SIMULATED BRICK INTERIOR SIDING ASSEMBLY

INVENTOR
CHARLES POLIS

BY James R. Hulen
AGENT.
This invention relates to an interior siding material and a method of making said material. More particularly, it relates to a material which simulates a portion of an ordinary building brick or a brick wall construction comprised of bricks which have been exposed to wear and aging and have thereby acquired an uneven surface texture.

A popular form of interior decorating involves the addition of various types of artificial or simulated bricks to the interior walls of a house or other building. These materials are selected to give the effect of an outside wall on the interior of the building. It is well known that bricks used in the construction of exterior walls acquire an uneven surface texture and color when the bricks are exposed to wear and aging. This is caused by the abrasive forces of wind and precipitation and the deterioration of the materials of which the brick is made. Bricks of the above type that are very old are often described as "antique bricks" or "used" bricks.

Heretofore, simulated brick decorative materials have been limited to two-dimensional materials, such as wallpaper and the like, or to materials that, because of their composition or construction, failed to provide an authentic appearance. An example of the latter material is cork. It has been impossible to provide any of the previously known interior siding materials with the authentic appearance of "antique" or "used" brick.

Accordingly, it is an object of this invention to provide an interior siding material that authentically simulates a brick or brick wall construction and a method of making said material.

A further object is to provide an interior siding material that is relatively simple and inexpensive to manufacture.

A still further object is to provide an interior siding material that is extremely lightweight and easy to install and a method of installing the material.

The above and other objects are accomplished in accordance with this invention which comprises a board of fiber having at least one surface with dimensions approximating the dimensions of the exposed surface of a brick in a brick wall and said one surface having selected portions of fibers removed therefrom to expose regions of fibers lying below said surface, whereby the material, because of its slate-like properties, simulates a portion of an ordinary building brick which has been exposed to wear and aging and has thereby acquired an uneven surface texture.

Further, in accordance with this invention, a plurality of the above defined boards of fiber are individually arranged in spaced relationship similar to the arrangement of the bricks in a brick wall and a filter material is located between the boards to simulate the mortar in a brick wall.

For a better understanding of the present invention, together with other and further objects thereof, reference is made to the following description, taken in connection with the accompanying drawings, and its scope will be pointed out in the appended claims.

Referring now to the drawings:

FIG. 1 is a top plan view of an article illustrating the present invention;

FIG. 2 is a side elevational view of the article of FIG. 1;

FIG. 3 is a cross-sectional view taken along line 3—3 of FIG. 2;

FIG. 4 is a fragmentary perspective view of an article made in accordance with the present invention;

FIG. 5 shows an interior wall construction comprising the materials of the present invention;

FIG. 6 is a fragmentary perspective view of a form used for applying the boards of fiber to the surface to be decorated; and

FIG. 7 is a cross-sectional view along line 7—7 in FIG. 6.

Referring to the drawings, and particularly to FIG. 1, a top plan view of one surface 10 of a slab or board of fiber 11 is shown. This surface in its original state has substantially the same rectangular dimensions as the exposed surface dimensions of a brick in a brick wall construction. The preferred material for board 11 is a building material known as fiberboard or composition board. The slab or board is constructed of a multiplicity of tiny fibers that are bonded together and compressed to form a single relatively rigid member. For my invention I prefer to use a board that is made of fairly tightly bonded fibers. The board may be produced with the desired brick dimensions or it may be reduced to the desired dimensions from a large sheet of the fiberboard material.

To obtain the desired "antique" look for the board 11, a defacing surface 10, which has the external surface dimensions of a brick in a brick wall, by removing selected portions of the surface fibers. This can be done in any suitable manner, such as shaving the edges of surface 10 with a knife, as shown at 12, and then chipping or cutting away portions of the surface, as shown at 13.

It has been found that the exposed fibers 14 that remain after the defacing operation have the texture and appearance of the sub-surface of an ordinary building brick when the exterior smooth surface of the brick is worn or chipped away. This is due to the slate-like or layer-like quality of the fiberboard material, which quality is very similar to that of the ordinary building brick material.

To obtain a thoroughly authentic appearance I prefer to color board 11 after the defacing operation. The color operation may be performed in any suitable manner such as brushing, rolling, dipping or spraying and accomplishes the following results. First, the fiber-board is usually a neutral color and the board is surface-colored to simulate the color of a brick in an aged exterior brick wall. Although I prefer to use red coloring or a blend of reds and blacks, I have also made a siding material of white boards to realistically simulate an aged brick wall that has been painted white. Also, different portions of the board may be colored with different shades of red or blends of red and black. For example, the exposed fibers 14 may be colored red and the surface 10 may be colored with a blend of red and black. Secondly, the defacing operation often causes certain of the exposed fibers 14 to assume an unruly appearance and the coloring operation mats down and binds the sub-surface fibers together.

Although I prefer to color the board after the defacing operation, it will be apparent to those skilled in the art that the siding material may be made from a board that has been previously colored or the fiberboard itself may be made from fibers having the desired color.

Referring to FIG. 4, a fragmentary perspective view of another individual board of fiber 15 is illustrated to show the relative dimensions of the board and the overall appearance of the board with surface 16 and exposed fibers 17. It will be apparent that, since the exposing of sub-surface fibers is a random operation, no two "bricks" will be identical in appearance, thus resulting in a more authentic decorative material.

Referring to FIGS. 6 and 7, the preferred material for
applying the "bricks" to the surface to be decorated is shown generally at 18. A plastic form 19 is prepared by vacuum molding or otherwise forming by well known means a sheet of suitable plastic, such as polystyrene. The plastic is formed to provide simulated mortar strips 20 which have the texture and color of mortar. Rectangularly shaped indentations 21 are formed between strips 20 to receive the "bricks," one of which is shown at 22. Preferably, the central portions of indentations 21 are removed to provide openings 23 through the form. To apply the "bricks" to the surface to be decorated, form 19 is first cut to the desired size and secured, as by stapling, adhesively bonding or other suitable means, to the surface. An adhesive is then placed on the surface through openings 23 and the "bricks" are secured directly to the surface within indentations 21 to provide a stable unit.

The use of form 19 for applying the individual "bricks" provides a rapid means of application and lends an authentic appearance to the decorative material.

Referring to FIG. 5, an alternative embodiment for applying the boards to the surface to be decorated is illustrated at 24. The boards 25 are attached by an adhesive or other suitable means directly to surface 26. The arrangement of the boards is very similar to that of the bricks in a brick wall with substantially horizontal rows separated by spacings 27 approximating the spacings between standard bricks and with adjacent rows staggered so that the vertical spacings 28 are misaligned. With boards 25 thus arranged, spacings 27 and 28 may be partially filled with a simulated mortar or other suitable filler material 29.

While there has been described what is at present considered to be the preferred embodiment of this invention, it will be obvious to those skilled in the art that various changes and modifications may be made therein without departing from the invention, and it is therefore aimed to cover all such changes and modifications as fall within the true spirit and scope of the invention.

Having thus described my invention, what I claim and desire to protect by Letters Patent is:

1. An interior siding material that simulates a portion of an ordinary building brick that has been exposed to wear and aging and has thereby acquired an uneven surface texture, comprising: a slab of fiberboard, said fiberboard being constructed of compressed fibers bonded together to form a substantially rigid member, said slab having at least one surface with dimensions approximating the dimensions of the exposed surface of a brick in a brick wall, said one surface being relatively smooth and having randomly selected portions of fibers removed therefrom to expose regions of fibers lying in layers below said surface, said exposed layer-like fibrous regions having a roughened texture and appearance similar to said uneven surface texture of said ordinary building brick.

2. The interior siding material of claim 1 wherein certain of said exposed layer-like fibrous regions are located at the edges of said one surface.

3. An interior siding material that simulates a portion of a brick wall construction comprised of mortar and building bricks that have been exposed to wear and aging and have thereby acquired an uneven surface texture, comprising: a plurality of slabs of fiberboard, said fiberboard being constructed of compressed fibers bonded together to form a substantially rigid member, each of said slabs having at least one surface with dimensions approximating the dimensions of the exposed surface of a brick in a brick wall, said board surfaces having randomly selected portions of fibers removed therefrom to expose regions of fibers lying in layers below said surfaces, said exposed layer-like fibrous regions having a roughened texture and appearance similar to said uneven surface texture of said ordinary building bricks, said slabs being arranged and secured on the surface to be decorated in a pattern similar to the pattern formed by ordinary bricks in a brick wall construction; and simulated mortar between adjacent slabs.

References Cited by the Examiner

UNITED STATES PATENTS

<table>
<thead>
<tr>
<th>Patent Number</th>
<th>Date</th>
<th>Inventor</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>777,656</td>
<td>12/1904</td>
<td>Banning</td>
<td>52—386</td>
</tr>
<tr>
<td>1,195,649</td>
<td>8/1916</td>
<td>Buckley</td>
<td>52—316 X</td>
</tr>
<tr>
<td>1,888,417</td>
<td>11/1932</td>
<td>Aberson</td>
<td>52—335</td>
</tr>
<tr>
<td>2,114,451</td>
<td>4/1938</td>
<td>Mathes</td>
<td>52—385</td>
</tr>
<tr>
<td>2,818,824</td>
<td>1/1958</td>
<td>Read et al.</td>
<td>52—316</td>
</tr>
<tr>
<td>3,013,626</td>
<td>12/1961</td>
<td>Brown et al.</td>
<td>20—45</td>
</tr>
<tr>
<td>3,117,403</td>
<td>1/1964</td>
<td>Jack et al.</td>
<td>181—33.1</td>
</tr>
</tbody>
</table>

FOREIGN PATENTS

<table>
<thead>
<tr>
<th>Patent Number</th>
<th>Date</th>
<th>Inventor</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>587,852</td>
<td>12/1959</td>
<td>Canada</td>
<td></td>
</tr>
</tbody>
</table>

FRANK L. ABBOTT, Primary Examiner.
HENRY C. SUTHERLAND, Examiner.
M. O. WARNECKE, Assistant Examiner.