
/
| \
N ’ \
~ +_ \ HCA 1212
S |
[TN
I Tt e L - — 1
[|
Data Partition 1232 I
| |
| | N
|‘ ,' Network Fabric
\ | 1202
\\ Node D |
1204 |
\ | /
\ /
\
\ 1
\ | HCA1214 V" HCA 1215 | ¢
\ / /
\ / /
\ / /
\ / \ /
N7 N7

Admin Partition 1230

Admin Partition 1250

FIGURE 12

PCT/US2017/015169

WO 2017/132399

13/17

€1 RNOId

vOET (INS) 498eue N 33UgNS

ZOET 32ugns

b
[oR
3
>
8YET 9€€T >
z | L 3A z |l dA 2
8 O 5} 5 =
S | »|ovel S | > veer o
= = — = >
g — 8EET NA
A A OvET VOH
>
[oR
3
>
Y
8TET 9TET g
& | »|ozer & | »[et -
| Wl dd 25 4d m
Sk 6CET g |5 VTET ©
- 8TET WA
A A 0ZET VOH

00€T dliged JuomiaN

PCT/US2017/015169

WO 2017/132399

14/17

vl 3¥NOI4

00T dHges JIomIaN

0ZPT 19uUgns
TTvT (NS) Je8euey 19UqNS

ot et ity O 20
! L emJ, Y ulewoq |
i W mﬁ 3 92Jnosay !
. | | =] !
i | 06vT 08YT S o onges |
: | =a = !
i B |52 R g | = _
_ 5 | >[ssyT = Y27 S| S |
_ 2 Bl 4d RS EEL & B _
i R 8 et R | O zepr ° 8 !
| | | .
‘ Albeeee OLYT NA i
“ m n A ZLYT VOH m |
: |
_ | | _
m R —— W _
S S DD S]
ettt ittt R G
i ittt 1 uiewoq |
" | mﬁ w 92JN0SdY |
! | v T ouqey i
! W 0971 0svT 3= 3 !
! =S =S i
| g2 A g |
i 8 | > sy S | 8T S !
! e R[4 =R 4d 510D _
! RSN R | e ©, ® i
i ! A feeee OrPT NA , i
| W A i ZYYT VOH | |
i W W _
i , | !
i o ! |
@ !

Z0vT J98euelp duqge4

Y1v1 9seqeleq
Jageue|p ouqge4

8TvT 9lqel
aweN |ed1307

9T1T Aisi3ay
uoljied

ulwpy

0
Jojensiuiwpy
[9A97-01qeS

WO 2017/132399

15/17

vHCA Instance ID* 1514

VM-id* 1502

PCT/US2017/015169

vHCA Instance ID* 1514 VM-id* 1502
vGUID* 1522 Logical Name 1504
vHCA Port No. 1520 Profile Type 1506

Profile ID 1508

CUE 1510

Fabric Database 1500

FIGURE 15

WO 2017/132399 PCT/US2017/015169

16/17

Define a VM fabric profile including setup parameters and configuration
of the VM.

/\/1610

Y

Store the VM fabric profile in a fabric-level database.

T\ _ 1620

!

Make the VM fabric profile available through a high-speed memory
cache on the subnet manager.

/\/ 1630

!

Return VM fabric profile data from the subnet manger based on VM-id
lookup requests directed to the high-speed memory cache.

/\/ 1640

FIGURE 16

WO 2017/132399 PCT/US2017/015169

17117

Generating a virtual machine identifier (VM-id).

T\ 1710

Y

Generating a virtual host channel adapter instance ID that identifies a
virtual host channel adapter (vHCA).

/\/ 1720

Y

Assigning, from a pool of globally unique identifiers, a virtual globally
unique identifier (vGUID) as a current fabric address of a virtual port of
the vHCA.

-\ _1730

Y

Creating a first relationship between a P_Key that defines an admin
partition and the vGUID, wherein the relationship between the P_Key
and the vGUID defines the virtual port for which the vGUID is assigned
as the current fabric address as a member of the admin partition defined
by the P_Key.

T\ 1740

v

Creating a second relationship between the VM-id and the vHCA
instance ID, wherein the second relationship allows the vHCA instance
ID to be retrieved through access to the VM-id.

"\ 1750

Y

Creating a third relationship between the VM-id and the vGUID, wherein
the third relationship allows the vGUID to be retrieved through access to
the VM-id.

Y

Persisting the VM-id, the virtual host channel adapter instance 1D, the
vGUID, the first relationship, the second relationship, and the third
relationship in a format that preserves the VM-id, the virtual host
channel adapter, the vGUID, the first relationship, the second
relationship, and the third relationship.

T\ _ 1770

FIGURE 17

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2017/015169

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/455 HO4L12/931
ADD.

HO4L29/12

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F HOA4L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, INSPEC, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2013/051232 Al (GAVRILOV CONSTANTINE 1-22
[IL] ET AL) 28 February 2013 (2013-02-28)
paragraphs [0001] - [0011]
paragraphs [0026] - [0079]
figures 1-11
X US 20157063356 Al (MAKHERVAKS VADIM [US] 1-22
ET AL) 5 March 2015 (2015-03-05)
paragraphs [0007] - [0010]
paragraphs [0029] - [0155]
figures 1-17
X US 6 438 130 B1 (KAGAN MICHAEL [IL] ET AL) 1-22
20 August 2002 (2002-08-20)
column 1, Tine 10 - column 3, Tine 47
column 4, Tine 3 - column 6, line 12
figures 1-4B

See patent family annex.

D Further documents are listed in the continuation of Box C.

* Special categories of cited documents : L
"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

"A" document defining the general state of the art which is not considered the principle or theory underlying the invention

to be of particular relevance

"E" earlier application or patent but published on or after the international

- "X" document of particular relevance; the claimed invention cannot be
filing date

considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

4 April 2017

Date of mailing of the international search report

11/04/2017

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Noll, Joachim

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2017/015169
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2013051232 Al 28-02-2013 US 2013051232 Al 28-02-2013
US 2013229919 Al 05-09-2013
US 2015063356 Al 05-03-2015 NONE
US 6438130 Bl 20-08-2002 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - wo-search-report
	Page 63 - wo-search-report

