(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date (10) International Publication Number
18 December 2003 (18.12.2003) PCT WO 03/104969 A2
(51) International Patent Classification”: GO6F 7/00 (74) Agent: INSPICOS A/S; Bgge Alle 3, PO. Box 45,

DK-2970 Hgrsholm (DK).

(21) International Application Number: PCT/DK03/00375 (81) Designated States (national): AE, AG, AL, AM, AT, AU,

AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,

(22) International Filing Date: 6 June 2003 (06.06.2003) CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
(25) Filing Language: English LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD,
(26) Publication Language: English SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ,VC, VN, YU, ZA, ZM, ZW.
(30) Priority Data: (84) Designated States (regional): ARIPO patent (GH, GM,
PA 2002 00864 6 June 2002 (06.06.2002) DK KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
PA 2003 00211 12 February 2003 (12.02.2003) DK Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
(71) Applicant (for all designated States except US): CRYP- ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO,
TICO A/S [DK/DK]; Fruebjergvej 3, DK-2100 Copen- SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM,
hagen @ (DK). GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).
Published:

(72) Inventors; and

(75) Inventors/Applicants (for US only): PETERSEN,
Mette, Vesterager [DK/DK]; Dalgas Have 50A, 1Th,
DK-2000 Frederiksberg (DK). SORENSEN, Hans, Mar- For two-letter codes and other abbreviations, refer to the "Guid-
tin, Boesgaard [DK/DK]; Ulrikkenborg Plads 10A, 1. ance Notes on Codes and Abbreviations” appearing at the begin-
Tv., DK-2800 Lyngby (DK). ning of each regular issue of the PCT Gazette.

— without international search report and to be republished
upon receipt of that report

(54) Titlee METHOD FOR IMPROVING UNPREDICTABILITY OF OUTPUT OF PSEUDO-RANDOM NUMBER GENERA-
TORS

Ciu
Xi Ci
Internal state Counter

[1] I

Xt

Extraction

l

Keystream

(57) Abstract: A method for performing computations in a mathematical system which exhibits a positive lyapunov exponent,
or exhibits chaotic behavior, comprises varying a parameter of the system. When employed in cryptography, such as, e.g., in a
pseudo-random number generator of a stream-cipher algorithm, in a block-cipher system or a HASH/MAC system, unpredictability
may be improved. In a similar system, a computational method comprises multiphying two numbers and manipulating at least one of
the most significant bits of the number resulting from the multiplication to produce an output. A number derived from a division of
two numbers may be used for deriving an output. In a system for generating a sequence of numbers, an array of counters is updated
at each computational step, whereby a carry value is added to each counter. Fixed-point arithmetic may be employed. A method of
determining an identification value and for concurrently encrypting and/or decrypting a set of data is disclosed.

03/104969 A2

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

METHODS FOR IMPROVING UNPREDICTABILITY OF OUTPUT OF PSEUDO-RANDOM NUMBER
GENERATORS

TECHNICAL FIELD

The present invention relates to aspects of improving unpredictability of pseudo-random
numbers which originate from numerical computations in mathematical systems comprising
at least one function, in particular a non-linear function. The mathematical system may be a
non-linear system of differential equations which exhibits chaotic behavior. The invention is
useful in encryption and decryption in, e.g., electronic devices.

BACKGROUND OF THE INVENTION

Cryptography is a generally used term covering science and technology concerned with
transforming data, such transforming of data being performed with the aim of allowing for
storing and transmitting of the data while preventing unauthorized access to the data. By
means of cryptography, the data are made non-comprehensible for any other person but the
intended recipient or recipients of the data. Accordingly, cryptography plays an increasingly
more important role in the protection of intellectual property, including copyright protection,
as the technological advancements require safe transmission and storage of huge amounts of
data.

In an encryption and decryption algorithm, the specific transformation of data is dependent
on an input to the algorithm, a so-called key. In case the sender and the recipient of the data
have an appropriate set of keys, the sender and the recipient are able to correctly encrypt
and decrypt the data while any third person who may gain access to the encrypted data is
not able to view a properly decrypted version of the encrypted data, as she or he is not in
possession of an appropriate key.

Usually, a set of data to be encrypted is referred to as "plaintext” or “original data”, whereas
the encrypted version of the set of data is referred to as "ciphertext" or “encrypted data”.

Two types of symmetric cryptographic algorithms are the so-called "block cipher" and the so-
called "stream cipher". Both types of algorithms use symmetric keys, i.e. the keys used for
encryption and decryption are equal or trivially related. A block cipher is a cryptographic
algorithm which splits an original set of data into a plurality of blocks of a given size, e.g. 64
bits per block. Mathematical and logical operations are performed on each block, whereby the
original amount of data is usually transformed into blocks of pseudo-random data. In case
decryption is initiated with the correct decryption key, the original data can be re-called by
reversing the mathematical and logical operations used for encryption.

In a (synchronous) stream cipher, a pseudo-random number generator generates, based on
a key, a sequence of pseudo-random numbers, the sequence being referred to as a
keystream. The keystream is mixed, by arithmetic and/or logical operations, with a plurality
of sub-sets of the original set of data, the sum of sub-sets of data defining the original data
to be encrypted. The result of the mixing is the encrypted data. The set of encrypted data

SUBSTITUTE SHEET

10

15

20

25

30

35

40

WO 03/104969 PCT/DKO03/00375

2
may be decrypted by repeating the procedure in such a way that the pseudo-random

sequence is extracted from the encrypted data, so as to arrive at the original, decrypted
data.

The plaintext is often mixed with the keystream by use of a logical operator, most often by
the so-called XOR operator, also referred to as the "exclusive or" operator, which is
symbolized by the @ symbol. XOR generates a one-bit result from two one-bit arguments. All
possible combinations are:

0@0=0
Ovl=1
le0=1
1©1=0

Utilization of the XOR operator on a plaintext and a pseudo-random keystream yields a
ciphertext. During decryption, an identical keystream is generated, and the XOR operator is
now utilized on the keystream and the ciphertext, resulting in the original plaintext. The
identical keystream can only be generated by using the key on which the keystream for
encryption was initially based.

Further, so-called public key systems have been developed, such systems being
characterized by a pair of asymmetric keys, i.e. a public key and a private key, the two keys
being different. In such systems, the public key is usually used for encryption, and the
private key is usually used for decryption. The private and the public key correspond to each
other in a certain manner. The key which is used for encryption cannot be used for
decryption, and vice versa. Thus, the public key may be published without violating safety in
respect of accessibility of the original data. Accordingly, when transmitting encrypted data via
a computer communications network, the recipient of the data first generates a set of keys,
including a public and a private key. The public key, for example, is then provided to the
sender of the data, whereas the private key is stored at a secure location. The sender of the
data utilizes the public key for encrypting the original data, and the encrypted data are then
transferred to the recipient. When the recipient receives the encrypted data, the private key,
which corresponds to the public key previously utilized for encryption, is provided to the
decryption system which processes the encrypted data so as to arrive at the original
decrypted data. Public key systems are primarily used for transmitting keys which are utilized
in, e.g., block or stream ciphers, which in turn perform encryption and decryption of the
data.

The methods of the present invention are applicable to cryptographic methods and
cryptographic systems, in particular but not exclusively to stream cipher algorithms, block
cipher algorithms, Hash functions, and MAC (Message Authentication Code) functions. Such
methods, functions and algorithms may include pseudo-random number generators which are
capable of generating pseudo-random numbers in a reproducible way, i.e. in a way that
results in the same numbers being generated in two different cycles when the same key is
used as an input for the pseudo-random number generator in the two cycles.

In pseudo-random number generators, numerical solutions of chaotic systems, i.e. systems
of non-linear differential equations or mappings exhibiting chaotic behavior, have been

SUBSTITUTE SHEET

10

15

20

25

30

35

40

WO 03/104969 PCT/DKO03/00375

3
proposed. The term “chaotic” may in a strict mathematical sense only be used in the context
of a continuous system. However, the present text also refers to discrete or finite systems
having at least one positive Lyapunov exponent as being “chaotic”.

A chaotic system normally governs at least one state variable X, the numerical solution
method of such a system normally comprising performing iteration or integration steps. In a
chaotic system, the solution X, at a given instant is dependent on the initial condition X, to
such an extent that a small deviation in X, will result in a huge deviation in the solution X,
the system often being referred to as exhibiting sensitivity on initial conditions. Thus, in order
for the pseudo-random number generator, i.e. the algorithm numerically solving the chaotic
system, to give a reproducible stream of pseudo-random numbers, the exact initial condition
Xo must be known. Thus, in cryptographic algorithms relying on chaotic systems, the initial
condition X, used in the numerical solution of the chaotic system is derived from the key
entered by a user of the cryptographic system, thereby allowing the same stream of pseudo-
random numbers to be generated for e.g. encryption and decryption of data.

Lyapunov exponents measure the rates of divergence or convergence of two neighboring
trajectories, i.e. solution curves, and can be used to determine the stability of various types
of solutions, i.e. determine whether the solution is for example periodic or chaotic. A
Lyapunov exponent provides such a measure from a comparison between a reference orbit
and a displaced orbit. Iterates of the initial condition x, are denoted the reference orbit, and
the displaced orbit is given by iterates of the initial condition x, + yo, where y, is a vector of
infinitely small length denoting the initial displacement. The initial orientation of the initial
displacement is given by up = y, /| Yol. Using this notation, the Lyapunov exponent, h(Xy, Yo),
is defined as

h(xo,Uo) = |££E\%In(]ynl/|y°l)

where y, is the deviation of the displaced orbit from the reference orbit, given by the n'th
iterate of x,. For systems whose dimension is larger than one, there is a set or spectrum of
Lyapunov exponents, each one characterizing orbital divergence or convergence in a
particular direction. Thus, if the system has N degrees of freedom, it will have N Lyapunov
exponents which, however, are not necessarily distinct. In all practical situations, a positive
Lyapunov exponent indicates chaos. The type of irregular behavior referred to as hyperchaos
is characterized by two or more positive Lyapunov exponents. Numerical calculation of
Lyapunov exponents may be performed according to the suggested method in T.S. Parker
and L.O. Chua: Practical Numerical Algorithms for Chaotic Systems, pp. 73-81.

Even more irregular systems than hyperchaotic systems exhibit so-called turbulence, which
refers to the type of behaviour exhibited by a system having a continuous spectrum of
positive Lyapunov exponents. Turbulence may be modeled by partial differential equations,
for example the well-known Navier-Stokes equations.

A large number of prior art documents are concerned with solving chaotic systems, in
particular to be used in cryptographic algorithms, also including stream cipher algorithms
relying on chaotic systems, some of which are briefly mentioned below as a general
introduction to the background art.

10

15

20

25

30

35

40

WO 03/104969 PCT/DKO03/00375

4

US 5,007,087 assigned to Loral Aerospace Corp. discloses a method and an apparatus for
generating random numbers using chaos. The patent describes solving chaotic systems for
generating random number sequences and mentions its possible use in cryptography, in
particular in the field of key generation and management. The document mentions that
repeatability of the number sequence should be avoided.

US 5,048,086 assigned to Hughes Aircraft Company is related to an encryption system based
on chaos theory. The system uses the logistic equation Xq+1=pXn(1-Xx), which is a mapping
exhibiting chaos for certain values of u. In the computations, floating-point operations are
used.

PCT Application WO 98/36523 assigned to Apple Computer, Inc. discloses a method of using
a chaotic system to generate a public key and an adjustable back door from a private key.
The need for establishing rules of precision during computations on a chaotic system is
mentioned. The document states, as an example, that a specified fioating point or fixed point
precision can be identified along with specific standards for round-off.

PCT Application WO 02/47272 assigned to the assignee of the present application discloses
various aspects of cryptography, including the use of so-called fixed-point numbers.

PCT application WO 01/50676 assigned to Honeywell Inc. discloses a non-linear cryptographic
isolator for converting a so-called vulnerable keystream into a so-called protected keystream.
The non-linear filter cryptographic isolator includes a multiplier for performing a multiplication
function on the vulnerable keystream to provide a lower partial product array and an upper
partial product array, and a simple unbiased operation for combining the lower partial
product array and the upper partial product array to provide the protected keystream.

"Numerical Methods and Software" by D. Kahaner, C. Moler and S. Nash (Prentice-Hall
International Editions, 1989) contains a general introduction to (pseudo-)random number
generation. The book mentions the following criteria for judging the quality of (pseudo-
Yrandom number generators:

a) High quality: the generator should pass all the statistical tests and have an extremely long
period,

b) Efficiency: execution should be rapid and storage requirements minimal.

c) Repeatability: Specifying the same starting conditions will generate the same sequence.
The user should be able to restart the generator at any time, but explicit initialization is not
necessary. A slight change in the starting procedure will result in a different random
sequence.

d) Machine independence and portability: The algorithm should work on different kinds of
computers; in particular, no operation should cause the program to stop. The same sequence
of random numbers should be produced on different computers by initializing the generator in
exactly the same way.

e) Simplicity: The algorithm should be easy to implement and use.

The book further states that no generator can be successful in satisfying all of these criteria.

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375
5

1t is further known to use fixed-point variables in numerical computations, for example in
Intel Mandelbrot computations. Intel (cf. MMX™ Technology Application Notes,
"Implementing Fractals with MMX™ Technology", publicly accessible on
http://cedar.intel.com/cgi-
bin/ids.dll/content/content.jsp?cntKey=Legacy::irtm_MANDEL_10491&cntType=IDS EDITORIAL&c
atCode=0 on 6 June 2003) has explained how a Mandelbrot set (the set being derivable from a
non-linear system) may be computed in a fast manner using MMX technology (an add-on to
Intel's processors which speeds up certain computations). This is done using fixed-point
computations.

The Mandelbrot set is computed by means of the below mapping:

Zyy = Zﬁ - U

Intel utilizes a constant decimal separator position in their computations. A so-called 5.11 is
utilized, i.e. a 16 bit number is utilized wherein the decimal separator is placed after the 5'th
bit, “5” referring to 5 bits after the decimal separator, "11" referring to 11 bits after the
decimal separator.

SUMMARY OF THE INVENTION

Pseudo-random numbers generators as those used in cryptography should, while allowing for
reproducibility of a sequence of pseudo-random numbers, generally be as unpredictable as
possible. In other words, an internal state of a mathematical system underlying the generator
should contain as little information as possible concerning other internal states of the
mathematical system. For example, the information that a particular value “X;" was contained
in state variable “X” at iteration No. i should not in a predictable manner lead to another
value “X;"” which was contained in the variable *X” at another iteration, iteration No. j. When
an iterative mathematical system is expressed in discrete terms, problems with small periods
can arise in the sense that a certain degree of predictability may arise if or when the
mathematical system becomes periodic. In a cryptographic system this is a serious problem
since it will have the effect that data will be encrypted repeating the same block of pseudo-
random data which comprises security.

The present invention provides four aspects, preferred embodiments of which improve
security by improving unpredictability:

1. Variation of a parameter of a mathematical system exhibiting a positive Lyapunov
exponent (claims 1-17)

2. Manipulation of at least one of the most significant bits of a number resulting from a
multiplication operation (claims 18-43 and 55), the “g-function”

3. Combining of the quotient and the remainder of a number resulting from a division
operation (claim 44).

4. Updating of counter values by means of a carry value (claims 45-55).

With the additional aim of improving speed in computations, the present invention provides,
in a further independent aspect:

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

5. Concurrent encryption and identification value generation (claims 56-61).

The above aspects of the invention will be discussed in sections 1-5 below. Disclosure and
discussions which apply to all aspects of the invention are included in sections A-L below.

1 VARIATION OF A PARAMETER OF A MATHEMATICAL SYSTEM EXHIBITING A POSITIVE
LYAPUNOV EXPONENT

A first aspect of the present invention provides a method for repeatedly performing
computations in a mathematical system which exhibits a positive Lyapunov exponent,
comprising varying at least one parameter of the mathematical system after a certain
number of computations. The parameter, which may, e.g., be a counter, may vary
independently of the mathematical system and may cause the mathematical system to
produce output periods which are longer than if the parameter would not have been varied,
or it may cause the mathematical system to exhibit periodic behaviour with periods which are
so long that, in any practical application, the mathematical system will not repeat itself. The
parameter may be repeatedly varied throughout computations in the mathematical system.

In connection with a system with a positive Lyapunov exponent, i.e. a system exhibiting so-
called chaotic behaviour, there exists the further challenge that rounding-off of floating-point
numbers is not necessarily performed consistently on two different processors, in which case
- due to the positive Lyapunov exponent - a sequence of pseudo-random numbers generated
on a first processor may not be reproducible on a second processor. Usually on a computer,
real numbers are represented by floating point type numbers. A floating-point number is
defined as a number consisting of a mantissa and an exponent, e.g. 31415 . 10, where
“31415"” is the mantissa and “-4” is the exponent. When a computer is performing a
calculation on a floating-point variable, it recalculates the exponent to match the result. The
name "floating-point" refers to the fact that the decimal separator is moving at calculations,
caused by the varying exponent. However, floating point arithmetic is defined differently on
various processor architectures causing different handling of precision and rounding off. The
present inventors have realised that, instead of floating-point numbers, fixed-point numbers
can be used. Thus, in embodiments of the methods of the invention, computations such as
iterations in the mathematical system, which usually comprises at least one function and is
expressed in discrete terms, are performed by means of at least one fixed-point number. All
computations may be performed as fixed-point or integer computations. A fixed-point
number is represented as an integer type number on a computer, where a virtual decimal
point or separator (also referred to as an imaginary decimal separator) is introduced
"manually”, i.e. by the programmer, to separate the integer part and the fractional part of
the real number. Hence, calculations on fixed-point numbers are performed by simple integer
operations, which are identical on all processors in the sense that the same computation,
performed on two different processors, yields identical results on the two processors, except
for possible different representations of negative numbers. Such possible different
representations may occur as a consequence of some processors utilizing ones complement
and other processors utilizing twos complement. Furthermore, these operations are also

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

7

usually faster than the corresponding floating point operations. The use of fixed-point
variables is further discussed in section B below.

The mathematical system may comprise at least one non-linear map or at least one non-
linear equation, or a set of non-linear maps or a set of non-linear equations, as discussed
further below, cf. in particular section C.

The counter referred to above may be increased at each iteration in the mathematical
system, in which case a maximum value may be defined for the counter. The method may
thus comprise resetting the counter to a minimum value once the counter has reached said
maximum value, whereby the counter varies with a certain period. However, this does not
necessarily mean that the mathematical system also varies with a period. Resetting the
counter avoids overflow in the system.

In order to further improve unpredictability, multiple parameters may be employed. Some of
such multiple parameters may be dynamic, i.e. varying, whereas others may be static, i.e.
constant. A constant parameter may for example be generated from a seed value provided to
the mathematical system, such as an encryption key. The variation of a first one of the
parameters, such as of a counter, may be dependent from the variation of a second one of
said counters in such a way that the period of the first counter is different from the period of
the second counter. The variation of each individual one of the counters may be dependent
from the variation of at least another one of said counters so as to obtain a period of the
counters which is longer than the period which would have existed if each individual counter
would not have been dependent from the variation of another counter. The one or more
counters may be increased linearly or by any other function.

The computations performed by the first aspect of the invention may be used for generating
pseudo-random numbers, which may be used in any kind of cryptography and/or
identification value generation.

2 MANIPULATION OF AT LEAST ONE OF THE MOST SIGNIFICANT BITS OF A NUMBER
RESULTING FROM A MULTIPLICATION OPERATION, “G-FUNCTION"

In a second aspect, the invention provides a method for manipulating a first set of data in a
cryptographic system, the first set of data comprising a first and a second number of a first
and a second bit size A and B, respectively, the method comprising:

— multiplying the first and the second number to obtain a third number of a third bit size
A+B, the third number consisting of P most significant and Q least significant bits,
wherein A+B=P+Q, and wherein Q is equal to the largest of the first bit size A and the
second bit size B, Q=max(A,B),

— manipulating the third number to obtain a fourth number which is a function of at least
one of the P most significant bits of the third number,

— using the fourth number for deriving an output of the cryptographic system.

More specifically, the fourth number may be used for generating or updating a pseudo-

random number as the output of the cryptographic system.

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

8
It has been found that a general multiplication function has good cryptographic properties.
These properties are good mixing, i.e. most input bits affect all output bits, and poor linear
approximations. Furthermore, the multiplication has the property that the number of bits of
the output is the same as the total number of bits in the inputs, i.e. if a number of bit-size A
is multiplied with a number of bit size B then the output is of bit size A+B. This larger bit size
enables further manipulation of the output, such that the final output is of a bit size smaller
than A+B, for instance A or B. Thereby improved cryptographic properties for the
manipulated multiplication function may be achieved, i.e. all input bits affect all output bits, -
and all linear approximations are very poor.

The first and second number may have different bit sizes, for example 8 and 16 bit. However,
for practical reasons it may be desirable that the first and second numbers are of the same
bit size. For example, each of the first and second number may be a 32-bit number, in which
case the third number is a 64-bit number, consisting of 32 most significant and 32 least
significant bits. The fourth number may then, for example, consist of the 32 most significant
bits of the 64-bit number. The first set of data may consist of a single number, such as a
number assigned to a variable, and the first number may thus equal the second number, so
that the step of multiplying comprises squaring the first number. Such squaring may be
advantageous as compared to other multiplication functions implying the multiplication of two
different numbers, as it requires handling of a single variable only. Further, the squaring of a
number of a certain bit size A results in a number, referred to above as the third number, of
bit size 2-A. Thus, by applying a manipulation to the third number to obtain the fourth
number of another bit size, such as bit size A, further complexity is added to cryptographic
systems incorporating the method of the second aspect of the invention. The squaring is
further advantageous, as it - when performed on small processors, such as 8- or 16-bit
processors - requires fewer operations than multiplying two different numbers whereby
computational resources may be saved. For example, multiplication of two different 32-bit
numbers requires sixteen 8-bit multiplications, whereas the squaring of a 32-bit number only
requires ten 8-bit multiplications. Also, by applying the method in a cryptographic system, a
keystream of a satisfactory quality (with respect to unpredictability) may be directly
generated as a pseudo-random output by means of simple operations, such as by XOR
operations. Further, in a cryptographic system, the squaring function does not normally
result in a certain result more often than it results in other results. However, the
multiplication of two different numbers may results in the result zero every time one of the
two numbers being multiplied has the value zero. In other words, the squaring function may
have a reduced bias towards a certain result, in particular towards zero, as compared to
other multiplication functions. Such bias towards zero may leak information concerning an
input to the multiplication, as it reveals that one of the two inputs to the multiplication
operation most likely was zero.

The fourth number may itself represent a pseudo-random number which is used as the
output of the cryptographic system. Alternatively, the fourth number may be used as an
input for further computations, such as iterations in a mathematical system, following which
a pseudo-random number or other output of the cryptographic system is derived.

SUBSTITUTE SHEET

10

15

20

25

30

35

40

WO 03/104969 PCT/DKO03/00375

9
In a cryptographic system one or more state variables may be iterated in a mathematical
system. A counter or variable may be added to each or some of the state variables in each or
some of the iterative steps, as described further below. The step of multiplying may comprise
identical operations in each iterative step, or it may, alternatively, comprise different
operations. For example, in a first iterative step, the step of multiplying may comprise
squaring a variable x, whereas in one or more subsequent iterative steps, the step of
multiplying may comprise multiplying variable x with another variable y.

In the case of at least two state variables being iterated, a value assigned to each of the
state variables may be updated as a function of at least one value of the same and/or
another state variable, for example according to the general formula x;,1=f(x;,y;), subscript i
denoting the i'th iteration, x and y denoting the state variables.

The step of manipulating preferably comprises using as well most significant bits of the third
number as least significant bits. The manipulating may comprise a logical or arithmetic
operation. One logical operation which is easily applied is the XOR function which may, e.g.,
be applied on a number of most significant bits and an equal number of least significant bits.
The XORing may be performed bitswise, in which case each bit of the most significant bits
may be XORed with a bit of the least significant bits. The XOR operation may thus be
performed N times, resulting in a result of bit size N . The step of manipulating may be
performed by applying an operation to bits of two or more different numbers. For example, in
a cryptographic system in which several numbers x;...x, are being generated based on
iterations of one or more state variables, the step of manipulating may comprise XORing bits
of one number X, with bits of another number x,, one or both of x,, and x, representing the
third number.

Likewise, an arithmetic operation may be performed bitwise.

In a cryptographic system, the first and second number may be derived from a set of data to
be encrypted or decrypted, in which case the fourth number may be used to generate an
encrypted or decrypted representation of the second set of data, such as plaintext or
ciphertext, for example in a block cipher algorithm or in an algorithm for determining an
identification value for identifying a set of data.

The method according to the second aspect of the invention may also be applied for
generating an identification value for identifying a second set of data. In that case, at least
one of the first and second number is derived from the second set of data, so that the fourth
number is used for generating an identification value identifying the second set of data. The
term "identification value" may be a hash value or a cryptographic check-sum which
identifies the set of data, cf. for example Applied Cryptography by Bruce Schneier, Second
Edition, John Wiley & Sons, 1996. In case a cryptographic key is used as a seed value for the
computations, the hash function is usually referred to as a MAC function (Message
Authentication Code).

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

10
In any application of the method, at least one of the first and second number may be derived
from a cryptographic key, i.e. an input value for an algorithm of the cryptographic system
which is used for initializing iterations.

In the method of the second aspect of the invention, the first number may equal the second
number, in which case the step of multiplying comprises squaring the first number.

In a mathematical system, in which a state variable is iterated, the state variable may be
updated as a function of the fourth number, or as a function of a permutation of the fourth
number, such permutation comprising, e.g., bitwise rotation of the bits of the fourth number.

With the aim of providing a good mixing and making each output bit of the cryptographic
system dependent from as many input bits as possible, the step of multiplying may be
performed multiple times, each multiplication being performed on a number which represents
or is a function of one of a plurality of state variables, the step of multiplying thereby
resulting in a plurality of third numbers. Thus, also the step of manipulating may result in an
array comprising a plurality of fourth numbers, whereby at least one state variable may
updated as a function of at least two of the fourth numbers.

At least one of the first and second number may be a state value X; to which there is added a
variable parameter value, such as a counter C;. The step of multiplying may thus comprise
squaring (Xi+C)), X; denoting a state variable or an array of state variables, and C; denoting
the counter or an array of counters. The at least one parameter may be repeatedly varied at
predetermined intervals in the computations. A counter C; may be added to the fourth
number or to a number which is a function of the fourth number to result in an updated state
variable X;1.

The step of multiplying may comprise a plurality of multiplication functions resulting in a
plurality of numbers of bit size A+B, whereby the step of manipulating may comprise
combining at least one of the bits of a first one of the plurality of numbers with at least one
of the bits of a second one of the plurality of numbers. The plurality of multiplication
functions may comprise at least one squaring operation, whereby the step of manipulating
may comprise combining at least one of the P most significant bits of a first one of the
plurality of numbers with at least one of the Q least significant bits of a second one of the
plurality of numbers.

The step of multiplying is usually performed in a mathematical system in which at least one
state variable is being iterated, most often in a system in which two or more state variables
are being iterated. In each computational sequence, values assigned to each of the at least
two state variables may be updated as a function of at least one value of the same and/or
another state variable.

In a cryptographic application, at least one of the first and second number may be derived
from a set of data to be encrypted or decrypted, whereby the fourth number may be used for
generating an encrypted or decrypted representation of the set of data. Likewise, the fourth
number may be used for generating an identification value identifying the set of data.

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

11
At least one of the first and second number may be derived from a cryptographic key.

The method of the second aspect of the invention may advantageously be applied in a
system/method, wherein an identification value for identifying a set of data is determined,
and wherein a set of data is concurrently encrypted/decrypted, e.g., by means of a pseudo-
random number generator in which numerical computations are performed in a mathematical
system, cf. the below discussion of the fifth aspect of the invention.

3 COMBINING OF THE QUOTIENT AND THE REMAINDER OF A NUMBER RESULTING
FROM A DIVISION OPERATION

In a third aspect, the invention provides method for manipulating a first set of data in a

cryptographic system, the first set of data comprising a first and a second number, the

method comprising:

— dividing the first number by the second number to obtain a quotient and a remainder,

— combining, by means of a mathematical operation, the quotient and the remainder to
obtain a resulting number,

— using the resulting number for deriving an output of the cryptographic system.

Such manipulating may be applied in the method according to the second aspect of the
invention. The step of combining may comprise any manipulating discussed above in
connection with the method according to the second aspect of the invention, for example a
logical operation, such as an XOR operation, or an arithmetic operation. The output of the
cryptographic system may be any output discussed above in connection with the second
aspect of the invention.

The method of the third aspect of the invention results in an improved mixing of numbers in
a cryptographic system, in particular in a pseudo-random number generator. The method is
useful in connection with any cryptographic system, including those described herein.

4 UPDATING OF COUNTER VALUES BY MEANS OF A CARRY VALUE

With the aim of providing a method for ensuring very long periods of a sequence of numbers
in a cryptographic system, and thus with the aim of improving unpredictability and security,
there is provided as a fourth aspect of the invention a method for generating a periodic
sequence of numbers in a cryptographic system in which computational steps are repeatedly
performed, the method comprising updating, in each computational step i, an array of
counters, the counters being updated by a logical and/or by an arithmetic function, whereby,
at each computational step, a carry value is added to each counter in the array, and wherein
the carry value added to the first counter in the array, ¢, is obtained from at least one of:

- a selected computation of a value of the array of counters,

- a value which is a function of a counter value at a previous computational step.

In other words, the method comprises updating, in each computational step i, an array G of
counters ¢;,, the counters being updated as:

10

15

20

25

30

35

40

WO 03/104969 PCT/DKO03/00375

12

Co,i+1=Cp,+ao+d; mod No,

C,i+1=Cj+a;+bj.q,144 mod N; for >0,
where:

Cj,i+1 IS a value assigned to position j of array C at step i+1, j=0...n-1, n denoting a
dimension of the array C, i.e. the number of elements in the array,

G, is a value assigned to position j of array C at step i, j=0...n-1,

g; is a value, typically a constant, assigned to position j of an array A, j=0...n-1,

for j>0: bj.y,i+1 is a carry value resulting from the computation of ¢4 11,

N; is a constant, j=0...n-1,

for i=0: di=d is an initial value,

for i>0 d; is a carry value obtained from a selected computation of a value of the array of
counters C; and/or a function of C,.

It should be understood that the carry values may be zero.

As demonstrated below, a mathematical proof is established showing that the period of the
counter system is very long. Thus, in a pseudo-random number generator employing the
above counter system and generating a keystream, huge amounts of data may be encrypted
without the keystream becoming periodic by repeating itself. Thereby, unpredictability and
security is improved.

It should be understood that the sequences of numbers generated by the method according
to the fourth aspect of the invention preferably has a period which is so long that the
sequence of numbers generated, in most practical applications, does not become periodic,
i.e. that any sequence of humbers generated is not repeated.

The array of counters C; will below be referred to as a "counter with carry feedback", in
contradiction to an ordinary counter of the form ¢;;;=¢+a mod N. In order to explain the
effect of a counter with carry feedback, an ordinary counter will first be discussed:

Consider a system defined by:

Ci+1 = ¢ + amod N,

where ¢;is the value of the counter at step i (the array C; containing a single element, ¢;), G
is the value of the counter at step i+1, a is a constant number and N is a large number
usually defined by a register size of an electronic processor which performs the computations,
i.e. N=232 for a 32-bit processor.

In the case where a=1, c is constantly incremented by 1 until it reaches the value N-1, and in
the following iteration c restarts from zero. In such a system, the period of c is equal to N.
The single bits in the number have, however, different periods. The least significant bit, c%,
is successively added the value 1, and will thereby repeatedly obtain the values 0 and 1, i.e.
have a period of 2. For every second incrementation this will give rise to a carry being added
to the next bit in the register, c*, which thereby will have a period of 4, For bits at position j,

_the period will be aiven bv 23*,

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

13
Such a system suffers from the disadvantage that all bits, except the most significant, have
periods smaller than the total period N. Another disadvantage is that the dynamic behaviour
of the bits is rather predictable. For instance, the value of the least significant bit changes at
every iteration. Thereby, even though the value at a given iteration is not known, the value
will be the opposite in the following iteration. Also, the value of the most significant bit will
change only when half of the period N has passed. This means that the value of the most
significant bit is constant for a long time, resulting in poor non-predictability characteristics
which are crucial in cryptographic systems.

As indicated above, the counter with carry feedback, in a single-dimensional system, may be
defined by:

Cu1 =G +a+d modN,

dsi=1lifg+a+d =N,

diyy=0ifg+a+d <N,

where ¢ is the value of the counter at step i, Ci+1 is the value of the counter at step i+1, a is a
constant number, d; is the value of the feedback carry at step i, and N is a large number
usually equal 2 to the power of the register size of the processor on which computations are
being performed.

Again consider the case where a=1, starting with ¢;=0, the behaviour is similar to the
ordinary counter until ¢; + a + b; becomes larger than or equal to N, then by, is put equal to
1, and in the subsequent iterations added to the value of the counter. Thereby the period 2
behaviour at the least significant bit is interrupted, thereby making it less predictable than in
the case of an ordinary counter. This furthermore means that the least significant and the
rest of the bits all will have periodic behaviour equal to that of c. This period is N-1.

The period of the counter system with carry feedback can be proven as follows.

The above recurrence relation is equivalent to the following linear congruential generator:
Zi+1=Z; + A mod (N-1),

which has a period length of N~1, when A has been chosen such that gcd(A,N-1)=1, i.e. the
greatest common divisor of A and N-1 is one, cf. B. Schneier: Applied Cryptography, John
Wiley & Sons, Inc. (1996).

To show that Z is equivalent to C, we consider an initial value Co=2Z, for Zo>A. The recurrence
relation for C; can be defined in terms of Z;

Ci = & if (Z.4+ A)< N-1 and Z;# 0, A denoting a concatenated value 3n-1...8g, cf. below,

C = N-1if (Zis + A)=N-1

C=2Z-1if (Z.s+ A) > N-1 or Z,,=0

Therefore, C; will attain the same set of numbers as Z;, though in a different order, except
that C; will attain the value N-1 but not the value A. Thus, the period of the recurrence
relation, C, is the same as for the linear congruential generator, Z.

To sum up, the purpose of the counter system is to generate a sequence of numbers with a
given long period, wherein each binary value at each bit-position have the same period as

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

14

the complete system. Additionally, the least significant bit is, due to the carry feedback,
influenced by all other bits, which is not the case when no feedback is applied.

The application of the long periodic sequence is to ensure that the internal state of the
stream cipher has a large period.

When the constant incrementation value A is chosen appropriately, it can furthermore be
achieved that the values at each bit position in C have relatively high frequencies, i.e.
changes often. Thereby, in a situation where the values of the counter bits are secret, for
instance when they are applied as part of the input to a stream cipher with an internal state,
the exploitation of any relation between the output of the stream cipher and the values of the
bits, is additionally complicated since the values of the bits change relatively often.

The value A may be appropriately chosen by ensuring that the product of

(No*Ny*...*N;.1)-1 and a concatenated value of the values a; are mutually prime. The
concatenated value of the values a; is determined as a single sequence of bits a,.ian-2...a0, cf.
the below example.

An example of appropriate chosen constants, when performing computations with 32-bit
registers (i.e. N=23%), are:

ap = 0x4D34D34D

a; = 0xD34D34D3

a, = 0x34D34D34

as = 0x4D34D34D

a, = 0xD34D34D3

as = 0x34D34D34

as = 0x4D34D34D

a; = 0xD34D34D3

where Ox indicates that the numbers are represented as hexadecimal numbers. The
connection to the single counter system with carry feedback, is easily obtained by
concatenating all constants and concatenating all counter elements, and thereby performing
the calculations on these 256-bit numbers, i.e. with modulus 2%°¢, In the above example, the
concatenated value of A is asagasasasza,aap=
0xD34D.

Another example of appropriate chosen constants, when performing computations with 8-bit
registers, are:

ag = 0x2C
a; = OxCB
a, = 0xB2
az = 0x2C
as = OxCB
as = 0xB2
ag = 0x2C
a; = OxCB

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

15
where 0x indicates that the numbers are represented as hexadecimal numbers. The
connection to the single counter system with carry feedback is easily obtained by
concatenating all constants and concatenating all counter elements, and thereby performing
the calculations on these 64-bit numbers, i.e. with modulus 254,

The counter system with carry feedback as discussed above may be applied for using the

counter values as a periodic input for a cryptographic function, e.g.:

- Using the counter values as input to a stream cipher or pseudo-random-number-
generator with an internal state.

- Using the counter values as part of the input in a computation of an identification value.

In one embodiment, an internal state of a cryptographic system is updated as a function of
the counter values, e.g. by adding a counter value to an internal state. Such update may be
performed before the computation of a next-state value or subsequent to the computation of
a next-state value. An output function may then be applied to the current or the next internal
state in order to generate a pseudo-random output, often referred to as a "keystream".

The following pseudo code illustrates a preferred embodiment of the computation of multiple
counters, the pseudo code illustrating a single iteration of the counter:

// Save old counter values
for i=0 to 2
c_old[i] = cli]

end for

// Increase counters
c[0] = (c[0] + a[0] + d) mod 2%
if ecf0] < c_pld[O] then
bl0]=1
else
b[0]}=0
end if

cl[ll = (e[l] + a[l] + b[0]) mod 2%
if c[1] < c_old[1] then
bfl]=1
else
bi1]1=0
end if

c[2] = (c[2] + a[2] + b[1]) mod 2%
if c¢[2] < c_old[2] then
d=1
else
d=0
end if

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

16

The following pseudo code illustrates a preferred embodiment of the computation of a single
counter:

// Save old counter value
c old = ¢

// Increase counter
e = (c +a+ d) mod 2%
if ¢ < c_old then
d=1
else
d=0

end if
In the above pseudo-codes, it is presumed that all values of a are smaller than 2321,

As will be understood from the above discussion, the size of the arrays C and A may be 1, i.e.
n=1, so that:

— the array C contains a single value ¢y,

- the array A contains a single value ay,

the counter c,; being updated as Cg;+1=Cg,i+ao+d; mod No.

As further described below in connection with Fig. 4, for i>0, d; may be a carry value
resulting from the computation of c,.1, i.e. the latest carry value computed at a preceding
iterative step.

In case the array C only contains a single element ¢, the number ¢ may be successively
incremented by the constant value a, and the value of the carry register d. If ¢ becomes
larger than a value N, N is subtracted from the number, i.e. modulus N, and the value in the
carry register is set to 1. If the number is less than N, the value in the carry register is set to
0. This procedure can formalistically be described as:

Cri=¢CG+a-+d

if ciy1 >= N then di;y
if Ciz1 >= N then ¢4

lelsediy1 =0
Ci+1-N

1l

In case the array C contains a plurality of elements or numbers C=(cy, €1, C2s...; Ca-1), SUCh
numbers may successively be incremented by a set of constant values A=(ao, a1, ay,... an-1)
and values of a set of carry registers (bg, by, by,... bnt), bay=d. If any of the numbers become
larger than a value N, N is subtracted from the number in question, i.e. modulus N, and the
value in the corresponding carry register is set to 1. The carry register involved in the
addition is the carry arising from the neighbour number, such that the set of numbers are
coupled by the carry registers to form a chain. The first number is added with the carry
register from the last number in the previous incrementation. This procedure can
formalistically be described as:

Coi+1 = Coi + ag + di.

if Coiex >= N then bg 4y = 1 else bys1 = 0.

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

50

WO 03/104969 PCT/DKO03/00375

17
if Co+1 >= N then Cois1 = Coirr — N.
The rest of the numbers are determined by:
Giir1 = G + @y + Djg i
if ¢ji+1 >= N then by, = 1 else by4q = 0, for j<n-1.
if Cp-g,141 >= N then diyy = 1 else diyy = 0.
if Gi+1 >= N then ¢y = Cjiva — N.
The above procedure is graphically illustrated in Fig. 4.

Alternatively, d; may be a carry value determined in the same iteration, that is: firstly a
constant is added to the first counter, the carry from this operation and a constant are then
added to the next counter in the chain and so forth. This procedure is continued until and
including the last counter in the chain, the carry from this last addition is then added to the
first counter, and if a carry occurs it is added to the next counter and so on. The procedure is
illustrated in the following pseudo-code:

// Save old counter values
for i=0 to 2
q_old[i] = cfi]

end for

// Increase counters
c[0] = (c[0] + a[0]) mod 2%
if c[0] < c_old[0] then
b[0]=1
else
b[0]=0
end if

el[1] = (cll1] + a[l] + bi0]) mod 2%
if c[l1l] < c¢_old[1] then
b[1]l=1
else
b[1]1=0
end if

cl2] = (c[2] + af2] + b[1]) mod 2%
if c[2] < c_old[2] then
d=1
else
d=0
end if

// Add final carry
c[0] = (c[0] + d) mod 2%
if ¢[0] < ¢_o0l1d[0] then
b[0]=1
else
b[0]=0
end if

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

18
cl1] = (e[1] + b[0]) mod 2%
if ecll] < c_old[l] then
b[l]=1
else
b[1]=0

end if

c[2] = (c[2] + b[1]) mod 2%
In the above pseudo-code, it is presumed that all values of a are smaller than 2%%-1.

The computational steps which are performed in the cryptographic system usually comprise

an iterative procedure in which an array of state variables, X, is repeatedly iterated so that at

least one value assigned to a position in the array of state variable X at computational step

i+1 is a function of:

— at least one value assigned to a position in the array of state variables X at computational
step i, and

— at least one value assigned to a position of the array of counters C at computational step
i

For example, X;.; may be computed according to the general formula X;.1=f(X;, C)), such as
Xix1=F(X+C,). It should be understood that the array X may contain one or more state
variables.

The method of the second aspect of the invention may advantageously be applied in a
system/method, wherein an identification value for identifying a set of data is determined,
and wherein a set of data is concurrently encrypted/decrypted, e.g., by means of a pseudo-
random number generator in which numerical computations are performed in a mathematical
system, cf. the below discussion of the fifth aspect of the invention.

Combination of carry-updating of counters and “g-function”

In a further aspect, the invention provides a method for generating an output in a
cryptographic system, the method combining the general concepts underlying the second and
the fourth aspects of the invention. Thus, according to the sixth aspect of the invention,
computational sequences may performed as an iterative procedure wherein an array of state
variables, X, is repeatedly iterated so that at least one value assigned to a position in the
array of state variables X at iteration step i+1 is a function of:
_ at least one value assigned to a position in the array of state variables X at iteration i,
and
— atleast one value assigned to a position of an array of counters C at iteration i,
the array of counters being updated in each iteration as:
Co,i+1=Co,+ap+d; mod No,
Gj,i+1=Cj+ay+by1,i41 mod N; for j>0,
where:
Gji+1is @ value assigned to position j of array C at step i+1, j=0...n-1, n denoting a
dimension of the array C,

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

19
¢, is a value assigned to position j of array C at step i, j=0...n-1,
a; is a value assigned to position j of an array A, j=0...n-1,
for j>0: bj.4 44 is @ carry value resulting from the computation of ¢j.q 41,
N; is a constant, j=0...n-1,
for i=0: d;=d, is an initial value,
for i>0 d, is a carry value obtained from a selected computation of a value of the array of

counters C; and/or a function of C,

each iteration comprising:

-~ multiplying a first number of a first bit size A and a second number of a second bit size B
to obtain a third number of a third bit size A+B, at least one of the first and second
number being equal to or a function of at least one value assigned to a position of the
array of state variables X at iteration i, the third number consisting of P most significant
and Q least significant bits, wherein A+B=P+Q, and wherein Q is equal to the largest of
the first bit size A and the second bit size B, Q=max(A,B),

—~ manipulating the third number to obtain a fourth number which is a function of at least
one of the P most significant bits of the third number,

using the fourth number for deriving the output of the cryptographic system and/or for

assigning new values to positions of the array of state variables X.

The above method combines the qualities of the methods according to the second and fourth
aspects of the invention, i.e. good mixing of bits and long counter periods, with the overall
aim of improving unpredictability.

It should be understood that any feature and functionality described above in connection with
the second and fourth aspects of the invention may be applied in the method of the present
aspect of the invention.

The present aspect of the invention will be further discussed below in connection with Figs. 1-
5.

5 CONCURRENT ENCRYPTION AND IDENTIFICATION VALUE GENERATION

In a further aspect, the invention provides a method of determining an identification value for
identifying a set of data and for concurrently encrypting and/or decrypting the set of data.
The method preferably comprises performing numerical computations in a mathematical
system exhibiting a positive Lyapunov exponent, the method further comprising at least one
of the following steps:

- repeatedly performing mathematical computations as iterations in the mathematical
system, whereby various parts of the set of data or modifications thereof may be used as
input to the computations,

— following each computation or a certain number of computations:

— extracting a resulting number from the computations, the resulting number
representing at least one of:
a. at least a part of a solution to the mathematical system, and
b. a number usable in further computations involved in the numerical solution of the
mathematical system,

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

20
~ optionally determining an updated value for the identification value based on the
resulting number, whereby various parts of the set of data or modifications thereof
may be used as input in the step of determining,
— encrypting and/or decrypting a certain portion of the set of data based on the
resulting number,
whereby as many iterations are performed as required for encrypting and/or decrypting the
entire set of data.

The use of one or more fixed-point variables may confer advantages related to reproducibility
and computational speed, cf. section B below. By performing encryption/decryption and
identification value generation concurrently, computational resources may be saved.

Encryption and/or decryption and determining the identification value may be performed in
the same process or in distinct processes, i.e. for example in such a way that the entire set of
data is processed in order to obtain an intermediate result which is then used as an input for
further computations which yield the identification value and the encrypted and/or decrypted
version of the set of data.

The method may comprise:

- expressing the mathematical system in discrete terms,

— expressing at least one variable of the mathematical system as a fixed-point number,

- performing said computations in such a way that the computations include the at least
one variable expressed as a fixed-point number, fixed-point variables and numbers being
discussed further above in connection with the first aspect of the invention and in section
B below.

The identification value may be further modified following encryption and/or decryption of the
entire set of data.

Encryption/decryption and determination of the identification value can take place at the
same time or in parallel. The identification value can be a hash value, a check-sum or a MAC
(Message Authentication Code), see the above description. In some cases, the calculation of
identification value and the encryption process takes place sequentially. However, it can also
be done in one working process or instance, in parallel or at the same time. This may be
done in order to reduce the number of computations and/or to be able to process a sequence
of data as it becomes available or is given to an algorithm which embodies the mathematical
system, or to increase ease-of-use. The identification value can be calculated with or without
a key.

The identification value may be related to a specific message, i.e. the message must be used
as input to the algorithm. Instead of first encrypting the message and then running through
the entire message again to calculate the identification value, the two methods may be
combined, i.e. in each iteration of the mathematical system, a pseudo-random number may
be extracted and combined with the message in order to encrypt/decrypt, after which the
identification value may be updated. After each iteration this intermediate identification value
may be stored.

SUBSTITUTE SHEET

10

15

20

25

30

35

40

WO 03/104969 PCT/DKO03/00375
21

In the method according to the present aspect of the invention, a mathematical system may
be defined, the mathematical system exhibiting a positive Lyapunov exponent. The method
may comprise the following steps:

Defining a key/seed value.

Performing computations on the mathematical system, and/or

Performing computations on the mathematical system and the message.

Extracting a pseudo-random number.

Calculating a new intermediate identification value.

Continuing step 2-5 until the entire message has been used in the computations
performed on the mathematical system and the message.

7. Calculating the final identification value based on the intermediate identification value.

o v A wWNE

In an alternative embodiment, the method may comprise the following steps:

1. Defining a key/seed value.

2. Performing computations on the mathematical system and the message.

3. Extracting a pseudo-random number.

4. Continuing step 2-3 until the entire message has been used in the computations
performed on the mathematical system and the message.

5. Determining the final identification value from variables in the mathematical system.

In the method, the

- message may be plaintext or ciphertext,

- message may be used as input to some or all of the calculations,

— the pseudo-random number may be used to encrypt/decrypt the message by means of
logical and/or artithmetical operations,

— at least one variable is expressed in fixed-point format.

In case of a block cipher, no pseudo-random numbers are generated, in which case step 3
above is substituted by the step of manipulating a block or part of message in order to
encrypt and/or decrypt it.

In one embodiment, the calculation of the identification value is dependent on a key.

In a mathematical system exhibiting a positive Lyapunov exponent computations may be
performed using fixed-point arithmetic, whereby a cryptographic key (as described for a

stream cipher) is used as an initialization value. This key, or part thereof, is also used to
initialize the identification value.

The determination of the identification value and encryption of a set of data, message, or
plaintext, is then performed by

1. Iterating the mathematical system one step.

2. Extracting a number of n pseudo-random bits from the system.

3. Selecting the next n bits of the data, message, or plaintext.

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

22

4, Using a function, F, to obtain a new value for the identification value, given the
extracted bits, the selected bits of the data, message or plaintext and the old value of the
identification value.

5. Applying the logical XOR function on the n pseudo-random bits and the selected n bits
thereby encryption the selected n bits of the data, message or plaintext..

6. Steps 1 through 5 are repeated until all bits are encrypted.

7. The system may be iterated further to extract more pseudo-random bits.

8. Further computations may be performed on the identification value to obtain a final
identification value.

The generated identification value can be combined with the encrypted message, and the
result can e.g. be transmitted over the Internet to a receiver.

When decrypting and recalculating the identification value, the algorithm is initialized in same
manner as for encryption. Then the following steps are performed:

1. Iterating the mathematical system one step.

Extracting n pseudo-random bits from the mathematical system.

Selecting the next n bits of the encrypted data/message.

Applying the logical XOR function on the encrypted bits to decrypt these.

Using a function, F,, to obtain a new value for the identification value, given the
extracted bits, the bits to be decrypted and the old value of the identification value.
6. Repeating steps 1 through 5 until all bits are decrypted.

7. The system may be iterated further to extract more pseudo-random bits.

Further computations may be performed on the identification value to obtain a final
identification value.

U kR LN

End of Section 5.

It should be understood that the present invention also extends to any apparatus and to any
computer program for carrying out all the methods of the invention, including electronic
devices incorporating digital signal processors. The invention also extends to data derived
from any method and/or computer program of the present invention and any signal
containing such data do also fall within the scope of the appended claims. It should further be
understood that any feature, method step, or functionality described below in connection with
the further aspects of the invention discussed below may be combined with the method of
the first aspect of the invention.

Further features and functions which may be employed in the various aspects of the
invention, and definitions applicable to the aspects of the present invention, are discussed
below. The below considerations apply, where appropriate, to all aspects/methods of the
present invention.

A GENERAL DEFINITIONS AND CONSIDERATIONS

Where in the present context, the term "pseudo-random number" is used, this should be
understood as a random number which may be generated in a reproducible and/or

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

23
deterministic way, i.e. in a way that results in the same pseudo-random number being
generated in two different executions of a pseudo-random number generating algorithm
when the same key or seed value is used as an input for the pseudo-random number
generating algorithm in the two executions.

In general, a mathematical system may comprise a system which expresses certain relations
between variables. For example, such relations may be constituted by mathematical
operations, including discrete operations, such as binary and/or logical operations. Thus,
mathematical operations may comprise multiplication, division, addition, subtraction,
involution, AND, OR, XOR, NOT, shift operations, modulus (mod), truncation and/or rounding
off.

Numerical computations may involve computations in which numbers are manipulated by
mathematical operations.

A counter is herein defined as a variable which may serve as a parameter in a mathematical
system. The counter is continuously iterated and updated by means of a mathematical
function. Such a function may, e.g., be a simple addition, c..;=c;+a, where c;;, represents the
counter value at iteration step i+1, ¢; represents the counter value at iteration step i, and a a
number added to ¢;. The function may alternatively be more sophisticated and include linear
and/or non-linear operations and/or logical operations. Preferably, the counter varies
independently of the mathematical system in which the counter is used as a parameter.

In the present context, the term "data carrier" or "computer readable data carrier" should be
understood as any device or media capable of storing data which is accessible by a computer
or a computer system. Thus, a computer readable data carrier may, e.g., comprise a
memory, such as RAM, ROM, EPROM, or EEPROM, a CompactFlash Card, a MemoryStick
Card, a floppy or a hard disk drive, a Compact Disc (CD), a DVD, a data tape, or a DAT tape.

Signals comprising data derived from the methods of the present invention and data used in
such methods may be transmitted via communications lines, such as electrical or optical
wires or wireless communication means using radio or optical transmission. Examples are the
Internet, LANs (Local Area Networks), MANs (Metropolitan Are Networks), WANs (Wide Area
Networks), telephone lines, leased lines, private lines, and cable or satellite television
networks.

In the present context, the term "electronic device" should be understood as any device
capable of processing data by means of electronic or optical impulses. Examples of applicable
electronic devices to the methods of the present invention are: a processor, such as a CPU, a
microcontroller, or a DSP (Digital Signal Processor), a computer or any other device
incorporating a processor or another electronic circuit for performing mathematical
computations, including a personal computer, a mainframe computer, portable devices,
smartcards, chips specifically designed for certain purposes, e.g., encryption. Further
examples of electronic devices are: a microchip adapted or designed to perform computations
and/or operations, and a chip which performs binary operations.

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

24
Processors are usually categorized by: (a) the size of data that is operated on (b) the
instruction size and (c) the memory model. These characteristics may have different sizes,
normally between 4 and 128 bit (e.g. 15, 16, 32, 64 bit) and not limited to powers of two.

In the present context, the term "processor" covers any type of processor, including but not

limited to:

— ™Microcontroller”, also called "embedded processor". The term "microcontroller" and
"embedded processor" usually refers to a small processor (usually built with fewer
transistors than big processors and with limited power consumption). Examples of
microcontroller architectures are:

- 280

8051 (e.g. produced by Intel)

CPUS8 / 6800 (e.g. 68HCO5 68HC08 and 68HC11 e.g. produced by Motorola)

CPU32 / 68k (e.g. 68000 Dragonbal! produced by Motorola)

- Other processors which are typically used in different kinds of computer and control
systems, examples of architectures being:

— Alpha 21xxx (e.g. 21164, 21264, 21364)
— AMD x86-64 (e.g. Sledgehammer)
-~ ARM (e.g. ARM10, StrongARM)
— CPU32/ 68k (e.g. 68000, 68030, 68040 e.g. produced by Motorola)
— IA32 (e.g. the x86 family produced by Intel (e.g. i486, Pentium), AMD (e.g. K6, K7),
and Cyrix)
— IA64 (e.g. Itanium produced by HP/Intel)
— MIPS (e.g. R4000, R10000 produced by SGI)
— PA-RISC (e.g. 8000, produced by HP)
— PowerPC (e.g. G3, G4, produced by IBM/Motorola)
— SPARC (e.g. UltraSPARC II, UltraSPARC III, produced by SUN)
— DSPs. Examples are:
— DSP56300 (produced by Motorola)
— MSC8100 (produced by Motorola)
— TITMS320C6711 (produced by Texas Instruments).

In the present context, the term "register" should be understood as any memory space
containing data, such as a number, the memory space being for example a CPU register,
RAM, memory in an electronic circuit, or any data carrier, such as a hard disk, a floppy disk,
a Compact Disc (CD), a DVD, a data tape, or a DAT tape.

It should be understood that the present invention also relates to, in independent aspects,
data derived from the methods of the present invention. It should also be understood that
where the present invention relates to methods, it also relates to, in independent aspects,
computer programs being adapted to perform such methods, data carriers or memory means
loaded with such computer programs, and/or computer systems for carrying out the
methods.

Any and all computational operations involved in the methods of the present invention may
be carried out on or by means of an electronic device.

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

25

In one aspect, which constitutes an independent aspect of the present invention, a method of
performing numerical computations in a mathematical system comprising at least one
function, the method comprising the steps of:
- expressing the mathematical system in discrete terms,
— expressing at least one variable of the mathematical system as a fixed-point number,
- performing said computations in such a way that the computations include the at least
one variable expressed as a fixed-point number,
— obtaining, from said computations, a resulting number, the resulting number representing
at least one of:
— a. at least a part of a solution to the mathematical system, and
_ b. a number usable in further computations involved in the numerical solution of the
mathematical system,
the method further comprising:
— extracting a set of data which represents at least one of:
— i. a subset of digits of the resulting number, and
— ii. a subset of digits of a number derived from the resulting number.

A subset of a number may be regarded as a part of that number, such as some, but not
necessarily all digits or bits of the number. For example, the 8 least significant bits of a 16-bit
number may be regarded as a subset of the 16-bit number.

The term "extracting” covers, but is not limited to: outputting the number or subset in
question, for example as a keystream or a part of a keystream or as any other final or
intermediate result of a computational process; storing the number or subset in question ina
register, for example in order to allow for further use thereof, such as for further
computations, on the subset.

By extracting a subset of digits of a number instead of extracting the entire number, random
properties are improved in case the method is used in a pseudo-random number generator,
for example for encryption and/or decryption purposes. Moreover, as only a subset is
extracted, less information concerning the internal state of the mathematical system is
contained in the extracted set of data which enhances the security of an
encryption/decryption system incorporating the method.

Though the mathematical system may comprise a continuous system, for example a system
of differential equations, it may also or alternatively comprise a system which is originally
defined in discrete terms, for example in the case of a map. The at least one function of the
mathematical system may be non-linear, as discussed in more detail in section C below.

Usually, the subset of digits comprises k bits of an m-bit number, ksm, for example
extracting 8 bits of a 32-bit number. The number from which the subset is extracted and/or
the extracted set of data may be expressed as one or more binary number, octal number,
decimal numbers, hexadecimal number, etc. The k bits may be the least significant bits of
the number, or it may be k bits selected from predetermined or random positions within the

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

26

number from which the bits are extracted. For example, from a 64-bit number, bits Nos. 42,
47, 53, 55, 56, 57, 61, and 63 may be extracted, or bits Nos. 47-54.

In the methods of the present invention, one or more computations may be performed as
floating-point operations. The step of expressing at least one variable of the mathematical
system as a fixed-point number may thus comprise converting a floating-point type number
to an integer type number, optionally performing a certain manipulation on the integer
number, for example truncating it, and converting the integer number back to a floating-
point type number.

The methods of the invention may be applied for encryption and decryption, modulation of
radio waves, synchronization of chaos in picture and sound signals so as to reduce noise,
data compression, in control systems, watermarking, steganography, e.g. for storing a
document in the least significant bits of a sound file, so as to hide the document in digital
transmission.

Many SIM-cards and smart cards exhibit weaknesses to power analysis attacks, which
exploits the fact that the power consumption is directly related to the arithmetic functions
performed by the processor. To avoid this, a program for executing one of the methods
described herein may randomly execute some operations which only function is to disrupt the
systematic power consumption. The pseudo-random number generator may be used to
determine the operations to be performed.

The pseudo-random number generator can be used to generate keys for other encryption
algorithms, i.e. asymmetric or public-key algorithms. For example, it could be used to
generate pseudo-random numbers used to calculate at least one prime number. In this way it
is possible to generate the public and private key pair used in the RSA algorithm.

In the present context, the term "resulting number" should be understood as any number
occurring in the computations. More than one resulting number may be obtained. The
resulting number may, as stated above, be a part of the solution to the mathematical system
and/or an intermediate result, i.e. a number assigned to any variable or parameter of the
mathematical system or to any other variable or parameter used in the computations. In an
implementation of a mathematical method, the resulting number or a part thereof may be
extracted, for example as a pseudo-random number for use in an encryption/decryption
system. Alternatively, one or more mathematical and/or logical operations may be performed
on the resulting number or on a plurality of resulting numbers, so as to obtain a further
number which is extracted. All or only selected bits in a binary representation of the resulting
number may be extracted. It should be understood that a number generated from selected
bits of a number occurring in the computations may be referred to as the resulting number.
Thus, the term "resulting number" also covers any part of a number occurring in the
computations.

The methods of the invention are, as discussed above, useful in cryptography, for example in
the following implementations: a symmetric encryption algorithm, a public key (or

" asymmetric key) algorithm, a secure or cryptographic Hash function, or a Message

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

27

Authentication Code (MAC). These algorithms may, for example, be used in accomplishing

one or more of the following tasks:

-~ Ensuring confidentiality of digital data, so as to protect data from unauthorized access.

— Ensuring integrity of digital data, so as to ensure that information is accurate or has not
been tampered with.

— Authorization, e.g. to allow permission to perform certain tasks or operations.

— Authentication, such as user authentication, so as to verify the identity of another party,
or data origin authentication, so as to verify the origin of the data.

— Nonrepudiation, to provide proof of participation in an electronic transaction, for example
to prevent that a first person A sends a message to a second person B and subsequently
denies that the message has been sent. Digital signatures are used for this purpose. The
generation of a digital signature may incorporate the use of a public key algorithm and a
hash function.

The methods of the invention are also applicable to a so-called Hash function. A Hash
function provides a kind of digital fingerprint wherein a small amount of data serves to
identify other data, usually a set of data which is considerably larger than the aforementioned
small amount of data. Hash functions are usually public functions wherein no secret keys are
involved. Hash functions can also provide a measure of authentication and integrity. They are
often essential for digital signature algorithms and for protecting passwords, as a Hash value
of a password may be used for password control instead of the password itself, whereby only
the hash value and not the password itself needs to be transmitted, e.g. via a
communications network.

A Hash function employing a secret key as an input is often referred to as a MAC algorithm or
a "keyed Hash function". MAC algorithms are used to ensure authentication and data
integrity. They ensure that a particular message came from the person or entity from whom
it purports to have come from (authentication), and that the message was not altered in
transit (integrity). They are used in the IPsec protocols (cf. RFC 2401 available on
http://www.rfc-editor.org on 6 June 2003), for example to ensure that IP packets have not
been modified between when they are sent and when they reach their final destination. They
are also used in all sorts of interbank transfer protocols.

As discussed above, the methods of the invention may be implemented in a Hash or a MAC
algorithm. A Hash or a MAC algorithm calculates a checksum of an amount of data of an
arbitrary length, and gives the checksum as a result. The process should be irreversible (one-
way), and a small change of an input value should result in a significantly different output.
Accordingly, the sensitivity to data input should be high. Whereas a Hash function does not
use a key as a seed value, a MAC algorithm uses such a key which represents or determines
a seed value for the algorithm, whereby the result depends on the key. Instead of a key, the
Hash function relies on a constant value, for example certain bits from the number =.
Alternatively, a part of the data to which the Hash function is applied may be used as a seed
value.

A Hash/MAC algorithm may be implemented as follows:

SUBSTITUTE SHEET

WO 03/104969 PCT/DKO03/00375

28

— A mathematical system in the form of a logistic map is used in the algorithm, the logistic
map having the form: Xn.1=AxXa(1-X,), wherein Ais a parameter. Other chaotic systems
may be employed, such as the Lorenz system which is discussed in detail hereinafter.

— As the result of the algorithm should depend on the message m for which the checksum
is to be calculated, the message is incorporated in the system as a component thereof.
For example, a kind of coupling between the message and the dynamic variable, x, may
be performed as follows: X1 =AXa(L-Xn) +E(Xq-Mp).

— The parameters A and € and the initial value x, may be predetermined and/or derived
from the message. In the case of a MAC algorithm, the parameters A and € and the initial
value x, may, completely or partially, be determined by the secrete key.

— The system is iterated until the end of the message is reached. The last calculated value
of x or part thereof, such as the least significant digits, is denoted, for example, the Hash
value, the MAC or the checksum. Alternatively, a number of additional iterations may be
performed prior to extracting the resulting number. Instead of or in addition to extracting
the last calculated value of x, certain bits which have been ignored in the computations
may be extracted as the Hash value.

— The way of introducing the message, m, into the dynamical system can be varied. As an
example, a part of the message may be used to influence the x-variable in each iteration.
Such influence may, e.g., be achieved by XORing certain bits of the message into the
least significant digits of x.

For further details concerning Hash/MAC functions, reference is made to Applied
Cryptography by Bruce Schneier, Second Edition, John Wiley & Sons, 1996.

One possible field of use of the method of the methods of the invention is public-key
encryption, also referred to as asymmetric algorithms. The key used for decryption is
different from the key used for encryption. For example, a key-generation function generates
a pair of keys, one key for encryption and one key for decryption. One of the keys is private,
and the other is public. The latter may for example be sent in an unencrypted version via the
Internet. The encryption key may constitute or contain parameters and/or initial conditions
for a chaotic system. A plaintext is used to modulate the chaotic system which is irreversible
unless initiated by the private key. For decryption, a mathematical system is used which has
dynamics which are inverse to the dynamics of the system used for encryption.

B FIXED-POINT VARIABLES

Fixed-point variables are mentioned in section 1 above and will now be further discussed,
starting from a brief discussion of certain disadvantages related to floating point variables
which arise in connection with certain cryptographic methods.

The utilization of floating point variables in the numerical solution of mathematical systems
may create non-predictable truncation and/or rounding errors. In case of the mathematical
system to be solved being non-linear, and in particular in case of the system being chaotic,
the accuracy of the solution at all integration steps is of paramount importance, as a small
deviation at one step may confer huge deviations at subsequent steps. If the truncation
and/or rounding errors are created consistently in the same manner in any and all

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

29
computations, two solutions based on the same initial conditions are identical, and
accordingly the computations are reproducible. However, in most cases truncation and/or
rounding errors of floating point numbers are not entirely controlled by software but also by
hardware on which the software is running. Accordingly, truncation and/or rounding errors
are hardware dependent, and consequently truncations and/or roundings may be performed
differently in two different hardware processors. For most computations this is without
importance, as the truncations and roundings create inaccuracies of an order of magnitude
which is far below the required accuracy of the computations. But in the solution of, e.g.,
chaotic systems, a small deviation in the way truncations are performed may confer huge
deviations in the solution at later computational steps.

Therefore, with the aim of being able to control, by software, truncation or rounding errors
created by hardware, the present inventors have proposed the use of fixed-point variables.

In general, a fixed-point number type is denoted ®(a.p) where o is the number of bits used
to hold the integer part, and p the number of bits to hold the fractional part. The values of o
and B, and thus the position of the decimal point, are usually predetermined and stationary.
The fixed-point number can be either unsigned or signed, in which case @ is denoted U or S
respectively. In the latter case, a bit is needed to hold the sign, thus a+p+1 bits are needed
to hold S(a.B).The range of U(a.B) is [0;2%-2""], and the range of S(a.p) is [-2%2%-2"]. The
resolution of the fixed-point numbers is thereby 2.

The position of the decimal separator in a fixed-point number is a weighting between digits in
the integer part and digits in the fraction part of the number. To achieve the best result of a
calculation, it is usually desired to include as many digits after the decimal separator as
possible, to obtain the highest resolution. However, it may also be important to assign
enough bits to the integer part to ensure that no overflow will occur. Overflow is loading or
calculating a value into a register that is unable to hold a number as big as the value loaded
or calculated. Overflow results in deletion of the most significant bits (digits) and possible
sign change.

In the various aspects of the present invention, the position of the decimal separator may be
assigned at design time. To choose the right position, the possible range of the number, for
which the position is to be chosen, is preferably analyzed. The most positive and most
negative possible values are determined, and the highest absolute value of the two is
inserted into the following formula:

a = ceil(log,(abs(MaxVal)))

to determine the value of a.

The position of the decimal point may vary between different fixed-point variables.However,
addition and subtraction operations require input numbers with similar positions. Hence, it is
sometimes necessary to shift the position of the decimal point. Right shift by n bits
corresponds to a conversion from @(a.p) to ®(a+n.p-n). Left shift by n bits will convert @(c..p)
to ®(a-n.p+n).Conversion of unsigned numbers is done by logical shift operations, whereas
arithmetical shifts are used for signed numbers.

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

30
The mathematical operations addition, subtraction, multiplication and division on fixed-point
numbers are carried out as plain integer operations. The addition and subtraction operations
may result in a number of size ®(a+1.p) because of the carry. However, the result is
normally truncated to give a number with the same format as the input.

Multiplication and division do not require arguments with similar positions of the decimal
separators. However, prior to division, the numerator is expanded as it must have twice the
length of the denominator and the result. The results will have a format of: S(a.p)'S(c.d) =
S(a+c+1.p+d) and S(a+c+1.p+d) / S(a.p) = S(c.d). For unsigned multiplication and division
S(o+c+1.p+d) is replaced by U(a+c.p+d). Exceeding digits in the multiplication compared to
the predetermined result format are cut off to match the target register size.

A fixed-point number may be handled by representing the integer part of the fixed point
number in one register, and representing the fractional part in another register.

Further information on fixed-point calculations can be found in “Fixed-Point Arithmetic: An
Introduction” by R. Yates (The text can be found at
http://personal.mia.bellsouth.net/lig/y/a/yatesc/fp.pdf on 6 June 2003).

In the present context, a fixed-point variable is defined as an integer type number with an
imaginary decimal separator, an integer being defined as a number without digits after the
decimal separator. Accordingly, real numbers are represented by inserting the imaginary
decimal separator (or decimal point) at some fixed predetermined position within an integer,
for example four digits from the left. The position might be changed as a consequence of a
mathematical operation on the number. The position may also be forced to be changed by
use of a logical operation.

As it occurs from the above discussion, fixed-point numbers are integers, on which a virtual
decimal separator is imposed. The number consists of a so-called “integer part”, referring to
the bits before the decimal separator, and a “fraction part” referring to the bits after the
decimal separator. In the present context, bits are also referred to as digits and vice versa.

In a computer program comprising fixed-point number computations or in an electronic
circuit or device for performing fixed-point computations, means may be provided for
determining a suitable location of the decimal separator. Thus, the program, circuit or device
may, during computations, detect possible overflow and, in the case of a possible overflow
being detected, change the number of bits on either side of the decimal separator, i.e. the
location of the decimal separator in a register which stores the variable or variables in
question. This change may be performed by moving the decimal separator one or more
positions to the left or to the right. Preferably as many bits as possible are used to the right
of the decimal separator in order to minimize the number of possible unused bits in the
register and thereby to obtain an optimal accuracy in the computations. By changing the
position of the decimal separator, though some computational speed may be lost due to the
requirement for additional operations for detecting possible overflow, the accuracy of the
computations is optimized while the risk of overflow is eliminated or reduced, without a
designer or programmer of an application incorporating the computer program, circuit or

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

31
device needing to make considerations concerning accuracy and overflow in a design or
programming phase. Alternatively, or additionally, a test program may be provided which
determines when or where in the computations overflow will occur or is likely to occur, so
that a programmer or designer of the program may fix the position of the decimal separator
in one or more variables such that no overflow occurs, whereby, in the final implementation,
no determination of possible overflow is needed. However, the determination of possible
overflow may also be incorporated in the final implementation as an additional safeguarding
feature. Further, the programmer or designer may choose to implement changing of the
decimal separator at fixed, predetermined stages in the computations.

As discussed above, a real number may be expressed by means of one or more fixed-point
numbers. Likewise, a complex number, c=a+ib, where i*>=-1, may be expressed by means of
one or more fixed-point numbers, e.g. by expressing the real part a and/or the imaginary
part b as a fixed-point number. In case only one of the real and imaginary parts is expressed
as a fixed-point number, the other one may be expressed by means of any other type of
number, such as a floating-point or an integer number.

In the methods according to the invention, the computations involving the variable expressed
as a fixed-point number may possibly include computations on other types of variables,
including one or more variables expressed as other kinds of numbers, such as floating point
numbers and integer humbers.

The use of fixed-point humbers has the advantage over floating-point numbers that rounding
and/or truncations errors occurring in fixed-point number computations are identically
defined on all processors. By use of fixed-point variables, decimal numbers may be expressed
as integer type numbers where an imaginary decimal separator is placed in the number. In
cases where floating-point variables are used, truncation/rounding errors are not performed
identically on different types of processors.

As a consequence of truncation/rounding errors being controllable or predictable, numerical
computations in mathematical systems which are sensible to truncation/rounding errors may
be performed in a reproducible manner. Thus, for example, non-linear systems, in particular
chaotic systems, may be numerically solved in a reproducible manner. This opens up for
utilizing chaotic systems in pseudo-random number generators, such as in
encryption/decryption algorithms, without the need for feed-back or correction algorithms or
registers in order to prevent inaccuracies, or without the need for synchronization techniques
ensuring identical solution of the systems in encryption as in decryption. This in turn
contributes to the computations, the pseudo-random number generation and/or the
encryption/decryption algorithm being fast as compared to algorithms involving such feed-
back or correction algorithms or synchronization techniques. Further, there is no need for
transmission of synchronization data with the encrypted data, such synchronization data
often amounting to a size comparable to the size of the encrypted data, which may be a
major problem due to, e.g., lack of bandwidth when transmitting data via the Internet.
Further, transmission of such data compromises the security of the system. The
computations are also performed faster than computations in methods involving a floating-
point variable for the variable in question, as in computations involving fixed-point numbers

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

32
the hardware processor performs computations as integer number computations,
computations on integer number being generally faster than computations on floating-point
numbers.

C APPLICABLE MATHEMATICAL SYSTEMS AND COMPUTER IMPLEMENTATION THEREOF,
IN PARTICULAR WITH A VIEW TO CRYPTOGRAPHIC APPLICATIONS

In the methods described herein, the mathematical system may be a discrete or a continuous
system. Various types of mathematical systems are discussed below.

The computations may involve at least a first and a second fixed-point number, each fixed-
point number having a decimal separator, wherein the decimal separator of the first fixed-
point number is positioned at a position different from the position of the decimal separator
of the second fixed-point number. The decimal separator of the first and second fixed-point
number may be positioned at selected positions.

The resulting number may be expressed as a variable selected from the group consisting of:
an integer number,

a floating point number, and

a fixed-point number.

In general, the mathematical system may comprise one or more differential equations, or
one or more discrete maps or mappings. In the case of differential equations, the
mathematical system may comprise one or more ordinary differential equations and/or one
or more partial differential equations. In the case discrete mappings, the mathematical
system may comprise one or more area-preserving maps and/or one or more non area-
preserving maps. At least one function of the mathematical system may be non-linear.

The method is also applicable to other types of functions or equations, including integral
equations. The at least one non-linear differential equation or mapping may exhibit chaotic
behavior, i.e. it may have at least one positive Lyapunov exponent, in which case the method
may comprise computing a Lyapunov exponent at least once during the mathematical
computations. In case of a mathematical system exhibiting chaotic behavior, the method may
advantageously be applied in a pseudo-random number generating method, such as in an
encryption/decryption method. At least one Lyapunov exponent may be computed at least
once during the mathematical computations in order to determine whether the mathematical
system exhibits chaotic behavior. If this is not the case, e.g. if the computed Lyapunov
exponent is not positive, the computations may be interrupted and resumed from other initial
values and/or other parameters. '

The at least non-linear differential equation or mapping preferably governs at least one state
variable, X, which may be a function of at least one independent variable, t.

More specifically, the mathematical system may comprise one or more of the following
systems:

SUBSTITUTE SHEET

10

15

20

25

30

35

WO 03/104969 PCT/DKO03/00375

33
— continuous differential equations, including:
- partial differential equations, such as the Navier-Stokes equations,
- ordinary differential equations, including:

- autonomous systems, such as dissipative flows, including the Lorenz system,
coupled Lorenz systems, the Réssler system, coupled Rossler systems, hyper
chaotic Réssler system, the Ueda system, simplest quadratic dissipative chaotic
flow, simplest piecewise linear dissipative chaotic flow

— Hamiltonian systems, including the N body problem from celestial mechanics, for
N>3,

— Non-autonomous systems, including forced systems, such as the forced Duffing’s
equation, forced negative resistance oscillator, forced Brusselator, forced damped
pendulum equation, coupled pendulums, forced double-well oscillator, forced Van
de Pol oscillator,

- delay differential equations, including delay logistic equation, population models,

— Discrete mappings, including
— area preserving as well as non area-preserving maps, including

— maps which are piecewise linear in any dimension, such as a tent map, an
asymmetric tent map, 2x modulo 1 map, and also the Anosov map, the
generalized Baker’'s map, the Lozi map, as well as higher order generalizations
and/or couplings of piecewise linear maps

- polynomial maps (quadratic or higher), including a logistic map, the Hénon map,
higher order generalizations and/or couplings of polynomial map, e.g. N coupled
logistic maps, N coupled Hénon maps,

- Trigonometric maps, including a Sine circle map, a Sine map, the Chirikov
standard map, the Sinai map, the standard map, and Higher order generalizations
and/or couplings of trigonometric maps,

— other maps, including the Bernoulli shift, a decimal shift, the Horseshoe map, the
Ikeda map, a pastry map, a model of a digital filter, a construction of the Hénon
type map in two dimensions from an arbitrary map in one dimension, the
DeVogelaere map,

— Cellular automata,
— Neural networks.

The Réssler system referred to above has the form:

dx

a7
dy _

= Xray

dz

9z _y -
i +2(x - ¢)

wherein typical parameter values are: a = b = 0.2, ¢ = 5.7. The Rossler system is described
in more detail in O.E. Rossler, Phys. Lett. 57A, 397-398 (1976).

The Hénon map referred to above has the form:

40 Xml] _{1+Ya- axn2
YN+1 bxn

SUBSTITUTE SHEET

10

15

20

25

30

35

40

WO 03/104969 PCT/DKO03/00375

34

wherein typical parameter values are: a = 1.4, b = 0.3. For more details, see M. Hénon,
Commun. Math. Phys. 50, 69-77 (1976).

A logistic map of the form Xq+1=pX,(1-X,) may be employed. The Anosov map, often referred
to as the cat map having the form:

et e
yn+1 1 2 Yn
may also be used.

The map is composed of two steps; i) a linear matrix multiplication, ii) a non-linear modulo
operation, which forces the iterates to remain within the unit square. It is possible to
generalize the Anosov maps to an arbitrary number of variables. Furthermore, the matrix
may have arbitrary coefficient only limited by the requirement of being area-preserving and
having at least one positive Lyapunov exponent for the system. These exponents can be
calculated analytically for such systems. For more details, reference is made to A.J.
Lichtenberg and M.A. Lieberman, Regular and Chaotic Dynamics, Springer 1992 (p.305).

Systems of arbitrarily high dimension may be constructed by coupling systems of lower
dimensions, referred to as subsystems. The subsystems can be identical or different. They
can e.g. be different by using different parameters in the various subsystems, and/or they
may be different by employing different equations. The coupling can be a function of one or
more of the state variables in the individual subsystems. Several types of coupling exist,
including local and global coupling.

Local coupling implies that the individual subsystems are affected through a coupling by
some but not all the subsystems in the entire system. Examples of local couplings are
unidirectional and bi-directional coupling, which implies that the coupling is a function of one
and two subsystems, respectively. By use of these types, map lattices can by constructed. An
example of such a system with a local unidirectional copuling is the following N-dimensional
system:

X = fl(xl)"‘ Xy

Xy = fz(xz)"'gzxn

Xy —> fN(xN)+ ENXN-15
where f;_y are mathematical functions and &,y are coupling constants. The mathematical
functions and coupling constants may be different for each subsystem.

A usual choice of local coupling can be the diffusive coupling, referring to a type of coupling
proportional to the difference between two subsystems. This can be defined as:

X > f(X)+e(X - Y),

where X and Y are two subsystems of at least dimension one and € is a matrix of coupling
constants.

The term global coupling refers to situations where all subsystems are coupled to each other,
sometimes termed an all-to-all coupling. This can, for instance, be achieved by letting the

SUBSTITUTE SHEET

10

15

20

25

30

35

40

WO 03/104969 PCT/DKO03/00375

35

coupling be a function of the mean field, i.e. the average of all the subsystems. This is
defined by:

N
X o) +e=' X,
N

where X is a subsystem of at least dimension one and € is a coupling constant.

Furthermore, the coupling function can be any linear or non-linear function of the
subsystems.

An example of a local bi-directional coupling is given in the following equation:
X = f(xl)+ 8[Xi-1 - (1 + Y)Xi + YXi+1]ri € [11 M]'

Another type of local coupling is the unidirectional local coupling, where a given state is
coupled to one of its neighbouring states. This can for example be defined as:

X, = f(x,) + sg(x,_,)i e [1,M]

where g is either a linear or non-linear function. For the linear case, the system is simply
defined by:

X, = f(x,)+ex,_,i e [1,M]

Furthermore global coupling can be applied, i.e. each individual system is coupled to all other
systems. This could be done in the following way:

X, = F(x,)+ €g(X, , X, X5.. Xy)i € [1,M]

where g is a function of all states in the system and g can be a linear or nonlinear function.
Furthermore g can be a linear or nonlinear function of a subset of the M states.

Further, a map lattice which is a type of coupled maps may be employed. In the example
below, x; denotes a variable on a lattice (represented by an N-dimensional array of points),
the lattice being a 1D array with M points. Each point on the lattice is updated according to
the function on the right hand side of the arrow, where the function f may for example be the
logistic map. As is seen, neighbouring points on the lattice couple linearly, where the linear
coupling is adjusted by the parameters y and e. Boundary conditions refer to the way lattice
elements 1 and M are treated.

X, = fx)+elx,, - (L + I+)i [LM].

Finally, certain simple 3D flow equations may be employed, the systems consist normally of
fewer terms than the Lorenz and Rdssler systems. That is, either five terms and two
nonlinearities or six terms and one nonlinearity. In comparison the Lorenz and Rdssler
systems each consist of seven terms, cf. J. C. Sprott, Phys. Rev. E 50, R647-R650 (1994).
Appropriate systems are given in the below list:

dx/dt =y, dy/dt = -x + yz, dz/dt = 1 - y*
dx/dt = yz, dy/dt = x -y, dz/dt = 1 - xy
dx/dt = yz, dy/dt = x - y, dz/dt = 1 - X*

SUBSTITUTE SHEET

10

15

20

25

30

35

WO 03/104969 PCT/DKO03/00375
36

dx/dt = -y, dy/dt = x + z, dz/dt = xz + 3y?

dx/dt = yz, dy/dt = x* - y, dz/dt = 1 - 4x

dx/dt = y + z, dy/dt = -x + 0.5y, dz/dt = x* - z
dx/dt = 0.4x + z, dy/dt = xz -y, dz/dt = -X + y
dx/dt = -y + Z%, dy/dt = x + 0.5y, dz/dt = x -z
dx/dt = -0.2y, dy/dt = x + z, dz/dt = x + y* -z
dx/dt = 2z, dy/dt = -2y + z, dz/dt = -x + y + ¥*
dx/dt = xy - z, dy/dt = x -y, dz/dt = x + 0.3z
dx/dt = y + 3.9z, dy/dt = 0.9x* - y, dz/dt = 1 - x
dx/dt = -z, dy/dt = -x* -y, dz/dt = 1.7 + 1.7x + ¥
dx/dt = -2y, dy/dt = x + 2%, dz/dt = 1 + y - 2x
dx/dt =y, dy/dt = x - z, dz/dt = x + Xz + 2.7y
dx/dt = 2.7y + z, dy/dt = -x + y?*, dz/dt = x + Y
dx/dt = -z, dy/dt = x - y, dz/dt = 3.1x + y* + 0.5z
dx/dt = 0.9 -y, dy/dt = 0.4 + z, dz/dt = xy - z
dx/dt = -x - 4y, dy/dt = x + Z%, dz/dt = 1 + X

A further mathematical system is described below with reference to Fig. 28, cf. the below
description of the drawings.

The Lorenz system comprises the following differential equations:

3_);=G(Y”X)I
%%:rx-y—xz,
j—i:xy—bz,

wherein X=(x, Yy, z) are state variables, t is the independent variable, and o, rand b are
parameters.

In case the following conditions are fulfilled:
(c+b+3)
o tb+3)
(c-b-1)
the stationary points of the Lorenz system are not stable, in which case the Lorenz system is
likely to exhibit chaotic behavior. The parameters may be constant or variable, variable
parameters contributing, e.g., to the results of the computations being more unpredictable

(O‘—b—l)>0 , r>1, r> , o,r,b>0,

which may be useful in a pseudo-random number generating method or in an
encryption/decryption method.

In the case of a non-linear mapping, the computations may comprise numerically iterating

the non-linear function, the iteration being based on an initial condition X, of the state
variable X.

SUBSTITUTE SHEET

10

15

20

25

30

35

40

WO 03/104969 PCT/DKO03/00375

37

The step of performing computations may comprise numerically integrating the non-linear
differential equations by repeatedly computing a solution Xp1 based on one or more previous
solutions X, m<n+1, and a step length, AT, of the independent variable, t. Preferably, at
least one initial condition, X,, of the state variable, X, and an initial step length, ATy, are
provided. The step length may be given before the computations are initiated, or it may be
computed as the computations proceed. For example, the initial step length, AT,, may be
computed from the initial condition Xo.

The step length may vary between equations in a system. It may for example differ from one
equation to another. The step length vector AT is used to represent the step length for each
equation in the system. The AT vector has the same dimension as the system.

In a discretized formulation of the Lorenz system, the solution X,.; may be computed using
the step length AT=(Atyq, Aty,n, At;,) as follows:

Xyt = Xq + (0fa — X,))- ALy,

Yn+1 = YH + (Xn(r - Zn) - Yn) : Aty.n

Zoy =2y + (XY —bZ,)- AL,

wherein:

Aty is the step length used in the computation of Xn:1,

At , is the step length used in the computation of Yn+1,

At,, is the step length used in the computation of zp.1.

As mentioned above, the step length AT may be constant or may vary throughout the
computations. For example, in each or in some of the integration steps, at least one of the
elements (Atyn, Aty n, At;,) Of the step length AT may be a function of one or more numbers
involved in or derived from the computations. Also, in each integration step, at least one of
the elements (Atyn, Atyn, At,) of the step length AT may be a function of at least one
solution, X, which is a current or previous solution to the mathematical system. In each or
some of the integration steps, at least one of the elements (At,n, Aty,n, At;,) Of the step
length AT is a function of at least one step length, AT, which is a current or previous
integration step. The varying step length AT may be used in any numerical solution of
differential equations, and accordingly -there is disclosed a method of numerically solving
differential equations using a variable step length. In a pseudo-random number generating
method, such as in an encryption/decryption method, the variable step length may contribute
to improving the security of the system, i.e. to make the resulting keystream more
unpredictable.

In a pseudo-random number generating method, the initial condition X, and/or the initial step
length AT, may be calculated from or represent a seed value. In an encryption/decryption
method, at least a part of the initial condition X, and/or at least a part of the initial step
length AT, may be calculated from or represent an encryption key. Also, at least a part of at
least some of the parameters of the mathematical system may be calculated from or
represent a seed value or an encryption key. The key may be a public or a private key.

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

38
The extracted set of data may comprise a pseudo-random number which may be used for
encryption. A plurality of numbers resulting from the computations may be extracted. The
step of extracting may comprise extracting one or more numbers derived from a number, K,
of bits of the resulting number, such as the k least significant bits from the resulting number
or numbers, which contributes to the unpredictability of the derived number. The k bits
extracted may for example be derived by applying a modulus or a logical "and" function to
the resulting number or numbers. As an alternative to extracting the k least significant bits,
the step of extracting may comprise extracting k bits at predetermined or variable positions
in the resulting number. The number k may be an integer value selected from in the range
between 8 and 128, such as 16-64, such as 24-32. In case a plurality of numbers are
extracted, the extracted numbers may be derived by means of different values of k, which
further contributes to the unpredictability of the derived number. The extracted number or
numbers may be manipulated by means of arithmetic and/or logical operations, so as to
obtain a combined set of data. One or more of the extracted numbers and/or the combined
set of data may be combined with original data in an arithmetic and/or logical operation, so
as to encrypt the original data. Similarly, one or more of the extracted numbers and/or the
combined set of data may be combined with encrypted data in a arithmetic and/or logical
operation, so as to decrypt the encrypted data and obtain the original data. The arithmetic
and/or logical operation may comprise an XOR operation, multiplication or addition. For
example, the arithmetic and/or logical operation may comprise addition of the original data
and the combined set of data for encryption, and subtraction of the combined set of data
from the encrypted data for decryption. Alternatively, the arithmetic and/or logical operation
comprises subtraction of the combined set of data from the original data for encryption, and
addition of the combined set of data and the encrypted data for decryption. It may be
necessary to apply a modulus function when subtracting or adding humbers. In case the
extracted set of data comprises data derived from a plurality of numbers, one set of bits, for
example the k least significant bits may be extracted from one number, whereas other bits,
for example the 47th - 54th bit in a 64-bit number, may be extracted from the other humber.

In a block-cipher encryption/decryption system, the computations may involve data
representing a block of plaintext, so that the plaintext and a key is entered into, e.g., an
encryption system which gives the ciphertext as an output. The extracted set of data may be
used to define at least one operation on a block of plaintext in the block-cipher encryption
and decryption system. The methods described herein may be applied in a block-cipher
algorithm, wherein a block of plaintext is divided into two sub-blocks, and one sub-block is
used to influence the other, for example where a modified version of a first block (or a part
thereof) is used to influence the other (or a part thereof), e.g., by an XOR function. Such an
algorithm is generally referred to as a Feistel Network, cf. Applied Cryptography by Bruce
Schneier, Second Edition, John Wiley & Sons, 1996. In such case the first sub-block or the
modified version thereof may be transformed by a Hash function relying on the method, the
Hash function being given a cryptographic key as an input. In each round, a new
cryptographic key may be given as input to the Hash function. Alternatively, the same
cryptographic key may be given to the Hash function in all rounds. As a further alternative,
the cryptographic key may vary from block to block, for example by giving the same
cryptographic key as an input in all rounds for each block, or by giving different cryptographic
keys as inputs for each block and for each round.

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

39

The extracted data may be used as a decryption or an encryption key. In a system, wherein
computations are performed in two mathematical systems, the extracted set of data from
one of the systems may be used to generate keys or used as keys for the other system. The
extracted data may also be used in generation of data representing a digital signature,
and/or in watermarking of digital data.

In the methods described herein, the electronic device may comprise an electronic processing

unit having a register width, whereby the method may comprising the steps of:

- expressing at least one integer number of a bit width larger than said register width as at
least two sub-numbers each having a bit width which is at most equal to said register
width,

- performing at least one of said computations as a sub-computation on each of the sub-
numbers so as to arrive at at least two partial results, expressed as integer numbers of a
bit width smaller which is at most equal to the register width of the processing unit,

— concatenating the partial results to yield a representation of a result of said at least one
computation.

Analogously, computations on numbers of a width smaller than the register width of the

processor may also be performed, whereby an operation, for example a logical AND, may be

performed, so that the upper half of, e.g., a 64-bit register is not used for computations on
32-bit numbers. In order to maintain the sign of the number in question, the most significant
bit of, e.g., the 32-bit number may be copied into the upper 32 bits of the 64-bit register.

The integer numbers usually comprise or represent the fixed-point number or humbers used
in the computations. A fixed-point number expressed in terms of an integer type number
may represent a real number.

D DETECTION OF PERIODIC BEHAVIOR

A method of detecting periodic behavior in the solution of a mathematical system comprising
at least one non-linear function governing at least one state variable with respect to at least
one independent variable, comprises:
- expressing the mathematical system in discrete terms,
- performing computations so as to obtain resulting numbers, the resulting numbers
3representing at least parts of solutions to the mathematical system,
— storing selected solutions in an array, A, in a memory of the electronic device, the array
being adapted to store a finite number, n+1, of solutions,
— determining whether at least one of:
— a current solution, and
— a particular one of said solutions stored in the array
is substantially identical to another solution stored in the array. It should be understood that
this method constitutes an independent aspect of the present invention.
The steps of performing computations, storing selected solutions, and determining may be
performed continuously during the computations, i.e. repetitively during the computations,
such as in each computational step, such as in connection with each iteration.

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

40
If a current solution or a particular one of the solutions stored in the array is substantially
identical to one or more other solutions stored in the array the solution of the mathematical
system is likely to show periodic behavior. In case one of the methods described herein is
used in a pseudo-random number generating method, in particular if it is used in an
encryption/decryption method, such periodic behavior is undesirable, as it negatively
influences the unpredictability of the generated pseudo-random numbers or the keystream.
By applying the above method, periodic behavior may be detected.

The step of determining whether a current solution or a particular one of the solutions stored
in the array is substantially identical to one or more other solutions stored in the array
preferably comprises determining whether the solutions are completely identical. When
solving a mathematical system expressing an array of state variables X, the step of
determining may comprise determining whether only some of the entries of X are
substantially identical.

In order to save computational time and/or memory, only selected solutions may be stored in
the memory.

In the method, each entry in the array may contain a solution having an age which is

growing by array level, A, 0<i<n, and the method may comprise:

— at the step of storing selected solutions in the array: storing a current solution at the 0'th
level, A,, in the array, A, thereby overwriting an old value stored at the 0'th level in the
array, A,

— if a 0'th predetermined criterion is fulfilled: transferring the old value to the 1'st level in
the array, A, before the 0'th level is overwritten by the current solution, and

for the 1st level and each further level i in the array:

— if an i'th predetermined criterion for level i is fulfilled: transferring the old value stored at
the i'th level to the i+1'st level in the array, A, before the i'th level is overwritten by the
value transferred from the i-1'st level,

if the n'th level is to be updated: discarding the old value previously stored at the n'th level.

For each level, i, in the array, the number of times an old value stored at the i'th level has
been overwritten by a new value without the old value being transferred to the i+1'st level
may be counted, the i'th predetermined criterion being fulfilled if the old value has not been
transferred for a predetermined number of times. The predetermined number of times may
be the same for all levels of the array, A, or it may vary between the levels. The
predetermined number of times for the i'th level of the array, A, may for example be
dependent on one or more values stored in the array, such as when there occurs a change of
sign in one or more of the values.

The step of
determining whether a current solution or a particular one of said solutions stored in
the array is substantially identical to one or more other solutions stored in the array
may only be performed when a test criterion is fulfilled. For example, the test criterion may
be fulfilled when the sign of at least one state variable changes from + to -, or from - to +,
or both. The test criterion may also be fulfilled when there occurs a change of sign of at least

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

41
one derivative of at least one state variable with respect to at least one independent varlable,
in which case the method further comprises computing the derivative.

In the method, a test value may be computed from the at least one state variable and/or
from the derivative, the test criterion being based on the test value. The test criterion may
for example be fulfilled when there occurs a change of sign in the test value or in a derivative
of the test value, or predetermined values may be provided.

E PSEUDO-NUMBER GENERATION AND ENCRYPTION/DECRYPTION

A method of generating a pseudo-random number, comprises:
I) expressing a mathematical system in discrete terms,
II) defining a seed value representing at least an initial condition for the mathematical
system,
III) expressing at least one variable of the mathematical system as a fixed-point humber,
1V) performing computations including the at least one variable expressed as a fixed-point
number and obtaining, from said computations, a resulting number, the resulting number
representing at least one of:
a. at least a part of a solution to the mathematical system, and
b. a number usable in further computations involved in the numerical solution of the
mathematical system,
V) extracting, as the pseudo-random number, a number derived from at least one number
which has occurred during the computations. This method constitutes an independent aspect
of the present invention.

The seed value may be a user-defined value, such as an encryption/decryption key in case
the method is applied in an encryption/decryption method.

The pseudo-random number may be extracted as a number derived from the k digits of the
one or more numbers which have occurred during the computations, e.g. the k least
significant bits or k selected bit from the one or more numbers.

The method may comprise repeating steps IV) and V) until a given amount of pseudo-
random numbers has been generated.

A given amount of pseudo-random numbers may be generated and stored in a memory of
the electronic device as a spare seed value, which may, e.g., be used if periodic behavior is
detected by the above method or by another method. The given amount of pseudo-random
numbers may be stored internally in an algorithm.

The method may further comprise a method for detecting periodic behavior as discussed
above. In that case the method for generating a pseudo-random number may comprise, if
the step of:
determining whether a current solution or a particular one of said solutions stored in
the array is substantially identical to one or more other solutions stored in the array

SUBSTITUTE SHEET

10

15

20

25

30

35

40

WO 03/104969 PCT/DKO03/00375

42
reveals that the current solution or the particular solution is identical to one or more other
solutions,
interrupt the pseudo-random-number generation, i.e. interrupting repetition of steps 1V) and
V),
use the spare seed value as the seed value in the step II),
resume the pseudo-random-number generation, i.e. resuming repetition of steps IV) and V).

Thus, for example, in an encryption/decryption method, a spare encryption/decryption key
may be used if periodic behavior is detected.

Prior to the step of resuming the pseudo-random number generation, a given amount of
pseudo-random numbers may be generated and stored, in a memory of the electronic device,
as a new spare seed value. Each level in the array, A, is preferably reset prior to step 1V),
when steps IV) and V) are initiated with a new seed value at step II).

A method of encrypting a set of original data into a set of encrypted data, comprises the
steps of:
A) generating a pseudo-random number by performing the steps of:
I) expressing a mathematical system in discrete terms,
II) defining an encryption key representing at least an initial condition for the
mathematical system,
III) expressing at least one variable of the mathematical system as a fixed-point
number,
1V) performing computations including the at least one variable expressed as a fixed-
point number and obtaining, from the computations, a resulting number, the resulting
number representing at least one of:
a. at least a part of a solution to the mathematical system, and
b. a humber usable in further computations involved in the numerical solution of the
mathematical system,
V) extracting, as the pseudo-random number, a number derived from at least one
number which has occurred during the computations,
B) manipulating the original data and the pseudo-random number by means of at least one
of:
i. an arithmetic operation, and
ii. a logical operation,
so as to obtain a combined set of data, the combined set of data being the encrypted data.

Prior to step A), a sub-set of the original data may be separated from the set of data, and
step B) may be performed on the sub-set of data. This step may be repeated until a plurality
of sub-sets which in common constitute the entire set of original data have been encrypted.

The pseudo-random number may be extracted as a number derived from the k bits of the

one or more numbers which have occurred during the computations, e.g. the k least
significant bits or k selected bits.

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

43

Steps IV) and V) may be repeated until a given amount of pseudo-random numbers has been
generated.

A given amount of pseudo-random numbers may be generated and stored in a memory of
the electronic device as a spare encryption key. For example, a number resulting from or
occurring in at least one integration or iteration step of the computations may be stored as a
spare encryption key. The spare encryption key may, e.g., be used if encryption is
interrupted due to the occurrence of periodic behavior in the solution to the mathematical
system. In case no output of the spare encryption key is needed, it may be stored internally
in an encryption algorithm. When the method is used for decryption, the spare key is a
decryption key.

As it appears from the above, the method may comprise a method for detecting periodic
behavior, in which case the method for encrypting may comprise, if the step of
determining whether a current solution or a particular one of said solutions stored in
the array is substantially identical to one or more other solutions stored in the array
reveals that the current solution or the particular solution is identical to one or more other
solutions,
interrupt the pseudo-random number generation, i.e. interrupting repetition of steps IV) and
V),
use the spare encryption key as the encryption key in step II),
resume the pseudo-random number generation, i.e. resuming repetition of steps IV) and V).

Prior to the step of resuming the pseudo-random number generation, a given amount of
pseudo-random numbers may be generated and stored in a memory of the electronic device
as a new spare encryption key.

Preferably, each level in the array, A, is reset prior to step 1V), when steps IV) and V) are
initiated with a new seed value at step II).

A method of decrypting a set of encrypted data which has been encrypted by the method
discussed above, comprises the steps of:

a) performing step A) as defined above in connection with the encryption method, so as to
extract the same pseudo-random number as extracted in step V) of the encryption method,
b) manipulating the encrypted data and the pseudo-random number by means of arithmetic
and/or logical operations, so as to obtain the original, i.e. decrypted, version of the data.

Prior to step a), a sub-set of the encrypted data may be separated from the set of encrypted
data, and in case the sub-set of data has been encrypted by the above encryption method,
the method of decrypting may comprise performing steps a) and b) on the sub-set of data.
This step may be repeated until a plurality of sub-sets which in common constitute the entire
set of encrypted data have been decrypted.

Any of the steps of the encryption method may be applied in an identical manner when

decrypting the encrypted data as during the previous sequence of encrypting the original
data.

SUBSTITUTE SHEET

10

15

20

25

30

35

40

WO 03/104969 PCT/DKO03/00375

a4
Foo PROCESSING IN A PLURALITY OF INSTANCES IN PARALLEL

A method of generating a pseudo-random number, comprises, in one instance:

I) expressing a mathematical system in discrete terms,

IT) defining a seed value representing at least an initial condition for the mathematical
system,

IIT) expressing at least one variable of the mathematical system as a fixed-point humber,
IV) performing computations including the at least one variable expressed as a fixed-point
number and obtaining a resulting number, the resulting number representing at least one of:
a. a part of a solution to the mathematical system, and

b. a number usable in further computations involved in the numerical solution of the
mathematical system,

V) extracting, as the pseudo-random number, a number derived from at least one number
which has occurred during the computations,

performing steps I) - V) in a plurality of instances in parallel. This method constitutes an
independent aspect of the present invention.

Computations in the two or more instances may be performed either at the same time, or
successively. Thus, the computations in the two or more instances may be performed by
executing instructions which process a plurality of computations at the same time, or by
executing instructions which only process a single computation at a time.

Thus, pseudo-random number generation in a plurality of instances in parallel may, in some
cases, be faster than if the steps are performed in one instance only, in particular if the
hardware on which the method is executed supports parallel processing. Further, by coupling
the two or more instances, a larger key length in encryption may be applied than if only one
instance were used. For example, one part of an encryption key may be used for a first
instance, and another part of the encryption key may be used for a second instance.

Mathematical systems of arbitrarily high dimension may be constructed by coupling systems
of lower dimension, referred to as subsystems. For example, N logistic maps can be coupled,
yielding an N-dimensional system. The coupling mechanism can be engineered by including
either linear or non-linear coupling functions in the N different maps corresponding to the N
different variables. The coupling function in the map governing one variable may or may not
depend on all other variables. Alternatively, the coupling can be carried out by substituting
one of the N variables into one or more of the N-1 remaining maps.

Two or more logistic maps may be coupled through linear coupling terms. In the example
shown below, the parameters ¢; and e, in front of the coupling terms control the strength of
the coupling, i.e. the degree of impact that each one of the two logistic maps has on the
other one.

[Xn+1j| _ [7"1Xn(1 =X,)+ VA Xn):'

A\ B }“2yn(1 - yn)+ 8Z(Xn - Yn)

SUBSTITUTE SHEET

10

15

20

25

30

35

40

WO 03/104969 PCT/DKO03/00375

45
Numbers or data may be transmitted between the plurality of instances at least while
performing step IV) for each of the instances. The same applies to step V).

The method may comprise combining, by use of arithmetic and/or logical operations, a
plurality of pseudo-random numbers extracted at step V) in each of the instances into a
common pseudo-random number.

Parameter and/or variable values, or parts thereof, may be exchanged between the two
instances. Thus, for example X,;1 of one instance and X,., of another instance may be
exchanged after each iteration step, or X,;; of one instance may be exchanged with yn;1 of
another instance. Likewise, the step length At, may be exchanged between the two
instances. The exchange of variable or parameter values may also be achieved by performing
logical and/or arithmetic operations on a value of a first instance before using that value for
modifying a value of a second instance.

G USING A CRYPTOGRAPHIC KEY AS AN INPUT TO A MATHEMATICAL SYSTEM

A method of performing numerical computations in a mathematical system comprising at

least one function, may comprises the steps of:

- expressing the mathematical system in discrete terms,

— expressing at least one variable of the mathematical system as a fixed-point number,

- performing said computations in such a way that the computations include the at least
one variable expressed as a fixed-point humber,

— obtaining, from said computations, a resulting number, the resulting number representing
at least one of:

a. at least a part of a solution to the mathematical system, and
b. a number usable in further computations involved in the numerical solution of the
mathematical system,

the step of performing computations comprising:

- repeatedly computing a solution X,+; based on at least one previous solutions Xm,, m<n-+1,
whereby the step of performing computations is initiated based on at least one initial
condition, Xg, of the state variable, X,

the method further comprising:

— providing a cryptographic key as an input to said computations, whereby the
cryptographic key is used in generation of the initial condition X,. This method constitutes
an independent aspect of the present invention.

It should be understood, that, in the present context, the term "previous solutions" also
covers the current solution, X,.1.

The cryptographic key may further be used for initializing parameters of the mathematical
system.

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DK03/00375

46

H GENERATION OF AN IDENTIFICATION VALUE FOR IDENTIFYING OR PROVING THE
IDENTITY OF A SET OF DATA

A method of determining an identification value for identifying a set of data, comprises

performing numerical computations in a mathematical system comprising at least one

function, the method comprising the steps of:

- expressing the mathematical system in discrete terms,

- expressing at least one variable of the mathematical system as a fixed-point number,

- performing said computations in such a way that the computations include the at least
one variable expressed as a fixed-point number,

- obtaining, from said computations, a resulting number, the resulting number representing
at least one of:
a. at least a part of a solution to the mathematical system, and
b. a number usable in further computations involved in the numerical solution of the
mathematical system,

whereby a representation of at least part of the set of data is used in said computations, the

method further comprising:

- extracting, as said identification value, at least a part of said resulting number. This
method constitutes an independent aspect of the present invention.

Thus, the above method may be regarded a Hash function or Hash algorithm which have
been discussed in detail above. The identification value may be constituted by a number of
extracted numbers which have been extracted at different computational stages in the
numerical computations. Extraction may occur at each computational step or at each iteration
step, or it may occur only at selected computational stages.

The term "identification value" may be a hash value or a cryptographic check-sum which
identifies the set of data, cf. for example Applied Cryptography by Bruce Schneier, Second
Edition, John Wiley & Sons, 1996. In case a cryptographic key is used as a seed value for the
computations, the hash function is usually referred to as a MAC function (Message
Authentication Code).

The mathematical system may comprise a differential equation, such as a partial differential
equation or an ordinary differential equation, or a discrete mapping, such as an area-
preserving map or a non area-preserving map. The mathematical system may comprise at
least one non-linear mapping function governing at least one state variable X.

A non-linear mapping function may for example comprise a logistic map of the form
Xn+1=AXn(1-Xn), Wherein A is a parameter, X,., is the value of state variable x at the (n+1)'th
stage in the computations, and x, is the value of state variable x at the n'th stage in the
computations.

The logistic map may be modified into the form Xu.+1=AX,(1-Xa)+&(Xs-my), wherein A and € are
parameters, Xn.1 is the value of state variable x at the (n+1)'th stage in the computations, x,

SUBSTITUTE SHEET

10

15

20

25

30

35

40

WO 03/104969 PCT/DKO03/00375

47
is the value of state variable x at the n'th stage in the computations, and m, contains a
representation of an n'th portion of the set of data.

A cryptographic key may be used for at least partially determining at least one of the
following: A, € and an initial value X, of state variable x.

The mathematical system may comprise a set of non-linear mapping functions, such as:
— an Anosov map of the form:

[X"”] = [1 1]{)(“] mod 1, or
yl'H-l 1 2 YI"I

— a Hénon map of the form:
‘:xml:l - |:1 +Ya— aXnZ:I
Yo bXn

The mathematical system may comprise at least one non-linear differential equation and/or a
set of non-linear differential equations.

Preferably, the mathematical system has at least one positive Lyapunov exponent, whereby a
certain degree of irregular or chaotic behavior is achieved, whereby randomness properties of
the system and security are enhanced.

At least one Lyapunov exponent may be computed at least once during the mathematical
computations in order to determine whether the mathematical system exhibits chaotic
behavior. If this is not the case, e.g. if the computed Lyapunov exponent is not positive, the
computations may be interrupted and resumed from other initial values and/or other
parameters.

The at least non-linear differential equation preferably governs at least one state variable, X,
which is a function of at least one independent variable, t. The set of non-linear differential
equations may for example comprise a Lorenz system.

I HANDLING OF OVERFLOW, DELIBERATE GENERATION OF OVERFLOW

A method of performing numerical computations in a mathematical system comprising at

least one function, comprises the steps of:

- expressing the mathematical system in discrete terms,

— restricting the range of at least a selected variable of said function, the range being
sufficiently narrow so as to exclude values which the selected variable, by virtue of said
function, would assume if not restricted by said range,

- performing computations so as to obtain a resulting number, the resulting number
representing at least one of:

a. a part of a solution to the mathematical system, and
b. a number usable in further computations involved in the numerical solution of the
mathematical system,

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

48
-~ when the computations result in a value for the selected variable which is beyond the
range, assigning a value within the range to the selected variable. This method
constitutes an independent aspect of the present invention.

For example, if the upper bits of the value, which is beyond the range, are truncated, the
step of assigning a value within the range may be seen as a modulus function. The steps of
the method may thus provide deliberate overflow, e.g. in order to enhance randomness
properties of an encryption/decryption system and/or in order to make it more difficult to
derive information about internal states of the mathematical system from encrypted data.

The above method may thus be a part of a pseudo-random number generating method
which, e.g., generates pseudo-random numbers for use in at least one of encryption and
decryption. The mathematical system preferably has at least one positive Lyapunov
exponent.

K HANDLING OF IMAGINARY OR VIRTUAL DECIMAL SEPARATOR

A further method of performing numerical computations in a mathematical system

comprising at least one function, comprises:

- expressing the mathematical system in discrete terms,

— expressing at least one variable of the mathematical system as an integer number,

- placing an imaginary decimal separator in said integer number, whereby the integer
number represents a real number,

- performing computations including the at least one variable expressed as an integer
number so as to obtain a resulting number, the resulting number being expressed as an
integer number,

— positioning the imaginary decimal separator in the resulting number at a predetermined
position by performing at least one of the steps of:

— correcting the position of the imaginary decimal separator in the integer number, and
- placing an imaginary separator in the resulting number.
This method constitutes an independent éspect of the present invention.

The resulting number is usually a fixed-point number having a fixed position of the decimal
separator. Alternatively, the position of the decimal separator in the resulting number may be
corrected after the computation has been completed. A third possibility is to correct the
position of the decimal separator before and after performing the computation. This may be
relevant if not all positions to the left of the decimal separator in the resulting number are
used, and it is desired to maintain a relatively higher resolution in the computations than the
resolution of the resulting number. For example, the resulting number is desired to have a
S(10.21) format. Thus, the addition of, say, two S(7.24) format numbers may be performed
in a S(8.23) format which then is converted to the $(10.21) format resulting number.
Thereby, the carry from the second and third least significant bits in the arguments may
influence the resulit.

Finally, for some computations no correction of the position of any decimal separator may be
required or needed.

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

49

The correction of the position of a decimal separator are usually performed by means of shift
operations.

In a most general form, a method of performing numerical computations in a mathematical

system comprising at least one function, comprises the steps of:

- expressing the mathematical system in discrete terms,

~ expressing at least one variable of the mathematical system as a fixed-point number,

- performing said computations in such a way that the computations include the at least
one variable expressed as a fixed-point number,

— obtaining, from said computations, a resulting number, the resulting number representing
at least one of:
a. at least a part of a solution to the mathematical system, and
b. a number usable in further computations involved in the numerical solution of the
mathematical system.

L SUBSTITUTE COMPUTATIONS REQUIRING NO POSITIONING OF AN IMAGINARY
DECIMAL SEPARATOR

There is further disclosed, as an independent aspect of the present invention, a circuit for
performing numerical computations in a non-linear mathematical system comprising at least
one function, the circuit being designed or programmed so that the mathematical system, in
the circuit or in the computer program code, is represented in modified terms in such a way
that at least a selected one of the numerical computations involves an integer operation,
whereby said selected numerical computation in a non-modified representation of the
mathematical system would require one or more floating point operations or controlling the
positioning of a decimal separator in one or more fixed-point numbers, the circuit being
designed or programmed so that said selected computation is substituted by at least one
substitute computation on one or more integer numbers, whereby the mathematical system,
in the circuit or in the computer program code, is represented in such a way that the at least
one substitute computation requires no positioning of an imaginary decimal separator.

The mathematical system may exhibit chaotic behavior.

Thus, for example, the computations:

Xp+1=Xn+Yn and

Yn+r1=Xn+2Yn

may be performed by first computing X,.1. Then, the expression for y,:1 may be computed
as:

Yn+1=Xn+1+VYn

whereby the computational step of multiplying y, by 2 may be omitted.

Thus, by performing the substitute computations, computational time may be saved.

Likewise, there is disclosed a method of, in an electronic circuit, performing numerical
computations in a non-linear mathematical system comprising at least one function, the

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

50

method comprising, in the circuit or in a computer program segment according to which the

circuit operates, the steps of:

- representing the mathematical system in modified terms in such a way that at least a
selected one of the numerical computations involves an integer operation, whereby said
selected numerical computation in a non-modified representation of the mathematical
system would require one or more floating point operations or controlling the positioning
of a decimal separator in one or more fixed-point numbers,

— substituting said selected computation by at least one substitute computation on one or
more integer numbers, whereby the mathematical system, in the circuit or in the
computer program code, is represented in such a way that the at least one substitute
computation requires no positioning of an imaginary decimal separator,

performing said substitute computation.

BRIEF DESCRIPTION OF THE DRAWINGS

The above methods will now be further described with reference to the drawings, in which:

Fig. 1 is an illustration of a cryptographic method employing a squaring function of a state
variable X,

Fig. 2 is an illustration of a next-state function including a counter increment,
Fig. 3 is an illustration of the system of Fig. 1 with coupling,

Fig. 4 is an illustration of a system with counter incrementation,

Fig. 5 is an illustration of an encryption/decryption process,

Fig. 6 is an illustration of a sequence for encrypting, transmitting and decrypting electronic
data,

Fig. 7 is an illustration of an encryption sequence in a block cipher system,

Fig. 8 is an illustration of an encryption sequence in a stream cipher system,

Fig. 9 is an illustration of the key elements in an encryption/decryption algorithm,
Fig. 10 is a plot of a numerical solution to a Lorenz system,

Fig. 11 is an illustration of key extension by padding,

Fig. 12 illustrates a possible method of simultaneously computing two or more instances of
identical or different chaotic systems,

Fig. 13 illustrates the principle of performing a check for periodic solutions,

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

51
Fig. 14 shows a mathematical system with a periodic solution,

Fig. 15 illustrates transport between levels in the coordinate cache which stores previously
calculated coordinates,

Figs. 16-18 illustrate various criteria for the detection of periodic solutions,

Fig. 19 contains an illustration of a method for multiplication of 16-bit numbers on an 8-bit
processor,

Figs. 20-27 are flow charts showing the operation of one embodiment of an encryption
method,

Fig. 28 is an illustration of a mathematical system which may be employed in the methods of
the present invention.

DETAILED DESCRIPTION OF THE DRAWINGS

Figs. 1-5 illustrate various aspects and embodiments of the methods of the invention. As
discussed above, stream ciphers produce a stream of pseudo-random bits specified by a key.
This stream of bits is referred to as the keystream, and encryption is performed by bitwise
XOR'ing a plaintext with the keystream to obtain the ciphertext. The resulting ciphertext is
decrypted by reproducing the same keystream specified by the same key and XOR'ing the
ciphertext with this keystream to obtain the plaintext.

In order to generate a keystream, an embodiment of a Pseudo Random Number Generator
(PRNG) may be built upon 512 internal bits divided between eight 32-bit state variables and
eight corresponding 32-bit counter variables, which are incremented and added to the state
variables at each iteration. The PRNG works by iterating a system of eight coupled equations
based on a non-linear function and extracting 128 bits from the eight state variables after
each iteration.

The algorithm is initialized by expanding the 128-bit key into 512 bits which are used to
setup both the eight state variables and the eight counter values. The system, defined by the
next-state function shown in Fig. 1, is then iterated four times in order to diminish correlation
between the state variables and the key. Finally, the counter values are modified by XOR'ing
them with the state variables in order to obtain the initial counter value.

A function, in the following referred to as the "g-function” may be employed, the g-function
squaring a 32-bit number resulting in a 64-bit number, from which the upper 32-bits and the
lower 32-bits are XOR'ed, cf. Fig. 1.

The g-function is used in the system of eight coupled equations, the system being iterated

once in order to generate a new state from which 128-bits of random data are extracted.
Before each iteration the counter values are incremented according to the counter system

SUBSTITUTE SHEET

10

15

20

25

30

WO 03/104969 PCT/DKO03/00375

52

described below, and then the new state values are calculated by iterating the following
system, cf. also Fig. 2 illustration a system with counter incrementation:

Xy MG, +C)
Where)-f,. = (Xg,5%;5.--,X7;), With X, ; being the value of state j at iteration /,
éi =(Cy;>Cpy0+--5C7,;) » Where ¢ ; is the value of counter j at iteration /, G(X) being the g-

function evaluated on X , i.e. G(X) =(g(xo,),8(x,),-..,8(x,,))and M being a coupling

matrix defined by:

1 0 0 0 0 0 kg kg
k, 0 0 0 0 0 1
kg k, 1 0 0 0 0 0
0 1 kK 1 0 0 0 0
M=
0 0 kg kg 1 0 0 0
0 0 0 1 k 1 0 0
0 0 0 0 kg kg 1 0
0 0 0 0 0 1 k 1

where kg and k,, imply that the coupling inciudes permutations of the 32-bits, i.e. for a
permutation k, the expression kx g(x;) implies that some or all bits in the number g(x;)

are mixed. k; indicates that the permutation in question is a 8-bit left rotation, and ki

likewise indicates a 16-bit left rotation. Fig. 3 illustrates such a coupled system.

The dynamics of the counter is defined by C. = Z+C‘i . If a carry occurs, it is saved and

i+1

added at next iteration step. A =a,,q,,...,a,) may for example be a 256 bit constant

integer partitioned into eight 32-bit integers. Fig. 4 illustrates the counter incrementation.

After each iteration step, 128 bits of keystream are extracted by XOR'ing different state
variables. For example, the upper 16 bits and the lower 16-bits from two different state
variables may be XOR’ed creating a total of eight 16 bit combinations resulting in 128-bits of
random data. The keystream is XOR’ed with the plaintext/ciphertext to encrypt/decrypt. Fig.
5 illustrates such an encryption/decryption process.

Many practical applications of pseudo-random number generators require the use of a so-
called Initialization Vector (IV). For instance, when large amounts of data are
encrypted/decrypted it is necessary to start from one end of the data and continue through
all the data. If only a part of the data is to be decrypted, which is towards the end of the
data, it is necessary to iterate the appropriate number of times from the beginning of the
data to arrive at the output corresponding to the data to be decrypted, which requires a
number of computations which are of no direct use and which are time-consuming. This
problem can be solved by use of an IV. An 1V is also useful in a Virtual Private Network

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

53
(VPN). In such a network, the data may be divided into packages, and a unique 1V is
transmitted along with each package, whereby each package can be decrypted individually,
even if other packages are lost. The data to be encrypted/decrypted is divided into sections,
and each section is associated with a unique IV. The cipher is firstly setup by use of the key,
and thereafter the internal state of the mathematical system is changed in an unpredictably
way, as function of the IV. These changes may be performed on counters, on the state values
or on both. The output of the cipher is then a function of both the key and the IV, and
thereby a given section or package can be encrypted/decrypted, without iterating multiple
fimes.

In one example of a method employing an 1V, a master state of the mathematical system is
created by a usual setup procedure, and subsequently a counter state is manipulated as
follows: the 64-bit IV is expanded to 256-bits and XOR’ed on the counter values, and the
system is then iterated a number of times to make all bits in the state dependent on all bits
in the IV.

The algorithm discussed above is further elaborated in M. Boesgaard, M. Vesterager, T.
Pedersen, J. Christiansen and O. Scavenius: Rabbit: A New High-Performance Stream Cipher,
Proceedings of Fast Software Encryption (FSE) 2003, Springer, Berlin, (2003).

Fig. 6 is a general illustration of a sequence for encrypting, transmitting and decrypting
digital data. Fig. 7 is an illustration of an encryption sequence in a block cipher system, and
Fig. 8 is an illustration of an encryption sequence in a stream cipher system, block cipher and
stream cipher systems being discussed in the above discussion of the background of the
invention.

A method and algorithm for encrypting/decrypting data will now be described. The algorithm
is applicable for most purposes in data encryption/decryption. However, the nature of the
algorithm favours encryption of data streams or other continuous data, such as large files,
live or pre-recorded audio/video, copyrighted material (e.g. computer games or other
software) and data for storage (e.g. backup and/or transportation). Furthermore, the speed
of the algorithm makes it particularly suitable for these purposes. Because of the calculation
method, the algorithm is also useable on very small processors.

The algorithm relies on a Pseudo-Random Sequence Stream Cipher system (PRSSC). PSSRC
systems are characterized by a pseudo-random number generator (the content of the outer
boxes on Fig. 9), which generates a sequence of data, which is pseudo-random, based on a
binary key. This sequence, the so-called keystream, cf. Fig. 9, is used for the encryption and
decryption. The keystream is unique for each possible key.

Applying the logical XOR-function (stated in the figure by the @-symbol) on the plaintext and
an equal amount of keystream encrypts the plaintext. The output of the XOR-function is the
ciphertext. Applying the same approach once more on the ciphertext decrypts it into
plaintext. The decryption will only reveal the encrypted plaintext if the key used for the
decryption is fully identical to the key used for the encryption.

SUBSTITUTE SHEET

10

15

20

25

30

35

WO 03/104969 PCT/DKO03/00375

54
The integrity of the encrypted data is lying in the key capable of decrypting the ciphertext.
Therefore it must be difficult to guess the key. To ensure this, the basic design of the
algorithm is using a key of at least 128 bit. A key-size of 128 bit gives approximately
3.4.10% different keys.

The algorithm uses a system, which exhibits chaotic behaviour, such as a Lorenz system,

which consists of the following three ordinary differential equations:
£ oly-3)
L ey
%:xy—bz

where o, r, b are parameters, and x, y, z are state variables.
Fig. 10 shows a plot of a numerical solution to a Lorenz system.

The following parameter criteria should be satisfied for chaos to occur in the system:
(c+b+3)
(c-b-1)"
Even then, not all solutions will be chaotic. In the parameter space, there will be so called
periodic windows, referring to combinations of parameters, which give rise to periodic
solutions. Before implementing the system, analysis of the parameter-space will be
performed using calculation of a Lyapunov exponent. Generally, a positive Lyapunov
exponent indicates that the solution to the mathematical system is chaotic, cf. Edward Ott,
Chaos in Dynamical Systems, Cambridge University Press 1993.

(c—b—1)>0, r>1, r>oc o,r,b>0

The parameters are typically determined from a seed value, such as an encryption key or a
part of an encryption key. Preferably, algorithms embodying the method of the present
invention are designed so that only parameter values within predefined intervals are made
possible, whereby it is ensured that the probability of the system having a positive Lyapunov
exponent is high. Accordingly, the mathematical system will have a high probability of
exhibiting chaotic behavior. The Lyapunov exponent may additionally or alternatively be
determined at the beginning or during the mathematical computations, so as to be able to
detect non-chaotic behavior of the solution to the mathematical system.

The mathematical system could as well be another continuous system (such as the Réssler
system) or a discrete map (such as the Hénon map).

The integration is performed using a numerical integration routine. Provided an initial
condition and an integration step length, the numerical integration routine calculates the
solution at discrete mesh points, e.g. by using the Euler method or a Runge-Kutta method.
Using the Euler method to express the Lorenz equations in discrete terms, the solution can
be computed from the following equations

Xout = X + (0¥ = %,)- AL,

Yous = Yo + 0a(r = 20) = v,)- AL,

Zyy =Zp ¥ (XnYn -bz,)- At,

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

55
The calculations are performed using fixed-point numbers which are described below.

During numerical integration of a system of differential equations, the continuous non-
dependent variables (such as time t or space s) are discretized. This process refers to
replacing the continuous interval [a;b] with a set of discrete points.In such a system,
AT=(Aty, Aty, At,) is usually referred to as the step length of the integration or the integration
step.

Fig. 12 illustrates a possible method of simultaneously computing two or more instances of
the same system or different systems, such as chaotic systems. The method confers higher
computational speed and improved security, and a larger key may be used. Preferably there
should be some kind of communication or coupling between the two systems, like for
example exchange of step length, such as exchange of Aty, At,, and/or At,.

The internal variables are in the basic design 32 bits wide each, but any variable width could
be used. When using the Lorenz system, there are 6 internal variables (3 state variables and
3 parameters). Thus, 192 bits (in the basic design) are used to represent an internal state of
the generator given by a set of the internal variables. The padding of the 128 bits key up to
192 bits should be done in such a way as to avoid illegal values, i.e. to ensure that all
variables contain allowed values, and as to avoid that bits from the key are ignored. The
padding may include inserting predetermined values of zeros and ones or repetitions of bits
from the key. Fig. 11 contains an illustration of key extension by padding.

The integration may be performed with variable time steps, which e.g. can be calculated from
any one of the state variables. In the basic design, the step length 4t varies in each
integration step. This variation is coupled to the state variable X.

The keystream is extracted from some of the data related to the state variables. This may be
done by extracting the 8 least significant bits from the y variable or by collecting some of the
data wiped out in the calculations; e.g. from one or more of the multiplications performed in
the calculation of one step.

Usually, calculations on a chaotic system are performed on computers using floating-point
variables. However, this method introduces problems. One problem is that the use of
floating-point variables may cause generation of different keystreams on different computers
even if the same key is used, because of the slight differences in the implementation of
floating-points on different computer systems.

Therefore fixed-point variables are used. The fixed-point variable is based on the integer data
type; which is implemented identically on various computer systems. To express numbers,
such as real numbers, digits after the decimal point are needed, the decimal point being
artificially located somewhere else than at the end of the number (e.g. 12.345 instead of
12345).

To ensure proper operation of the algorithm, some tests should preferably be performed.
Some of these tests are performed at run-time, and others are performed at design-time.

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

56

As a part of the initialization process, an amount of keystream equal to the complete data
content of the state variables (e.g. 192 bits) or equal to the amount of a complete key (e.g.
128 bits) are generated using the algorithm and saved, in case the key has to be reloaded
due to detection of periodic solutions or stationary points. In that case, the saved sequence is
loaded as a new key, and the initialization, including extraction of extra key, is redone.

Do to the finite representation of numbers on a computer, any numerical solution will be
periodic. However, some keys may result in keystreams having a rather small period.

This is undesirable as it may compromise the security of the system. Therefore the there is
propsed an algorithm for detecting such periodic solutions. This algorithm watches the sign of
a variable or the slope of a variable. When using the Lorenz system, the check is performed
on x. When the sign changes from minus to plus (or plus to minus or just alters) the position
check is performed (the position check can also be performed after all iterations). The
position check compares the complete set of state variables with buffered sets from earlier. If
a complete match is found, a periodic solution is detected.

Stationary points of a dynamical system are sets of state variables which remain unchanged
during iteration. Such stationary points may be detected by comparing the current set of
state variables with the last set, or by checking if the slopes of all of the variables are zero or
by checking if both the current slope of one variable and its previous slope are zero.

Chaotic systems may, for one reason or another, enter into periodic solutions. This has to be
detected and corrected in order not to compromise the security of the system. If the solution
of the system becomes periodic, encryption may preferably be stopped, as the extracted
number from the solution of the mathematical system will also be periodic and hence not
pseudo-random. The test for periodic solutions includes comparing coordinates of the solution
with previously calculated coordinates. If a complete match is found, the system has entered
a periodic solution.

To reduce the amount of memory required to store previously calculated coordinates, and to
reduce the processing time required to test the coordinates, only selected coordinates are
stored in the coordinate cache. To reduce the processor time required to test for periodic
solutions, the test is only performed when the coordinates meet certain criteria. Fig. 13
illustrates the principle of performing a check for periodic solutions.

Fig. 14 shows a mathematical system with a period solution, more specifically a two-
dimensional non-linear system with a periodic solution. The system is deterministic meaning
that the solution is completely specified by its initial conditions. In theory, the solution will be
continuous, thereby consisting of infinite many points. When solving the system numerically,
the time-interval is discretized, and the solution is calculated at these points. The numerical
solution to a mathematical system is simply a sequence of coordinate sets. If we consider a
two-dimensional system, then the solution is specified at a number of points (X,y), illustrated
by dots on the curve in Fig. 14. The deterministic nature of the system implies that if the
solution ever hits a point, which it has visited previously, the solution is periodic and will keep
being periodic. This property is employed in the present test.

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

57
In order to test for periodic solutions during numerical integration, we have to compare the
present calculated coordinate set with the previous values. In order to do this, the coordinate
sets are stored as they are calculated. This storage works like a queue and is referred to as
the coordinate cache. A calculated coordinate set is compared to every coordinate set in the
coordinate cache. If a complete match (all values in the two coordinate sets are equal) is
found, the system is in a periodic state. If the test is passed without a complete match, no
periodic behavior is detected, and the calculations may continue. Before the calculations
continue, the tested coordinate is added to the cache, for further comparisons.

It will require too much memory and processor time to keep all calculated coordinate sets of
the system in the cache. Hence, only selected coordinates are stored, as illustrated in Fig. 15.

The cache consists of a number of levels, each containing a coordinate of age growing by
level. After each test or after a number of tests, the tested coordinate is inserted at level 0.
Every second time (or any other time) a coordinate is inserted into level 0, the old value is
inserted into level 1 before it is overwritten. The method for inserting coordinates at the
other levels is similar; every second time a value is inserted at any level, the old value is
transported to the next level before it is overwritten at the current level.

This method results in a coordinate cache containing coordinates with an exponentially
growing age. Level 0 stores coordinates with an age of 1 or 2 (the prior checked coordinate
or the one before the prior checked coordinate), level 1 stores coordinates with an age of 3 -
6 (3 at the test after the coordinate has been inserted, and then growing to 6 before the next
coordinate is inserted), level 2 stores coordinates with an age of 7 - 14, and so on.

The pseudo program code in Example I shows how the cache may be implemented.

Because the age of the levels is varying, a periodic solution may not be found immediately. A
periodic solution having a period length of 11 tests will be detected at level 2 of the cache,
because the age of the data at level 2 is between 7 and 14. However, the test will not detect
the periodic solution before the coordinate is exactly 11 tests old. Therefore up to 12 tests
may be performed before the periodic behavior is detected. In this case, it means that the
system may pass through up to 12/11 period before it is detected.

A possible expansion to the algorithm described above is a varying TransportAge, cf. the
pseudo code program in Example I. If some coordinates can be identified as more likely to
take part of a periodic solution then others, the InsertCoordinate procedure, cf. the pseudo
code program in Example I, may recognize them, and use a reduced value of TransportAge
for those. This will favor the critical coordinates in the cache, and make the data in cache
become younger if many critical coordinates are stored. The younger age of data in the cache
makes a periodical solution detectable after less iteration within the periodic solution.

The test may be performed after each iteration. That means every time we have calculated a
new coordinate set of the solution. However, to save processor resources, the test should
instead be performed at a periodic interval. I order to make the test work; the test must be
performed when the solutions is at a recognizable position.One way to make sure the test is

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

58
performed at the same position each time is to find a recognizable point in the graphical plot
of the solution. To do so, the system has to be analyzed for its characteristic behavior, and a
criterion has to be chosen. For the above shown non-linear system, the examples of criteria
illustrated in Figs. 16-18 are useable.

First possible criterion, as illustrated in Fig. 16 is change of sign of x from minus to plus. That
is, when the sign of x changes from minus to plus, the test is performed. The second criterion
is change of sign of dx from plus to minus, as illustrated in Fig. 17. The third criterion is
change of dy from plus to minus, as illustrated in Fig. 18.

When choosing the criterion, two considerations have to be made. First of all, all possible
periodic solutions shall be able to fulfil the criterion. Secondly, to reduce processor load, the
criterion with fewest tests should be selected.

At design time some extra tests can be performed on the systems and the chosen parameter
spaces, to ensure the efficiency, stability and correctness of the system. These tests may
include calculations of Lyapunov exponents, using Gram-Schmidt orthogonalization, as well
as statistical analysis of the keystream.

EXAMPLE I

The following pseudo code program shows an example of a program for encrypting and
decrypting data which encrypts one byte at a time. The program works in accordance with
the flow charts of Figs. 20-27. The program works with 32-bit registers. Fig. 20 illustrates a
method which encrypts a file containing data. Figs. 21-27 correspond to those functions
shown in the pseudo-code below which relate to check for periodic solution and to a stream-
cipher using the Lorenz system.

Pseudo-code for fixed-point library

FloatToFixedPoint: Converts a floating-point number, X, into a fixed-point number. The result
of the function has the format S(a.b) or U(a.b)

fixedpoint FloatToFixedPoint(float X)
{
return X*2°; // b is the number of bits after the decimal
// separator in the fixed-point
// representation of the result

}

FixedPointToFloat: Converts a fixed-point number, X, having the format S(a.b) or U(a.b), into
a floating-point humber.

float FixedPointToFloat (fixedpoint X)

{
return X*27°; // b is the number of bits after the decimal

// separator in the fixed-point

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

59

// representation of x

ConvertFixedPoint: Converts an input fixed-point number, X, having the format S(a.b) or
U(a.b), into the requested format, S(c.d) or U(c.d). The result is signed if the argument, X, is
signed, and vise versa.

fixedpoint ConvertFixedPoint (fixedpoint X)
{
return x*297®; // b is the number of bits after the decimal
// separator in the fixed-point
// representation of X. d is the number of
// bits after the decimal separator in the
// fixed-point representaiton of the result

Addition and subtraction of fixed-point numbers in the same format are performed using
ordinary integer addition and subtraction functions.

MulFixedPoint: Multiply two fixed-point numbers, X and Y. X has the format S(a.b) or U(a.b)
and Y has the format S(c.d) or U(c.d). The resulting fixed-point number, has the format
S(e.f) or U(e.f). The result as well as X and Y must all be either signed or unsigned values
and stored in 32-bit registers. “>>" is the arithmetic shift right for signed multiplication and
logical shift right for unsigned multiplication.

fixedpoint MulFixedPoint (fixedpoint X, fixedpoint Y)
{

fixedpoint64 Temp; // A 64-bit register to hold the intermediate
// result
Temp = X*Y; // Two 32-bit values X and Y are multiplied

// into the 64-bit intermediate result

return Temp >> b+d-f; // b and d are the number of bits after the
// decimal separator in the fixed-point
// representation of X and Y respectively.
// £ is the number of bits after the decimal
// separator in the fixed-point
// representation of the result.
// The conversion of the value of a 64-bit
// register into a 32-bit register is
// performed by ignoring the 32 most
// significant bits and copying
// the 32 least significant bit into the
// destination register.

Pseudo-code for check for periodic solution

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

60

Global constants in the sub-system for checking for periodic solutions. The code is able to
detect periods when the number of inflexions is lesser than TransportAge®®®" * (Note that
there can only be half as many inflexions as iterations.)

const int CacheDepth = 32;
const int TransportAge = 2;
const int SpareSeedLength = 16;

The sub-system for checking for periodic solutions has a number of global variables e.g. to
store the cache of old coordinates and the spare key to be loaded if a periodic solutions is
found.

fixedpoint xCache[CacheDepth] ;
fixedpoint yCache[CacheDepth]
fixedpoint zCache[CacheDepth] ;
int CoordinateAge [CacheDepth];

char SpareSeed[SpareSeedLength];
fixedpoint x01d, x01d0ld;

SetupCoordinateCheck: Set up the sub-system for checking for periodic solutions. All
positions of the coordinate cache is reset to (x, y, z) = (0, 0, 0), since (0,0,0)isa
stationary point for the Lorenz system, and therefore is a coordinate value indicating that a
reload of the key is needed.

void SetupCoordinateCheck ()
{
int i;
// Clear coordinate cache
for (i=0; i<CacheDepth; i++)
{

xCache[i] = 0;
yCache[i] = O;
zCachef[i] = 0;

CoordinateAge[i] = 1;
x01d = 0; // Variables for detecting when to check are
x01dold = 0; // reset
// Prepare spare seed
for (i=0; i<SpareSeedLength ;i++)

SpareSeed[i] = 0;

// Generate the spare key
Crypt (SpareSeed, SpareSeed+SpareSeedLength-1) ;

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

50

WO 03/104969 PCT/DKO03/00375

61
InsertCoordinate: Inserts a coordinate at a certain level of the coordinate cache if the age of
the previous values stored at that level has passed a certain threshold value. Before the old
coordinate at that certain level is overwritten, is it inserted at the next level.

void InsertCoordinate (fixedpoint x, fixedpoint y, fixedpoint z, int Level)
{
// Transfer current coordinate at this level
// ("Level") to next level ("Level"+1l), if
// its age is equal to "TransportAge", unless
// this level is the highest level possible.
if ((CoordinateAge[Level] >= TransportAge) && (Level+l < CacheDepth))
{
InsertCoordinate (xCache[Level], yCache[Level], zCache[Level], Level+l);
CoordinateAge[Level] = 0;

xCache[Level] = x; // Insert the new coordinate
yCache[Levell = y;
zCache[Level] = z;

// Increase the age counter for this level
CoordinateAge[Level]++;

CheckCoordinate: Checks if the x variable solution curve has an inflexion, for which the sign
of the slope of the curve changes from positive to negative. If not, the function exits.
Otherwise the function checks if an equal coordinate is stored in the coordinate cache. If a
match is found, the function loads the spare key into the algorithm. Finally, the coordinate is
inserted into the coordinate cache.

void CheckCoordinate (fixedpoint x, fixedpoint y, fixedpoint z)

{

int i;

// If inflexion, where the slope of
// x curve changes from positive to
// negative ...
if ((x <= x01d) && (x01dold <= x01d))
{
// Check all stored coordinates ...
for (i=0;i<CacheDepth;i++)
{
// If match is found ...

if ((xCache[i] == x) && (yCache[i] == y) && (zCache[i] == 2))
{
// Period is found! ~ Load spare key
// and reinitialize
Initl28 (SpareSeed) ;
break;

SUBSTITUTE SHEET

WO 03/104969 PCT/DK03/00375
62
// Insert the coordinate into the

// coordinate cache

InsertCoordinate(x, y, z, 0);

// Store the x value for future comparison
x01d01d = x01d;
x01ld = x;

10

Pseudo-code for stream-cipher using the Lorenz system

In this context, the modulus function, MOD, which takes an argument, q, returns a positive
15 values in the range [0;q[.

The o-variable in the Lorenz equations has been renamed to “s”.

The format of the fixed-point variables are defined according to Table I.

20
Table I:
Variable | Fixed-point format
r S(7.24)
S(7.24)
s S(7.24)
X S(7.24)
y S(7.24)
z S(7.24)

The format of the temporary fixed-point variables used in the Crypt function are defined
25 according to Table II.

Table II:
Variable | Fixed-point format
ix S(15.16)
ty S(15.16)
tz S$(15.16)
dt S(12.19)

30 Allowed values for parameters, r, b, and s, and allowed starting conditions for coordinates, X,
y, and z are listed in Table III:

Table III:

SUBSTITUTE SHEET

10

15

20

25

30

35

40

WO 03/104969 PCT/DKO03/00375

63

Variable Allowed value

r [1;5]

b [b+10;b+18[

s [4-b+0.5-5+12.5;4-b+0.5-5+20.5[

Xo [-32;32]

Yo [-32;32]

Zo [-32;32]

Crypt: Encryption, decryption and PRNG function. Arguments are PData (pointer to the first
byte to encrypt/decrypt) and PEnd (pointer to the last byte to encrypt/decrypt). If the
function is intended to generate pseudo-random numbers, the function should be given an
amount of data to encrypt (e.g. zeroes) of the same size as the requested pseudo-random
data.

void Crypt(char* PData, char* PEnd)

{
fixedpoint dt;

while (PData <= PEnd)

{
// Calculation of the time step

dt = 10%27'* + x MOD 27%;
tx = s*(y-x); // Calculation of the next state
ty = x*(r-z)-y;

tz = x*y-b*z;
x = x + tx*dt;
vy + ty*dt;
z = z + tz*dt;

// Check and insert the coordinate

InsertCoordinate(x, v, z, 0):;

// Extract and encrypt
*PData = *PData XOR ((y*2?* XOR y*2'¢) MoD 2°);

PData = PData + 1; // Increase the pointer to data to encrypt

MaskParameters: To ensure that the initial state and the parameters are valid after loading
an expanded key or a pseudo-random sequence, the state and parameters has to be
modified using this function. The correction is performed according to the restrictions defined
in table III,

void MaskParameters ()
{

= x*0.25;

= y*0.25;

L
I

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

50

WO 03/104969 PCT/DKO03/00375

64

z*0.25;

(b MOD 4) + 1;

(s MOD 8) + 10 + b;

(r MOD 8) + 12.5 + 2*b + 0.5%g;

It

H n O N
]

i

Init192: Load a 192-bit seed (pointed to by the PSeed pointer) into the state of the system.

void Initl92 (char* PSeed)

{

= *PSeed; // Copy the seed into the state
= * (PSeed+4) ;

= * (PSeed+8) ;

= * (PSeed+12) ;

= * (PSeed+16) ;

= * (PSeed+20) ;

n U R NK X

MaskParameters() ; // Correct the state to make it valid

Init128: Load a 128-bit seed (or key) (pointed to by the PSeed pointer) into the state of the
system performing the key setup procedure.

void Initl28 (char* PSeed)
{

char Seedl92[24]; // Allocate 24 bytes of memory

int i;

x = *PSeed; // The seed is expanded into the state
y = *(PSeed+3);

z = *(PSeed+6) ;

r = *(PSeed+8) ;

b = *(PSeed+10) ;

s = * (PSeed+12);

MaskParameters () ; // Make state valid
// Iterate 16 rounds before extraction
Crypt (Seedl92, Seedl92+15) ;
for (i=0;i<24;i++) // Reset the data in Seed to zeroces
Seedl92[i] = 0;
// Generate 24 bytes of pseudo-random data
Crypt (Seedl192, Seedl92+23);

Initl92 (Seedl192); // Load the pseudo-random data into the state

// Iterate 16 rounds before using the
// algorithm

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

65
Crypt (Seedl92, Seedl92+15);

// Initiate the coordinate check algorithm
SetupCoordinateCheck () ;

The statistical properties of the output of the system, i.e. the keystream, may be tested
according to the NIST (National Institute of Standards and Technology) Test Suite, cf. ‘A
statistical test suite for random and pseudo-random number generators for cryptographic
applications’, NIST Special Publication 800-22. See also http://csrc.nist.gov/rng/rng2.html.
The NIST Test Suite comprises sixteen different tests, which are briefly summarized below.
The tests may for example be performed on a program similar to the above pseudo-code for
a stream cipher using the Lorenz system.

The tests deliver a number of almost non-overlapping definitions of randomness. The simpler
definitions are included below, whereas those definitions which require more complicated
concepts from the theory of probability are referred to by the phrase “what can be
calculated/is expected for a truly random sequence”. The above NIST publications contain the
appropriate definitions and references to works on the theory of probability.

Frequency monobit test: This test determines the proportion.of zeroes and ones for the entire
keystream sequence. For a truly random keystream sequence, the number of ones is
expected to be about the same as the number of zeros. During the test, it is investigated
whether this property holds for the keystream sequence in question.

Frequency block test: In this test, the keystream sequence is divided into M-bit blocks. In a
truly random keystream sequence, the number of ones in each block is approximately M/2. If
this also characterizes the tested keystream sequence, the test is regarded as successful.

Runs test: A run within the keystream sequence is defined as a sub-sequence of identical
bits. The test checks for runs of different lengths, where a run of length k is constituted by k
identical bits bounded by bits of a value opposite to the bits in the run. The occurrence of
runs of different lengths is compared to what is expected for a truly random sequence.

Longest run of zeroes: In this test, the sequence is divided into blocks of M bits each, and the
longest run of ones within each block is found. The distribution of the lengths of runs for the
blocks is compared to the distribution for blocks in a random sequence. An irregularity in the
expected length of the longest run of ones indicates that there is also an irregularity in the
expected length of the longest run of zeroes.

Binary matrix rank test: In this test, fixed length sub-sequences of the keystream sequence
are used to form a number of matrices by colllecting M-Q bit seggments into M by Q matrices.
By calculating the rank of these matrices, the test checks for linear dependence among the
sub-sequences.

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

66
Discrete Fourier transform test: By applying the discrete Fourier transform, this test checks
for periodic characteristics of the keystream sequence. The height of the resulting frequency
components are compared to a threshold defined from a truly random sequence.

Non-overlapping template matching test: When performing this test, a number of non-
periodic m-bit patterns are defined, and the occurrences of the particular patterns are
counted.

Overlapping template matching test: This test is very similar to the non-overlapping template
matching test, the only differences being the structure of the pattern of m bits, and the way
the search for the pattern is performed. The pattern of m bits is now a sequence of m ones.

Maurer's universal statistical test: This test calculates the distance between matching
patterns in the keystream sequence. By doing so, a measure of the compressibility of the
keystream sequence is obtained. A significantly compressible keystream sequence is
considered to be non-random.

Lempel-Ziv compression test: In this test, the number of cumulatively distinct patterns is
calculated, thus providing a measure of the compressibility of the keystream sequence. The
result is compared to a random sequence, which has a characteristic number of distinct
patterns.

Linear complexity test: This test calculates the length of a linear feedback shift register in
order to determine whether or not the sequence is complex enough to be considered random.

Serial test: This test calculates the frequency of all possible overlapping m-bit patterns across
the entire sequence. For a truly random keystream sequence, all of the 2™ possible m-bit
patterns occur with the same probability. The deviation from this probability is calculated for
the keystream sequence in question.

Approximate entropy test: This test has the same focus as the serial test, but with the added
feature that the frequencies of m- and (m+1)-bit patterns are calculated. The results
obtained for the patterns of different length are compared and used to characterize the
sequence as either random or non-random.

Cumulative sums test: In this test, the sequence is used to define a random walk with ones
and zeroes corresponding to +1 and -1, respectively. It is determined whether the
amplitudes of the cumulative sums of the partial keystream sequences are too large or too
small relative to what is expected for a truly random keystream sequence.

Random excursions test: In this test, the sequence is similarly to the cumulative sums test
transferred into a random walk. The number of visits to certain states (values the cumulative
sum can hold), which the random walk potentially passes through, is used to characterize the
sequence as either random or non-random. The considered states are -4, -3, -2, -1, 1, 2, 3,
4.

SUBSTITUTE SHEET

10

15

20

25

30

35

WO 03/104969 PCT/DKO03/00375

67
Random excursions variant test: Almost identical to the random excursions test. Eighteen
states are used in this test.

For each test, a P-value, Py, is calculated, which provides a quantitative comparison of the
actual sequence and an assumed truly random sequence. The definitions of the P-values
depend on the actual test (see the NIST documentation). Values of Py, > o indicate
randomness, where o is a value in the interval 0.001 < a < 0.01, the exact value of a being
defined for each test. Otherwise, non-randomness is declared.

The NIST Test Suite defines, for each test, the proportion of samples, whose P-value should
pass the criterion Py, > a. In all of the above tests, except the Random excursions test, the
proportion of samples whose respective P-values, P,,, pass the appropriate criteria should be
at least 0.972766. For the Random excursions test, the proportion given by NIST is at least
0.967813.

In preferred embodiments of the method, the following proportions are preferably achieved,
as an average of at least 10* samples obtained by use of randomly chosen keys: at least
0.975, such as at least 0.98, such as at least 0.985, such as at least 0.99, such as at least
0.995, such as at least 0.998.

Possible input parameters to the NIST Test Suite are given in Table IV below in the notation
used in the documentation accompanying the NIST Test Suite.

TABLE IV:

Name of test Input
Frequency block test m = 100
Longest run test M = 10000
Non-overlapping templates matching test {m =9
Overlapping templates matching test m=9

Maurer’s universal test L=7,Q= 1280
Serial test m=>5
Approximate entropy test m=5

EXAMPLE II

- Table V shows the speed of encryption provided by a method as generally disclosed
herein, cf. Figs. 1-5, as well as speeds of encryption of various known encryption
methods. The speed of encryption provided by the methods of the present invention was
measured in respect of an algorithm as described in M. Boesgaard, M. Vesterager, T.
Pedersen, J. Christiansen and O. Scavenius: Rabbit: A New High-Performance Stream Cipher,
Proceedings of Fast Software Encryption (FSE) 2003, Springer, Berlin, (2003). The algorithm
was implemented in assembly language using MMX™ instructions.

SUBSTITUTE SHEET

10

15

20

25

30

WO 03/104969

68

From the measurements, the speed was calculated to be equivalent to an
encryption/decryption speed of 947 Mbit/sec on a 450 MHz Pentium III processor.

PCT/DKO03/00375

Table V:
Name Year of Type | Key size | Block Speed Speed Memory
intro- [bit] size [bit] | [clocks/ | [Mbit/s] | Requirements
duction byte] for tables etc.
[bytes]
AES/Rijndael 1998 block 128-256 | 128-256 14.83 243 >256-4096
Blowfish 1994 block 32-448 64 182 200 <5K
Present stream 128 - 3.7 947 60
Method
DES 1975 block 56 64 452 80 >256
IDEA 1992 block 128 64 50° 72 >12
Panama 1998 stream 256 - 6.7 537 >1092
RC4 1987 stream | 32-2048 - 72 514 >256
SNOW 2000 stream | 128-256 - 6.5* 554 1024
SOBER-t32 2000 stream 128 - 21* 171 ?

Speed is estimated from different sources. The superscripts in the "Speed [clocks/byte]"
column of Table V refers to the below source references:

1. Crypto++ 4.0 Benchmarks, www.eskimo.com/~weidai/benchmarks.html,
MS C++ (Intel Celeron 850MHz), available on 6 June 2003.

2. Bruce Schneier et al.: Fast Software Encryption: Designing Encryption Algorithms for
Optimal Software Speed on the Intel Pentium Processor.

3. Kazumaro Aoki et al.: Fast Implementation of AES Candidates (128 bit keys, 128 bit
blocks, Pentium II).

4. Performance of Optimized Implementations of the NESSIE Primitives (version 2.0),
http://www.cosic.esat.kuleuven.ac.be/nessie/ available on 6 June 2003 (Pentium III numbers
are used).

In general, speed and memory can be traded for many of the implementations, e.g. by using
lookup tables which require more memory but may save processing time.

End of Example II

When performing computations on numbers expressed as binary numbers, for example when
adding or multiplying two numbers, it may be possible to omit parts of the computations
involved in addition or multiplication, if bits of a number resulting from the addition or
multiplication may be omitted or disregarded. Thus, if the least significant bits of the
resulting number are not necessary or if the most significant bits of the resulting number

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

69
may be disregarded (which may be the case in a pseudo-random number generator, where
what is needed is not the true result of the computations but merely a pseudo-random
number), the least and/or most significant bits of the resulting number need not be
computed.

Thus, a method for performing mathematical operations on integer numbers of a certain bit
width which is larger than the register width of the processing unit on which the
computations are performed is disclosed. Mathematical operations or computations on fixed-
point numbers are performed as integer operations, whereby the integer numbers are
expressed as binary numbers. The binary representation of integer numbers requires a
certain register width, e.g. 32 bit. When performing mathematical operations, such as
addition or multiplication, by means of a processing unit having a register width which is
smaller than the width required for representation of the binary numbers, e.g. 8 bit, the
binary numbers may be split into a plurality of binary sub-numbers, each represented by a
width equal to or smaller than the register width of the processing unit. Thus, two 32 bit
numbers may be split into two sets of four 8 bit sub-numbers, and multiplication or addition
may be performed on the 8 bit sub-numbers by means of an 8 bit processing unit. For
example, addition of a number

A =11011001101101010110101010110111 and a number

= 10000111011110111111010101001001

to achieve a result R=A+B may be performed by performing the following steps:

1. Each of the numbers A and B is split into four sub-numbers, Al, A2, A3, A4, and B1, B2,
B3, and B4. Al represents the 8 most significant bits of the number A, and A4 represents
the 8 least significant bits of the number A, etc. Thus, in the example shown above, the
sub-numbers are:

Al1=11011001
A2=10110101
A3=01101010
A4=10110111
B1=10000111
B2=01111011
B3=11110101
B4=01001001

2. The least significant sub-numbers, A4 and B4 are then added: R4=A4+B4. Any carry
resulting from the addition of A4 and B4, C4, is stored.

3. The second least significant sub-numbers, A3 and B3, and the carry from step 2 above,
C4, are then added: R3=A3+B3+C4. Any carry resulting from this addition, C3, is stored.

4, Addition of A2 and B2 in a way analogous to step 3, to achieve R2 and C2.

5. Addition of A1 and B1 in a way analogous to steps 3 and 4 to achieve R1. Any carry
resulting from this addition, C1, is regarded as overflow and is not taken into
consideration.

6. The number resulting from the addition of A and B is stored as four sub-numbers, R1, R2,
R3 and R4, and/or represented by a 32 bit wide string built from the sub-numbers R1,
R2, R3, and R4.

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

70

In case not all bits in a number resulting from a multiplication operation are to be used in

further computations, and/or in case not all bits are significant for the further computations

and may be disregarded, processing time in connection with multiplication operations on a

processing unit having a register width smaller than the bit width of the numbers to be

multiplied may be reduced by performing only partial multiplication as explained below. For
example, multiplication of two 16 bit humbers, D and E, wherein

D =1101100110110101 and

E =0110101010110111

on an 8 bit processing unit to achieve a 32 bit number, F, may be performed by the following

steps:

1. Each of the numbers D and E are split into two sub-numbers, D1, D2, and E1, E2. D1
represents the 8 most significant bits of D, D2 represents the 8 least significant bits of D,
etc. Thus, in the example shown above, the sub-numbers are:

D1=11011001
D2=10110101
E1=01101010
E2=10110111

2. D1 is multiplied with E1l to achieve a 16 bit number expressed as two 8 bit humbers, G1
and G2.

3. D1 is multiplied with E2 to achieve a 16 bit number expressed as two 8 bit nhumbers, H1
and H2.

4, D2 is multiplied with E1 to achieve a 16 bit number expressed as two 8 bit numbers, I1
and 12,

5. D2 is multiplied with E2 to achieve a 16 bit number expressed as two 8 bit numbers, J1
and J2.

6. The resulting 32 bit number F is expressed as four 8 bit numbers, F1, F2, F3, and F4,
wherein:

F4=32

F3=H2+I12+]1

F2=G2+H1+I1+[any carry resulting from the calculation of F3]

F1=G1+[any carry resulting from the calculation of F2],

as illustrated in Fig. 19 wherein MS denotes "most significant 8 bit" and LS denotes "least
significant 8 bit".

Processing time may be saved by disregarding F4, i.e. the least significant bits of the number

resulting from the multiplication, and by disregarding J1 in the addition which leads to F3.

Thus, the multiplication of D2 with E2 at step 5 may be omitted, whereby less mathematical

operations are performed, which leads to saving of processing time. This omission has an

impact on the computational result which, however, may be acceptable if the omission is
performed consistently throughout the computations in, e.g. a pseudo-random number
generator, e.g. in an encryption/decryption algorithm, and if it is performed both in
decryption and encryption. It should usually be ensured that properties of the mathematical

system, e.g. chaotic behavior, which are of importance in the context in question, e.g.

encryption/decryption, are maintained in spite of the impact which the omission of one or

more computational steps has on the computations.

SUBSTITUTE SHEET

10

15

20

25

30

35

40

WO 03/104969 PCT/DKO03/00375

. 71

There is further provided a method of performing multiplication operations on a first binary
number and a second binary number. The method comprises summing a number of
intermediate results, whereby the sum of the intermediate results is equal to the product of
the two numbers. Each intermediate result is achieved as the product of one single bit (1 or
0) of the first number and the entire second number, a, whereby the product and thus the
intermediate number may be determined by a simple "if...then" algorithm and/or a logical
AND operation, as the product of 1 * o = a, and as the product of 0 - a = 0.

Subsequent to computing the intermediate number, the intermediate number is shifted a
number of positions to the left, the number of positions corresponding to the position of the
bit of the first number from which that particular intermediate number is calculated.
Alternatively, either the second number or the particular bit of the first number is switched to
the left. Accordingly, the step of multiplying one bit of a first one of the two numbers is
repeated for each bit of the first number. For example the product of a first humber, 0110,
and a second humber 1010 is computed as follows: the least significant bit of the first
number, 0, is multiplied with the second number 1010 to obtain a first intermediate number,
0000. Then, the second least significant bit of the first number, 1, is multiplied with the
second number and shifted one position to the left to obtain a second intermediate number,
10100. Then, the third least significant bit of the first number, 1, is multiplied with the
second number and shifted two positions to the left to obtain a third intermediate number,
101000. Finally, the most significant bit of the first number, 0, is multiplied with the second
number and shifted three positions to the left to obtain a fourth intermediate number,
0000000. The resulting number is obtained as a sum of the four intermediate numbers, as
illustrated below, the underlinings indicating which bits are being multiplied in the individual
steps:

01101010 —» 0000 (first intermediate number)

0110-1010 —» 10100 (second intermediate humber)

0110-1010 - 101000 (third intermediate number)

0110 - 1010 - 0000000 (fourth intermediate number)

Result: 0111100 (sum of intermediate humbers)

Fig. 28 illustrates a further mathematical system which may be employed in the methods of
the present invention. A set of five coupled subsystems is provided, wherein the subsystems
are one-dimensional maps. Three of the maps contain static parameters and two of the maps
are influenced by a counter. The system configuration is illustrated in Fig. 28.

The iteration scheme of the system is defined by the following equations:
Xo,is1 = ((xc,'l + Py)mod 1)z +2X,, +kx,, modl
Xgia = (Xy,; + co,i)modl)2 +2X,,+kx,; modl
X1 = (X5, +Py)mod 1)2 +2X%,;+kx;; modl
X311 = (X3, + ¢;;)mod 1} + 2x;,+kx,; modl

Xajist = ((X4,i +p,)mod 1)2 +2X,,+kx;;, modl

SUBSTITUTE SHEET

10

WO 03/104969 PCT/DKO03/00375

72
where x,,; is the state variable of system n at iteration i, po,p1 and p, are static parameters,
o, @and c;,; are counters. The coupling is unidirectional with coupling strength k. Values in the
interval [0;1[may be assigned to the parameters p,,p; and p,. The counters ¢y, and c;,;, cycle
through the interval [0;1[by increments which are a fraction of 1. The increments of Co,;and
c1,; need not be identical. The counters may be incremented independently of each other. In
another embodiment, a first one of the counters is only incremented when a second one of
the counters reaches a certain value. A first one of the counters may be incremented in each
iteration, whereas a second one of the counters may be incremented only when the first one
reaches its maximum. Alternatively, both counters may be incremented in each iteration, or
they may be incremented in an alternating way, so that the first counter is incremented in
every second iteration and the second counter is incremented in those iterations where the
first counter is not incremented.

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

73
CLAIMS

1. A method for repeatedly performing computations in a mathematical system which
exhibits a positive Lyapunov exponent, comprising varying at least one parameter of the
mathematical system after a certain number of computations.

2. A method according to claim 1, wherein at least one variable of the mathematical system
is expressed as a fixed-point number.

3. A method according to claim 2, further comprising the steps of:
—- expressing the mathematical system in discrete terms,
- performing said computations in such a way that the computations include the at least
one variable expressed as a fixed-point number,
— obtaining, from said computations, a resulting number, the resulting number representing
at least one of:
a. at least a part of a solution to the mathematical system, and
b. a number usable in further computations involved in the numerical solution of the
mathematical system.

4. A method according to any of the preceding claims, wherein the mathematical system
comprises at least one non-linear map.

5. A method according to any of the preceding claims, wherein said at least one parameter is
repeatedly varied at predetermined intervals in said computations.

6. A method according to any of the preceding claims, wherein said computations involve
performing iterations in the mathematical system.

7. A method according to any of the preceding claims, wherein said at least one parameter is
represented by a counter which varies independently of the mathematical system.

8. A method according to claim 7, wherein the counter is increased at each iteration in the
mathematical system.

9. A method according to claim 7 or 8, wherein a maximum value is defined for the counter,
the method comprising resetting the counter to a minimum value once the counter has
reached said maximum value, whereby the counter varies with a certain period.

10. A method according to any of claims 7-9, wherein a set of counters is employed, the set
comprising multiple counters.

11. A method according to claim 10, wherein the variation of a first one of said counters is

dependent from the variation of a second one of said counters in such a way that the period
of the first counter is different from the period of the second counter.

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

74
12. A method according to claim 10 or 11, wherein the variation of each individual one of
said counters is dependent from the variation of at least another one of said counters so as
to obtain a period of the counters which is longer than the period which would have existed if
each individual counter would not have been dependent from the variation of another
counter.

13. A method according to any of the preceding claims, wherein the one or more counters
is/are increased linearly.

14. A method for generating pseudo-random numbers comprising performing mathematical
operations by a method according to any of claims 1-13.

15. A method for generating an identification value comprising performing mathematical
operations by a method according to any of claims 1-13.

16. A method for encrypting and/or decrypting data comprising performing mathematical
operations by a method according to any of claims 1-13.

17. A method according to claim 15, wherein encrypting and/or decrypting comprises
generating pseudo-random numbers by a method according to claim 14.

18. A method for manipulating a first set of data in a cryptographic system, the first set of
data comprising a first and a second number of a first and a second bit size A and B,
respectively, the method comprising:

- multiplying the first and the second number to obtain a third number of a third bit size
A+B, the third number consisting of P most significant and Q least significant bits,
wherein A+B=P+Q, and wherein Q is equal to the largest of the first bit size A and the
second bit size B, Q=max(A,B),

— manipulating the third number to obtain a fourth number which is a function of at least
one of the P most significant bits of the third number,

- using the fourth number for deriving an output of the cryptographic system.

19. A method according to claim 18, wherein the first number is equal to the second number.
20. A method according to claim 18 or 19, wherein at least one of the first and second
number represents at least one state variable of a mathematical system, and wherein the

state variable is updated as a function of the fourth number.

21. A method according to claim 20, wherein the state variable is updated as a function of a
permutation of the fourth number.

22. A method according to claim 21, wherein the permutation comprises a bitwise rotation of
the bits of the fourth number.

23. A method according to any of claims 18-22, wherein:

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

75

- the step of multiplying is performed multiple times, each multiplication being
performed on a number which represents or is a function of one of a plurality of state
variables, the step of multiplying thereby resulting in a plurality of third numbers, and
wherein

- the step of manipulating results in an array comprising a plurality of fourth numbers,
and wherein

- at least one state variable is updated as a function of at least two of the fourth
numbers.

24. A method according to any of claims 18-23, wherein at least one of the first and second
number is a state value X; to which there is added a variable parameter value.

25. A method according to claim 24, wherein the parameter value is a counter C,.

26. A method according to claim 25, wherein the step of multiplying comprises squaring
(Xi+GC;), wherein X; denotes a state variable or an array of state variables, and wherein C;
denotes the counter or an array of counters.

27. A method according to any of claims 24-26, wherein said at least one parameter is
repeatedly varied at predetermined intervals in said computations.

28. A method acccording to any of claims 18-27, wherein a counter C; is added to the fourth
number or to a number which is a function of the fourth number to result in an updated state
variable X;.1.

29. A method according to any of claims 18-28, wherein the step of multiplying comprises
calculating x¥, x denoting the first number, k denoting an exponent.

30. A method according to claim 29, wherein k is an integer number.

31. A method according to any of claims 18-30, wherein the step of manipulating comprises
at least one logical operation which is performed on a bit of the most significant bits and a bit
of the least significant bits of the third number.

32. A method according to claim 31, wherein the logical operation comprises at least one
XOR operation.

33. A method according to claim 32, wherein P=Q, and wherein the at least one XOR
operation comprises P XOR operations to result in a result of bit size P, each XOR operation
being performed on one bit of the most significant bits of the third number and one bit of the
least significant bits of the third number.

34. A method according to any of claims 18-33, wherein the step of manipulating comprises

at least one arithmetic operation which is performed on at least one bit of the most
significant bits and at least one bit of the least significant bits.

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

76
35. A method according to any of claims 18-34, wherein the step of multiplying comprises a
plurality of multiplication functions resulting in a plurality of numbers of bit size A+B, and
wherein the step of manipulating comprises combining at least one of the bits of a first one of
the plurality of numbers with at least one of the bits of a second one of the plurality of
numbers.

36. A method according to claim 35, wherein the plurality of multiplication functions
comprises at least one squaring operation, and wherein the step of manipulating comprises
combining at least one of the P most significant bits of a first one of the plurality of numbers
with at least one of the Q least significant bits of a second one of the plurality of numbers.

37. A method according to any of claims 18-36, wherein the step of multiplying is performed
in a mathematical system in which at least one state variable is being iterated.

38. A method according to any of claims 18-37, wherein the step of multiplying is performed
in an iterative system of at least two state variables.

39. A method according to claim 38, wherein, in each computational sequence, values
assigned to each of the at least two state variables is updated as a function of at least one
value of the same and/or another state variable.

40. A method according to any of claims 18-39, wherein the fourth number is used for
generating or updating a pseudo-random number as the output of the cryptographic system.

41. A method according to any of claims 18-40, wherein at least one of the first and second
number is derived from a second set of data to be encrypted or decrypted, and wherein the
fourth number is used to generate an encrypted or decrypted representation of the second
set of data.

42. A method according to any of claims 18-41, wherein at least one of the first and second
number is derived from a second set of data, and wherein the fourth number is used for
generating an identification value identifying the second set of data.

43. A method according to any of claims 18-42, wherein at least one of the first and second
number is derived from a cryptographic key.

44. A method for manipulating a first set of data in a cryptographic system, the first set of

data comprising a first and a second number, the method comprising:

- dividing the first number by the second number to obtain a quotient and a remainder,

- combining, by means of a mathematical operation, the quotient and the remainder to
obtain a resulting number,

- using the resulting number for deriving an output of the cryptographic system.

45. A method for generating a periodic sequence of numbers in a cryptographic system in
which computational steps are repeatedly performed, the method comprising updating, in
each computational step i, an array of counters, the counters being updated by a logical

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

77
and/or by an arithmetic function, whereby, at each computational step, a carry value is
added to each counter in the array, wherein the carry added to the first counter in the array,
Co, is obtained from at least one of:
- a selected computation of a value of the array of counters,
- a value which is a function of a counter value at a previous computational step.

46. A method for generating a periodic sequence of numbers in a cryptographic system in
which computational steps are repeatedly performed, the method comprising updating, in
each computational step i, an array C; of counters ¢;;, the counters being updated as:

Co,i+1=Co,i+ag+d; mod Ny,

Gj,i+1=Cj,ita;+bj.1 141 Mmod N; for j>0,
where:

Gj,i+1 is @ value assigned to position j of array C at step i+1, j=0...n-1, n denoting a
dimension of the array C,

G;,iis a value assigned to position j of array C at step i, j=0...n-1,

a; is a value assigned to position j of an array A, j=0...n-1,

for j>0: bj4,. Is a carry value resulting from the computation of Gj-1,i+1s

N; is a constant, j=0...n-1,

for i=0: d;=d, is an initial value,

for i>0 d; is a carry value obtained from a selected computation of a value of the array of
counters C; and/or a function of C,.

47. A method according to claim 46, wherein each value a; is a constant.

48. A method according to claim 46 or 47, wherein n=1, so that:
- the array C contains a single value ¢,
- the array A contains a single value a.

49. A method according to any of claims 46-48, wherein, for i>0, d; is a carry value resulting
from the computation of ¢4 .

50. A method according to any of claims 46-48, wherein d; is a carry value resulting from the
computation of Gj.q41.

51. A method according to any of claims 46-50, wherein the computational steps which are

performed in the cryptographic system comprise an iterative procedure in which an array of

state variables, X, is repeatedly iterated so that at least one value assigned to a position in

the array of state variable X at computational step i+1 is a function of:

- at least one value assigned to a position in the array of state variables X at computational
step i, and

- at least one value assigned to a position of the array of counters C at computational step
i.

52. A method according to claim 51, wherein the array of state variables X contains a single
variable.

SUBSTITUTE SHEET

10

15

20

25

30

35

40

45

WO 03/104969 PCT/DKO03/00375

78
53. A method according to claim 51 or 52, wherein the array of state variables X at
computational step i+1 is a function of X;+C;, X..=f(X+C).

54. A method according to any of claims 46-53, wherein the product of Ng-N;-...-N,; - 1 and
a concatenated value of A are mutually prime.

55. A method for generating an output of a cryptographic system in which computational
steps are performed as an iterative procedure wherein an array of state variables, X, is
repeatedly iterated so that at least one value assigned to a position in the array of state
variables X at iteration step i+1 is a function of:

— at least one value assigned to a position in the array of state variables X at iteration i,
and

—~ at least one value assighed to a position of an array of counters C at iteration i,

the array of counters being updated in each iteration as:

Co,i+1=Co,itag+d; mod Ny,
Gj,i+1=G;,i+a5+bj.1,i:1 mod N; for j>0,

where:

Gj,i+1 Is @ value assigned to position j of array C at step i+1, j=0...n-1, n denoting a

dimension of the array C,
¢;, is a value assigned to position j of array C at step i, j=0...n-1,

a; is a value assigned to position j of an array A, j=0...n-1,

for j>0: bj.1,i41 is a carry value resulting from the computation of ¢y i1,

N; is a constant, j=0...n-1,

for i=0: d;=d, is an initial value,

for i>0 d; is a carry value obtained from a selected computation of a value of the array of

counters C; and/or a function of C;,

each iteration comprising:

— multiplying a first number of a first bit size A and a second number of a second bit size B
to obtain a third number of a third bit size A+B, at least one of the first and second
number being equal to or a function of at least one value assigned to a position of the
array of state variables X at iteration i, the third number consisting of P most significant
and Q least significant bits, wherein A+B=P+Q, and wherein Q is equal to the largest of
the first bit size A and the second bit size B, Q=max(A,B),

— manipulating the third number to obtain a fourth number which is a function of at least
one of the P most significant bits of the third number,

— using the fourth number for deriving the output of the cryptographic system and/or for
assigning new values to positions of the array of state variables X.

56. A method of determining an identification value for identifying a set of data and for
concurrently encrypting and/or decrypting the set of data, the method comprising performing
numerical computations in a mathematical system exhibiting a positive Lyapunov exponent.

57. A method according to claim 56, further comprising the steps of:

— expressing the mathematical system in discrete terms,
—~ expressing at least one variable of the mathematical system as a fixed-point number,

SUBSTITUTE SHEET

10

15

20

25

30

35

40

WO 03/104969 PCT/DKO03/00375

79
- performing said computations in such a way that the computations include the at least
one variable expressed as a fixed-point number,
- obtaining, from said computations, a resulting number, the resulting number representing
at least one of:
a. at least a part of a solution to the mathematical system, and
b. a number usable in further computations involved in the numerical solution of the
mathematical system.

58. A method according to claim 56 or 57, the method further comprising repeatedly
performing mathematical computations as iterations in the mathematical system, whereby
various parts of the set of data or modifications thereof may be used as input to the
computations.

59. A method according to any of claims 56-58, the method further comprising:

— repeatedly performing mathematical computations as iterations in the mathematical
system, whereby various parts of the set of data or modifications thereof may be used as
input to the computations, following each computation or a certain number of
computations:

— extracting a resulting number from the computations, the resulting humber
representing at least one of:

a. at least a part of a solution to the mathematical system, and
b. a number usable in further computations involved in the numerical solution of the
mathematical system,

- determining an updated value for the identification value based on the resulting
number, whereby various parts of the set of data or modifications thereof may be
used as input in the step of determining,

— encrypting and/or decrypting a certain portion of the set of data based on the
resulting number,

whereby as many iterations are performed as required for encrypting and/or decrypting the

entire set of data.

60. A method according to any of claims 56-59, further comprising:

— expressing the mathematical system in discrete terms,

— expressing at least one variable of the mathematical system as a fixed-point number,

- performing said computations in such a way that the computations include the at least
one variable expressed as a fixed-point number.

61. A method according to any of claims 56-60, wherein the identification value is further
modified following encryption and/or decryption of the entire set of data.

SUBSTITUTE SHEET

WO 03/104969 PCT/DK03/00375

1/18

X 132 bit

Square function

X 64 bit

(} XOR

- g(x) |32 bit

Fig. 1

Cit
v ¥ Eﬂ"——’— A
Xi Ci
Internal state Counter
| 1. |
Xt G
M
Extraction
Keystream

Fig. 2

WO 03/104969 PCT/DKO03/00375

d.., » P NN N\ N\ “d
+ an 1 a2 a] a0
cn 1,i CZ,i c.l i Co,i
cn-l,i+l C2,i+] c],i+] co,i+l

WO 03/104969 PCT/DKO03/00375

3/18

l 128 bit key

Key Expansion

8 state variables (32-bit)

\ 8 counters (32-bit)

4 iterations of Next-State

y| 8 state variables (32-bit)
8 counters (32-bit)

A

Next-State

8 state variables (32-bit)
8 counters (32-bit)

A

Extraction

16 bytes pseudo random data (keystream)

Y

Plaintext

A
>

Encryption

Ciphertext

Fig. 5

WO 03/104969 PCT/DKO03/00375

4/18

to be or not'to.be . 1W=8GlnXle?§0:1uBl
. 2 AN
Encryption Decryption
\ 4 & 4
IW=8Glnxle?8Q:1udl to be or not to be

4 Kiy - KTY
CZD%@]__, Block “} | D[j%%——» Block | | 1
Plaintext Cipher Ciphertext Cipher | “pintext

Fig. 7

WO 03/104969 PCT/DKO03/00375

5/18

Key Key
Pseudo-random Pseudo-random
number generator number generator
Keystream Keystream

Plaintext —»éé—» Ciphertext —»é——» Plaintext

Fig. 8

Key
k 4 Y
Key Key
transformation transformation
b 5 k7 s
21 Lorenz | o 21 Lorenz | @
£ system |2 E| system |8
"a‘; = "‘;)' b vy
& = & =
Extraction Extraction
Keystream Keystream
Plain- >* . Cipher- ‘* _, Plain-
text N text i text

Fig. 9

WO 03/104969 PCT/DKO03/00375

6/18

PCT/DKO03/00375

WO 03/104969

7118

P11

g weysAs L+U do)s v weysAs
10 uone.lsy 1o uojels)|
............. teerereesnsenssarassnssasnnnteassen el esneserstennnnsnasseses e nsoessesnesnesasensesceneramagiourannesmaea s neaaeaa it e st neneesaoenseasatenmbenntressanmeasessassans
“xepeydio "xepsydio
,%A ~ . v%
YyyeIUIB weeshey P P wealshay g
XeHIEld 4O uopxenxy 40 Bupndwon jo Bupndwion 10 uopoesXy el
A Y A A
ude
g woeyshg 1S v WwaysAs
Jo uopess)| ¥ 10 uoyeIey
eeereasanmeasereaserasasaspssensasertsasasenssseseienon oessassanaenmnns X
wyapaydio axepeyd|n

g

>

“axeyuield

|

wesalisAey
1O uonxenxzy

P

jo Bupndwon

&

_

H

]

P
Jjo Bugndwod

wes.nsiay
10 uonoegXT

L=U aﬁw

H

H

f

Taxepield

WO 03/104969 PCT/DKO03/00375

8/18

Integrate

Is the criterion Yes

for testing met?

Is a periodic
solution found?

4

Extract the system
No from the periodic
solution

Y¢

Y

Insert the tested
coordinate into the
coordinate cache

Fig. 13

WO 03/104969 PCT/DKO03/00375

9/18
YJL
« 7 'X\
Fig. 14
Level O '
i/2 (1/2)
Level 1 D '

Level 2 D /2 (1/4)
:) 1/2 (1/8)

Level 3 ‘ ‘ ,
1 =:) 1/2 (1/16})

Level n-1 D

Leveln D 1/2 (1/2%)

WO 03/104969 PCT/DKO03/00375

10/18

YJ\

Fig. 16

YJL

dx=0

Fig. 17

WO 03/104969 PCT/DKO03/00375

11/18
YA
dy=0 dy=0
) Il "X
Fig. 18
MS D11E1 LS,
e G1 o " G2 '
Ms D1-E2 s,
’ H1 " H2 '
MS D2=':E1 L5
H 12
MS D2-E2 LS,
' J1 - J2 '
Ms N F (Result) . Ls
' F1 T F2 o F3 - F4 '

Fig. 19

WO 03/104969

12/18

}

Init128()

Y

Load file into
memory

Y

Crypt()

Y

Save encrypted
file to disk

}

Fig. 20

PCT/DKO03/00375

WO 03/104969

13/18

Init128()

!

Expand seed into
state: x,y,z,1,b, s

Y

MaskParameters()

Y

lterate 16 rounds

A 4
Generate 192 bit
pseudo-random data

using Crypl()

h 4

Load generated data
into the state using
Init192()

A4

lterate 16 rounds

Y

SetupCoordinateCheck()u

!

Fig. 21

PCT/DKO03/00375

WO 03/104969 PCT/DKO03/00375

14/18

Init192()

!

Copy the seed into
state:x,y,z,r,b, s

Y

MaskParameters()

!

Fig. 22

MaskParameters()

Correct the state
to make it valid

|

Fig. 23

WO 03/104969

15/18

Crypt()

3.
L
A

2

Compute new dt

Y

Compute
newx,y,z

k4

InsertCoordinate()

v

Encrypt/Decrypt
a set of data

More data to

encrypt/decrypt?

Fig. 24

PCT/DKO03/00375

WO 03/104969 PCT/DKO03/00375

16/18

SetupCoordinateCheck()

}

Clear coordinate
cache

Y

Extract spare key

!

Fig. 25

CheckCoordinate()

Is a complete match Yes

of tested coordinate found in
the coordinate cache? ¥
Init128(Spare key)

No I

&4
<
y

e

InsertCoordinate()

!

Fig. 26

WO 03/104969 PCT/DKO03/00375

17118

InsertCoordinate()

s age of coordinate\,_YesS
> TransportAge? 1
InsertCoordinate()
at next level
No
A 4
Reset age counter
at current level
< |
v
Store new
coordinate

Y

Increase counter
at current level

|

Fig. 27

WO 03/104969 PCT/DKO03/00375

18/18

Fig. 28

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

