Office de la Proprieté Canadian CA 2297028 C 2007/05/29

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 297 028
L.|5J|n gfgamsge ; 'f*fc‘j age”‘éy of ; 12 BREVET CANADIEN
'Industrie Canada ndustry Canada
CANADIAN PATENT
13) C
(86) Date de depot PCT/PCT Filing Date: 1998/08/19 (51) CLInt./Int.Cl. GO5B 719/408 (2006.01),
(87) Date publication PCT/PCT Publication Date: 1999/03/04 GO5S5 19/042(2006.01)
- . (72) Inventeurs/Inventors:
(45) Date de délivrance/lssue Date: 2007/05/29 STEINMAN JETHRO F.. US:
(85) Entree phase nationale/National Entry: 2000/01/20 HIMMER, RICHARD P., US:
(86) N° demande PCT/PCT Application No.: US 1998/017168 KANJI, M. GULAM, US;
] o o | CHEHADEH, YAHIA C., US;
(87) N® publication PCT/PCT Publication No.: 1999/010786 ROSA-BIAN JOHN J. US

(30) Priorité/Priority: 1997/08/22 (US08/920,280) 73) Propriétaire/Owner:

HONEYWELL INC., US
(74) Agent: SMART & BIGGAR

(54) Titre : PROCEDE ET SYSTEME DE REALISATION DE FLUX DE DONNEES HETEROGENES ENTRE PAVES
D'ALGORITHMES D'UN SYSTEME DE COMMANDE DISTRIBUE

54) Title: SYSTEM AND METHODS FOR ACHIEVING HETEROGENEOUS DATA FLOW BETWEEN ALGORITHM
BLOCKS IN A DISTRIBUTED CONTROL SYSTEM

ot pd CM2

ABg AB4

[P3

P4

—m— wlaly SN SN w———v cupesn wedwm S
-.,__—_-w...-—--u---—_n—_ —-— ——— GEEE By el A S—
wiide aumsl G i SN -

(57) Abréegée/Abstract:

A system for, and method of, achieving heterogeneous data flow between first and second algorithm blocks Iin a control system,
and a distributed, real-time process control system employing the system or the method. In one embodiment, the system Includes:
(1) a passive connection, associated with a control module containing the second algorithm block, that provides for the
communication of data from the first algorithm block to the second algorithm block without requiring the allocation of connector
resources within the second algorithm block; and (2) an active connection, associated with the second algorithm block, that
provides for the communication of data from the first algorithm block to the second algorithm block using dedicated connector
resources within the second algorithm block, the control system thereby capable of providing data to the second algorithm block
through both passive and active connections.

R N
RO TR S o
N "'c‘-‘-.u:-:{\: . N7
% N [1/
S
N

W .
‘ l an a dH http.:vvopic.ge.ca + Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC
OPIC - CIPO 191

CA 02297028 2000-01-20

PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(11) International Publication Number: WO 99/10786

(51) International Patent Classification 6 :
GOSB 19/408, 19/042

Al
(43) International Publication Date: 4 March 1999 (04.03.99)

(21) International Application Number: PCT/US98/17168 | (81) Designated States: AU, CA, CN, JP, European patent (AT,
BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,

(22) International Filing Date: 19 August 1998 (19.08.98) MC, NL, PT, SE).

(30) Priority Data: Published
08/920,280 22 August 1997 (22.08.97) US With international search report. 1
Before the expiration of the time limit for amending the

claims and to be republished in the event of the receipt of

(71) Applicant: HONEYWELL INC. [US/US]); Honeywell Plaza — amendments.
MN12-8251, P.O. Box 524, Minneapolis, MN 55440-0524

(US).

(72) Inventors: STEINMAN, Jethro, F.;” 505 Dogwood Circle,
Havertown, PA 19083 (US). HIMMER, Richard, P., 1035
Hereford Drive, Blue Bell, PA 19422 (US). KANIJI, M., ;
Gulam: 950 Cold Spring Road, Allentown, PA 18103 (US).
CHEHADEH, Yahia, C.; 110-B Maple Road, State College,
PA 16801 (US). ROSA-BIAN, John, J.; 407 Gordon Road,

I Ambiler, PA 19002 (US).

(74) Agent: MIOLOGOS, Anthony; Honeywell Inc., Honeywell
Plaza -~ MN12-8251, P.O. Box 524, Minneapolis, MN
554400524 (US).

(54) Title: SYSTEM AND METHODS FOR ACHIEVING HETEROGENEOUS DATA FLOW BETWEEN ALGORITHM BLOCKS IN
A DISTRIBUTED CONTROL SYSTEM

EleYe)
{

(§7) Abstract

A system for, and method of, achieving heterogeneous data flow between first and second algorithm blocks in a control system, and
a distributed, real-time process control system employing the system or the method. In one embodiment, the system includes: (1) a passive
connection, associated with a control module containing the second algorithm block, that provides for the communication of data from the |
first algorithm block to the second algorithm block without requiring the allocation of connector resources within the second algorithm
block: and (2) an active connection, associated with the second algorithm block, that provides for the communication of data from the first
algorithm block to the second algorithm block using dedicated connector resources within the second algorithm block, the control system
| thereby capable of providing data to the second algorithm block through both passive and active connections.

Tr e e v 2 A BRI AD T THIRICIVIS 444 At s e athe st s s (0 e
W AV SR R VAT T N IR I 4 CARIE HEOHCI ArMair d V4 R
MOSTIOENTTD S AT T

10

15

20

25

30

CA 02297028 2000-01-20

WO 99/10786 *- | PCT/US98/17168

SYSTEM AND METHODS FOR ACHIEVING HETEROGENEOUS DATA
FLOW BETWEEN ALGORITHM BLOCKS IN A DISTRIBUTED CONTROL
SYSTEM
TECHNICAL FIELD OF THE INVENTION

The present invention is directed, in general, to computing and processing systems

and, more specifically, to computing and processing systems that provide heterogeneous

data flow connectivity between parameters of algorithm blocks in a distributed control

system and methods of providing such connectivity.

BACKGROUND OF THE INVENTION

Automated plant control systems include a comprehensive set of algorithms, or
software-definable process control routines, to control and monitor various processes
within, for instance, a manufacturing facility. The control systems can be tailored to satisfy
a wide range of process requirements globally or within specified portions of the facility.
Conventionally, the control systems include a variety of modules, each having its own
processor or firmware, linked together by communication buses to result in a distributed
process control system. The distributed nature of the system affords high performance with
the capability to expand the system incrementally to satisfy growth or modifications in the
facility.

A first objective of automated plant management is to provide a process control
scheme that synthesizes plant-wide control of all processes to thereby improve overall
efficiency of the facility. Process control systems generally provide a means to create
custom process control strategies, e.g., software-definable process control routines. In
object-oriented programming environments, a complete control strategy may be built from
smaller components called “blocks,” “parameters,” and “connections.” A block is a
software construct used to encapsulate the data and the algorithms of elemental control
computations; parameters define the interface to individual pieces of data within the blocks;
and connections allow data to flow between the parameters of blocks.

The basic function of a connection is to provide data flow between parameters of
different blocks. Depending on design of a block algorithm, however, provision of simple
continuity and data flow is not sufficient. Different block algorithms may require different

elements of connection functionality. For example, although block algorithms generally

10

15

20

CA 02297028 2006-01-03

- 64159-1667

.

have implicit knowledge aboufthe type of passed data, some algorithms may require more
than this implicit knowledge; some algorithms need explicit data type information to be
provided by connection services. *

In addition, some block algorithms may implement built in safety-handling, which"

requires knowledge of not only the value of passed data, but also status information that

tells whether connection continuity has been maintained; in some cases, it is also necessary
that status information distinguish different types of failures that can cause connectivity to
be lost. Block algorithms which do not need explicit access to statué or data type may still
require predictable behavior of delivered data in the event that connection continuity is lost;
such blocks need a useable “fail safe” value, which may be di fferent for different data
types, to be delivered. '

Some block algorithms may require parameters that are eonnected in only a

minority of process control strategies, or the blocks occasionally need connections, but they
do not need explicit access to data type or status. In addition, some blocks may not be able
allocate a dedicated resource for every parameter which may sometimes need a connection.
The entire set of block algorithms must provide a user a configuration model in which
parameters may be connected as needed by implementation-specific algorithms; a system
for constructing process control schemes should allow the sharing of data between block
algorithms in a manner which 1is convenient and which does not require the addition of
blocks solely for the purpose 'of establishing a connection. .

Therefore, what is needed in the art is a more powerful and flexible form of data
access that achieves heterogeneous data flow connectivity between parameters of algorithm

blocks in a distributed control system.

10

15

20

29

30

CA 02297028 2006-01-03

064159-16067
—Da-—

SUMMARY OF THE INVENTION

In one aspect of the present invention, there 1s

provided a system for data flow between first and second
algorithm blocks in a control system, the system comprising:
a passive connection, to provide data connectivity between

ﬁ

two algorithm blocks without expliclt action on the part of

elther connected block and without the use of reference data
stored within either block, the passive connection being

associated with a control module containing said second

algorithm block, that provides for the communicatilion of data

from said first algorithm block to said second algorithm
block without requiring the allocation of connector
resources within said second algorithm block; and an active
connection to provide connectivity between algorithm blocks

r—

through active services of one of the two connected blocks

and through reference data stored within that block, the

active connectlon associated with said second algorithm

block, said active connection provides for the communication

of data from said first algorithm block to said second
algorithm block using dedicated connector resources within
sald second algorithm block, said control system thereby to
provide heterogeneous data to said second algorithm block

through both said passive and said active connections

selectively.

In some embodiments of the system, the passive

connection does not communicate the data type information.

In some embodiments of the system, the passive

—

connection does not communicate the status of the passive

connection.

In some embodiments of the system, the active

connection communicates the data type information.

CA 02297028 2006-01-03

©64159-1067

2b

In some embodiments of the system, the active

connection communicates the status of the active connection.

ﬁ

In some embodiments of the system, the control

module provides a fail-safe value to the second algorithm

5 block when the passive connection between said first and

second algorithm blocks 1s lost.

In some embodiments of the system, the control

module contains the first algorithm block.

In some embodiments, the system comprises a

10 distributed, real-time process control system, comprilising: a

plurality of sensors and controllable devices; data

processing and storage circuitry, associated with the

pr—

plurality of sensors and controllable devices, operable toO

P

execute sequences of software instructions for achileving

15 heterogeneous data flow between first and second algorithm

blocks in the control system.

In another aspect of the present invention, there

is provided a method for data flow between first and second

algorithm blocks in a control system, the method comprising

P

20 the steps of: establishing a passive connection between said

F
p——r

first and second algorithm blocks for the communication oO:

|

data from said first algorithm block to said second

algorithm block, said passive connection providing data

connectivity between two algorithm blocks regardless ot

—

25 explicit action on the part of either connected block and

P P
p—

regardless of use of reference data stored withilin eilther

block, said passive connection being establilished regardless

P

of the allocation of connector resources wilithin said second

algorithm block; and dedicating connector resources within

30 said second algorithm block to provide an active connection

r—

for the communication of data from said first algorithm

10

15

20

2.5

CA 02297028 2006-01-03

64159-16067
L P

block to said second algorithm block, said active connectlon

providing data connectivity between algorithm blocks through

P

active services of one of the two connected blocks and

through reference data stored within that block, said
control system thereby providing heterogeneous data to said
second algorithm block through both said passive and said

active connections selectively.

In some embodiments of the method, the passive

connection does not communicate the data type information.

In some embodiments of the method, the passive

—

connection does not communicate the status of the passive

connection.

In some embodiments of the method, the active

connection communicates the data type information.

In some embodiments of the method, the active

connection communicates the status of the active connection.

In some embodiments, the method further comprises

the step of providing a fail-safe value to said second

algorithm block when said passive connection between said

first and second algorithm blocks 1s lost.

In some embodiments of the method, the second

algorithm block 1s contained 1n a control module, said

F

control module performing said step of establishing.

In some embodiments of the method, the first

algorithm block 1s contained 1n said control module.

In some embodiments of the method, the step of

dedicating 1s performed by said second algorithm block.

10

15

20

25

CA 02297028 2000-01-20

_3-

An advantage of the present invention 1s 10 provide a more flexible way of
providing data flow for communication of parameters in a control system.

As used herein, a "connection” means any software-definable routine, or routines,
and associated data, operative to provide individually, or in combination, the functions
described herein: an "active connection" provides data connectivity between algorithm
blocks through active services of one of the two connected blocks and through reference
data stored within that block; a "passive connection" provides data connectivity between
two algorithm blocks without explicit action on the part of either connected block and
without the use of reference data stored within either block. Passive connections are
realized through data and services of a Control Module which encloses one or both
algorithm blocks connected by the passive connection.

The present invention therefore introduces the broad concept of establishing
multiple, i.e., “heterogeneous,” connection types to reflect the fact that different algonthm
blocks often require different levels of parameter access. Rather than provide a single,
inflexible type of connection to handle all parameter communication, the present invention
allows powerful, active connections to be established only when needed and more resource-
efficient, passive connections to be established when active connections are not needed;
both active and passive connections may be employed by 2 single algorithm block, whereby
a control system may be optimized for both processing and resource efficiency.

In one embodiment of the present invention, the data communicated by a passive
connection does not include the type of the data. Whereas an algorithm block may have
implicit knowledge of the type of data being communicated, not communicating the data
type explicitly reduces the amount of system resources dedicated to the communication of
data between algorithm blocks. Similarly, in one embodiment, the data communicated by

the passive connection does not include the status (e.g., the availability) of the passive

AMENDED SHEET
IPEA/EP -

10

15

20

25

30

CA 02297028 2000-01-20

WO 99/10786 - PCT/US98/17168

4.

connection. In a related embodiment, however, the control module provides a fail-sate
value to the second algorithm block when the passive connection between the first and
second algorithm blocks is lost (i.e., not available). Those skilled in the art are familiar
with the importance of communicating fail-safe values in control systems. The present
invention allows communication of fail-safe values even with passive connections.

In one embodiment, the data communicated by the active connéction includes the
type of the data. In a related embodiment, the data communicated by an active connection
includes the status of the active connection. Providing algorithm blocks with the capability
to communicate the data type or status of a connection requires the allocation of additional

system resources, but allows more flexibility in the design of control processes employing

such algorithm blocks.

In one embodiment, the control module containing the second algorithm block
further contains the first algorithm block. A control system may employ many control
modules having algorithm blocks associated therewith. The present invention allows for
the communication of data from one algorithm block to a second algorithm block, using a
passive or active connection, regardless of whether the first algorithm block is contained
within the same control module as the second algorithm block.

In one embodiment of the present invention, the control system is a distributed,
real-time process control system. Those skilled in the art will, however, perceive other uses

for the present invention in control systems of all types.

The foregoing has outlined rather broadly the features and technical advantages of
the present invention so that those skilled in the art may better understand the detailed
description of the invention that follows. Additional features and advantages, that form the
subject of the claims of the invention, will be described hereinafter. Those skilled in the
art should appreciate that they may readily use the conception and the specific embodiment

disclosed as a basis for modifying or designing other structures for carrying out the same
purposes of the present invention. Those skilled in the art should also realize that such

equivalent constructions do not depart from the spirit and scope of the invention in 1its

broadest form.

wosr b eobs v oo dddtehbdBa ¢ %y . cpr um abes e . . @ B

10

15

20

25

30

CA 02297028 2000-01-20

WO 99/10786 - PCT/US98/17168

-5-

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present invention, and the advantages
thereof, reference is now made to the following descriptions taken in conjunction with the
accompanying drawings, in which like numbers designate like parts, and in which:

FIGURE 1 illustrates a functional diagram of an exemplary distributed, real-time
process control system with which the present invention may suitably be used;

FIGURE 2 illustrates a high-level block diagram of an exemplary digital processing
system that may be employed to execute software-definable process control routines

embodying the principles of the present invention;

FIGURE 3 illustrates an exemplary control strategy application employing the

principles of the present invention; and

FIGURE 4 illustrates a connections subsystem diagram for the exemplary control

strategy application illustrated in FIGURE 3.

DETAILED DESCRIPTION

Before undertaking a description of an exemplary embodiment of the systems and
methods of the present invention, it will be helpful to describe a computing or processing
system environment in which the present invention may suitably be used or implemented.

Referring initially to FIGURE 1, illustrated is a functional diagram of an exemplary

distributed, real-time process control system (generally designated 100) with which the

present invention may suitably be used.

Process control system 100 illustratively includes a computer network having a
server 110 and a controller network 111. The controller network 111 provides an interface
between the server 110 and process controllers (generally designated 121); the controller
network 111 may, for example, carry supervisory messages between the server 110 and

process controllers 121, and peer-to-peer messages between the process controllers 121.

The process controllers 121 communicate with input/output (“I/O”) devices 122 via an I/O

network 112. The process controllers 121 are adapted to execute software-definable
process control routines for controlling and receiving data from process sensors and

actuators 130 via I/O devices 122 and I/O network 112. Those skilled in the art are familiar
with various types of process sensors and actuators 130, such as electrically-controllable

motors, valves, pumps, etc., that may be employed in the manufacture of sundry products;

e am o aamama s e a2 a2 __a _aa ___ _aa o _ __o _ ___

10

15

20

25

30

CA 02297028 2000-01-20

WO 99/10786 - PCT/US98/17168

-6-

the principles of the present invention are not limited to a specific process or processing
system, however, but may readily be employed to advantage in any such system.

In one embodiment, the process control system 100 further includes a local area
network (“LAN”) 113 that provides an interface between the server 110 and remote
workstations (generally designated 140). The remote workstations 140 may be used by
system operators to control and monitor the operation of the process control system 100.
Although illustrated as a separate network, the LAN 112 and controller network 111 may
be the same; i.e., the remote workstations 140 and the process controllers 120 may share

the same network transmission medium. Those skilled in the art will recognize, however,

that providing separate networks for control systems and operator workstations may
enhance the reliability of a distributed, real-time process control system; e.g., network
traffic on LAN 112 associated with distributing process-related data from server 110 to
operator workstations 140 will not interfere with process control information transmitted
between server 1 10 and remote process controllers 120 via control network 111.
Software-definable process control routines may be executed by any digital
processing system, such as server 110, workstations 140, or process controllers 121.
FIGURE 2 illustrates a high-level block diagram of an exemplary digital processing system
200 that may be employed to execute software-definable process control routines
embodying the principles of the present invention. Exemplary digital processing system
200 includes a microprocessor 210, non-volatile memory 220. and random access memory
(“RAM™) 230. Non-volatile memory 220. which is employed to store software-definable
process control routines, may comprise, for example, a programmable read-only memory
(“PROM™), flash ROM, or a magnetic storage medium. The software-definable process
control routines stored in non-volatile memory 220 are executed by microprocessor 210.
The microprocessor employs RAM 230 to store all or portions of the process control
routines as the routines are executed, as well as storage for process control data associated
with process sensors and actuators 130. The description of exemplary digital processing
system 200 is merely illustrative; those skilled in the art will recognize that software-
definable process control routines employing the principles of the present invention are not

limited to a specific hardware implementation for digital processing system 200, and that

all such systems are within the scope of the claims recited hereinafter.

A GAR A AR S AR AL Al - BEdm

*TB

s e Ak e A ERATETEIAS - £ ENRLINIRATA O LA ML A Ay

10

15

20

25

30

h'.m.“*hm\a‘n..nn"- I aibaal il

CA 02297028 2000-01-20

WO 99/10786 - PCT/US98/17168

7.

The present invention discloses systems and methods for achieving
“heterogeneous” data flow between algorithm blocks in a distributed control system;
heterogenous data flow contemplates the availability of two classes of connection services,
defined herein as “active” and “passive.” Active connections are established through the
use of active connectors, which are processing resources allocated by block designers as
objects within a block. In addition to providing basic data flow, active connectors provide
complete information on the data type of the referenced parameter and on the status of the
maintained connection. Active connections are called "active" because they require active
involvement from the block algorithm in order to function. They may also be called
"inside” connections because they depend on resources allocated inside a block. Because

they require dedicated resources, active connectors are preferably not allocated for every

parameter supported by a block but, rather, are allocated for those parameters which are
connected in most or all applications of a block. In contrast to active connections, passive

connections allow parameters of algorithm blocks to have data flow connectivity without

the provision of dedicated connector resources within an algorithm block.

Passive connections work for the majority of parameters since most parameters do
not require dedicated connector resources. A passive connection provides data flow but
does not provide the data type and status services of active connections. A passive
connection may be established through the services of a special, encapsulating block called
a “control module;” a control module serves as a container for both the algorithm blocks
and the passive connections which connect the parameters of those blocks. Passive
connections are called "passive" because they do not require active involvement from an

algorithm block in order to function. A passive connection may also be called an "outside™

connection since the resources used by the connection are allocated as part of a control
module, outside of any algorithm blocks contained within the control module.

The principles of the present invention consist of a set of concepts and constructs,
preferably implemented in software-definable process control routines, which may be
understood through the use of two visualizations. One visualization, described with
reference to FIGURE 3, is a diagram showing the topological aspects of a control strategy
that might be constructed by a process control engineer. A second visualization, described

with reference to FIGURE 4, employs a “class diagram” to illustrate the internal software

design as it might be constructed by a system software designer.

ELE T L Ve N TP SVE VTRV IR TR T eepr MRV VT 1w v vl e G NCRT Se W e SRR

10

15

20

25

30

CA 02297028 2000-01-20

WO 99/10786 - PCT/US98/17168

_8-

Turning now to FIGURE 3, illustrated is an exemplary control strategy 300

employing the principles of the present invention. The exemplary control strategy 300
includes control modules CM1 and CM2. Control module CM1 contains four algorithm
blocks AB1, AB2, AB3, and AB4; control module CM2 contains algorithm block AB5S.
The principles of the present invention are not limited to any specific algorithms
implemented by the algorithm blocks, or the number of control modules or algorithm
blocks necessary for a specific process control strategy; for example, control module CM2
may include additional algorithm blocks (generally designated AB).

The algorithm blocks each define a number of parameters, which may be input
parameters, output parameters, or both; in general, many or just a few parameters associated
with an algorithm block might be exposed on the blocks when the process control strategy
is created. Within control module CM1, algorithm blocks AB1 and AB2 have output
parameters OP1 and OP2, respectively; algorithm block AB3 has input parameters IP1 and
IP2, and algorithm block AB4 has input parameters IP3 and [P4. Within control module
CM?2, algorithm block AB3 has output parameter OP3.

Hereinafter, to make parameter designations unambiguous, parameter designations
are preceded by block designators, which may be preceded by control module designators,
as necessary, using a period (“.”) as a separator therebetween. For example, within the
context of control module CM1, output parameter OP1 can be designated as AB1.0OP1,
while input parameter IP3 can be designated as AB4.IP3. Within the context of control

module CM2, output parameter OP3 can be reterred to unambiguously as ABS5.0OP3;

outside the context of control module CM2, output parameter OP3 can be referred to as
CM2.AB5.0P3.

The exemplary control strategy 300 depicts connections within control module
CM1 as lines between output parameters and input parameters; the direction of data flow
corresponds to the direction shown by the arrow. The connections within control module
CM1 are AB1.OP1 to AB3.IP1, AB2.0P2 to AB3.IP2, and AB2.0P2 to AB4.IP3. Control
module CM1 also contains a connection to a parameter outside its own context, i.e., the
connection to parameter CM2.AB5.0P3. The connection to CM2.AB5.0P3 is denoted by

a box attached to input parameter IP4 and is referred to as CM2.ABS5.0OP3 to
CM1.AB4.1P4.

PR Adns L S i o s, . 7 b, . sl by

10

15

20

25

30

CA 02297028 2000-01-20

WO 99/10786 - PCT/US98/17168

9.

Of the input parameters depicted within the exemplary control strategy 300, it 1s
assumed that one pérameter, AB3.IP2, requires an active connection, and that the algorithm
implementing algorithm block AB3 is such that the data type transported from AB2.0P2
to AB3.IP2 can not always be known implicitly. In addition, for purposes of illustration,
it is assumed that the algorithm implemented in algorithm block AB3 employs special
status detection and response in order to relieve the application engineer of the burden of
implementing this function through the use of additional algorithm blocks; parameters
AB3.IP1, AB4.IP3, and AB4.I1P4 do not require special support and, thus, the connections
which attach those input parameters to the - respective output parameters are passive
connections which function without explicit action on the part of algorithm blocks AB3 and
AB4.

When the process control routine depicted by exemplary control strategy 300 is
executed, the services provided by the invention cause data to flow across the connections.
More specifically, the execution of control module CM1 causes each algorithm block to
execute 1n turn according to an order designated by the application engineer, e.g., AB1,
AB2, AB3, AB4. Thus, control module CM1 first causes algorithm block AB1 to execute
and perform its processing, which results in a new value for output parameter OP1, and
then causes algorithm block AB2 to execute and performs its processing, resulting in a new

value for OP2.

Before the execution of algorithm block AB3, control module CM1 recognizes that
the connection AB1.OP1 to AB3.IP1 is a passive connection and reads the value of
AB1.0P1 and stores it to AB3.IP1. Control module CM1 next causes algorithm block AB3
to execute and performs its processing. Algorithm block AB3 recognizes that IP2 has an
associated active connector and requires special processing; algorithm block AB3 calls on
the services associated with the active connector for IP2, reading the data value, type and/or
status. The algorithm implemented by algorithm block AB3 uses the value for IP1,
provided through a passive connection, and the value, type and/or status for IP2, provided
by an active connection, in executing its functions; i.e., algorithm block AB3 uses both

“passive” and “active,” or “heterogeneous,” data.

Before the execution of algorithm block AB4, the control module CM1 recognizes
that the parameters AB4.IP3 and AB4.IP4 are served by passive connections and,

accordingly, reads the value of AB2.0OP2 and stores it to AB4.IP3 and reads the value of

e b s A T A e e s e s R

WINIEA N A EE VAT M AW Oy Y P Vvl TH T Al St Al sobs Al (s SAET] Mt W P 4 o o’ e WA "l 4

10

15

20

25

30

v Wbt nrAriuieire, VAR <C A MM <3/ 1/ (VONAT suls Ul W w2 KIRAEd

CA 02297028 2000-01-20

WO 99/10786 - PCT/US98/17168

-10-

CM2.ABS5.0OP3 and stores it to AB4.IP4. Control module CM1 then causes algorithm
block AB4 to execute and perform its processing, during which it reads and uses the new
values of IP3 and IP4 in executing its functions.

The actions described above for exemplary control strategy 300 occur repeatedly
every time control module CM1 executes. Normally, connectivity is maintained and data
is provided to blocks as needed. In the presence of abnormal conditions, however,
connectivity may be lost. For example, circumstances could arise which make algorithm
block AB2 unable to provide a useable value of output parameter OP2; if this occurred,
however, algorithm block AB3 could discover this circumstance through a status value
supplied by the active connector associated with input parameter IP2. In another scenario,
connectivity to the value of output parameter OP3, which is coming from outside control
module CM1, could be lost: in this case, algorithm block AB4 has no active connector from
which to obtain status. In one embodiment of the present invention, however, algorithm
block AB4 can execute under the assumption that when connectivity between OP3 and 1P4
i1s lost, a useable “fail safe” value will be delivered to AB4.1P4 by control module CM1.

Turmning now to FIGURE 4, illustrated is a connections subsystem diagram 400 for
the exemplary control strategy application 300 illustrated in FIGURE 3. The connections
subsystem diagram 400 employs a “class diagram” to illustrate the internal software design
as it might be constructed by a system software designer: those skilled in the art are familiar
with the notation for class diagrams as described by Grady Booch in Object Oriented
Analysis and Design With Applications, Benjamin/Cummings, 1994, which is incorporated
herein by reference. The connections subsystem diagram 400 illustrates as a class diagram

the behavior described above with reference to the exemplary control strategy 300
illustrated in FIGURE 3, including the classes used within a software implementation of
the invention. Table 1 describes the classes and their containment relationships with other

classes, and also lists any instances which occur within the exemplary control strategy 300.

TS e 1 TN pl e g or S U L B i s L s ~—

e A P YA oA AR .0

CA 02297028 2000-01-20

WO 99/10786 "

-11-

TABLE 1

‘CLASS DESCRIPTION

Control Implements the data and
Module | aigorithms for the Control

Module. These algorithms

algorithm blocks contained

within the Control Module and

for the execution of Passive

Connections. A Control Module |

provide for the execution of

OF:

1 Pseudo Code Program

N Algorithm Block

| 0..N Connector

| Fail Safe Mapping

is the parent container for |

algorithm blocks; algorithm
blocks can not exist without a

parent container.

Pseudo A list of binary codes that direct | none

Code the execution sequence of a

Control Module. These codes
tell when it is time to execute an
algorithm block or execute a
passive connection. They are
ordered to cause execution In
the sequence specified by the
application engineer. Passive
connections are preferably
executed just before the block

which receives input data from

B A R AT e A A e AF O

- CONTAINS INSTANCES

PCT/US98/17168

300

CMI, CM2

not explicitly
visible in

diagram 400

INSTANCES
OF CLASS IN
EXEMPLARY
CONTROL
STRATEGY

I
|

weRgtr

*1T R

CA 02297028 2000-01-20

‘WO 99/10786 il

PCT/US98/17168

-12-

Algorithm

Instances of this class form the
Block elemental control algorithms
from which larger control
strategies are constructed. They
depend upon a parent Control
Module to stimulate their
execution and, when active
connections are not used, to

provide data flow from output to

input parameters.

Parameter | The fundamental datum within

algorithm blocks. Parameters
express the configuration data,
the tuning data and the process
data of the control algorithms.
Transport of parameter vaiues
occurs through Active or

Passive Connections.

Connector | Instances of this class hold

reference information that

designates connected parameters

as well as descriptive data such

as data type and status. Active

Connections are implemented
through a single instance of this
class located within one of the
two connected Algorithm
Blocks. Passive Connections
are implemented through two
instances of this class located

within the Control Module that

why Cal T Ahdra S M- VA, & liubiie. AT P £, e adn Loyl

1..N Parameter

0..N Connector

none OP1. OP2, OP3,
IP1, 1P2, IP3,
IP4

I Data Type | not explicitly

I Reference To Value visible in

1 Status diagram 400

““mawmmmww'lm"v e

5

WO 99/10786

F

Fail Safe
Mapping

CA 02297028 2000-01-20

13-

holds the connected Algorithm
Blocks. If connected Algorithm
Blocks are contained by
different Control Modules, then
Passive Connections are
preferably implemented by two
instances of this class, both
the Control
Module which holds the
Algorithm Block with the

located within

connected input parameter.

A lookup table which enables a

Control Module to deduce an
appropriate Fail Safe value from
data type when continuity of a
Passive Connection is broken.
The Fail Safe value is passed to
the parameter at the input end of
the connection. In the diagram
400, it 1s shown that there 1s one
Fail Safe Mapping for all
Control Module instances.
However, it is possible, and
within the scope of the
invention, that each Control
Module could have its own Fail
Safe Mapping and that the
Fail-Safe Mapping could be

assigned by user configuration.

nonc

PCT/US98/17168

not explicitly

visible in

diagram 400

Algorithm blocks which explicitly instantiate class Connector (such as algorithm

WA N (WA <A i § g MG Nkl e Sy g v ACHIE Dy A M ¢ M.

block AB3) have Data Type available at configuration time and at execution time as needed
for algorithm processing. For each parameter which needs a dedicated connection resource,

an algorithm block instantiates one copy of Connector class as an active connector.

10

15

20

25

CA 02297028 2000-01-20

WO 99/10786 - PCT/US98/17168

-14-

Status information is also available to algorithm blocks which instantiate class
Connector. The Status value can be used for validity check at configuration time or as an
execution time check to verify correct operation of the connection. The value can also be
used in a binary sense to detect connection continuity or, in some cases, 1t can be used to
garner information about the type of failure which occurred.

Connector instances used by algorithm blocks can be allocated at the time of
implementation by a block designer, and may be allocated with a count which 1s fixed at
implementation time or they may be allocated with a flexible count which is determined
at the time of application configuration. In either case, however, a block designer should

provide explicit program statements which use connector services to accomplish data flow,

data type checking and status verification.

Algorithm blocks like AB4, which do not require active connections. are not
required to instantiate class Connector to achieve connectivity for parameters: instead,
algorithm blocks which require only passive connections can rely on the passive
connections services of the Control Module class. In one embodiment, the Control Module
class instantiates two passive connectors for every passive connection it supports; one
passive connector serves as a reference to the output parameter and the other passive
connector serves as a reference to the input parameter. While a passive connector defines
what output parameter should be transferred to what input parameter, the Pseudo Code
defines when transfers are to occur with respect to execution of each algorithm block.

Allocations of passive connectors and pseudo-code by a Control Module class are
preferably flexible; i.e., nothing in the design of the algorithm blocks or of the control
module should limit the number of passive connections which can be made to parameters
of particular algorithm blocks at configuration time. Because of the passive connection
services provided by a Control Module class, application designers are able to connect

virtually any parameters of any algorithm block regardless of whether support of an active

connector was anticipated by the block designer.

10

15

20

CA 02297028 2000-01-20

‘'WO 99/10786 - PCT/US98/17168

-15-

As part of its task of executing passive connections, instances of a Control Module
monitor continuity of the connections; in the event of a failure, the Control Module
identifies the type of the data flowing across the connection from its passive connector data,
looks up the corresponding fail safe value within the Fail Safe Mapping class and passes
the fail safe value to the input parameter. This design insures a minimum level of safety for

algorithm blocks which do not use active connectors. The method by which the Fail Sate

Mapping class assigns fail safe values to particular data types can vary depending upon the
implementation chosen for the invention: for floating point data type conforming to the
IEEE Floating Point standard, the natural fail safe value NAN (Not-a-Number) may be
employed; for Boolean data types, “False” makes an acceptable fail safe value.
Alternatively, fail safe values could be configurable by a system user. Those skilled in the

art will readily perceive of other suitable criteria for selecting fail safe values appropriate

for a specific application.

To further illustrate the invention, two sections of C-like Program Design Language
(“PDL”), at a high level of abstraction, are provided in TABLES 2 and 3; the PDL 1n
TABLE 2 corresponds to an exemplary execution algorithm for the Control Module class,
and the PDL in TABLE 3 corresponds to the execution algorithm for an Algorithm Block
class.

The PDL in TABLE 2 assumes that reference data contained in a Control Module's

Connector instances have been pre-processed as part of the Control Module set up

operation. After the pre-processing is complete, the Pseudo-Code has been converted from

a general form to a specific form with fully bound memory references.

TABLE 2

PPseudoCodelnstruction = &FirstPseudoCodelnstruction;

While (pPseudoCodelnstruction <= &LastPseudoCodelnstruction) {
Switch (*pPseudoCodelnstruction) {

Case Executelnstruction:

call execute function of component Algorithm Block;
break;

10

CA 02297028 2000-01-20

‘WO 99/10786 - PCT/US98/17168
-16- '

case TransferInstruction:

read parameter source address out of *pPseudoCodelnstruction;

if (parameter read incurred an error) {

substitute fail safe value as source value

}

read parameter destination address out of *pseudoCodelnstruction;

transfer the source value to the destination address;
break;

default: // EndInstruction

exit from Control Module execution function;

A process control strategy implementation generally requires many Algorithm

Block classes, each with its own execution algorithm. The PDL in TABLE 3 assumes an
Algorithm Block like AB3 which has an input parameter IP1 without an Active Connector,

and an input parameter IP2 with an Active Connector. The Active Connector for input

parameter IP2 is called “IP2Connector,” and it is assumed that Connector instance

[P2Connector has been pre-processed as part of the Algorithm Block set up operation.

After pre-processing, IP2Connector holds a fully bound memory reference as well as data

type and status information.

TABLE 3

[P2Status = status value read from IP2Connector;
if ((IP2Status is bad) or (IP1 is at fail safe value)) {

perform appropriate failure processing;

}

else {

IP2DataType = data type read from [P2Connector;
POutputParameter =

parameter address value read from Active Connector for IP2;

Semme b o WLt s —— e e AR | - oy sl

ST AT TN TR AR AL = i AT g A b DAl L (rely A smhde cer ot By i o sty G0 L AT TN L W AR AR § T A PG ST b | LA+ o AARLUSL IO 4 £y

ey ey — g

10

15

20

25

CA 02297028 2000-01-20

WO 99/10786 - | PCT/US98/17168

_17-

IP2 =

value read from address pOutputParameter and cast to type DataType;

do algorithm computation using values of IP2 and IP1.

From the foregoing, those skilled in the art will recognize that both active and
passive connectivity may be provided in a process control system, whereby heterogeneous
data flow may be provided between algorithm blocks. Having both kinds of connectivity
allows designers of algorithm blocks to control the allocation of resources while at the same
time getting all necessary functionality from block parameter connections. If a block under
design needs explicit data type and status, they are available by allocating a dedicated
resource within the block; if, on the other hand, this dedicated resource would be too
expensive, in terms of available system resources, or if all incidents of parameter
connectivity can not be anticipated, the passive form of connectivity is still available.

The active connections provided by the present invention provide some advantages
over the prior art; for example, they make data type and status available during block
execution. Implemented within an object oriented framework, however they also relieve
a block designer of much of the programming burden required to achieve active
connectivity. Furthermore, active connections allow the data type attribute to be accessed
not only at execution time but also at configuration time, if that is useful within the
algorithm implementation.

The passive connections provided by the present invention also provide some
advantages over the prior art; for example, while providing basic data flow between
connected output and input parameters, passive connections also provide definable fail safe
behavior that may be keyed to data type. In addition, passive connections between boolean,
integer and floating point data types can be supported. For each data type there can be
provided a defined fail safe value appropriate to the data type; loss of continuity causes the

fail safe value to be delivered to the connected input parameter.

From the above, it is apparent that the present invention provides a system for, and
method of, achieving heterogeneous data flow between first and second algorithm blocks
in a control system, and a distributed, real-time process control system employing the

system or the method. Although the present invention and its advantages have been

T TS LA ANRE A AN T NIPNIERAA W r W e e o=t v orm e e ma e chlirberens . Ty Sy 36w e S e e b ot s e e i 7 d i Ay ey P

CA 02297028 2000-01-20

WO 99/10786 - PCT/US98/17168

-18-

described in detail, those skilled in the art should understand that they can make various
changes, substitutions and alterations herein without departing from the spirit and scope of

the invention in its broadest form.

*rE

o

10

15

20

25

CA 02297028 2006-01-03

04159-1667
1 9
CLAIMS:
1. A system for data flow between first and second

algorithm blocks in a control system, the system comprising:

a passive connection, to provide data connectivity
between two algorithm blocks without explicit action on the

part of either connected block and without the use of

reference data stored within either block, the passive

connection being associated with a control module containing

said second algorithm block, that provides for the

communication of data from said first algorithm block to
said second algorithm block without requiring the allocation
of connector resources within said second algorithm block;

and

an active connection to provide connectivity
between algorithm blocks through active services of one of
the two connected blocks and through reference data stored
within that block, the active connection associated with
said second algorithm block, said active connection provides

pr——

for the communication of data from said first algorithm

block to sald second algorithm block using dedicated
connector resources within said second algorithm block, said
control system thereby to provide heterogeneous data to said
second algorithm block through both said passive and said

active connections selectively.

2 . A system according to Claim 1 wherein said passive

connection does not communicate the data type information.

3. A system according to Claim 1 or 2 wherein said

p—

passive connection does not communicate the status of said

passive connection.

CA 02297028 2006-01-03

04159-10607
Yo

4. A system according to any one of Claims 1 to 3

whereln said active connection communicates the data type

information.

P

5. A system according to any one of Claims 1 to 4

5 whereiln saild active connection communicates the status of

sald active connection.

0. A system according to any one of Claims 1 to 5
wherein sald control module provides a fail-safe value to
said second algorithm block when said passive connection

10 between said first and second algorithm blocks 1is lost.

7. A system according to any one of Claims 1 to 6

wherelin said control module contains said first algorithm

block.

8. A system according to any one of Claims 1 to 7
15 wherein the system comprises a distributed, real-time

process control system, comprising:

a plurallity of sensors and controllable devices;

data processing and storage circultry, associated

with said plurality of sensors and controllable devices,

20 operable to execute seqgquences of software 1nstructions for

achieving heterogeneous data flow between first and second

algorithm blocks in said control system.

9. A method for data flow between first and second

algorithm blocks 1n a control system, the method comprising

25 the steps of:

establishing a passive connection between said
first and second algorithm blocks for the communication of

data from said first algorithm block to said second

algorithm block, said passive connection providing data

10

15

20

23

CA 02297028 2006-01-03

04159-1667
_2 1 -

connectivity between two algorithm blocks regardless of
explicit action on the part of either connected block and
regardless of use of reference data stored within either
block, said passive connection being established regardless
of the allocation of connector resources within said second

algorithm block; and

dedicating connector resources within said second

algorithm block to provide an active connection for the

communication of data from said first algorithm block to
salid second algorithm block, said active connection
providing data connectivity between algorithm blocks through

P

active services of one of the two connected blocks and

through reference data stored within that block, said
control system thereby providing heterogeneous data to said
second algorithm block through both said passive and said

active connections selectively.

10. A method according to Claim 9 wherein said passive

connectlion does not communicate the data type information.

11. A method according to Claim 9 or 10 wherein said

passive connection does not communicate the status of said

passive connection.

12. A method according to any one of Claims 9 to 11
wherein saild active connection communicates the data type

information.

13. A method according to any one of Claims 9 to 12
wherein said active connection communicates the status of

sald active connhection.

14, A method according to any one of Claims 9 to 13

further comprising the step of providing a fail-safe value

CA 02297028 2006-01-03

064159-1667
—2D—

to said second algorithm block when said passive connection

between said first and second algorithm blocks 1s lost.

15. A method according to any one of Claims 9 to 14

wherein said second algorithm block i1s contained in a

5 control module, said control module performing said step of

establishing.

16. A method according to any one of Claims 9 to 15

wherein said first algorithm block i1is contained in said

control module.

10 17. A method according to any one of Claims 9 to 160

wherein sailid step of dedicating 1s performed by said second

algorithm block.

SMART & BIGGAR

OTTAWA, CANADA

PATENT AGENTS

CA 02297028 2006-01-03

£

rd

(LIV J0OIdd)
J o1

AJONWIN

Yell<

SYOLVNLOV ANV SHOSNAS SSd00dd

dTILVIOA—NON

011

0€1

1LNd1LNo 1ndino|
221 | /1ndNI | 51 | /10dNI
A%

. ATTIONLNOD

(LIV J0rdd)
[51

02297028 2000-01-20

CA

PCT/US98/17168

WO 99/10786

2/3

P 770

II"I"I""I'I

ﬁ
....... _ “

m] pdI

|

m edl

m«n cav pav

uuuuuuu k A

i | i Nﬁ_nm

i | |

| | "

“ “ _ 1d]

_ L m ::::: }
m<m gv cdv

— _ \\ IND
00€

S ee— eiigh
illll'l"lll!lllilltill

cdVv

1d0

1av

SUBSTITUTE SHEET (RULE 26)

R JEAT R T LYY AT] FALCEES AT M I VAL AT AN AL A 'O s BEL WA+ o ook J A ey en s s s e e e, RN

o DTSR AR s RS SIS L SFMAL A S AT T LA e b

“ - e el e L L P PR R —— .

A A - A8 S Fe € N A+ b AN Gl el by . e e y—

VAT A Adr A Vo ALY LERA L Y A PR

02297028 2000-01-20

CA

PCT/US98/17168

WO 99/10786

3/3

fus

A LANVIVd

NVYdD0dd Ad0D

00V

{uj
SNLVLS

a0 ddAL VIVQ
ANIVA Ol JONTHISTY

JOLIUNNOO

JOLOANNQD dALLOV

I up
jul ﬁ
M001d
WHLINOOTV
- MOLOANNOD AAISSVd

{18

ONIddVR
JAVS TIVd

L
TINAON
TOYLNOD

SUBSTITUTE SHEET (RULE 26)

IRt wbbin ~Alh LA A ACAD ' by e el

Hodih ALy b Pasle Sl aphmy s popry oy \aoy &
» rdrdy A AT AN

PR e s wPA WA, M e L s e 2O e

r Ny b ST KA. - L0 AN G C N YA D =t AR T e s sy e

CM2

CM1

AB3

ABl

IP1

P2

e
aal
<

ABg

[P3

IP4

CM2,AB5,CM3

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - abstract drawing

