
(12) United States Patent
Kothari et al.

USOO8429209B2

(10) Patent No.: US 8.429,209 B2
(45) Date of Patent: Apr. 23, 2013

(54) METHOD AND SYSTEM FOR EFFICIENTLY
READING A PARTITIONED DIRECTORY
INCIDENT TO ASERALIZED PROCESS

(75) Inventors: Mitul Kothari, Pune (IN); Brad Boyer,
San Jose, CA (US); Anindya Banerjee,
Pune (IN); Kedar Patwardhan,
Maharashtra (IN); Ryan Robert
Lefevre, Sunnyvale, CA (US)

(73) Assignee: Symantec Corporation, Mountain View,
CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 140 days.

(21) Appl. No.: 12/857,441

(22) Filed: Aug. 16, 2010

(65) Prior Publication Data

US 2012/OO41923 A1 Feb. 16, 2012

(51) Int. Cl.
G06F 12/00 (2006.01)

(52) U.S. Cl.
USPC ... 707/822; 711/115

(58) Field of Classification Search 707/822,
707/831

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2003/0005217 A1* 1/2003 Chang et al. T11 111
2004.0003086 A1 1/2004 Parham et al.
2004/0215900 A1 10, 2004 Guthrie et al.

100

2005/OO73571 A1
2005/O149749 A1
2006, 0080674 A1
2007/0O83715 A1
2007/022632O A1*
2008, 0071811 A1
2008/0244189 A1
2009 OO19514 A1
2009.0143046 A1
2009/0178105 A1
2009,0178106 A1
2009/0204571 A1
2010.0057697 A1
2011 OO82879 A1
2011/0307543 A1

4/2005 Panet al.
7/2005 Van Brabant
4/2006 Beset al.
4/2007 Vanderpool
9/2007 Hager et al. TO9,219
3/2008 Parkinson et al.
10/2008 Allison et al.
1/2009 Hazlewood et al.
6, 2009 Smith
7/2009 Feng et al.
7/2009 Feng et al.
8, 2009 Shizuno
3/2010 Golwalkar et al.
4/2011 Hazlewood et al.
12/2011 Megginson

* cited by examiner

Primary Examiner — Amy Ng
(74) Attorney, Agent, or Firm — Wilmer Cutler Pickering
Hale and Dorr LLP

(57) ABSTRACT

A method of reading data from a partitioned directory inci
dent to a serialized process. A first read and an offset value are
received. A first data block in a modeled fully partitioned
directory is identified based on the offset value and a prede
termined number of entries associated with a buffer. It is
determined whether the first data block in the fully partitioned
directory is present in the actual partitioned directory. Zeros
are written in the buffer if the first data block in the fully
partitioned directory is not present in the actual partitioned
directory otherwise the first data block associated with the
actual partitioned directory is written to the buffer. A second
data block is similarly read by a second read operation and
written. The second data block is associated with a second
subdirectory, selected based on a horizontal node traversal at
a node level of said first subdirectory.

20 Claims, 21 Drawing Sheets

Server
106a

Pattitiof
Direct

US 8,429.209 B2 Sheet 1 of 21 Apr. 23, 2013 U.S. Patent

| -61

VZ (61-)

US 8,429.209 B2 U.S. Patent

US 8,429.209 B2 Sheet 3 of 21 . 23, 2013 Apr U.S. Patent

gZ (61-)

N ?ZIS JO XOOIE

ZH ~ |_!

US 8,429.209 B2 Sheet 4 of 21 . 23, 2013 Apr U.S. Patent

OZ

~ |_!

US 8,429.209 B2 Sheet 5 of 21 . 23, 2013 Apr U.S. Patent

N ?Z?S JO MOOIE

EZ (61-)

US 8,429.209 B2

N ?ZIS JO MOOIE

U.S. Patent

US 8,429.209 B2 Sheet 7 of 21 . 23, 2013 Apr U.S. Patent

US 8,429.209 B2 Sheet 8 of 21 . 23, 2013 Apr U.S. Patent

N ?ZIS JO XOOIE

N ?ZIS JO MOOIE N ?ZIS ?O XOOIE

429.209 B2 9 US 8 Sheet 9 of 21 . 23, 2013 Apr U.S. Patent

US 8,429.209 B2 Sheet 10 of 21 . 23, 2013 Apr U.S. Patent

N

– iš?jo "Pºººº

429.209 B2 9 US 8 Sheet 11 of 21 . 23, 2013 Apr U.S. Patent

US 8,429.209 B2 Sheet 12 of 21 . 23, 2013 Apr U.S. Patent

C19 (61-)
| y | G |

429.209 B2 9 US 8 Sheet 13 of 21 . 23, 2013 Apr U.S. Patent

E9 (61-)
| 71G

429.209 B2 9 US 8 Sheet 14 of 21 . 23, 2013 Apr U.S. Patent

H9 (61-)
! 9 JG || || Z. el- || || 7 |C |

NG

429.209 B2 9 US 8 Sheet 16 of 21 . 23, 2013 Apr U.S. Patent

NA

ÕTZ queuoduoO ÁuoueW

429.209 B2 9 US 8 Sheet 17 of 21 . 23, 2013 Apr U.S. Patent

U.S. Patent Apr. 23, 2013 Sheet 19 of 21 US 8,429.209 B2

4 O

Partitioning A Directory
401

Receiving a read operation and an offset value
4O2

Identifying a first block of data
404

Determining whether the first data block in the fully partitioned directory is
present in the actual partitioned directory

406

l
Reading The First Data Block if it is Present in The Actual Partitioned

Directory
408

Writing to the buffer
41O

Updating the offset value and further receiving the updated offset value
from the operating system

Identifying a second block of data
414

Determining whether the second data block in the fully partitioned directory
is present in the actual partitioned directory

416

l
Reading The Second Data Block if it is Present in The Actual Partitioned

Directory
408

l
Writing to the buffer

41 O

End of entries in the
partitioned directory?

Fig. 4

U.S. Patent Apr. 23, 2013 Sheet 20 of 21 US 8,429.209 B2

Computer Readable Storage Medium
504 Removable Storage

508
Operating system

Module
506

Non-Removable
Storage 510

File System Module
507

Directory
Partitioning Receiving Module Output Device(s) 516
Module 522
520

Data Block Data Block Reader
ldentifier Module Module Input Device(s) 514

524. 526

Communication
Connection(s) 512

Data Block Writer
Module
528

Processing
Unit
502

U.S. Patent Apr. 23, 2013 Sheet 21 of 21 US 8,429.209 B2

aw
a.

US 8,429,209 B2
1.

METHOD AND SYSTEM FOREFFICIENTLY
READING A PARTITIONED DIRECTORY
INCIDENT TO ASERALIZED PROCESS

TECHNICAL FIELD 5

Embodiments of the present invention generally relate to
computers facilitating a read operation associated with a par
titioned directory.

10

BACKGROUND

It is common for threads to become serialized with pro
cesses to read entire directories within a storage system. In
general. Such a read operation from a directory, e.g., a 15
"/home' directory, involves an operating system, a file system
and a memory component that stores the /home directory. The
operating system provides a buffer and transmits an offset
along with the read request to the file system. The file system,
based on the offset, reads a data block stored in the home 20
directory. The file system writes the read data in to the buffer
and updates the offset value.
The operating system receives the updated offset value and

transmits the updated offset value along another serial read
request. The file system, based on the updated offset value, 25
reads another data block from the /home directory and writes
the read data into the buffer. This process continues until all
the desired data is read from the directory once and only once.
One type of conventional serialized process places an

exclusive lock on the directory being read, therefore, other 30
processes are notable to use the directory while the exclusive
lock is in place. This is not efficient. Increased computer
usage and the Internet has led to an increase in content sharing
including sharing files within directories. In other words, files
within a directory may be accessed by one or more users, 35
applications, clients, etc., simultaneously or serially. Unfor
tunately, exclusive access requests to files within the /home
directory prevent the data from being shared with other types
of requests.

Partitioning a directory helps to increase efficiency by 40
allowing some partitions of the directory to be shared while
others are being exclusively accessed. In order to accommo
date exclusive access requests as well as other types of
requests simultaneously, a directory may be partitioned. For
example, the /home directory may be partitioned into addi- 45
tional subdirectories in order to facilitate multiple exclusive
accesses simultaneously.

Unfortunately, partitioning the /home directory may cause
a newly created entry to be missed during the read operation
or if the directory is partitioned during a read operation, it may 50
cause an entry to be read twice due to shuffling of the entries
associated with the partitioning. Therefore, while partitioning
of a directory may improve directory accessibility incident to
a serialized process, it has the disadvantage of potentially
missing a file in the read operation, e.g., listing operation, 55
readdir operation, gedents operation, etc., or reading a file
more than once and reporting it more than once to the oper
ating System.

SUMMARY 60

Accordingly, a need has arisen to provide directory parti
tioning but to read entries of a partitioned directory only once
during a serialized process. Furthermore, it is advantageous to
read content from a partitioned directory in a manner that 65
increases the chances of accurately capturing and reporting
any newly added entries of the directory. It will become

2
apparent to those skilled in the art after reading the detailed
description of the present invention that the embodiments of
the present invention satisfy the above mentioned needs.

In one embodiment, a file system receives a read operation
request and an offset value from the operating system incident
to a serialized process, for instance. The file system identifies
a first data block to be read based on the offset value and
further based on the size of the buffer provided by the oper
ating system. The file system identifies the first data block to
be read by using the offset value and the size of the buffer in
a fully partitioned directory. The fully partitioned directory is
pictorially represented as a tree structure with the maximum
number of allowed levels and nodes. The first data block is
read and written to the buffer if the identified first data block
is also present in the actual partitioned directory. Otherwise,
in one embodiment, Zeros are written into the buffer. It is
appreciated that the file system updates the offset value and
passes the updated offset value to the operating system.
The operating system passes the updated offset value and

sends another read operation request to the file system. The
file system identifies the next data block to be read in a similar
fashion. The next data block is in a subdirectory immediately
following the subdirectory associated with the previous read
operation in a fully partitioned directory. In other words, data
blocks from subdirectories in a fully partitioned tree structure
are read by the file system consecutively in a horizontal and
round-robin fashion. The read data blocks are written to the
buffer one after another. It is appreciated that Zeros may be
written for the remainder of the buffer if a number of read
entries of a given data block is less than a number of entries in
the buffer.
The combination of reading content of each subdirectory in

a horizontal and round-robin fashion and updating the offset
value ensure that each entry is read only once, thereby elimi
nating duplicate and redundant read operations. Moreover,
new entries are usually added at the end of each subdirectory.
Accordingly, the newly added entries are captured by Subse
quent read operations because they are added at the end of
each subdirectory and they are read last due to the combina
tion of reading the data blocks horizontally and in a round
robin fashion. Furthermore, writing Zeros for the remainder
of the buffer if the number of read entries is less than the
number of entries in the buffer ensures that offset values
identify a unique data block in a particular Subdirectory.
More particularly, a directory may be partitioned prior to

reading content from the partitioned directory. According to
one embodiment, reading content in an actual partitioned
directory includes receiving a read operation and an offset
value from an operating system. A first data block in a fully
partitioned directory is identified, wherein the first data block
is associated with a first subdirectory, and wherein the iden
tifying is based on the offset value and further based on a
predetermined number of entries associated with a buffer of
the operating system. It is determined whether the first data
block in the fully partitioned directory is present in the actual
partitioned directory. Null values (e.g., Zeros, etc.) are written
in the buffer if the first data block in the fully partitioned
directory is not present in the actual partitioned directory.
The first data block associated with the actual partitioned

directory is read if the first data block in the fully partitioned
directory is present in the actual partitioned directory and the
first data block associated with the actual partitioned direc
tory is written in the buffer in response to the reading of the
first data block. Null values may be written for a remainder of
the buffer if a number of read entries in association with the
first data block of the actual partitioned directory is less than
the predetermined number of entries associated with the

US 8,429,209 B2
3

buffer. It is appreciated that the file system updates the offset
value and passes the updated offset value to the operating
system.

According to one embodiment, Subsequent to the writing,
the updated offset value is received from the operating sys
tem. It is appreciated that the updated offset value may be
accompanied with a new read request. A second data block in
a fully partitioned directory is identified, wherein the second
data block is associated with a second Subdirectory, wherein
the second subdirectory is pictorially adjacent to the first
subdirectory if the fully partitioned directory is drawn as a
tree structure, and wherein the identifying is based on the
updated offset value and further based on a predetermined
number of entries. It is determined whether the second data
block in the fully partitioned directory is present in the actual
partitioned directory. According to one exemplary embodi
ment, null values are written in the buffer if the second data
block in the fully partitioned directory is not present in the
actual partitioned directory.

According to one embodiment, the second data block asso
ciated with the actual partitioned directory is read if the sec
ond data block in the fully partitioned directory is present in
the actual partitioned directory and the second data block
associated with the actual partitioned directory is written in
the buffer in response to the reading of the second data block.
Null values are written for a remainder of the buffer if a
number of read entries in association with the second data
block of the actual partitioned directory is less than the pre
determined number of entries associated with the buffer.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a block diagram of an exemplary computer
system operating environment that may serve as a platform in
accordance with one embodiment of the present invention.

FIGS. 2A-2G show exemplary embodiments associated
with reading entries of a fully partitioned directory pursuant
to a serialized process in accordance with embodiments of the
present invention.

FIGS. 3A-3J show exemplary embodiments associated
with reading entries of a partially partitioned directory pur
Suant to a serialized process in accordance with embodiments
of the present invention.

FIG. 4 shows an exemplary flow diagram of a partitioned
directory read process in accordance with one embodiment of
the present invention.

FIG. 5 shows a block diagram of an exemplary computer
system in accordance with one embodiment of the present
invention.

FIG. 6 shows a block diagram of another exemplary com
puter system in accordance with one embodiment of the
present invention.

DETAILED DESCRIPTION

Reference will now be made in detail to various embodi
ments in accordance with the invention, examples of which
are illustrated in the accompanying drawings. While the
invention will be described in conjunction with various
embodiments, it will be understood that these various
embodiments are not intended to limit the invention. On the
contrary, the invention is intended to cover alternatives, modi
fications, and equivalents, which may be included within the
Scope of the invention as construed according to the appended
claims. Furthermore, in the following detailed description of
various embodiments in accordance with the invention,
numerous specific details are set forth in order to provide a

10

15

25

30

35

40

45

50

55

60

65

4
thorough understanding of the invention. However, it will be
evident to one of ordinary skill in the art that the invention
may be practiced without these specific details. In other
instances, well known methods, procedures, components,
and circuits have not been described in detail as not to unnec
essarily obscure aspects of the invention.
Some portions of the detailed descriptions that follow are

presented in terms of procedures, logic blocks, processing,
and other symbolic representations of operations on data bits
within a computer memory. These descriptions and represen
tations are the means used by those skilled in the data pro
cessing arts to most effectively convey the Substance of their
work to others skilled in the art. In the present application, a
procedure, logic block, process, or the like, is conceived to be
a self-consistent sequence of operations or steps or instruc
tions leading to a desired result. The operations or steps are
those utilizing physical manipulations of physical quantities.
Usually, although not necessarily, these quantities take the
form of electrical or magnetic signals capable of being stored,
transferred, combined, compared, and otherwise manipulated
in a computer system or computing device. It has proven
convenient at times, principally for reasons of common
usage, to refer to these signals as transactions, bits, values,
elements, symbols, characters, samples, pixels, or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise as
apparent from the following discussions, it is appreciated that
throughout the present disclosure, discussions utilizing terms
Such as “identifying.” “creating. 'generating.” “receiving.”
“storing,” “determining.” “sending,” “providing.” “access
ing,” “associating,” or “reading” or “writing or “partition
ing’ or the like, refer to actions and processes of a computer
system or similar electronic computing device or processor.
The computer system or similar electronic computing device
manipulates and transforms data represented as physical
(electronic) quantities within the computer system memories,
registers or other Such information storage, transmission or
display devices.

It is appreciated present systems and methods can be
implemented in a variety of architectures and configurations.
For example, present systems and methods can be imple
mented as part of a distributed computing environment, a
cloud computing environment, a client server environment,
etc. Embodiments described herein may be discussed in the
general context of computer-executable instructions residing
on Some form of computer-readable storage medium, Such as
program modules, executed by one or more computers, com
puting devices, or other devices. By way of example, and not
limitation, computer-readable storage media may comprise
computer storage media and communication media. Gener
ally, program modules include routines, programs, objects,
components, data structures, etc., that perform particular
tasks or implement particular abstract data types. The func
tionality of the program modules may be combined or dis
tributed as desired in various embodiments.
Computer storage media can include Volatile and nonvola

tile, removable and non-removable media implemented in
any method or technology for storage of information Such as
computer-readable instructions, data structures, program
modules, or other data. Computer storage media can include,
but is not limited to, random access memory (RAM), read
only memory (ROM), electrically erasable programmable
ROM (EEPROM), flash memory, or other memory technol
ogy, compact disk ROM (CD-ROM), digital versatile disks
(DVDs) or other optical storage, magnetic cassettes, mag

US 8,429,209 B2
5

netic tape, magnetic disk storage or other magnetic storage
devices, or any other medium that can be used to store the
desired information and that can be accessed to retrieve that
information.

Communication media can embody computer-executable
instructions, data structures, program modules, or other data
in a modulated data signal Such as a carrier wave or other
transport mechanism and includes any information delivery
media. The term "modulated data signal” means a signal that
has one or more of its characteristics set or changed in Such a
manner as to encode information in the signal. By way of
example, and not limitation, communication media can
include wired media such as a wired network or direct-wired
connection, and wireless media Such as acoustic, radio fre
quency (RF), infrared and other wireless media. Combina
tions of any of the above can also be included within the scope
of computer-readable storage media.

Exemplary Operating Environment

FIG. 1 shows a block diagram of an exemplary operating
environment in which various embodiments of the present
invention can operate. Exemplary operating environment 100
includes clients 102a-c, networks 104, servers 106a-b, stor
age area network (SAN) fabric 108, and storage arrays 110a
b. It is appreciated that that components of exemplary oper
ating environment 100 are exemplary and more or fewer
components may be present in various configurations. It is
appreciated that operating environment may be part of a dis
tributed computing environment, a cloud computing environ
ment, a client server environment, etc.

Client systems 102a-c access information on storage
arrays 110a-b via servers 106a-busing, for example, a web
browser or other suitable client communication software (not
shown). FIG. 1 depicts the use of a network 104 such as the
Internet for exchanging data, but the present disclosure is not
limited to the Internet or any particular network-based envi
rOnment.

Each of servers 106a-b can have multiple clients (e.g.,
clients 102a-c) connected thereto. Servers 106a-b can be a
variety of server types including, but not limited to, database
servers, network file system (NFS) servers, and application
servers. In some embodiments, servers 106a-bhave access to
shared storage of storage arrays 110a-b with each of servers
106a-bhaving its own respective clustered file system and its
own built-in lock manager thereby allowing servers 106a-b to
access the shared storage. Each of servers 106a-b may com
municate with each other over a network (e.g., a redundant
private network) (not shown). Servers 106a-b may be linked
to storage arrays 110a-b in a variety of ways including, fibre
channel.

Servers 106a-b may respectively use partition directory
readers 112a-b, in accordance with embodiments of the
present invention, that are operable to read content from a
partitioned directory such that entries within the partitioned
directory are read only once incident to a serialized process.
One such serialized process is the READDIR operation, for
instance. Furthermore, the partitioned directory readers
112a-b, in accordance with embodiments of the present
invention, are operable to effectively capture and report most
of any newly added entries to the operating system that were
newly added with reference to the execution time of the
serialized process.
The partitioned directory readers 112a-b receive a read

operation request and an offset value from the operating sys
tem (incident to a serialized read process). The partitioned
directory readers 112a-b identify a first data block to be read

10

15

25

30

35

40

45

50

55

60

65

6
based on the offset value and further based on the size of the
buffer provided by the operating system. The partitioned
directory readers 112a-b identify the first data block to be
read by using the offset value and the size of the buffer in a
fully partitioned directory. The fully partitioned directory is a
model of the actual partitioned directory and it is pictorially
represented as a tree structure with maximum number of
allowed levels and nodes that are possible for (but not neces
sarily present in) the actual partitioned directory. The first
data block is read and written to the bufferifthe identified first
data block is also present in the actual partitioned directory.
Otherwise, null values, e.g., Zeros, are written into the buffer.
It is appreciated that the file system updates the offset value
and passes the updated offset value to the operating system.
The operating system transmits the updated offset value

and sends another read operation request to the partitioned
directory readers 112a-b. The partitioned directory readers
112a-b identify the next data block to be read in a similar
fashion. The next data block is in a subdirectory immediately
following the subdirectory associated with the previous read
operation in a fully partitioned directory. In other words, data
blocks from subdirectories in a fully partitioned tree structure
are read by the file system consecutively in a horizontal and
round-robin fashion. The read data blocks are written to the
buffer one after another. It is appreciated that null values, e.g.,
Zeros, are written for the remainder of the buffer if a number
of read entries of a given data block is less than a number of
entries in the buffer.
The combination of reading content of each subdirectory in

a horizontal and round-robin fashion and updating the offset
value ensure that each entry is read only once. Moreover, new
entries are usually added at the end of each subdirectory.
Accordingly, almost all of any newly added entries are cap
tured because they are added at the end of each subdirectory
and they are read last due to reading the data blocks horizon
tally and in a round-robin fashion. Furthermore, writing null
values for the remainder of the buffer if a number of read
entries is less than a number of entries in the buffer ensures
that offset values identify a unique data block in a particular
subdirectory.

A Method and System for Efficiently Reading a
Partitioned Directory Incident to a Serialized Process

Referring now to FIGS. 2A-2G, exemplary embodiments
are shown associated with efficiently and effectively reading
entries of a fully partitioned directory incident to a serialized
process in accordance with embodiments of the present
invention. Referring specifically to FIG. 2A, system 200A is
shown and includes a memory component 210, a file system
220 and an operating system (O/S) 230.
The memory component 210 stores content. For example,

the memory component 210 is shown storing a “/home’
directory containing exemplary File 1, File 2, Dir 1,
File 3. File 11 entries. It is appreciated that the /home
directory shown is not partitioned. The operating system pro
vides a buffer 232 to the file system 230. The buffer 232 may
be of any size, for example 1024 entries, but is generically
referred to as size N hereinafter. The buffer 232 is associated
with the operating system 230.

According to one embodiment, the operating system 230
may send a read operation request along with an offset to the
file system 220 as part of a serialized process or thread. The
file system 220 uses the offset value to identify the content to
be read from the /home directory. The file system 220 reads N
number of entries from the identified content within the
/home directory and places the read content in to the buffer

US 8,429,209 B2
7

232. The buffer 232 is passed back to the operating system
230. The file system 220 updates the offset by N and passes
the updated offset value to the operating system 230. As part
of the serialized process, the operating system 230 sends
another read operation along with the updated offset to the file
system 220 and the process is repeated until the entire content
of the /home directory is read only once. During this read
operation, the directory is under an exclusive lock and its
contents are prevented from being shared during the serial
ized process.

It is appreciated that the file system 220 may determine that
efficiency is improved if the /home directory is partitioned so
that some of the content can be shared during the above
described read operation. It is, however, appreciated that par
titioning should not take place during the execution of a
serialized update process, e.g., a READDIR operation. Par
titioning during the read operation should be avoided because
partitioning of the /home directory causes the entries of the
/home directory to be shuffled around and may further cause
an entry within the /home directory to be reported to the
operating system 230 more than once or none at all.

According to one embodiment, partitioning during a read
operation is avoided by using a read counter 222 in the file
system 220. The read counter 222 may increment each time
there is a serialized update read request. For example, the read
counter 222 is incremented twice if two read requests are
received, e.g., from two users. On the other hand, the read
counter 222 is decremented for every read request that is
completed. According to one embodiment, the partitioning is
prevented as long as the read counter 222 value is more than
Zero. On the other hand, directory partitioning may take place
if the read counter 222 has a value equal to zero.

It is appreciated that the use of a counter to determine
whether a read operation is pending is exemplary and not
intended to limit the scope of the present invention. For
example, one or more flags may be used to convey analogous
read status.

In this exemplary embodiment, it is assumed that the read
counter 222 has a value equal to Zero. Thus, the ?home direc
tory may be partitioned, as shown in FIG. 2B. In this exem
plary embodiment, the /home directory may be partitioned in
to three subdirectories, H1, H2, and H3. It is appreciated that
the partitioning of the /home directory is pictorially repre
sented as a tree structure. It is appreciated that in this exem
plary embodiment, the maximum number of tree structure
levels is two and the maximum number of nodes is three, as
shown, but any number could be selected. Three subdirecto
ries are created. However, the /home directory could also use
fewer subdirectories if it was only partially partitioned (not
shown). In other words, the actual partitioned/home directory
may be different from a modeled fully partitioned /home
directory that is always fully partitioned with the maximum
number of allowed levels, and nodes. In this exemplary
embodiment, the actual tree structure matches the modeled
fully partitioned tree structure because the actual tree struc
ture utilizes the maximum number of allowed levels and
nodes.
The H1 subdirectory may include File 1, File 2, and Dir 1

in its first data block. The first data block in H1 is of size Nand
the remainder of the first data block is left empty since the
number of entries is less than the size of the data block.
The H2 subdirectory may include File 3, File 4,

Dir 2, ..., File 7. The first data block of size N in the H2
subdirectory may be filled with entries until it is completely
filled. The remainder of the entries is stored in subsequent
data blocks, e.g., a second data block of size N., until all the
entries in H2 subdirectory are accounted for. In this exem

10

15

25

30

35

40

45

50

55

60

65

8
plary embodiment, the second data block of size N is partially
filled with Files 5-7 that were left over and the remainder of
the second data block is left empty.
The H3 subdirectory is similarly filled with its associated

entries. For example, the H3 subdirectory may include Files
8-11. The first data block of size N in H3 subdirectory is
completely filled with Files 8-11 with no entries left over.

Referring now to FIG. 2C, incident to a serialized process,
the file system 220 is shown reading a data block from the
partitioned directory. It is appreciated that the file system 220
reads data blocks in a fully partitioned tree structure associ
ated with a fully partitioned directory horizontally and in a
round-robin fashion in accordance with embodiment of the
present invention. For example, the file system 220 may begin
reading a first data block of the H1 subdirectory followed by
the first block of the H2 subdirectory and so on until the read
operation wraps around to read the second data block of each
subdirectory.

In this embodiment, the file system 220 receives a read
request along with an offset from the operating system 230
incident to a serialized process, e.g., a READDIR operation.
It is appreciated that the read request is received after the
/home directory is partitioned, as shown in FIG. 2B. In this
exemplary embodiment, the offset is equal to Zero but may be
any value.
The operating system 230 provides the buffer 232 for the

read operation in this example. The buffer 232 may be of size
N, as described above. The file system 220 utilizes the offset
value and the size of the buffer 232 and the fully partitioned
tree structure associated with the fully partitioned /home
directory to identify a first data block from a subdirectory to
be read.

In this example, Zero is divided by the buffer size N. The
result of the division and the fully partitioned tree structure
associated with the fully partitioned /home directory indi
cates that the first data block from the first subdirectory H1
should be read. If the offset value was 2N instead of zero, the
file system 220 would have identified the first data block of
the H3 subdirectory to be read.
The file system 220 reads File 1, File 2, and Dir 1 from the

first data block of H1 subdirectory. The read entries are placed
in the buffer 232. In this exemplary embodiment, the number
of read entries is less than the total size of the buffer 232.
Accordingly, null values, e.g., Zero values, are written for the
remainder of the buffer 232.

Writing nulls for the remainder of the buffer 232 after the
entire entries are read ensures that the offset value uniquely
corresponds to a unique data block in a particular Subdirec
tory when the /home directory is fully partitioned. For
example, writing nulls for the remainder of the first read data
block ensures that the updated offset of N corresponds to the
first data block of the second subdirectory H2.

It is appreciated that writing of the null values is exemplary
and not intended to limit the scope of the present invention.
Writing null values in the buffer is one methodofupdating the
offset value. It is therefore, appreciated that the remainder of
the buffer 232 may be not be filled with null values since the
offset value is updated by the file system 220.
The content of the buffer 232 is then read by the operating

system 230. It is appreciated that the offset value is updated
by the file system 220 and passed to the operating system 230.
For example, the offset value is N because the previous offset
value was zero and N entries are placed in the buffer.

Referring now to FIG. 2D, continuing with the serialized
process, the file system 220 receives the updated offset value
N and a Subsequent read operation request. The file system
220 uses the offset value N and divides it by the buffer 232

US 8,429,209 B2
9

size N. Thus, the file system 220 identifies the first data block
of the H2 subdirectory as the second data block to be read. In
other words, the file system 220 reads the data block from a
Subdirectory immediately adjacent to the previously read
subdirectory in the fully partitioned tree structure associated
with the fully partitioned/home directory, one-at-a-time in a
horizontally and in a round-robin fashion.

Accordingly, the first block of H2 subdirectory that
includes File 3, File 4, Dir 2, etc., are read and placed in the
buffer 232. It is appreciated that in this example, additional
entries have been added to the H1 subdirectory during the
time which the read from H2 subdirectory is taking place. For
example, File 12 and Dir Nare added to the H1 subdirectory.
It is appreciated that new entries are added at the end of the
subdirectory. Because the remaining portion of the first block
of H1 directory was filled with nulls, the newly added files are
added to the second data block of the H1 subdirectory.
The content of the buffer 232 may be read by the operating

system 230. The offset value may be updated by the file
system 220 and transmitted to the operating system 2309.
Thus, the updated offset value is now 2N.

Referring now to FIG. 2E, the file system 220 receives the
updated offset value 2N and another read operation request of
the serialized process. The file system 220 uses the offset
value 2N and divides it by the buffer 232 size N. Thus, the file
system 220 identifies the first data block of the H3 subdirec
tory as the third data block to be read.

Accordingly, the first block of H3 subdirectory that
includes Files 8-11 are read and placed in the buffer 232. The
content of the buffer 232 may be read by the operating system
230 and the offset value may be updated by the file system 220
and subsequently to the update transmitted to the operating
system 230 during a read from the buffer 232. Thus, the
updated offset value is now 3N.

Referring now to FIG. 2F, the file system 220 receives the
updated offset value 3N and another read operation request.
The file system 220 uses the offset value 3N and divides it by
the buffer 232 size N. Thus, the file system 220 identifies the
second data block of the H1 subdirectory as the fourth data
block to be read.

Accordingly, the second block of H1 subdirectory that
includes newly added File 12 and Dir Nare read and placed in
the buffer 232. The number of read entries is less than the total
size of the buffer 232. Accordingly, nulls are concatenated at
the end of the newly added files to fill in the remainder of the
buffer 232.

It is appreciated that in accordance with embodiments of
the present invention the combination of reading data blocks
horizontally and in a round-robin fashion advantageously
increases the chances to capture and report the newly added
content, as shown above. For example, if data blocks were
read in a vertical fashion instead of horizontal, then after
reading the first data block from H1 subdirectory, the newly
added content File 12 and Dir N in the H1 subdirectory would
have been missed because they were added after the first read
was completed.

The content of the buffer 232 may be read by the operating
system 230 and the offset value may be updated by the file
system 220 and subsequently thereto transmitted to the oper
ating system 230 during the read from the buffer 232. Thus,
the updated offset value is now 4N.

Referring now to FIG. 2G, the file system 220 receives the
updated offset value 4N and another read operation request
incident to the serialized process. The file system 220 uses the
offset value 4N and divides it by the buffer 232 size N. Thus,
the file system 220 identifies the second data block of the H2
subdirectory as the fifth data block to be read.

5

10

15

25

30

35

40

45

50

55

60

65

10
Accordingly, the second block of H2 subdirectory that

includes Files 5-7 are read and placed in the buffer 232. The
number of read entries is less than the total size of the buffer
232. Accordingly, the read content is concatenated with nulls
to fill in the remainder of the buffer 232.
The content of the buffer 232 may be read by the operating

system 230 and the offset value may be updated by the file
system 220 and subsequently thereto transmitted to the oper
ating system 230 during the read from the buffer 232. Thus,
the updated offset value is now 5N. It is appreciated that the
process continues until all entries of the fully partitioned
/home directory are read advantageously only once. In this
exemplary embodiment, the process terminates at this stage
because all the entries of the fully partitioned/home directory
are read once and only once.

Referring now to FIGS. 3A-3J, exemplary embodiments
are shown associated with reading entries of a partially par
titioned directory incident to a serialized thread in accordance
with embodiments of the present invention. It is appreciated
that system 300 operates substantially similar to that of FIGS.
2B-2G. Referring now to FIG. 3A, in this example the /home
directory is only partially partitioned. The partially parti
tioned /home directory is referred to as “the actual parti
tioned' (home directory. In this exemplary embodiment, the
maximum allowed number of levels associated with a fully
partitioned directory is 3 and the maximum number of
allowed subdirectories for each node is 3 to form a “fully
partitioned tree structure associated with a modeled “fully
partitioned' (home directory. Accordingly, a maximum of 9
subdirectories are created in the fully partitioned/home direc
tory.

In this example, the number of created subdirectories is six.
Thus, the /home directory is only partially partitioned and
therefore does not match the modeled fully partitioned/home
directory. In other words, the H1 subdirectory includes only
two Subdirectories H and H2 and is missing a third Subdi
rectory H. (not shown). Similarly, the H2 subdirectory has
only one Subdirectory, thereby missing two potential Subdi
rectories. On the other hand, the H3 subdirectory contains
three subdirectories H. H. and H, and is therefore not
missing any Subdirectories.

According to one exemplary embodiment, File 1, File 2,
Dir 1, are placed in the first data block of the H
subdirectory while the remainder of the entries, Files 3-5, is
placed in the second data block of the H subdirectory. Files
6-7 and Dir 2 are placed in the first data block of the H.
subdirectory.

File 8, File 9, and Dir 3 are placed in the first data block of
the H2 subdirectory. File 10, File 11, Dir 4, are placed in the
first data block of the H subdirectory while the remainder of
the entries, Files 12-14, are placed in the second data block of
the H subdirectory. Files 15-18 are placed in the first data
block of the H subdirectory while File 19, File 20, and Dir
5 are placed in the first data block of the H subdirectory.

In this example, the file system 220 receives a read request
incident to a serialized process along with an offset from the
operating system 230. In this exemplary embodiment, the
offset is equal to Zero but may be any value.
The operating system 230 further provides the buffer 232

for the read operation. The buffer 232 may be of size N. as
described above. The file system 220 utilizes the offset value
and the size of the buffer 232 to identify the first block of data
to be read in a fully partitioned /home directory. The file
system 220 reads the identified first data block from the actual
partitioned directory if the identified first data block is present
in both the actual partitioned /home directory and in the
modeled fully partitioned /home directory.

US 8,429,209 B2
11

In this example, Zero is divided by the buffer size N. The
result of the division and the fully partitioned tree structure
associated with the fully partitioned /home directory indi
cates that the first data block from the first subdirectory H.
should be read. If the offset value was N instead of Zero, the
file system 220 would have identified the first data block of
the H subdirectory to be read, etc.

Accordingly, the file system 220 reads File 1. File 2,
Dir2,..., in the first data block of the H subdirectory. The
read data block is written into the buffer 232. The operating
system 230 may read the content of the buffer and the updated
offset value. It is appreciated that the offset value is updated
by the file system 220. As presented above, the offset value is
updated by N because the buffer 232 size is N.

Referring now to FIG. 3B, the file system 220 receives the
updated offset value N and another read operation request
incident to the serialized process. The file system 220 uses the
offset value N and divides it by the buffer 232 size N. Thus,
the file system 220 identifies the first data block of the H.
subdirectory as the second data block to be read. In other
words, the file system 220 reads the data block from a subdi
rectory immediately adjacent to the previously read Subdirec
tory in the fully partitioned tree structure associated with the
fully partitioned home directory, one-at-a-time in a horizon
tally and in a round-robin fashion.

Accordingly, the first block of H. Subdirectory that
includes File 6, File 7, and Dir2, are read and written into the
buffer 232. In this exemplary embodiment, the number of
read entries is less than the total size of the buffer 232.
Accordingly, null values are written and appended to the
bottom of the read files in order to fill in the remainder of the
buffer 232.

Writing nulls for the remainder of the buffer 232 after the
entire entries are read ensures that the offset value uniquely
corresponds to a unique data block in a particular Subdirec
tory when the /home directory is fully partitioned. For
example, writing nulls for the remainder of the first read data
block ensures that the updated offset of 2N corresponds to the
first data block of the third subdirectory His that has not been
created.

In other words, the file system 220 reads File 6, File 7, and
Dir2 in the first data block of the H subdirectory. The read
data block is written into the buffer 232 and the remainder of
the buffer 232 is concatenated with Zeros. The operating
system 230 may read the content of the buffer and further
reads the updated offset value. As presented above, the offset
value is updated by N because the buffer 232 size is N.

Referring now to FIG. 3C, the file system 220 receives the
updated offset value 2N and a read operation request. The file
system 220 uses the offset value 2N and divides it by the
buffer 232 size N. As a result, the file system 220 determines
that the third data block to be read belongs to a subdirectory
that has not been created, namely H. In other words, the data
block to be read is the next data block to be read in the
modeled fully partitioned tree structure associated with the
modeled fully partitioned /home directory. The file system
220 writes a data block containing N number of nulls in the
buffer 232 since this subdirectory does not exist in the actual
directory. The operating system 230 reads the content of the
buffer and further receives the updated offset value. It is
appreciated that the offset value is updated by N by the file
system 220.

Referring now to FIG. 3D, the file system 220 receives the
updated offset value 3N and another read operation request
incident to the serialized process. The file system 220 uses the
offset value 3N and divides it by the buffer 232 size N to
identifies the fourth data block to be read. The block of data

5

10

15

25

30

35

40

45

50

55

60

65

12
belonging to H2 is determined as the next block of data to be
read. Thus, the file system 220 reads the content of the first
data block of the H2 subdirectory. The read data block is
written into the buffer 232. However, since the number of
entries in the H2 subdirectory is less than the number of
entries in the buffer 232, the remainder of the buffer 232 is
concatenated with nulls. The content of the buffer 232 is read
by the operating system 230 and the updated offset value that
is updated by the file system 220.

Referring now to FIGS. 3E and 3F, the file system 220
receives the updated offset value 4N and 5N respectively
along with another read operation request. The file system
220 determines that the fifth and the sixth data blocks to be
read are from Subdirectories that have not been created, e.g.,
Subdirectories H and H2, but are present in the modeled
fully partitioned /home directory. Thus, the file system 220
writes a block of Zeros in the buffer 232 for each of the data
blocks corresponding to the missing Subdirectory. The oper
ating system 230 reads the content of the buffer respectively
and further reads the updated offset value.

Referring now to FIG. 3G, the file system 220 receives the
updated offset value 6N along with another read operation
request incident to the serialized process. The file system 220
identifies the first data block of the H subdirectory as the
seventh data block to be read. Accordingly, the file system 220
writes the content of the first data block of the H subdirec
tory into the buffer 232. The operating system 230 reads the
content of the buffer 232 and further reads the updated offset
value. The offset value is updated by the file system 220.

Referring now to FIG.3H, the file system 220 receives the
updated offset value 7N along with another read operation
request. The file system 220 identifies the first data block of
the H subdirectory as the eighth data block to be read.
Accordingly, the file system 220 writes the content of the first
data block of the H subdirectory into the buffer 232. The
operating system 230 reads the content of the buffer 232 and
further reads the updated offset value. The offset value is
updated by the file system 220

Referring now to FIG. 3I, the file system 220 receives the
updated offset value 8N along with another read operation
request. The file system 220 identifies the first data block of
the H subdirectory as the ninth data block to be read.
Accordingly, the file system 220 writes the content of the first
data block of the H subdirectory into the buffer 232. The
remainder of the buffer 232 is filled with nulls because the
number of read entries is less than the number of entries in the
buffer 232. The operating system 230 reads the content of the
buffer 232 and further reads the updated offset value. The
offset value is updated by the file system 220.

Referring now to FIG. 3J, the file system 220 receives the
updated offset value 9N along with a read operation request.
The file system 220 reads content both horizontally and in a
round-robin fashion in accordance with embodiments of the
present invention, as described above. Thus, the file system
220 identifies the second data block of the H subdirectory as
the tenth data block to be read. Accordingly, the file system
220 writes the content of the second block of the H subdi
rectory into the buffer 232. It is appreciated that the remainder
of the buffer 232 is concatenated with nulls since the number
of entries in the second data block of the H subdirectory is
less than the number of entries in the buffer.
The operating system 230 reads the content of the buffer

232 and further reads the update offset value. The offset value
is updated by the file system 220, as presented above. It is
appreciated that the process described by FIGS. 3A-3J con
tinues until every entry within the partially partitioned/home
directory is advantageously read only once in accordance

US 8,429,209 B2
13

with embodiments of the present invention. It is further appre
ciated that the requirements of ensuring that every entry in the
/home directory is read only once is extended via embodi
ments of the present invention to a partially partitioned direc
tory.

FIG. 4 shows a flow diagram of an exemplary process 400
for reading a partitioned directory (the actual partitioned
directory) incident to a serialized process in accordance with
one embodiment of the present invention. At step 401, a
directory, e.g., home directory, is partitioned to create the
actual partitioned directory. It is appreciated that step 401 is
optional, as the directory may already be in a partitioned
form.
At step 402, a read operation and an offset value are

received from an operating system. At step 404, a first data
block in a modeled fully partitioned directory is identified. It
is appreciated that the fully partitioned directory is a model
directory that is partitioned based on the maximum number of
allowed levels and the maximum number of allowed nodes
and subdirectories. The first data block is associated with a
subdirectory in the fully partitioned directory. Identifying the
first data block is based on the offset value and the size of the
buffer allocated by the operating system, as presented above.

At step 406, it is determined whether the first data block in
the modeled fully partitioned directory is present in the actual
partitioned directory. For example, it may be determined that
a data block associated with H subdirectory in the modeled
fully partitioned directory is not present in the actual parti
tioned directory shown in FIGS. 3A-3J. On the other hand, it
may be determined that a data block associated with the H
subdirectory in the fully partitioned directory is present in the
actual partitioned directory, as shown in FIGS. 3A-3J.

At step 408, the first data block associated with the actual
partitioned directory is read if the first data block in the fully
partitioned directory is present in the actual partitioned direc
tory. At step 410, the file system writes into the buffer. For
example, null values are written in the buffer if the first data
block in the fully partitioned directory, e.g., data block cor
responding to H. Subdirectory, is not present in the actual
portioned directory.
On the other hand, the read first data block is written into

the buffer if the first data block in the modeled fully parti
tioned directory is present in the actual partitioned directory.
Moreover, the read first data block that is being written to the
buffer is concatenated with nulls if the number of read entries
is less than the number of entries in the buffer. The offset value
is updated by the file system and transmitted to the operating
system.
At step 412, the updated offset value is received from the

operating system. It is appreciated that the updated offset
value may be accompanied with another read request from the
operating system. At Step 414, a second data block in a fully
partitioned directory is identified. The second data block is
associated with a second subdirectory in the fully partitioned
directory where the second subdirectory is immediately adja
cent to the first subdirectory in a fully partitioned tree struc
ture associated with the modeled fully partitioned directory.
Identifying the second data block is based on the offset value
and the size of the buffer allocated by the operating system, as
presented above.

At step 416, it is determined whether the second data block
in the modeled fully partitioned directory is present in the
actual partitioned directory. The process to make the deter
mination at step 416 is substantially similar to that of step
406.
At step 418, the second data block associated with the

actual partitioned directory is read if the second data block in

10

15

25

30

35

40

45

50

55

60

65

14
the fully partitioned directory is present in the actual parti
tioned directory. At step 420, the file system writes into the
buffer. For example, Zeros are written in the buffer if the
second data block in the fully partitioned directory, e.g., data
block associated with H. Subdirectory, is not present in the
actual portioned directory.
On the other hand, the read second data block is written

into the buffer if the second data block in the fully partitioned
directory is present in the actual partitioned directory. More
over, the read second data block that is being written to the
buffer is concatenated with Zeros if the number of read entries
is less than the number of entries in the buffer.
A determination is made whether all the entries of the

partitioned directory have been read. The process ends if all
the entries are read. On the other, this process continues back
to step 402 until the entire directory is read. As such, the next
offset value is received and the next data block to be read is
identified and written to the buffer until all entries of the
partitioned /home directory are read.

In accordance with embodiments of the present invention,
advantageously, each entry of the actual partitioned directory
is read once and only once.

Referring now to FIG. 5, a block diagram of an exemplary
computer system in accordance with one embodiment of the
present invention is shown. With reference to FIG. 5, an
exemplary system module for implementing embodiments
includes a general purpose computing system environment,
Such as computing system environment 500. Computing sys
tem environment 500 may include, but is not limited to,
servers (e.g., servers 106a-b), desktop computers, laptops,
tablet PCs, mobile devices, and smartphones. In its most basic
configuration, computing system environment 500 typically
includes at least one processing unit 502 and computer read
able storage medium 504. Depending on the exact configu
ration and type of computing system environment, computer
readable storage medium 504 may be volatile (such as RAM),
non-volatile (such as ROM, flash memory, etc.) or some com
bination of the two. Portions of computer readable storage
medium 504 when executed facilitates the determination of
whether a directory is primed for partitioning according to
embodiments of the present invention (e.g., process 400).

Additionally, computing system environment 500 may
also have additional features/functionality. For example,
computing system environment 500 may also include addi
tional storage (removable and/or non-removable) including,
but not limited to, magnetic or optical disks or tape. Such
additional storage is illustrated by removable storage 508 and
non-removable storage 510. Computer storage media
includes Volatile and nonvolatile, removable and non-remov
able media implemented in any method or technology for
storage of information Such as computer readable instruc
tions, data structures, program modules or other data. Com
puter readable medium 504, removable storage 508 and non
removable storage 510 are all examples of computer storage
media. Computer storage media includes, but is not limited
to, RAM, ROM, EEPROM, flash memory or other memory
technology, CD-ROM, digital versatile disks (DVD) or other
optical storage, magnetic cassettes, magnetic tape, magnetic
disk storage or other magnetic storage devices, or any other
medium which can be used to store the desired information
and which can be accessed by computing system environment
500. Any such computer storage media may be part of com
puting system environment 500.
Computing system environment 500 may also contain

communications connection(s) 512 that allow it to commu
nicate with other devices. Communications connection(s)
512 is an example of communication media. Communication

US 8,429,209 B2
15

media typically embodies computer readable instructions,
data structures, program modules or other data in a modulated
data signal Such as a carrier wave or other transport mecha
nism and includes any information delivery media. The term
"modulated data signal” means a signal that has one or more
of its characteristics set or changed in Such a manner as to
encode information in the signal. By way of example, and not
limitation, communication media includes wired media Such
as a wired network or direct-wired connection, and wireless
media Such as acoustic, RF, infrared and other wireless
media. The term computer readable media as used herein
includes both storage media and communication media.

Communications connection(s) 512 may allow computing
system environment 500 to communication over various net
works types including, but not limited to, fibre channel, Small
computer system interface (SCSI), Bluetooth, Ethernet, Wi
fi, Infrared Data Association (IrDA), Local area networks
(LAN), Wireless Local area networks (WLAN), wide area
networks (WAN) such as the internet, serial, and universal
serial bus (USB). It is appreciated the various network types
that communication connection(s) 512 connect to may run a
plurality of network protocols including, but not limited to,
transmission control protocol (TCP), internet protocol (IP),
real-time transport protocol (RTP), real-time transport con
trol protocol (RTCP), file transfer protocol (FTP), and hyper
text transfer protocol (HTTP).

Computing system environment 500 may also have input
device(s) 514 Such as a keyboard, mouse, pen, Voice input
device, touch input device, remote control, etc. Output
device(s) 516 Such as a display, speakers, etc. may also be
included. All these devices are well known in the art and are
not discussed at length.

In one embodiment, computer readable storage medium
504 includes a file system module 507 which includes a
directory partitioning module 520, a receiving module 522, a
data block identifier module 524, a data block reader module
526, and a data block writer module 528. The file system
module 507 communicates with an operating system module
SO6.
The directory partitioning module 520 determines whether

a directory is primed for partitioning and partitions the direc
tory in response thereto according to embodiments of the
present invention. The receiving module 522 receives read
operation requests and offset values from the operating sys
tem module 506 incident to a serialized thread, e.g., a READ
DIR operation. The data block identifier module 524 identi
fies a block of data to be read based on the offset value and
further based on the size of the buffer provided by the oper
ating system module 506 in accordance with embodiments of
the present invention. The data block reader module 526 reads
the identified data block in accordance with embodiments of
the present invention. The data writer module 528 writes the
read data block to the buffer provided by the operating system
module 506 in accordance with embodiments of the present
invention.

Referring now to FIG. 6, a block diagram of another exem
plary computer system in accordance with one embodiment
of the present invention is shown. FIG. 6 depicts a block
diagram of a computer system 610 Suitable for implementing
the present disclosure. Computer system 610 includes a bus
612 which interconnects major Subsystems of computer sys
tem 610. Such as a central processor 614, a system memory
617 (typically RAM, but which may also include ROM, flash
RAM, or the like), an input/output controller 618, an external
audio device, such as a speaker system 620 via an audio
output interface 622, an external device. Such as a display
screen 624 via display adapter 626, serial ports 628 and 630,

10

15

25

30

35

40

45

50

55

60

65

16
a keyboard 632 (interfaced with a keyboard controller 633), a
storage interface 634, a floppy disk drive 637 operative to
receive a floppy disk 638, a hostbus adapter (HBA) interface
card 635A operative to connect with a Fibre Channel network
690, a hostbus adapter (HBA) interface card 635B operative
to connect to a SCSI bus 639, and an optical disk drive 640
operative to receive an optical disk 642. Also included are a
mouse 646 (or other point-and-click device, coupled to bus
612 via serial port 628), a modem 647 (coupled to bus 612 via
serial port 630), and a network interface 648 (coupled directly
to bus 612). System memory 617 includes partition directory
reader module 650 which is operable to read entries of the
actual partitioned directory once and only once according to
embodiments of the present invention.
Bus 612 allows data communication between central pro

cessor 614 and system memory 617, which may include
read-only memory (ROM) or flash memory (neither shown),
and random access memory (RAM) (not shown), as previ
ously noted. The RAM is generally the main memory into
which the operating system and application programs are
loaded. The ROM or flash memory can contain, among other
code, the Basic Input-Output system (BIOS) which controls
basic hardware operation Such as the interaction with periph
eral components. Applications resident with computer sys
tem 610 are generally stored on and accessed via a computer
readable medium, Such as a hard disk drive (e.g., fixed disk
644), an optical drive (e.g., optical drive 640), a floppy disk
unit 637, or other storage medium. Additionally, applications
can be in the form of electronic signals modulated in accor
dance with the application and data communication technol
ogy when accessed via network modem 647 or interface 648.

Storage interface 634, as with the other storage interfaces
of computer system 610, can connect to a standard computer
readable medium for storage and/or retrieval of information,
such as a fixed disk drive 644. Fixed disk drive 644 may be a
part of computer system 610 or may be separate and accessed
through other interface systems. Modem 647 may provide a
direct connection to a remote server via a telephone link or to
the Internet via an internet service provider (ISP). Network
interface 648 may provide a direct connection to a remote
server via a direct networklink to the Internet via a POP (point
of presence). Network interface 648 may provide such con
nection using wireless techniques, including digital cellular
telephone connection, Cellular Digital Packet Data (CDPD)
connection, digital satellite data connection or the like.
Many other devices or subsystems (not shown) may be

connected in a similar manner (e.g., document Scanners, digi
tal cameras and so on). Conversely, all of the devices shown in
FIG. 6 need not be present to practice the present disclosure.
The devices and subsystems can be interconnected in differ
ent ways from that shown in FIG. 6. The operation of a
computer system such as that shown in FIG. 6 is readily
known in the art and is not discussed in detail in this applica
tion. Code to implement the present disclosure can be stored
in computer-readable storage media Such as one or more of
system memory 617, fixed disk 644, optical disk 642, or
floppy disk 638. The operating system provided on computer
system 610 may be MS-DOS.R., MS-WINDOWS(R), OS/2(R),
UNIX(R), Linux(R), or another known operating system.

Moreover, regarding the signals described herein, those
skilled in the art will recognize that a signal can be directly
transmitted from a first block to a second block, or a signal can
be modified (e.g., amplified, attenuated, delayed, latched,
buffered, inverted, filtered, or otherwise modified) between
the blocks. Although the signals of the above described
embodiment are characterized as transmitted from one block
to the next, other embodiments of the present disclosure may

US 8,429,209 B2
17

include modified signals in place of Such directly transmitted
signals as long as the informational and/or functional aspect
of the signal is transmitted between blocks. To some extent, a
signal input at a second block can be conceptualized as a
second signal derived from a first signal output from a first
block due to physical limitations of the circuitry involved
(e.g., there will inevitably be some attenuation and delay).
Therefore, as used herein, a second signal derived from a first
signal includes the first signal or any modifications to the first
signal, whether due to circuit limitations or due to passage
through other circuit elements which do not change the infor
mational and/or final functional aspect of the first signal.
The foregoing description, for purpose of explanation, has

been described with reference to specific embodiments. How
ever, the illustrative discussions above are not intended to be
exhaustive or to limit the invention to the precise forms dis
closed. Many modifications and variations are possible in
view of the above teachings. The embodiments were chosen
and described in order to best explain the principles of the
invention and its practical applications, to thereby enable
others skilled in the art to best utilize the invention and vari
ous embodiments with various modifications as may be
Suited to the particular use contemplated.

What is claimed is:
1. A method of reading data from an actual partitioned

directory of a hierarchical structure, said method comprising:
receiving a first read operation and a first offset value from

an operating System;
identifying a first data block in a modeled fully partitioned

directory, wherein said first data block is associated with
a first subdirectory, and wherein said identifying is based
on said first offset value and further based on a prede
termined number of entries associated with a buffer;

determining whether said first data block in said fully par
titioned directory is present in said actual partitioned
directory;

writing null values in said buffer if said first data block in
said fully partitioned directory is not present in said
actual partitioned directory; and

writing said first data block associated with said actual
partitioned directory into said buffer if said first data
block in said fully partitioned directory is present in said
actual partitioned directory.

2. The method as described in claim 1 further comprising:
Subsequent to said writing, receiving a second read opera

tion with a second offset value from said operating sys
tem;

identifying a second data block in said fully partitioned
directory, wherein said second data block is associated
with a second subdirectory, wherein said second subdi
rectory is selected based on a horizontal node traversal
through a node level of said first subdirectory, and
wherein said identifying said second data block is based
on said second offset value and further based on said
predetermined number of entries;

determining whether said second data block in said fully
partitioned directory is present in said actual partitioned
directory;

writing null values in said buffer if said second data block
in said fully partitioned directory is not present in said
actual partitioned directory; and

writing said second data block associated with said actual
partitioned directory in said buffer if said second data
block in said fully partitioned directory is present in said
actual partitioned directory.

10

15

25

30

35

40

45

50

55

60

65

18
3. The method as described in claim 2, wherein said writing

said second data block further comprises:
writing null values for a remainder of said buffer if a

number of read entries in association with said second
data block of said actual partitioned directory is less than
said predetermined number of entries associated with
said buffer.

4. The method as described in claim 2, wherein said first
and said second read operations are part of a serialized pro
CCSS,

5. The method as described in claim 4, wherein content of
said actual partitioned directory is read only once responsive
to said serialized process.

6. The method as described in claim 1, wherein said writing
said

writing nulls for a remainder of said buffer if a number of
read entries in association with said first data block of
said actual partitioned directory is less than said prede
termined number of entries associated with said buffer.

7. The method as described in claim 1 further comprising:
prior to said receiving said first read operation, partitioning

a directory into said actual partitioned directory pro
vided no read operation involving said directory is pend
ing.

8. A non-transitory computer readable storage medium
having stored thereon, computer executable instructions that,
if executed by a computer system cause the computer system
to perform a method of reading data from an actual parti
tioned directory of a hierarchical structure, said method com
prising:

receiving a first read operation and a first offset value from
an operating System;

identifying a first data block in a modeled fully partitioned
directory, wherein said first data block is associated with
a first subdirectory, and wherein said identifying is based
on said first offset value and further based on a prede
termined number of entries associated with a buffer;

determining whether said first data block in said fully par
titioned directory is present in said actual partitioned
directory;

writing null values in said buffer if said first data block in
said fully partitioned directory is not present in said
actual partitioned directory; and

reading said first data block associated with said actual
partitioned directory if said first data block in said fully
partitioned directory is present in said actual partitioned
directory and writing said first data block associated
with said actual partitioned directory in said buffer in
response to said reading.

9. The non-transitory computer readable storage medium
as described in claim 8, wherein said method further com
prises:

receiving a second read operation with a second offset
value from said operating system;

identifying a second data block in said fully partitioned
directory, wherein said second data block is associated
with a second subdirectory, wherein said second subdi
rectory is selected based on a horizontal node traversal
through a node level of said first subdirectory, and
wherein said identifying is based on said second offset
value and further based on a predetermined number of
entries;

determining whether said second data block in said fully
partitioned directory is present in said actual partitioned
directory;

US 8,429,209 B2
19

writing null values in said buffer if said second data block
in said fully partitioned directory is not present in said
actual partitioned directory; and

reading said second data block associated with said actual
partitioned directory if said second data block in said
fully partitioned directory is present in said actual par
titioned directory and writing said second data block
associated with said actual partitioned directory in said
buffer in response to said reading said second data block.

10. The non-transitory computer readable storage medium
as described in claim 9, wherein said writing said second data
block further comprises:

writing null values for a remainder of said buffer if a
number of read entries in association with said second
data block of said actual partitioned directory is less than
said predetermined number of entries associated with
said buffer.

11. The non-transitory computer readable storage medium
as described in claim 9, wherein said first and second read
operations are part of a serialized process.

12. The non-transitory computer readable storage medium
as described in claim 11, wherein content of said partitioned
directory is read only once during said serialized process.

13. The non-transitory computer readable storage medium
as described in claim 8, wherein said writing said first data
block comprises:

writing null values for a remainder of said buffer if a
number of read entries in association with said first data
block of said actual partitioned directory is less than said
predetermined number of entries associated with said
buffer.

14. The non-transitory computer readable storage medium
as described in claim 8, wherein said method further com
prises:

prior to said receiving, partitioning a directory into said
actual partitioned directory if no read operation involv
ing said directory is pending.

15. A system for reading data from an actual partitioned
directory, said system comprising:

a first memory component operable to store an operating
system thereon;

a buffer associated with said operating system, wherein
said buffer has a predetermined number of entries:

a second memory component operable to store said actual
partitioned directory;

a third memory component operable to store a file system
thereon, wherein said file system is operable to:
receive first read operation and a first offset value from

said operating system;
identify a first data block in a modeled fully partitioned

directory, wherein said first data block is associated
with a first subdirectory, and wherein said identifying

5

10

15

25

30

35

40

45

50

20
is based on said first offset value and further based on
a predetermined number of entries associated with
said buffer;

determine whether said first data block in said fully
partitioned directory is present in said actual parti
tioned directory;

write null values in said buffer if said first data block in
said fully partitioned directory is not present in said
actual partitioned directory; and

Write said first data block associated with said actual
partitioned directory in said buffer if said first data
block in said fully partitioned directory is present in
said actual partitioned directory.

16. The system as described in claim 15, wherein said
operating system in response to written data in said buffer
provides a second read operation with a second offset value.
and wherein said file system is further operable to:

identify a second data block in a fully partitioned directory,
wherein said second data block is associated with a
second subdirectory, wherein said second subdirectory
is selected based on a horizontal node traversal through
a node level of said first subdirectory and wherein said
identifying said second data block is based on said sec
ond offset value and further based on said predetermined
number of entries;

determine whether said second data block in said fully
partitioned directory is present in said actual partitioned
directory;

write null values in said buffer if said second data block in
said fully partitioned directory is not present in said
actual partitioned directory; and

Write said second data block associated with said actual
partitioned directory in said buffer if said second data
block in said fully partitioned directory is present in said
actual partitioned directory.

17. The system as described in claim 16, wherein said file
system is further operable to write null values for a remainder
of said buffer if a number of entries read in association with
said second data block is less than said predetermined number
of entries.

18. The system as described in claim 16, wherein said first
and second read operations are part of a serialized process.

19. The system as described in claim 18, wherein content of
said partitioned directory is read only once during said seri
alized process.

20. The system as described in claim 15, wherein said file
system is further operable to write null values for a remainder
of said buffer if a number of entries read in association with
said first data block is less than said predetermined number of
entries.

