Further, the invention discloses a process that results in improved yield of the desired Z isomer.
A PROCESS FOR THE SYNTHESIS OF OLOPATADINE

FIELD OF THE INVENTION

[0001] This invention relates to a process for the synthesis of olopatadine. Particularly the invention relates to a process that results in improved yield of the desired Z isomer.

BACKGROUND AND PRIOR ART OF THE INVENTION

[0002] Olopatadine is an antihistaminic drug, used for the treatment of ocular symptoms of seasonal allergic conjunctivitis. Olopatadine was developed by Kyowa Hakko Kirin Co. Ltd. and produced commercially by the synthetic route using Wittig reaction as key step. Although both olopatadine Z and E isomers show similar HiR affinities, only the Z isomer is the marketed drug. Because of antiallergic activity many chemists are involved developing a better process for Z- isomer of olopatadine (Figure 1).

[0003] Several literature reports are available for process of synthesis of olopatadine. In most of the processes, the side chains was introduced by 'Grignard reaction' or by 'Wittig reaction', refer WO 2011/033532, US 2007/105234 and WO 2010/0121877, US 2012/0016138 respectively. In previous approaches the main drawback was the Z/E stereoselectivity. These references describe the usage of Grignard and/ or Wittig reactions which necessitates the usage of dry solvents and the reactions to be performed at low temperatures and make use of hazardous reagents like n-butyl lithium, hexyl lithium, sodium hydride etc. and Grignard reagents which are difficult to perform on an industrial scale with lot of risk elements incorporated in them and hence are not
desirous. In addition excess of reagents are required and the process is very long making it expensive.

[0004] References may be made to journal entitled "A New Efficient Synthetic Route for the Synthesis of the Antiallergic Drug, Olopatadine Hydrochloride, via Stereospecific Palladium-Catalyzed Reaction" in Org. Process Res. Dev. 2012, 16, 225-231 reports a new practical and efficient synthetic route for the synthesis of olopatadine hydrochloride via the intramolecular stereospecific seven-membered ring cyclization from an alkyne intermediate using palladium catalyst and hydride source. Furthermore, the optimization of that key stereospecific reaction was examined by design of experiment (DoE), and the desired Z-isomer could be obtained with high yield. While the reference make use of expensive Pd metal to access olopatadine, use of expensive reactant like iodine and silver sulphate for iodination making it less attractive from commercial standpoint.

[0005] References may be made to patent application US 2012/0004426 Al, wherein process for obtaining esters and amides of Olopatadine useful for the production of Olopatadine and salts thereof. This method also utilises Wittig reaction and use of hazardous metal hydrides like NaH in the range of 1-1.6 equiv. and dry solvents and preferably a combination of THF and dipolar aprotic solvent like DMA, DMF which becomes difficult to handle on an industrial scale. Moreover the isopropyl esters as well as amides utilised are not easy to prepare and finally require harsh conditions for deprotection to liberate acid.

[0007] Nishimura et al. in Org. Process Res. Dev. 2012, 16, 225-231 and WO 2006/010459 also reported a stereospecific route using palladium catalyst. In the Nishimura synthetic route, the Z-stereoselectivity was controlled by intramolecular
stereospecific seven-membered ring cyclization from an alkyne intermediate using palladium catalyst.

[0008] Article titled, "A Facile One-Pot Access to Dibenzo[b,e]oxepines by a Lewis Acid Catalysed Tandem Reaction" by Chada R. Reddy, Palacherla Ramesh, Nagavaram N. Rao, Saiyed A. Ali in European Journal of Organic Chemistry Volume 2011, Issue 1, pages 2133-2141, April 2011 reports Dibenzo[b,e]oxepine derivatives constructed efficiently by one-pot tandem carbon-carbon bond formation reactions. First, 2-(3,5-dimethoxybenzyloxy)benzaldehydes were treated with various nucleophiles under I₂ catalysis and then 1-(3,5-dimethoxybenzyloxy)-3,5-dimethoxybenzene was treated with several aromatic as well as heteroaromatic aldehydes under BF₃·Et₂O catalytic conditions to provide dibenzo[b,e]oxepines in good yields. This publication although describes a general route to access Dibenzo[6,e]oxepines it works only if two electron donating groups are present on one aromatic ring. The reaction does not work for unsubstituted aromatic ring and hence can not be applied for olopatadine synthesis. The authors in this publication have not described any route for the synthesis of olopatadine.

[0009] Thus a review of reported method of synthesis of olopatadine suffer from several drawbacks including using expensive catalysts such as Palladium or use of hazardous reagents such as Grignard reagents or as in Wittig reaction or result in poor yields of the preferred Z isomer. Some routes are operationally difficult to perform on a large scale. The present invention addresses the drawbacks as listed herein.

OBJECTIVE OF THE INVENTION

[0010] Main object of the present invention is to provide a process for synthesis of olopatadine wherein the process results in improved yields of the preferred Z isomer.

[0011] Another object of the invention is to provide a process for synthesis of olopatadine avoiding hazardous reactions and reagents.
BRIEF DESCRIPTION OF THE DRAWING

[0012] Scheme 1 represents process steps for synthesis of olopatadine, wherein

i) \(\text{SOCl}_2, \text{MeOH}, 24 \text{ h, RT, 98\%;} \)

ii) ii) Zn, Allyl bromide, DMF, 2 h, 91%.

iii) 9-BBN, NaOH, \(\text{H}_2\text{O}_2 \), THF, 24 h, 84%.

iv) \(p-\text{TSA, DCM, 10 min., RT, 99\%;} \)

v) \(\text{AlCl}_3, \text{DCM, 0 }^\circ\text{C- RT, 7h, 95\%;} \)

vi) MsCl, Pyridine, 2h.;

vii) 50% Me\(_2\)NH, MeOH, reflux, 3h, 84% over two steps;

viii) Ref. Ohshima,E; Otaki,S; Sato,H; Kumazawa, T; Obase,H; Ishii,A; Ishii, H; Ohmori, K; and Hirayama, NJ. J. Med Chem. 1992, 35, 2074.

SUMMARY OF THE INVENTION

[0013] Accordingly, present invention relates to an improved process for synthesis of olopatadine comprising the steps of:

a. treating Isoxepac (5), 2-(1-oxo-6,1 dioxepin-2-yl)acetic acid with thionyl chloride in the ratio ranging between 2 to 4 in the presence of alcohol at room temperature in the range of 15 to 30°C for period in the range of 12 to 24 hours to yield corresponding ester;
b. treating ester of step (a) with allyl bromide using Zn in a solvent conducting Barbier reaction to obtain allylic alcohol 4;

c. Hydroborating the allyl alcohol (4) as obtained in step (b) using 9-BBN (9-Borabicyclo(3.3.1)nonane)/diborane quenched by sodium hydroxide and hydrogen peroxide to obtain diol 6;

d. treating diol 6 as obtained in step (c) with catalytic p-TSA instantly form a spiro tetrahydrofuran ring 3 in almost quantitative yield;

e. treating compound 3 as obtained in step (d) with AlCl₃ as Lewis acid in DCM to yield olefin 2 and satisfactory E/Z ratio of 1 to 1.5;
subjecting compound 2 of step (e) to mesylation and dimethyl amination resulted in compound 7 in the range of 55 to 60%;

g. converting compound 7 as obtained in step (f) to compound 1 by known techniques with E:Z ratio of 1:1.5.

f. [0014] In another embodiment of the present invention, alcohol used in step (a) is methanol.

[0015] In yet another embodiment of the present invention, solvent used in step (b) is dimethyl formamide (DMF).

DETAILED DESCRIPTION OF THE INVENTION

[0016] Present invention provides a process for synthesis of olopatadine resulting in yields of greater than 50%, with the E:Z of 1:1.5.

[0017] In accordance to Scheme 1, the process for the synthesis of olopatadine comprises:

a. treating Isoxepac (5), 2-(11-oxo-11-dihydrodibenzo[b,e]oxepin-2-yl)acetic acid with thionyl chloride in the presence of methanol at room temperature in the range of 15 to 30°C for 24 hours to yield corresponding ester;

b. conducting Barbier reaction on the ester of step (a) with allyl bromide using Zn in a solvent, to form allylic alcohol 4;

c. conducting Hydroboration of 4 using 9-BBN/diborane which was quenched by sodium hydroxide and hydrogen peroxide, affording diol 6.
d. treating the diol 6 with catalytic p-TSA instantly form a spiro tetrahydrofuran ring 3 in almost quantitative yield.

e. treating compound 3 with AlCl₃ as Lewis acid in DCM to yield olefin 2 in excellent yield and satisfactory E/Z ratio (1/1.5);

f. subjecting compound 2 of step (e) to mesylation and dimethyl amination resulted in compound 7, which was converted to compound 1 by known techniques.

EXAMPLES

[0018] Following examples are given by way of illustration and therefore should not be construed to limit the scope of the invention.

Example 1

[0019] 2-(1 1-oxo-6,1 l-dihydrodibenzo[b,e]oxepin-2-yl)acetic acid (5 g, 18.65 mmol) was dissolved in methanol (100 mL) and cooled at 0°C. Thionyl chloride (2.06 mL, 27.98 mmol) was added dropwise during a half hour period and the solution was stirred at room temperature (25°C) for 24 h. The solvent was evaporated almost to dryness and the residue was partitioned between dichloromethane (50 mL) and saturated sodium bicarbonate solution (50 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure, giving ketoester, which was used without further purification.

Example 2

[0020] To a stirred mixture of Isoxepac ester (5 g, 17.66 mmol) and zinc (3.44 g, 53 mmol) in DMF (50 mL), allyl bromide (1.66 mL, 19.43 mmol) was added at 0 °C. After 2 hours the reaction mixture was filtered to remove the remaining zinc, 10% hydrochloric acid (20 mL) was added and organic layer was separated. The aqueous layer extracted with small portions of EtOAc, the combined organic extracts were dried over Na₂SO₄ and concentrated in vacuo. The resulting liquid was purified by column
chromatography (pet ether-ethyl acetate, 8:2) to give compound 4 (5.2 g, 91%) as thick colorless oil.

[0021] Colorless liquid; 1H NMR (200 MHz, CDC$_1_3$ + CC$_1_4$) : δ 2.86-2.97 (m, 1H), 3.34-3.44 (m, 1H), 3.60 (s, 2H), 3.68 (s, 3H), 5.04 (d, J=15.5 Hz, 1H), 5.09-5.18 (m, 2H), 5.47 (d, J=15.5 Hz, 1H), 5.35-5.56 (m, 1H) 6.90-7.00 (m, 1H), 7.06 (d, J=8.09 Hz, 1H), 7.15-7.31 (m, 3H), 7.56 (d, J=2.15 Hz, 1H), 7.94-7.84 (m, 1H); 13C NMR (50 MHz, CDC$_1_3$ + CC$_1_4$): δ 40.5, 48.7, 51.8, 73.6, 75.7, 119.4, 121.3, 125.8, 125.9, 126.8, 127.0, 127.5, 129.5 (2C), 133.5, 134.5, 139.0, 142.1, 154.7, 171.9; HRMS m/z: Calculated for C$_{20}$H$_{22}$O$_5$Na-365.1359, observed-365.1360.

Example 3

[0022] At first, 9-BBN (1.80 g, 14.81 mmol) was added to a well stirred solution of olefin 4 (4 g, 12.34 mmol) in anhydrous THF (40 mL) at room temperature (25°C) and the reaction mixture was stirred for 24 h at 70 °C. Then the reaction mixture was quenched with 3 M NaOH (0.54 g, 13.50 mmol) at 0 °C, followed by the dropwise addition of 30% H$_2$O$_2$ (3.5 mL, 37.03 mmol) and the resulting solution was stirred for 6 h at room temperature (25°C). The organic phase was separated and the aqueous layer extracted with ethyl acetate (3 × 20 mL). The combined organic phase was washed with brine (1 × 30 mL), dried over anhydrous Na$_2$SO$_4$, and the solvent was evaporated under reduced pressure. The crude product was subjected to flash column chromatography (pet ether-ethyl acetate, 7:3) to obtain diol 6 (3.54 g, 84%).

[0023] Colorless liquid; 1H NMR (200 MHz, CDC$_1_3$ + CC$_1_4$) : δ 1.20-1.56 (m, 2H), 2.08-2.28 (m, 1H), 2.64-2.89 (m, 1H), 3.36-3.64 (m, 4H), 3.67 (s, 3H), 4.84 (brs, 1H), 5.01 (d, J=15.4 Hz, 1H), 5.43 (d, J=15.4 Hz, 1H), 6.93 (d, J=7.2 Hz, 1H), 6.98-7.32 (m, 4H), 7.62 (d, J=2.15 Hz, 1H), 7.97 (d, J=7.5 Hz, 1H); 13C NMR (50 MHz, CDC$_1_3$ + CC$_1_4$): δ 27.3, 40.4, 41.8, 52.0, 62.7, 73.6, 76.6, 121.2, 125.8, 126.2, 126.9 (2C), 128.2, 129.3 (2C), 134.4, 139.6, 143.3, 154.8, 172.6; HRMS m/z: Calculated for C$_{20}$H$_{22}$O$_5$Na-365.1359, observed-365.1360.
Example 4

The diol 6 (3 g, 2.5 mmol) was dissolved in dry DCM (30 mL) in an oven-dried flask under a nitrogen atmosphere and p-TSA (83 mg, 0.43 mmol) was added at room temperature (25°C). The solution was stirred for additional 10 min. and then the reaction was quenched by the addition of water (20 mL). Resulting organic mass was extracted with DCM (3 × 20 mL), washed with brine, dried over anhydrous Na₂SO₄, filtered and column purified over silica gel (pet ethenethyl acetate, 9:1) to furnish spiro ether 3 (2.81 g, 99%) as oil.

Colorless liquid; ¹H NMR (400 MHz, CDCl₃ + CCl₄): δ 1.87-1.99 (m, 2H), 2.56-2.72 (m, 2H), 3.59 (s, 2H), 3.69 (s, 3H), 4.20 (q, J=7.1 and 7.1 Hz, IH), 4.31 (q, J=7.1 and 7.1 Hz, IH), 5.02 (d, J=15.3 Hz, IH), 5.56 (d, J=15.3 Hz, IH), 6.97 (d, J=7.2 Hz, IH), 7.03 (d, J=8.03 Hz, IH), 7.10-7.26 (m, 3H), 7.51 (s, IH), 7.74 (d, J=7.5 Hz, IH); ¹³C NMR (100 MHz, CDCl₃ + CCl₄): δ 25.9, 40.7, 42.6, 51.9, 68.9, 72.9, 85.1, 121.4, 124.5, 126.2 (2C), 126.9, 127.0, 129.21, 129.27, 133.6, 140.2, 143.4, 153.9, 172.0; HRMS m/z: Calculated for C₂₀H₂₁O₄·325.1434, observed-325.1437.

Example 5

To a cold (0 °C), magnetically stirred solution of spiro ether 3 (2 g, 6.12 mmol) in anhydrous DCM, was added anhydrous crystalline aluminium chloride (2.05 g, 15.43 mmol) in one portion under nitrogen. The resulting mixture was warmed to room temperature (25°C) and the red-orange reaction mixture was stirred at room temperature (25°C) until the completion of reaction (7h). The reaction mixture was then poured into an ice cooled 10% aqueous HCl and the aqueous layer was extracted with DCM. The combined organic extracts were dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. The crude reaction mixture was purified by flash silica gel column chromatography (pet ethenethyl acetate, 7:3) resulted in allylic alcohol 2 (1.9 g, 95%).

White solid; ¹H NMR (200 MHz, CDCl₃ + CCl₄): δ 2.38-2.49 (m,0.8H, E-Form), 2.63-2.73 (m,1.2H, Z-Form), 3.53 (s, 2H), 3.68 (s, 3H), 3.75 (m, 0.8H, E-Form), 3.81 (t, J=6.3 Hz, 1.2H),5.19 (brs, 2H), 5.73 (t, J=7.8 Hz, 0.6H, Z-Form), 6.06 (t, J=7.8
Hz, 0.4H, E-Form), 6.70 (d, J=8.2 Hz, 0.4 H, E-Form), 6.79 (d, J=8.2 Hz, 0.6 H, Z-Form), 7.00-7.34 (m, 6H), HRMS m/r. Calculated for C_{20}H_{22}O_{4}·325.1434, observed-325.1437.

Example 6

5 [0028] To allyl alcohol 2 (1 g, 3.08 mmol) in pyridine (16 mL) was added methanesulfonfyl chloride (0.95 mL, 11.72 mmol) gradually at 0 °C. The reaction mixture was heated to room temperature (25°C) and stirred for 2 h. The mixture was quenched with water (5 mL) and then extracted with ethyl acetate (20 × 2). The organic layer was washed with saturated aqueous NaCl (10 mL) and concentrated. To a solution of obtained oil in MeOH (20 mL) was add 50% aqueous dimethylamine (5.2 mL,18.0 equiv) and the mixture was stirred under reflux for 3 h. The solvent was evaporated and extracted with ethyl acetate (20 × 2). The organic layer was washed with saturated aqueous NaCl (10 mL) and dried over anhydrous Na_{2}SO_{4}, filtered and concentrated under reduced pressure. The crude reaction mixture was purified by flash silica gel column chromatography (MeOH) resulted in 7 (0.91 g, 84%). Overall yield: 59% pale yellow liquid; H NMR (200 MHz, CDCl₃ + CDCl₃): 2.15 (s, 2H), 2.24 (s, 4H), 2.31-2.62 (m, 4H), 3.51 (s, 2H), 3.67 (s, 3H), 4.73 (brs, 1H), 5.45 (brs, 1H), 5.69 (t, J=7.1 Hz, 0.6 H, Z-Form), 6.02 (t, J=6.9 Hz, 0.4 H, E-Form), 6.69 (d, J=8.3 Hz, 0.4 H, E-Foi-m), 6.78 (d, J=8.3 Hz, 0.6 H, Z-Form), 6.98-7.37 (m, 6H).

EXAMPLE 7

[0029] A mixture of 7 (2.87 g, 8.2 mmol, E/Z = 1/1.5), MeOH (100 mL), 10 N NaOH (3.0 mL, 30 mmol), and water (20 mL) was refluxed for 1 h and then concentrated under reduced pressure. The residue (E/Z = 1/1.5) was diluted with H₂O and the solution was neutralized with 4 N HCl. The crude mixture (2.6 g, 7.7 mmol, E/Z = 1/1.5) on subsequent desalination with HP-10 (H₂O and then MeOH as eluent) was dissolved in 2-propanol (40 mL) containing p-TsOH·H₂O (1.47 g, 7.7 mmol). The solution was stirred at room temperature (27°C) and the resultant precipitate was collected by filtration. The crude product was recrystallized from 2-propanol to give
2.16 g (55%) of (Z)-2-(11-(3-(dimethylamino)propylidene)-6,11-dihydrodibenzo[b,e]oxepin-2-yl)acetic acid p-toluenesulfonate mp 185-187 °C. The salt was added portionwise to aqueous NaHCO₃, with ice cooling and the resultant solution was neutralized with 4 N HCl. The crude product was desalinated with HP-10 and recrystallized successively from 2-propanol and water to give 1.14 g (66%) of the free base 8 mp 188-189.5 °C; ¹H NMR (DMSO-d₆): 2.15 (s, 6 H), 2.40-2.60 (m, 4 H), 3.45 (8, 2 H), 5.00-5.55 (br, 2 H), 5.66 (t, J = 6.7 Hz, 1 H), 6.75 (d, J = 8.1 Hz, 1 H), 7.0-7.1 (m, 2 H), 7.2-7.4 (m, 4 H); MS m/z 337 (M+). The free base 8 (1.14 g, 35 mmol) was added to a 8 N solution of HCl in 2-propanol (0.8 mL, 64 mmol) and the mixture was stirred at room temperature (27°C). After being concentrated, the residue was recrystallized from acetone-water (2/1) to give 0.93 g (80%) of 8 as hydrochloride salt: mp 248 °C dec. (Compound 1). The E/Z ratio was determined by analyzing the ¹H NMR spectrum of compound 7, by integration of characteristic protons at δ 5.69 (Z) and δ 6.02 (E) which appear as triplets.

ADVANTAGES OF THE INVENTION

1. Avoids expensive metal catalysts.
2. Avoids hazardous reagents and reaction conditions.
3. Improved yield of preferred diastereomer.
We claim

1. An improved process for synthesis of olopatadine comprising the steps of:
 a. treating Isoxepac (5), 2-(l-l-oxo-6,1-dihydrodibenzo[b,e]oxepin-2-yl)acetic acid with thionyl chloride in the ratio ranging between 2 to 4 in the presence of alcohol at room temperature in the range of 15 to 30°C for period in the range of 12 to 24 hours to yield corresponding ester;

 ![Image of Isoxepac (5)]

 b. treating ester of step (a) with allyl bromide using Zn in a solvent conducting Barbier reaction to obtain allylic alcohol 4;

 ![Image of allylic alcohol (4)]

 c. Hydroborating the allyl alcohol (4) as obtained in step (b) using 9-BBN (9-Borabicyclo(3.3.1)nonane)/diborane quenched by sodium hydroxide and hydrogen peroxide to obtain diol 6;

 ![Image of diol (6)]

 d. treating diol 6 as obtained in step (c) with catalytic \textit{p-TSA} instantly form a spiro tetrahydrofuran ring 3 in almost quantitative yield;
e. treating compound 3 as obtained in step (d) with AlCl₃ as Lewis acid in DCM to yield olefin 2 and satisfactory E/Z ratio of 1 to 1.5;

f. subjecting compound 2 of step (e) to mesylation and dimethyl animation resulted in compound 7 in the range of 55 to 60%;

g. converting compound 7 as obtained in step (f) to compound 1 by known techniques with E:Z ratio of 1:1.5.

2. The process according to claim 1, wherein alcohol used in step (a) is methanol.

3. The process according to claim 1, wherein solvent used in step (b) is dimethyl formamide (DMF).
Scheme 1
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. C07D313/12

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal , CHEM ABS Data, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>KOICHIro NISHIMURA ET AL: "A New Effi cient Synthetic Route for the Synthesis of the Anti Allergi c Drug, Olopadi ne Hydrochlori de, via Stereo spec i fic Pall adi um-Catalyzed Reacti on", ORG A NIC PROCESS RESEARCH & DEVELOPMENT, vol. 16, no. 2, 17 February 2012 (2012-02-17), pages 225-231, XP055123260, ISSN: 1083-6160, DOI: 10.1021/op200312m cited in the application on the whole document</td>
<td>1-3</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or one which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

*" document member of the same patent family

Date of the actual completion of the international search

16 June 2014

Date of mailing of the international search report

11/07/2014

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentilaan 2

NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Schuemacher, Anne
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP 2 145 882 A1 (RAGACTIVES S L U [ES]; CRYSTAL PHARMA S A U [ES]) 20 January 2010 (2010-01-20) cited in the application on claims 1-14</td>
<td>1-3</td>
</tr>
<tr>
<td>A</td>
<td>WD 2006/010459 A1 (URQUIMA SA [ES]; BOSCH CARTES JOAN [ES]; BACHS ROCA JORDI [ES]; GOMEZ) 2 February 2006 (2006-02-02) cited in the application on claim 1</td>
<td>1-3</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>WO 2007142810 A2</td>
<td>13-12-2007</td>
<td>CA 2687118 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2009537553 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2013237694 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2007281990 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011178166 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012245222 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2007142810 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2730955 A1</td>
</tr>
<tr>
<td>EP 2145882 A1</td>
<td>20-01-2010</td>
<td>CA 102149701 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2145882 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2666770 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2433715 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2011528017 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20110041525 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012004426 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010007056 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2253996 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009005579 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2006010459 A1</td>
</tr>
</tbody>
</table>