7014731 A2 I 0O 000 OO 000 A

=N
=
—

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

International Bureau) I 0 0 00O A

(10) International Publication Number

WO 2009/014731 A2

(51) International Patent Classification: (74) Agents: VINCENT, Lester, J. et al.; Blakely, Sokoloff,
GOGF 17/50 (2006.01) Taylor & Zafman LLP, 1279 Oakmead Parkway, Sunny-
vale, CA 94085-4040 (US).

(43) International Publication Date
29 January 2009 (29.01.2009)

(21) International Application Number:
PCT/US2008/008998 (81) Designated States (unless otherwise indicated, for every

kind of national protection available): AE, AG, AL, AM,

(22) International Filing Date: 23 July 2008 (23.07.2008) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
(25) Filing Language: English EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,

1L, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT,
RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ,
T™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,

(26) Publication Language: English

(30) Priority Data:

60/951,436 23 July 2007 (23.07.2007) US TW
12/177,867 22 July 2008 (22.07.2008) US ’
(84) Designated States (unless otherwise indicated, for every
(71) Applicant (for all designated States except US): SYNOP- kind of regional protection available): ARIPO (BW, GH,
SYS, INC. [US/US]; 700 E. Middlefield Road, Mountain GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
View, CA 94043 (US). 7ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
(72) Inventors; and FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,
(75) Inventors/Applicants (for US only): MCELVAIN, Ken- NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
neth, S. [US/US]; 1160 May Brown Avenue, Menlo Park, CL CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).
CA 94025 (US). LEMONNIER, Benoit [FR/US]; 751
Marion Avenue, Palo Alto, CA 94303 (US). HALPIN, Published:
Bill [US/US]; 431 Camille Circle, Unit 15, San Jose, CA — without international search report and to be republished
95134 (US). upon receipt of that report

(54) Title: ARCHITECTURAL PHYSICAL SYNTHESIS

(57) Abstract: The present invention discloses methods and apparatuses to design an integrated circuit. According to one aspect,
the present invention circuit design discloses an iterative process of synthesis and placement where each iteration provides incre-
mental changes on the design of the integrated circuit. The synthesis transform is then made with accurate timing information from
the placement, and the process is incrementally iterative toward the final timing enclosure of the design. The incrementally iter-
ative approach of the present invention provides a continuous advancement from synthesis to placement and vice versa, with the
incremental improvements on synthesis made with knowledge of current instance placement, and the incremental improvements on
placement made with knowledge of current circuit logic.

WO 2009/014731 PCT/US2008/008998

ARCHITECTURAL PHYSICAL SYNTHESIS

RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provisional Application No.
60/951,436, filed July 23, 2007 (Docket No. 02986.P059Z) which provisional
application is incorporated herein by reference. This application is also related to
and is being filed on the same day as application no. 12/177,869 filed July 22,
2008, entitled: "Architectural Physical Synthesis" (Docket No. 02986.P1117).

FIELD OF THE INVENTION

[0002] The present invention relates generally to the field of designing integrated
circuits, and more particularly to the design of integrated circuits through a

synthesis process from a high level description.

BACKGROUND

[0003] For the design of digital circuits on the scale of VLSI (very large scale
integration) technology, designers often employ computer aided techniques.
Standard languages such as Hardware Description Languages (HDLs) have been
developed to describe digital circuits to aid in the design and simulation of
complex digital circuits. Several hardware description languages, such as VHDL
and Verilog, have evolved as industry standards. VHDL and Verilog are general
purpose hardware description languages that allow definition of a hardware
model at the chip primitive level, the register transfer level (RTL) or the
behavioral level using abstract data types. As device technology continues to
advance, various product design tools have been developed to adapt HDLs for

use with newer devices and design styles.

[0004] In designing an integrated circuit with an HDL code, the code is first
written and then compiled by an HDL compiler. The HDL source code describes
at some level the circuit elements, and the compiler produces an RTL netlist from
this compilation. An RTL netlist is composed of a plurality of RTL objects, or

components, and a plurality of nets which are the signal connections between the

-1-

WO 2009/014731 PCT/US2008/008998

components. The RTL netlist can be a technology independent netlist in that it is
independent of the technology or architecture of a specific vendor's integrated
circuit, such as field programmable gate arrays (FPGA) or an application-specific
integrated circuit (ASIC). The RTL netlist corresponds to a schematic
representation of circuit elements (as opposed to a behavioral representation). A
mapping operation is then performed to convert from the technology independent
RTL netlist to a technology specific netlist which can be used to create circuits in
the vendor's technology or architecture, including placing the instances and
routing the interconnections so that the circuit meets given timing, space and

power constraints.

[0005] Early electronic design automation (EDA) totally separates the HDL
synthesis from the placement/routing processes as shown in Figure 1. In
operation 11, HDL code is prepared. In operation 13, the HDL prepared in
operation 11 is compiled and synthesized to produce a netlist which is typically
optimized by performing logic optimization. Thereafter, a mapping process maps
the netlist to a specific target technology/architecture. At the end of operation 13,
the synthesis has been completed and a netlist which is specific to the
technology/architecture used in the vendor's IC is now provided. This netlist is
effectively at a gate level with timing analysis estimated by using statistical
models of the interconnect properties based on pre-placement information such
as fanout count or connected component type and size. After synthesis, a
conventional place operation is performed on the logic circuit in operation 15
with local changes to the netlist (at only a chip primitive or cell or gate level)
made in operation 17 to meet timing performance. A conventional routing
operation is then performed in operation 19 in order to create a design of the
circuitry in each of the ICs. If there are any unmet constraints, the process makes

modifications with loop back iterations.

[0006] Formerly, when instance delays were dominant in the early synthesis

tools, the timing estimates based on the statistical models were sufficiently

WO 2009/014731 PCT/US2008/008998

accurate so that the separation of synthesis and placement required relatively few

iterations back to the HDL and synthesis stages.

[0007] However, with shrinking technology nodes, the interconnect delays
become significant, surpassing the gate delays. This results in the delay
estimation in the synthesis operation becomiﬁg less and less correlated to the
actual delays following placement and routing operations, leading to the lack of
timing predictability between post-synthesis and post-layout results. Thus in
many cases, after the placement and routing processes, the circuit physical layout
cannot meet the circuit design criteria, and often the designers must start over

from the synthesis step and repeat the synthesis/placement/routing processes.

[0008] To improve synthesis, it is important to account for the physical
characteristics associated with the design (e.g. placement) during the synthesis
process. A series of techniques have been adopted to bring placement
information into the synthesis process such as floorplanning, in-place

optimization (IPO), and physical synthesis.

[0009] In the floorplanning technique, the design is partitioned into regions on
the chip and placement based interconnect estimation is used for inter-region
interconnect, while interconnect within a region is estimated using statistical
models. Floorplans can be used either at the early RTL stages or later after an
initial synthesis run. Floorplanning can be extended to partitioning, replicating
and slicing of RTL components into regions and combined with RTL level
timing and area models. The improved timing from inter-region timing can then
be used to more accurately drive RTL level optimizations. Producing a good
quality floorplan manually is challenging and requires skilled users. Automatic
floorplanners like the one from Tera Systems (U.S. Patents 6,145,117 and
6,360,356) can create regions and assign RTL components to them. Because
synthesis 1s decoupled and follows the automatic floorplanning, the accuracy of

the timing and area information is poor during the floorplanning.

[0010] A technique called in-place optimization (IPO) provides back-annotation of

place-and-route delays into the synthesis domain. Critical paths are re-optimized

-3-

WO 2009/014731 PCT/US2008/008998

but because detail placement is not updated, interconnect delays for modified nets
revert to statistical models. If many changes are made, then the following
legalization of the resulting netlist may require moving instances far from their
initial positions, resulting in large delay estimation errors. For this reason IPO is

seen as unstable when significant changes are required to achieve timing closure.

[0011] Another technique is physical synthesis which is an improvement over the
IPO technique where a small number of optimizations on a mapped netlist is
interleaved with incremental re-legalization to maintain fidelity in the delay and
resource metrics. A limitation of this technique is that individual changes are
limited to modest increases in resources or the instability problem of the IPO
technique re-surfaces. Currently there are several different algorithms for physical
synthesis. Figure 2 shows one algorithm providing a physical synthesis engine
using timing estimations based on the proximity of placed instances. After the
mapped netlist is initially placed in operation 23, the physical synthesis operation
selects portions of the circuit for incremental optimization and re-placement in

operation 24 which is performed only at the chip primitive level.

[0012] From the foregoing, it can be seen that algorithm improvements for

electronic design automation are needed.

[0013] Prior patents also relate to or describe chip synthesis, and these patents
include: U.S. Patents 6,519,754; 6,711,729; 7,010,769; 6,145,117; and
6,360,356. Placement algorithms are recently described in a paper: Bo Hu,

Timing-Driven Placement for Heterogeneous Field Programmable Gate Array,

IEEE/ACM International Conference on Computer-Aided Design, November
2006 (ICCAD '06), pp- 383-388 (ISSN: 1092-3152; ISBN 1-59593-389-1).

SUMMARY OF THE DESCRIPTION

[0014] The present invention discloses methods and apparatuses to design an
integrated circuit. In exemplary embodiments, the present invention circuit
design discloses an iterative process of synthesis and placement, which begins at

the RTL or Behavioral level, where each iteration provides incremental changes

WO 2009/014731 PCT/US2008/008998

through transforms of the design of the integrated circuit. In certain aspects, the
transform can be either a synthesis or placement transform. A synthesis transform
modifies the objects in the netlist and/or the nets forming the connections
between the objects. A placement transform modifies the locations of one or
more objects in the netlist. The incrementally iterative approach of at least certain
embodiments of the present invention provides a continuous advancement using
the appropriate synthesis and placement transforms as determined by design
metrics such as the current circuit netlist, placement, timing, resource
availability, and power. In certain aspects, after each transform, the effected
design metrics are updated so that future transform decisions are based on an
accurate design statistics. The process is incrementally iterative toward the final

timing resource and power enclosures of the design.

[0015] A key aspect of at least certain embodiments of the invention is that
placement takes place before the specific resource types have been identified for
high level components. For example, alternative implementations with desirable
weights and associated resource totals for components are cataloged and the
placer evolves the placement to move the components near to the resource types

for desirable implementations.

[0016] In a preferred embodiment, the present invention starts with a graph
representing an RTL or Behavioral design (the circuit) and a physical map of
chip resources. Iterative transforms are performed where each transform produces
an optimization or refinement of the circuit or of the placement of objects in the

circuit.

[0017] In an embodiment, a transform consists of a high level optimization. This
transform optimizes a components or a plurality of components through a rule or
mathematical transform into a functionally equivalent alternate set of
component(s) that have superior characteristics such as timing, power or resource
consumption. An example of such a transform is reorganizing arithmetic
expressions to reduce tree height to improve delay. Another example is resource

sharing or unsharing,

WO 2009/014731 PCT/US2008/008998

[0018] In another embodiment, the high level optimization transform refines
group(s) of circuit object(s) from more abstract forms to more concrete forms.
An example of a refinement transform is the mapping of an arithmetic expression
onto a DSP resource on the chip. When an abstract form is refined, there are
usually many implementation choices. For example, an arithmetic expression
could be implemented by a special purpose arithmetic function (a DSP block) on
the chip, by table lookup in a memory, or built out of the lower level logic
components on the chip (LUTs or gates and flip-flops). Components from a
Behavioral Synthesis flow may have multiple implementations registered based
on alternative schedules and sharing of resources. Such alternatives for
behavioral components can also be dynamically generated based on current

available resources and interconnect delays.

[0019] In another embodiment, the refinements transforms also have an urgency
metric based on the quality of alternative implementations and are selected in
order of urgency. The quality of an implementation is measured in terms of
design objectives like area consumption, power consumption or timing. Other
more esoteric objectives like single event upset hardness can also be included.
For example, if a design contains one large memory and several small sized
memories, and the large memory has a relatively poor implementation quality
when implemented by the logic fabric, it is relatively much more important to
associate the large memory with scarce special purpose memory resources on the
chip than the medium sized memories in the design. The urgency metric for the
large memory would then be much higher than the metric for the small
memories. Once components are mapped to a specific implementation and
associated with specific resources on the chip, the connections to these
components act as anchors for the placement of the remainder of the circuit,

improving the quality of the timing and available resource estimation.

[0020] In one embodiment, the placement transform can be a refinement of
location of one or more placeable objects, to improve placement metrics such as:

instance congestion, routability, and circuit performance. A placeable object may

WO 2009/014731 PCT/US2008/008998

consist of a Behavioral synthesis component, an RTL block of unmapped logic,

mapped logic, or any combination of these.

[0021] In an embodiment, the placement transform is capable of modifying
objects of different levels of abstraction. For example, some placeable objects

may be RTL blocks, while others may be mapped gates.

[0022] In another embodiment, a refinement transform is triggered when the
placement is evolved enough locally that one can determine available resources

and estimate routing delays.

[0023] According to another aspect of the present invention, an exemplary
method for designing integrated circuits provides an iteration of incremental
transforms where the synthesis and placement transforms are not in any order,
but only selected for their functionality. The circuit design automation selects the
next transform, either synthesis or placement, based on a choice function. At
each iteration, the costs for a predetermined list of transforms are calculated. The
cost may include look ahead to the changes in cost of other transforms. For
example, if an arithmetic operation is mapped to a ROM, then the ROM option
could be removed for implementation of another operation, raising its cost. The
best transform is selected based on the cost convergence criteria such as the

current placement, netlist, resources, timing or power.

[0024] The next transform can be a placement update, a resource assignment, a
synthesis optimization, a placement optimization, or a routing update. Thus the
state of the IC design progresses incrementally toward the final circuit

specification and layout.

[0025] In another embodiment, the placement transforms are performed
iteratively until critical paths starts to shape or until resources are sufficiently
spread according to a predetermined congestion threshold. The criteria for
iteration performance are timing, congestion per resource layer, area utilization

and power.

WO 2009/014731 PCT/US2008/008998

[0026] The congestion per resource layer can be determined by the use of
resource layers. There is a resource layer for each distinct primitive type of
resource on chip. For example, today’s FPGAs and Structured ASICs have
introduced irregular layouts of primitive chip resources. These primitives types
include logic (LUTS), flip-flops, special /O cells like SERDES for high speed
serial interconnect, a variety of memory components with different capacities and
high speed arithmetic blocks to speed up DSP algorithms. Other than logic and
flip-flops, typically, these resources are included in a sparse and possibly
irregﬁlar fashion. Many FPGAs have a limited amount of RAM, DSP, and other
dedicated logic blocks arranged in sparse columns on the chip For example, DSP
arithmetic blocks might be available in only 2 columns in the chip layout. A
resource layer is a distribution map created for each primitive type and records
the available resource locations for that type and the placement of each primitive
of that type. A layer is said to be congested if a localized physical region with

" more usage then supply exists.

[0027] In a typical example of this method, an initial state of the design of the
integrated circuit is generated from a high level representation with the timing
constraints and placement constraints such as IO pins, existing floorplan or
existing placement. The high level representation can be a hardware description
language (HDL) code or a technology independent RTL netlist after the

compilation from a hardware description language (HDL) code.

[0028] In an embodiment, the netlist of the initial state of the design of the
integrated circuit is first optimized by a series of neutral optimizations based on
timing. The neutral optimizations can be a recovery of any area that can be
undone easily such as resource sharing or unsharing; adder tree decomposition
which is preferably based on fanout table timing; a resource assignment, a
flattening of the netlist to facilitate optimization across the hierarchy; multiplexer

extraction or restructuring.

[0029] In an embodiment, the general flow of the state of the design of the

integrated circuit progresses from a RTL netlist to a decomposition, and

WO 2009/014731 PCT/US2008/008998

factorization, then to a mapped and routed netlist. Placement modifications,
resource assignments and area or timing optimizations are performed through the

flow.

[0030] In an embodiment, the process of refining the placement and circuit
architecture repeats until all high level components have been given a specific
implementation and resource assignment and the placement has been spread on
the chip such that every component has sufficient nearby resources for
implementation. A more traditional physical synthesis flow may be used from

this point to complete the implementation.

[0031] In another embodiment, the applied transforms and their potential
alternatives are recorded. The flow may be repeated and the alternative

transforms can be applied to achieve better results.

[0032] The present invention also discloses apparatuses, including software
media which may be used to design integrated circuits. For example, the present
invention includes digital processing systems which are capable of designing
integrated circuits according to the present invention, and the invention also
provides machine readable media which, when executed on a digital processing
system, such as a computer system, causes the digital processing system to

execute a method for designing integrated circuits.

[0033] Other features of the present invention will be apparent from the

accompanying drawings and from the detailed description which follow.

BRIEF DESCRIPTION OF THE DRAWINGS

[0034] The present invention is illustrated by way of example and not limitation
in the figures of the accompanying drawings in which like references indicate

similar elements.
[0035] Fig. 1 shows a prior art method for designing integrated circuits.

[0036] Fig. 2 shows a prior art exemplary method of physical synthesis.

WO 2009/014731 PCT/US2008/008998

[0037] Fig. 3 shows a flow chart of a method to design an integrated circuit

according to one embodiment of the present invention.

[0038] Fig. 4 shows a flow chart of another method to design an integrated

circuit according to one embodiment of the present invention.

[0039] Figures SA and 5B show details of a method to design an integrated

circuit according to certain embodiments of the present invention.

[0040] Fig. 6 shows a flow chart of a method to design an integrated circuit

according to one embodiment of the present invention.

[0041] Fig. 7 shows an exemplary estimation of shape and resources.
[0042] Fig. 8 shows an exemplary mapping for a resource type.

[0043] Figs. 9A and 9B are exemplary mappings of a memory resource.
[0044] Figs. 10A and 10B are exemplary resource sharing implementations.
[0045] Fig. 11 shows an example of an adder tree decomposition.

[0046] Fig. 12 shows an example of a gate tree decomposition.

[0047] Figs. 13A and 13B show examples of a slicing optimization.

[0048] Fig. 14 shows an example of a replication optimization.

[0049] Fig. 15 shows an example of a Shannon expansion.

[0050] Figs. 16A and 16B show examples of mux/pmux collapsing and timing

driven decomposition.

[0051] Fig. 17 shows a block diagram example of a data processing system

which may be used with the present invention.

DETAILED DESCRIPTION

[0052] Methods and apparatuses for designing an integrated circuit or a plurality
of integrated circuits are described herein. In the following description, for
purposes of explanation, numerous specific details are set forth in order to

provide a thorough understanding of the present invention. It will be evident,

-10-

WO 2009/014731 PCT/US2008/008998

however, to one skilled in the art that the present invention may be practiced
without these specific details. In other instances, well-known structures,
processes and devices are shown in block diagram form or are referred to in a

summary manner in order to provide an explanation without undue detail.

[0053] The present invention discloses methods and apparatuses to design an
integrated circuit which, in one embodiment, combines placement and synthesis
in a single pass. An embodiment of the present invention discloses a physical
synthesis process, termed Architectural Physical Synthesis, where the interaction
between the synthesis and the placement occurs in an architectural level. This
allows synthesis to occur with actual physical placement on a representation of
an integrated circuit’s substrate, providing synthesis with available local
resources and delay estimations closely associated with the actual circuit timings
from the placement, and thus the interaction between synthesis and placement
can be considered simultaneously. Further, this can provide an automated
method to make high level architectural decisions, mapping high level
components or making high level circuit transforms in a way that takes into
account placement, congestion estimates and the characteristics of the targeted
chip architecture including but not limited to the physical distribution of diverse
resources, component delays and interconnect delays. According to one aspect of
the present invention, it is recognized that given a circuit design, or a HDL code
representation, there are a large number of alternative implementations
interlinking synthesis and placement, especially for an existing floor plan with
given distributed resources. To achieve an optimum design implementation, it is
important to be able to back track an earlier synthesis decision based on currently

available circuit data such as timing or power, gathered through placement.

[0054] Thus in an aspect of the present invention, placement is performed in early
synthesis cycles, for example, in circuit architectural level, in high level design or
behavioral representation to allow accurate evaluation of the suitability of various
design implementations. This is especially important with prediffused chips such

as FPGAs and structured ASICs where the resources are not distributed uniformly

-11-

WO 2009/014731 PCT/US2008/008998

on the chip. In prediffused chips, the locations of resources and resource types are
predetermined and distributed in a sparse fashion. For example, today’s FPGAs
and Structured ASICs have introduced irregular layouts of chip resources. These
components may contain logic, flip-flops, special I/O cells like SERDES for high
speed serial interconnect, a variety of memory components with different
capacities and high speed arithmetic blocks to speed up DSP algorithms. Many
FPGAs have a limited amount of RAM, DSP, and other dedicated logic blocks
arranged in sparse columns on the chip. For example, DSP arithmetic blocks

might be available in only 2 columns in the chip layout.

[0055] In an aspect, the present invention addresses this change in chip
architecture evolution to integrate physical placement and architecture selection
at the beginning of the synthesis flow. This requirement can be at the RTL level
or at the behavioral synthesis level where the number of required resources of

different types are being determined.

[0056] The current awareness of the resource layout information and the
integration of placement and synthesis at an early synthesis process (e.g. while
many components of a design have not had an implementation selected) can
provide an optimal utilization of resources. For example, an RTL synthesis
process which is not aware of resource layout information may result in an
intermediate netlist which over uses some resource types while other resources
types go underutilized. Furthermore, the resource type decisions may not be
compatible with the physical locations of the resources. For example, more DSP
resources may be required in a localized part of the chip than are available. The
present synthesis methodology can provide an efficient utilization of these
resources by knowing about their distribution on the chip and to know not just
that there are enough of a particular resource, but that there are enough nearby.
Thus large interconnect delays may be avoided from routing signals to distantly

placed resources.

[0057] According to an aspect of the present invention, various placement

decisions are determined while synthesis is still at a high level circuit

-12-

WO 2009/014731 PCT/US2008/008998

representation (e.g. many components in a design may not yet have a selected
implementation), or that a gate-level description is still to be determined. These
placement decisions may enable an accurate evaluation of circuit parameters,
such as timing delay or power consumption, permitting an incremental path
toward an optimum design implementation. In an embodiment, as shown in
Figure 3, the process starts with an initial state of the IC design, which may
comprise ESL or HDL language, a behavioral abstraction, or a compiled HDL
code to a high level abstraction of RTL netlist, plus timing, floorplan, power and
placement constraints in operation 30. In operation 31, a synthesis transform is
performed, which, at an early stage of the process, would be a high level
transform. This synthesis transform may be for only a portion of the design. In
operation 32, placement transforms is performed on the existing circuit
representation, and at an early stage, would be a placement at an architectural
level. This placement transform may only be for a portion of the design. The
placement decisions at this operation might require various assumptions and
estimations, since detailed information are likely to be missing at this early stage.
The readiness of the IC design state is then evaluated in operation 34, and if it
meet design and legal objectives, moves on to traditional physical synthesis in
operation 48. If the objectives are not met, as is likely at this early stage, it will

loop back to another round of synthesis.

[0058] The next iteration of synthesis (current operation 31) would improve the
design representation, especially after being provided with physical placement
information (previous operation 32). And similarly, the next iteration of
placement (current operation 32) would improve its estimation of circuit
parameters after being provided with an improvement of synthesis. With such
intimate loops, synthesis and placement can work closely together to provide a

path to an optimal design representation without significant rework.

[0059] In an embodiment, the synthesis operation provides various
implementations for a circuit design representation, and the placement operation

can perform circuit parameter analysis to help narrow the options. For example,

-13-

WO 2009/014731 PCT/US2008/008998

if implementation #1 is clearly superior, it would be chosen, and narrowing the
number of potential implementations to one. Alternatively, if implementation #2
is clearly outside the scopes of the design constraints, it would be eliminated,

narrowing the number of potential implementations by one.

[0060] According to one aspect of the present invention, an exemplary method
for designing a plurality of integrated circuits presents an integrated, interactive
and iterative synthesis and placement from an abstract machine specification. In
an embodiment, the exemplary method of designing integrated circuits
incrementally changes the state of the IC design. Starting from an initial state of
IC design, which comprises ESL or HDL language, a behavioral abstraction, or a
compiled HDL code to a high level abstraction of RTL netlist, plus timing,
floorplan, power and placement constraints, the exefnplary method iteratively
changes the IC design state incrementally until an optimized design state is
reached. The optimized state is preferably a chip primitive level netlist satisfying
the timing and placement constraints, which can then be passed to a traditional

placement and routing process without any extensive re-works.

[0061] According to one aspect, the present invention discloses an iterative
process of synthesis and placement where each iteration provides incremental
changes on the design of the integrated circuit. A general example of certain
embodiments of the present invention will be provided while referring to Figure
4. The method of Figure 4 begins in operation 40 where an initial state of an IC
design is generated. The initial state of the IC design comprises a behavioral
representation, or high level RTL netlist, which can be compiled from a HDL

source code which describes the circuitry and logic.

[0062] The technology independent RTL netlist is typically a higher level
behavioral representation of the design. This conserves abstracted information for
use by processes before the final mapping step. This differs from traditional
synthesis tools that fragment designs into fine, low level (gate) representations
immediately after doing language compilation. By preserving a higher level

behavioral representation, a synthesis tool can perform optimization, partitioning

-14-

WO 2009/014731 PCT/US2008/008998

and floor planning at a much more global level and typically deliver better

results. By operating on abstracted data, the synthesis tool can also operate more
quickly and handle larger designs. The high level RTL netlist contains high level
of abstraction, such as circuit block representation, independent of any particular

vendor technology or architecture.

[0063] The initial state of the IC design further includes timing constraints,
power constraints, and placement constraints, such as IO pin locations, existing
floorplan or existing placement (e.g. size and shape of the IC chip, IP blocks). In
operation 42, the state of the IC design is incrementally changed. The state of the
design of the integrated circuit generally comprises a netlist, timing data,
resource information, placement information, routing information, and power

~ data. The incremental changes in the design state can be synthesis or placement
modifications, and will be described further below. In one aspect of the
invention, the changes are incremental, meaning the design optimizations
proceed typically with small modifications with all current information such as
timing estimations and placement constraints. The incremental changes allow
the design to progress in full confidence that progress is steadily made. In one
aspect, the incremental changes involve an incremental global placement
algorithm such as the force directed method. In another aspect, the incremental
changes involve global optimization algorithm such as simulated annealing. In
operation 44, the state of the IC design is evaluated, and a decision is made in
operation 46 whether to continue with further iteration by going back to

operation 42, or to complete the design flow in operation 48.

[0064] The present circuit design method provides a highly integrated and
interactive process between the two basic steps in the design of integrated
circuits, which are synthesis and physical design (e.g. placement and routing).
With the concept that synthesis and placement are strongly interdependent, since
design constraints cannot be estimated accurately in synthesis without placement,

and placement cannot be performed without synthesis, the present invention

-15-

WO 2009/014731 PCT/US2008/008998

design method effectively merges synthesis and placement into one step process

with the incrementally iterative approach.

[0065] In an embodiment, the present method provides an iteration of
synthesis/placement transforms. The body of the iteration process can be a
placement transform, a synthesis transform, or a combination of synthesis and
placement transforms. In either case, the state of the design of the integrated
circuit is incrementally and iteratively changes toward the synthesis or placement
of a chip primitive level netlist which meets the design 6bjectives. Figures SA
and 5B show two examples of a portion of a flow for designing an IC; in the case
of the method shown in Figure SA, a placement transform occurs first followed
by a synthesis transform while the reverse happens in Figure 5B. The
incremental and iterative transforms of synthesis, placement or
synthesis/placement provide a continuous interaction between synthesis and
placement at any state of the design. The incremental and iterative progress of
synthesis and placement assures that the synthesis transform always have the
latest and most accurate design state information, which includes delay
information and local resource availability from the placement transform, and
where the placement transforms always provides the best estimates for physical
placement and wiring information based on the latest synthesized netlist.
Placement and synthesis transforms continue until the netlist is composed only of
chip level primitives, the design objective are met, and placement congestion is
reduced to a level where a detail placer can easily legalize any small local region
independently. This flow can be followed by a traditional physical synthesis flow

to complete implementation.

[0066] Figure 6 shows an embodiment of the present invention for the
incremental changes of the IC design state. The present invention can place all
levels of abstraction simultaneously. During early iterations, objects at higher
levels of abstraction are more prevalent than in the later iterations where the
design consists mostly of chip primitives. The chip primitive instances are

typically the lowest level of representation. Synthesis transforms gradually

-16-

WO 2009/014731 PCT/US2008/008998

modify the netlist, changing the objects at a higher level of abstraction to more
concrete objects. These concrete objects have more specific resource
requirements which are then taken into account in following synthesis and
placement transforms. Placement transforms determine the locations of netlist
instances, either RTL instances, unmapped instances, mapped instances, or chip
primitive level instances, thereby determining along with the router, the lengths
and the delays of the nets in the circuits. The placement transform can gradually
iterate the circuit placement toward a legal placement, where legal placement
means meeting the rules governing the resource usage of the IC chip. Typically in
the early iterations, the placement will be far from legal. Since the placement
transform makes incremental changes in object locations, single iterations of the
placement transform will not create in a legal placement. It is through repeated
placement transforms that the placement will become legal. In this embodiment,

the placement transform is central to the present electronic design automation.

[0067] In each iteration, the criteria for an iteration can be the timing data,
congestion per resource layer, area utilization, power level, or any combination
thereof. The method can further comprise a possible inner loop iteration to
optimize the design, to shape the critical paths, or to spread the resources to a

predetermined threshold.

[0068] With an embodiment of the present invention method of incremental
iteration of synthesis and placement transforms, physical design information is
always available in synthesis transforms in all stages of the design. Thus the
optimizations and transformations in the synthesis are always up-to-date on the
timing and area, and also on the impact on routability. Decisions regarding the

circuit structure made in synthesis are fully in concert with the placement.

[0069] The present invention method of incremental iteration of synthesis and
placement transforms effectively combines the synthesis and placement
transforms to simultaneously optimize the logical structure as well the spatial

placement of a circuit. In a typical example of this method, the state of the

-17-

WO 2009/014731 PCT/US2008/008998

design of the integrated circuit progresses incrementally toward the final circuit

specification and layout.

[0070] The progress of the iterative placemenf transform can be an increasing
level of maturity of the netlist or a placement configuration. The maturity of a
design is measured by the degree to which the netlist is composed only of chip
level primitives, design objective are met, and placement congestion is reduced
to a level where a detail placer can easily legalize any small local region

independently.

[0071] The progress of the iterative synthesis transform can be a synthesis
optimization such as restructuring or replication of objects or instances to meet
timing constraints. Synthesis optimizations include but are not limited to a
circuit optimization, an abstract component decomposition, an arithmetic
mapping, an undo/do resource sharing, an adder tree decomposition, an and/or
gate decomposition based on placement, path replication, a path detour removal,
an assignment to discrete resources such as RAMs or DSPs, a logic factorization,
multiplexer restructuring, or a flattening of a netlist to facilitate optimization

across the hierarchy.

[0072] The embodiment of this method is shown in Figure 6, which begins with
an operation 61 where an initial state of the IC design is generated. The state of
the IC design can be a RTL netlist with associated state information such as
timing data, resource information, placement information, routing information,
and/or power data. Typically, the state of the IC design contains enough
information to specify the circuit requirements, such as functionality, timing,

power, and floorplan.

[0073] High level RTL netlist comprises a netlist of where most of the objects
are abstractions of the low level chip primitives. Groups of associated primitives
can be represented as objects with higher level of representation, which represent
functionality encoded by the RTL. The high-level or abstract representations of
the integrated circuit design can be logic objects, representing RTL code or

portions thereof. Each object typically represents multiple chip primitives, for

-18-

WO 2009/014731 PCT/US2008/008998

example more complex functions such as adders, multipliers, multiplexers, and
sequential logic as well as AND functions, OR functions. Objects of high level
representations can also include memory blocks or proprietary (intellectual
property blocks or IP) blocks. Other logic objects can be portions of RTL code to
provide support functions, such as glue logic (providing buffers or interfacing
functions), timing logic, control logic, or memory logic. Some of high level RTL
objects may also be chip level primitives. The netlist of objects also includes
information associated with each object for wiring and placement. The objects

can include information to map back to the corresponding RTL code.

[0074] Further, RTL code can contain hierarchies, where functions are grouped
together. In some situations, components can be re-grouped from one hierarchy
to another in order to optimize timing, routing, area, or power requirements. In
other situations, functional RTL hierarchy can be flattened, in whole or in part,

during the incremental iterative process.

[0075]} In the beginning, the initial state of the design can comprise constraints,
such as timing constraints, power constraints, and/or placement constraints. For
example, placement constraints can include locations of 1O pins, existing

floorplan or existing placement data.

[0076] In exemplary embodiments, the initial state of the design is first
optimized by a series of neutral optimizations based on timing. The neutral
optimizations include any area recovery that can be undone easily, for example,
undo/do resource sharing; adder tree decomposition based on fan-out table
timing; obvious resource refinements, for example, if there is a huge RAM in the
design and there is only one RAM block resource available, the RAM has to go
there; flattening of the netlist to facilitate optimizations across hierarchy; and

extraction and restructuring of multiplexer structures.

[0077] A next transform is selected in operation 62 based on the current design
state (the current placement, netlist, resources, timing, power, and routing) to
incrementally change the state of the IC design. Operations 63-70 are typical

transforms according to an embodiment of the present invention, comprising

-19-

WO 2009/014731 PCT/US2008/008998

placement or update placement (63), assign resources (64), factorize (65), map
(66), optimize logic (67), create/refine implementation (68) update routing (69)
and other synthesis (70). The transforms are typically small, incremental
operations to permit the seamless integration of placement and synthesis, as such,
synthesis is performed with knowledge of placement, and placement is

performed with knowledge of synthesis.

[0078] The iterative and incremental transforms 63-70 thus comprise placement
and synthesis operations, including optimization transforms such as undo/do

resource sharing, adder tree decomposition, AND/OR gate decomposition, logic
replication, bit splicing, detour removal, factorization, and placement transforms

such as assignment to discrete resources (RAM, DSP, etc.), and routing.

[0079] In exemplary embodiments, at each iteration, Operation 62, various
potential transforms are evaluated based on a cost function. The cost function is
designed to select the best transform to operate first, and therefore includes design
state information such as timing, placement congestion, routing congestion, area
utilization and power. Upon the evaluation, the best transform is performed and
the iteration continues until the design constraints are satisfied. In one aspect, the

design then can proceed to traditional gate level placement and routing.

[0080] At each iteration, the method runs through a list of selections, and selects
the best transform based on a cost function. For example, the choice between a
placement transform and a synthesis transform is based on a timing convergence
criterion. On a critical path, the placement can attempt to shorten critical nets, if
possible. If critical nets cannot be shortened, the nets are available for physical

synthesis optimizations.

[0081] According to another aspect of the present invention, an exemplary
method for designing integrated circuits provides an iteration of transforms
where the synthesis and placement transforms are not in any order, but only
selected for their functionality. The method provides good integration between
synthesis and placement where within the iteration, the next transform is selected

based on the state of the design of the integrated circuit, to progress toward the

220-

WO 2009/014731 PCT/US2008/008998

final configuration with timing and placement constraints. In an embodiment,
the method provides a transform selection algorithm where the next transform is
selected based on certain criteria such as timing, congestion per resource layer,
area utilization, and power. The next transform can be an update of placement
where the circuit will undergo an iteration to make placement changes for the
current netlist with less resource congestion or better meets design objectives.
The next transform can be a synthesis optimization, such as a factorization, an
optimization, or a decomposition. The next transform can be a synthesis
optimization such as splitting, restructuring or replication to meet timing or
critical path requirements. The next transform can be synthesis where the current
netlist can be mapped into lower level of abstraction, toward chip primitive level

netlist for finalize the circuit specification and layout, or updating routing.

[0082] The next transform can be a placement optimization such as floorplan
partitioning, resource assignment, logic restructuring or replication to meet
timing or critical path requirements, or updating routing for the instance
placement. The next transform can be a synthesis operation where the current
netlist can be mapped into lower level of abstraction, toward a chip primitive

level netlist to finalize the circuit specification and layout.

[0083] With incremental transforms, design state information, such as timing and
power, is up-to-date, and therefore optimizations can be performed with an

accurate view of the impact on objectives.

[0084] In an alternative embodiment, several transforms are selected. Each
selected transform is then applied to measure the impact on the design state and

reverted or undone. The best transform is then selected and applied.

[0085] In an embodiment, a key step of the present invention is operation 68
which for each RTL object in the netlist creates or refines possible
implementation choices. An associated function performs the estimation of the
shape and resources required for each of the implementation alternatives. In
another embodiment, Operation 68 can also assign weights to each

implementation, indicating preferred implementations. One key advantage of the

21-

WO 2009/014731 PCT/US2008/008998

present invention which incorporates synthesis and placement at an architectural
level, is that it allows the evaluation of different architectural implementations.
Without the present architectural physical synthesis, once an implementation is
chosen in the RTL synthesis stage, at the gate level placement stage, it will not be
possible to recover the high level information. This could result in sub-optimality
if the other implementation would have been preferred. Therefore, much better
timing results can be attained if implementation decisions are done at RTL level
with the physical information. This transformation is very difficult to perform

once the circuit has been mapped for the place and route stage.

[0086] As iterations proceed and the design state refines, Operation 68 eliminates
implementation choices with inferior properties. The example of the function F,
implementing, F =S & (A*C) || ~S & (B * C) will be used to explain Operation
68. If the select signal S is 1, then F is the result of multiplying A and C, while if
S is 0 then F is the result of multiplying B and C. Operation 68 determines
possible implementation alternatives for this function. Figures 10A and 10B
illustrate two possible implementation alternatives which the Create/Refine
Implementation operation may create for this function. Figure 10A shows an
implementation utilizing two multipliers and a multiplexer which might be
desirable if the output F is timing critical and the select signal S has the latest
arrival time. Figure 10B shows an implementation utilizing a single multiplier
and multiplexer which would be more desirable if input C is the latest arriving
signal or if output F is not timing critical and area reduction is desired. These
two alternatives illustrate resource sharing/unsharing. Without concrete
information about the timing and placement of the function, a typical high level
synthesis algorithm would typically not evaluate an alternative such as Fig. 10A
since it uses resources for two very expensive multipliers. This would be the case
even in the case where the traditional flow’s placement places this function
nearby dedicated unutilized multiplier resources, with its output critical and the
select signal S arriving after A, B, and C. In this invention, Operation 68 will
create both of these implementations, and possibly others, eliminating

alternatives when it is clear they are sub par. For example, as iterations proceed,

22

WO 2009/014731 PCT/US2008/008998

it may become clear that the output F is not critical. In this case, Operation 68
would refine the implementation choice to only that of Fig. 10B since this
alternative uses fewer resources. Alternatively, Operation 68 might eliminate the
implementation in Fig. 10B if F and the select line S are critical and there are

nearby available resources to implement the multipliers.

[0087] FPGA chips typically have a plurality of prediffused memory resources,
such as flip-flops, and blocks of varying bit sizes, such as 512, 4K, and MRAMs.
The memory components required by a design also vary in size. Typically it is
not clear how these memory components should be implemented. For example a
moderately sized RAM of between two and 512 bits could be implemented with
flip-flops, a 512 resource or even a 4k resource. Moreover, the resource sites for
larger memory sizes are typically only available sparsely on the chip. In previous
EDA tools, placement information was not available at the memory
implementation stage. Therefore implementation decisions were made without
local usage and accurate timing information. This limitation can result in serious
performance degradation. If the moderately sized RAM is implemented as a 512
resource and the only available 512 site is located far from the logic to which the
RAM connects, forcing the RAM to be a 512 will result in a long interconnect
and invalidate the delay benefit of using a 512 site over a flip-flow
implementation. Even though the delay of an implementation which uses flip-
flops might be longer, if this implementation allows in shorter interconnect
between the flip-flops of the RAM and the logic to which the RAM connects, it
might result in a faster design. Alternatively, if there is an available 4K resource
nearby the RAM’s connecting logic, implementing as 4K might be advantageous.
Thus memory implementation decisions should be made within the consideration
of the various available memory resources and the location of components

connecting to memory.

[0088] Fig. 9A illustrated an example of a memory implementation decision. The
figure shows an exemplary chip with memory resources at the top and bottom of

the chip. A 4 bit RAM is connected to a Pad on the right side of the chip and an

-23-

WO 2009/014731 PCT/US2008/008998

AND gate. If the RAM is implemented as memory and placed at the top of the
chip, it can result in very long interconnects to its Pad input as well as to the
AND gate it drives. Fig. 9B shows an alternate mapping of the same logic. The
RAM is implemented using nearby logic and as a result, much shorter

interconnect and delay.

[0089] Closely associated with Operation 68 is a function which estimates the
shape and resources required for an implementation. In one embodiment, this
function performs a mapping for the purpose of estimation the resources for the
RTL component. In another embodiment, this mapping is specific to the target
chip architecture. These resource estimates are based upon a synthesis which is
designed to estimate the logic requirements and input/output requirements of the
particular component in order to implement the module in the target architecture.
Furthér, in one embodiment, the function also estimates the timing transitions for

the component.

[0090] Fig. 7 illustrates an example of an adder which adds two buses, A[31:0]
and B[31:0], to produce a third bus O[31:0]. The logic area required to
implement the adder is estimated through a transform, estimating the
implementation, determining the required resources and the internal transition
delays from its inputs to its outputs. In certain aspects, for example, the adder
can be implemented using two logic array blocks (LAB), each consisting of 16

look-up tables (LUT).

[0091] Operations 65-67 and operation 70 are exemplary synthesis transforms,
for example, logic factorization (operation 65), logic mapping (operation 66),
logic optimization (operation 67), and abstraction (operation 70) in which the
components and connections represented by the RTL netlist are modified
resulting in a functionally equivalent circuit which improves the design state, e.g.
timing, power. These transforms may add or remove components as well as their
interconnections. Transform examples include performing a replication of

components, or splitting a unitary RTL component.

224

WO 2009/014731 PCT/US2008/008998

[0092] The exemplary embodiment represents a very simple case of a very large
class of implementation choices that are exist for /O, memories of different
sizes, CPUs, and DSP. Different designs may want to use these resources in
differing manners. The present invention’s abstraction transform, operation 70, is
able to change implementation depending on the timing information, location of
connected components, utilization of each resource type, and routing utilization.
The abstraction transform is analogous to the create/refine transform, operation
68. While operation 68 creates a plurality of alternate implementations which are
maintained and evaluated in future iterations, the abstraction operation, instead,
abstracts from a more detailed implementations to an abstraction component.
Various implementations of the abstracted component are considered and the
best implementation is chosen to replace the original implementation. This ability
avoids the alternative, which is to enumerate all of the possible architectural
mapping choices and running all of these through mapping, placement and |

routing.

[0093] An example of the abstraction transform is given in Fig. 11, showing an
adder tree decomposition operation. The adder tree decomposition breaks an n
input adder into an m input adder tree. Without delay information derived from
placement, this optimization would not have information about where the inputs
to the adder where located and could only form the tree based on a rough
estimate of the input arrival times. In the example, if all inputs are coming from
registers, they have roughly the same arrival time. The decomposition will pick
(a, b), (¢, d) and (e, f) combination for the leaf nodes. However, inputs b and d, a
and ¢ may be placed close together. With the placement information, it is better
to pick (a, ¢), (b, d), (e, f) combination for the leaf nodes. This will yield much

better timing at the output.

[0094] Another abstraction example of gate tree decomposition is shown in Fig.
12. A critical step in a synthesis flow is the decomposition of a large gate, with
many inputs, such as a 32 input AND gate, into a tree representation. This stage

is usually performed once early in the flow and the decision on the tree

25-

WO 2009/014731 PCT/US2008/008998

decomposition does not include any information on the location of the drivers of
the large gate. The present invention includes gate tree decomposition and re-
composition as transforms, which are placement and timing aware. The least
critical earliest arriving inputs are put at the leaf level of the tree and grouped
with other nearby less critical inputs. When timing is not a factor, input signals

are grouped by the location of the signal’s driver.

[0095] The optimize logic transform, operation 67 changes the netlist to optimize
for design objectives such as timing or power. An example of the optimize
transform is the slicing operation as shown in Fig. 13A. If the inputs or outputs of
a wide primitive are far apart it can be advantageous to split the primitive. This
optimization can only be performed base on placement information. The example
below shows a case of this for a 2 bit memory, a[1:0] whose outputs are very far
apart. This memory can be split into two flip flops which then can be placed very

close to their outputs.

[0096] In another example, a component is divided based on the location of its
fan-our or fan-in signals. For example, example shown in Fig. 13B shows a
memory that has been broken into three clusters based on the location of the fan-
out of the memory. Thus the original component, shown as a single box, has been
divided to create three new components, sliced accordingly to its corresponding
load. Similar divisions can be applied based on the input signals of a component.

This optimization is general and not limited to memories.

[0097] Another exemplary operation is the logic replication as shown in Fig. 14.
The conditions for replication are very similar to splitting. For a component with
inputs or outputs far apart it can be advantageous to make a copy of the
component and place it close to a critical load. This optimization can only be
performed base on placement information. The example below shows a case of
this for a component, a, whose outputs are very far apart. It can be split into two
instances a_1 and a_2 which then can be placed very close to their outputs. This
is very common when fan-out of the driver is high. Only one copy of the instance

1s preserved within a given physical range.

226-

WO 2009/014731 PCT/US2008/008998

[0098] Another exemplary operation is the Shannon Expansion, shown in Fig.
15. For logic at the input cone of an RTL element with a large delay, such as an
adder or a multiplier, critical input nets can be “pulled ahead” to improve timing.
The logic is replicated and the critical net is replaced with constant inputs, 0 and
1, and a mux is used to select the output of the two operators with the critical net
selecting which operator copy is the output. The two logic copies can be further
simplified based on the constant inputs. Again, this is an optimization that is best
performed with knowledge of the location of the logic and the drivers of the

critical nets driving the logic.

[0099] Yet another exemplary operation is the Mux/PMux (A PMux is defined
as a mux with a one-hot encoded select) Collapsing and Timing Driven
Decomposition, shown in Figs. 16A and 16B. Large Muxes are very common in
commercial circuits. Decomposing a mux is similar to the previously mentioned
Adder tree and And/Or tree decomposition, but the select logic makes Mux
decomposition more difficult, since moving a late arriving input within the tree
impacts not only the tree structure, but also the select logic. As with the other
decompositions, the present invention includes timing information based on

placement and routing to determine the proper decomposition.

[00100] Operation 69 is updating routing. The present incremental
iterative method provides good routability for the integrated circuit to improve
the performance, noise sensitivity, yield, area, and power of the design. The
incremental iterative process can gradually improve the wiring congestion on the

chip, which the density of wiring resources required per unit area.

[00101] Many of the transforms mentioned have impact on the power
consumed by the FPGA. For example, the manner in which a memory is
decomposed (column form versus row) impacts the power it consumes. A row
decomposition uses less power but requires additional multiplexing which
introduces additional delay. The determination of a row versus column

decomposition for optimizing power consumption can be performed in the

27-

WO 2009/014731 PCT/US2008/008998

present invention because with the present intimate connection between synthesis

and placement, accurate delay information is available.

[00102] Operation 63 is a placement transform, or an update placement
transform. The placement transform modifies the location of netlist instances
such as RTL objects, unmapped instances or chip primitive level instances, and
thereby determines, along with the router operation, the lengths and the delays of

the nets in the circuits.

[00103] The placement transform can use various placement methods
depending on the maturity of the netlist and the placement. In exemplary
embodiments, the present placer employs incremental algorithms. An
incremental algorithm is one which, in response to a small change in input,
produces incremental changes in algorithm outputs. For example, global
placement such as force directed placement can be used for placing less matured
netlist and placement. The Force Directed Placement (FDP) method is one of the
preferred choices for global placement in the present invention because it is an
incremental method, where an iteration of FDP generates incremental placement
changes. Typically, FDP uses a quadratic programming technique to model the

nets and to determine how instances which are overlapping should be spread.

[00104] In an embodiment, the first step FDP is the solving of an
unconstrained Quadratic Programming problem,. which models only the nets
interconnecting the instances. This initial solution usually has very high
congestion. FDP then iteratively constructs spreading forces to move instances
from areas of over-congestion (high instance usage) to areas of under-congestion
(high resource availability). It is the nature of these iterative steps that make FDP
an incremental algorithm. Changes to the netlist or other design state data can be
made between theses iterations. When these state changes are incremental, the
resultant change in FDP should also be incremental over what it would have been

if the design state changes not been made.

[00105] There are various algorithms of FDP, but all share the basic

concept of calculating the direction an instance should be move to resolve areas

8-

WO 2009/014731 PCT/US2008/008998

of overcongestion. In a given placement, the instances connected by a net are
assumed to exert an attractive force on each other, proportional to the quadratic
distance between the instances. In this previous work, all instances on repel each
other and are attracted to all placement sites, even if the site’s is not appropriate
for the instance. Instances are then moved until the system achieves equilibrium
in a minimum energy state. The FDP method is thus based on moving the

instances in the direction of the total force exerted on them.

[00106] In one aspect, the present invention provides novel heterogeneous
resource placement to address the heterogeneous resources from many modem
reprogrammable chips and some ASIC design flows. For example, most FPGA
have various pre-defined chip resources such as 10s, DSPs, RAMs, LUTs, FFs,
etc. which are available only at specific sites. These pre-defined resources are a
result of prediffused nature of FPGA chips. Each resource site has a limit on the
number of instances which may be placed at the site. For example, for the Altera
Stratix-II chip, 16 or less LUTs and FFs may be place at a LAB site, and there are
3 distinct RAM sites holding 512 bytes, 4K bytes, and 64K bytes

[00107] In exemplary embodiments, the present incrementally placement
addresses heterogeneous resource problem. In FPGAs, structured ASIC, and
some ASIC chips, resources may only be placed in certain sites which often are
not distributed evenly over the placement area. Most global placers, including all
previous FDP, have assumed homogeneous resources, where any instance,
irrespective of its type, can be placed at any valid area within the chip boundary.
This previous approach simplifies the placement problem, as all instances can be
treated as simple rectilinear objects, and as long as these objects do not overlap
and are placed inside the chip boundary, the placement will be legal. This simple
rectangle model may allow instances of a certain type to be placed in a
neighborhood with inadequate resources. This assumption neglects that for the
heterogeneous resources, each resource has a specific set of sites in which
instances must be placed. While this “combined” placement might not have any

overlaps, when the actual resource types where considered, the placement might

.29.

WO 2009/014731 PCT/US2008/008998

be far from legal. Some previous work in Simulated Annealing placers has taken
resource information into account, but these placers have only been employed to
place static mapped netlists, not RTL objects. Further, simulated annealing was
used for much smaller designs and becomes difficult for large designs due to

runtime.

[00108] In one aspect, the present invention models each distinct resource
sites separately, so that in all placement transforms, the resource requirements are
optimized by the placer. In one aspect, the present invention models an arbitrary
number of site types, called “layers.” These layers are used to determine the
spreading force on each instance. In an embodiment, the layers are created in the
initialization phases. A layer is created for each resource type which exists on the
chip. The resources sites of a layer are recorded in the layer’s supply distribution
at their location. A distribution is a matrix like, 2-dimensional data structure

with a value at location that gives the value of the supply at the location.

[00109] Each instance is assigned to the layer(s) for which it consumes
resources. The instances which consume a single resource type are called
primitive instances, and ones which consume multiple resources, non-primitives.
An example of a non-primitive would be a state machine, which consumes both
LUT and FF site types. The resources utilized by each instance assigned to a
layer are recorded in the layers usage distribution. The present method provides
for non-primitives, handled by recording their area on all of the layers for which
they have resources. These usage contributions will, in turn, impact the force

computations for each of the non-primitive’s layers.

[00110] For a layer, the difference between its usage and supply
distributions is the congestion distribution for that layer. As with previous FDP
methods, this congestion distribution is used to compute forces for each instance

on the layer.

[00111] The force for a non-primitive instance is computed by taking a
weighted average of the forces from each of its resource layers or based on local

congestion of those resources. The weighting applied to each layer can be a

-30-

WO 2009/014731 PCT/US2008/008998

uniform weighting or a weighting which depends on the relative discreteness of
the layer’s resources. The discreteness of resources can be characterized by how
far apart the resources are located, how sparse the resources are, or how uniform

or non-uniform the resources are distributed.

[00112] In an embodiment, the force for a component with multiple
possible implementations is computed similarly to the case of non-primitive
instances. The force is computed by taking the weighted average of the forces
from each of its implementation’s resource layers. The weighting applied to each
implementation’s resources can be a uniform weighting or a weighting which

depends on the probability that the given implementation will be chosen.

[00113] An advantage of the present invention is that an instance’s forces
depend only on other instances which use the same resource type, and resource
supply for that type. For example, if instances A and B each has a portion using a
resource C, then the force on the instance A (or on the portion of instance A
using the resource C) depends on the portion of the instance B which uses the
resource C, and also depends on the resource C which is available for placement.

Instances on different layers, do not impact the spreading force of each other.

[00114] In one aspect, when the global placer terminates, each instance
will be either at or near a valid site appropriate for its type so the placement may
be legalized with little movement. This approach is novel as compared to
previous FDP, which required that all instances be modeled as a single type and
all resource areas were combined and the instances were then spread over the

combined area.

[00115] In exemplary embodiments, the present invention architectural
physical synthesis can provide improvement to resource utilization problem. Itis
often the case that chip resources exceed the requirements of the circuit. For
example, in an FPGA design, the circuit to be implemented may require 150
LUTS when the chip or part it is implemented in has 256 LUTS. This problem is
called the resource utilization problem. When the resource utilization problem is

ignored, placers typically spread the circuit instances evenly over available

-31-

WO 2009/014731 PCT/US2008/008998

resources, even though a better result may be achieved by a placement with
varying densities over the resources. Previous placers have either ignored this
problem or inserted extra “filler” instances. Filler instances are extra instances
with no connectivity which are added to the circuit. The use of “filler” instances

is also problematic as locations must be determined for these instances.

[00116] In exemplary embodiments, the present invention employs an area
removal method to solve the resource utilization problem. As with force
generation, each resource layer is considered separately. In the area removal
method, the resources are utilized based on their quality with low-quality
resources removed. A quality metric is first determined, and then the resource
supply is analyzed to determine a ranking of the resources based on their quality.
These low quality portions are then removed from consideration as placement
sites by the placer. Since changes in placement influence the quality of the
resources, the ranking and removal may be performed many times during the
placement process. The process is thus well suited to the present invention’s

iterative and incremental improvement of the design state.

[00117] In an embodiment, the quality metric which is used to form the
ranking is based on the resource’s distance from usage. A byproduct of one
method of computing forces is the convolution of the layer’s density distribution
with a Green function. The result of this convolution can be viewed as a
topological map where the higher points indicate a demand for resources and the
lower points represent the lack of demand. Since the distribution is composed of
discrete boxes, these boxes can be sorted based on the convolution result. The
resources to be removed can then be determined by traversing the supply and
removing resources starting the resource with the lowest value in the convolution
sorted order until the required resources are removed. In an aspect, the method
can leave enough resources so that there is enough resources to meet the instance

demand on that layer and so that the chip will be routable.

[00118] Alternatively, in other exemplary embodiments, the present

invention employs a force range method to solve the resource utilization

-32-

WO 2009/014731 PCT/US2008/008998

problem. In the force range method, the force acting on each instance is a
weighted average of the forces from a plurality of force ranges. In an aspect, the
short range weighted factor is proportional to the density of the instance in the
short range region where a high local density resulted in a high force. This

proportionality thus can enhance instance spreading to reduce overlap.

[00119] With the force ranges method, the force applied to an instance
depends on the instance density in the neighborhood of the instance. The general
idea is that an instance’s spreading force should depend on the area needed to
legalize the instances in its neighborhood. In the most extreme congested case
where all instances are overlapping in a small neighborhood, the forces on each
instance will be computed based on locations of all instances and all resources. In
the least congested case, where an instance has no other instances in its vicinity,
and is sitting directly on a resource, the instance will not have any force. For the
cases in between these two extremes, the force depends on instances and

resources in the area required to legalize the instance.

[00120] In an embodiment, the range of the force can be sectioned into
local, medium and long range forces. In other embodiment, more or less force
ranges could be used. In general, it is a trade-off with computational and
memory resources to determine the legalization area for a neighborhood and the
forces for each legalization range. In an aspect, the forces are computed by
changing the size of the Green’s function. The long range Green’s function
covers the whole placement area; the small Green’s function covers a circular
area with a radius of, for example, five times the average instance area; and the
medium range Green’s function has a radius of, for example, 10 times the
average instance area. The force on an instance is the weighted sum of the
instance’s local, medium, and long range forces. The weights applied are
determined by the density in the neighborhood of the instance. It the
neighborhood is very dense, then the long range force will have a very high
weight and the local weight will be 0. An instance in a low density area will have

a zero long range weight, and a high local weight.

-33-

WO 2009/014731 PCT/US2008/008998

[00121] Another aspect of the present method is the ability to determine
important architectural decisions that determine which resources should be used in
implementing an architectural construct. At the architectural level there are many
decisions such as, on an FPGA, whether a small RAM should be mapped to
512bit RAM resources or 4kbit RAM resources. Other examples included the
decision of multiplier implementation and the previously stated cases such as
adder tree decomposition. The present invention, though, is not limited to these
specific examples. With the availability of placement information, the present
invention refines important architectural implementation decisions that satisfy the
design objectives. An exemplary example is the case where a 1kbit memory may
be assigned to either two 512bit resources or a single 4kbit resource. This
implementation can be very critical to a successful implementation if the logic
that the 1kbit memory is connected to is located very closely to either 512bit or
4kbit sites. In the case where the 1k memory’s connecting logic is very close to
512bit resources, and the 4kbit resources are more distant, a non-optimal mapping
to 4k resources will result in a substantially lower performing circuit. The use of

placement information to make this and other architectural decision is important.

[00122] In exemplary embodiment, the implementation refinement is
handled by including a portion of the area of the flexible layer instance in the
usage for each the layers that the instance may be mapped to. In the case of our
1kbit example, the instance’s area would be partially included in both the 512
layer and the 4k layer. The force on the instance is determined either by taking a
weighted sum of the forces for its potential layers or taking the force with least
magnitude. The rational behind taking the force with the least magnitude is that

the layer associated with this force should have a lower neighborhood density.

[00123] In other exemplary embodiment, the resource implementation
starts by not including the instances which have multiple possible resource
implementations into in any layer’s usage. After the area removal operation has
been performed for all layers, these flexible implementation instances are

considered. For a flexible implementation instance, the potential supply of each

-34-

WO 2009/014731 PCT/US2008/008998

of its possible layers is considered. The potential supply is the area removed from
the full supply by the area removal operation. The potential supply on each of the
implementation layers are examined to determine which layer has removed area
that would be least disruptive if the instance was placed in this removed area.

The instance is then assigned to that least disruptive layer.

[00124] The assign resources transform (operation 64) is responsible for
determining the assignment of an instance to its specific chip resources. Various
placement algorithms can be used for this operation including force directed
placement, simulated annealing, Mongrel, min-cut placement, placement by
numerical optimization, evolution-based placement, and other detail placement

algorithms.

[00125] While most embodiments of the present invention are intended for
use in an HDL design synthesis software program, the invention is not
necessarily limited to such use. Although use of other languages and computer
programs is possible (e.g. a computer program may be written to describe
hardware and thus be considered an expression in an HDL and may be compiled
or the invention, in some embodiments, may allocate and reallocate a logic
representation, e.g. a netlist, which was created without the use of an HDL),
embodiments of the present invention will be described in the context of use in
HDL synthesis systems, and particularly those designed for use with integrated
circuits which have vendor-specific technology/architectures. As is well known,
the target architecture is typically determined by a supplier of programmable ICs.
An example of a target architecture is the programmable lookup tables (LUTS)
and associated logic of the integrated circuits which are field programmable gate
arrays from Xilinx, Inc. of San Jose, Calif. Other examples of target
architecture/technology include those well known architectures in field
programmable gate arrays and complex programmable logic devices from
vendors such as Altera, Lucent Technology, Advanced Micro Devices, and
Lattice Semiconductor. For certain embodiments, the present invention may also

be employed with application-specific integrated circuits (ASICs).

-35-

WO 2009/014731 PCT/US2008/008998

[00126] One embodiment of the present invention may be a circuit design
and synthesis computer aided design software that is implemented as a computer
program which is stored in a machine readable media, such as a CD ROM or a
magnetic hard disk or an optical disk or various other alternative storage devices.
Further, many of the methods of the present invention may be performed with a
digital processing system, such as a conventional, general purpose computer
system. Special purpose computers which are designed or programmed to

perform only one function may also be used.

[00127] Fig. 17 shows one example of a typical computer system which
may be used with the present invention. The computer system is used to perform
logic synthesis of a design that is described in an HDL code. Note that while Fig.
17 illustrates various components of a computer system, it is not intended to
represent any particular architecture or manner of interconnecting the
components as such details are not germane to the present invention. It should be
noted that the architecture of Fig. 17 is provided for purposes of illustration only
and that a computer system or other digital processing system used in
conjunction with the present invention is not limited to this specific architecture.
It will also be appreciated that network computers and other data processing
systems which have fewer components or perhaps more components may also be
used with the present invention. The computer system of Fig. 17 may, for

example, be an Apple Macintosh computer.

[00128] As shown in Fig. 17, the computer system 101, which is a form of
a data processing system, includes a bus 102 which is coupled to a
microprocessor 103 and a ROM 107 and volatile RAM 105 and a non-volatile
memory 106. The microprocessor 103, which may be a microprocessor from
Intel or Motorola, Inc. or IBM, is coupled to cache memory 104. The bus 102
interconnects these various components together and also interconnects these
components 103, 107, 105, and 106 to a display controller and display device 108
and to peripheral devices such as input/output (1/0O) devices which may be mice,

keyboards, modems, network interfaces, printers, scanners, video cameras and

-36-

WO 2009/014731 PCT/US2008/008998

other devices which are well known in the art. Typically, the input/output devices
110 are coupled to the system through input/output controllers 109. The volatile
RAM 105 is typically implemented as dynamic RAM (DRAM) which requires
power continually in order to refresh or maintain the data in the memory. The
non-volatile memory 106 is typically a magnetic hard drive or a magnetic optical
drive or an optical drive or a DVD RAM or other type of memory systems which
maintain data even after power is removed from the system. Typically, the non-
volatile memory will also be a random access memory although this is not
required. While Fig. 17 shows that the non-volatile memory is a local device
coupled directly to the rest of the components in the data processing system, it
will be appreciated that the present invention may utilize a non-volatile memory
which is remote from the system, such as a network storage device which is
coupled to the data processing system through a network interface such as a
modem or Ethernet interface. The bus 102 may include one or more buses
connected to each other through various bridges, controllers and/or adapters as is
well known in the art. In one embodiment the I/O controller 109 includes a USB
(Universal Serial Bus) adapter for controlling USB peripherals, and/or an IEEE-
1394 bus adapter for controlling IEEE-1394 peripherals.

[00129] It will be apparent from this description that aspects of the present
invention may be embodied, at least in part, in software. That is, the techniques
may be carried out in a computer system or other data processing system in
response to its processor, such as a microprocessor, executing sequences of
instructions contained in a memory, such as ROM 107, volatile RAM 105, non-
volatile memory 106, cache 104 or a remote storage device. In various
embodiments, hardwired circuitry may be used in combination with software
instructions to implement the present invention. Thus, the techniques are not
limited to any specific combination of hardware circuitry and software, nor to
any particular source for the instructions executed by the data processing system.
In addition, throughout this description, various functions and operations are
described as being performed by or caused by software code to simplify

description. However, those skilled in the art will recognize what is meant by

-37-

WO 2009/014731 PCT/US2008/008998

such expressions is that the functions result from execution of the code by a

processor, such as the microprocessor 103.

[00130] A machine readable medium can be used to store software and
data which when executed by a data processing system causes the system to
perform various methods of the present invention. This executable software and
data may be stored in various places including for example ROM 107, volatile
RAM 105, non-volatile memory 106 and/or cache 104. Portions of this software

and/or data may be stored in any one of these storage devices.

[00131) Thus, a machine readable medium includes any mechanism that
provides (i.e., stores and/or transmits) information in a form accessible by a
machine (e.g., a computer, network device, personal digital assistant,
manufacturing tool, any device with a set of one or more processors, etc.). For
example, a machine readable medium includes recordable/non-recordable media
(e.g., read only memory (ROM); random access memory (RAM); magnetic disk
storage media; optical storage media; flash memory devices; etc.), as well as
electrical, optical, acoustical or other forms of propagated signals (e.g., carrier

waves, infrared signals, digital signals, etc.); etc.

[00132] In the foregoing specification, the invention has been described
with reference to specific exemplary embodiments thereof. It will be evident that
various modifications may be made thereto without departing from the broader
spirit and scope of the invention as set forth in the following claims. The
specification and drawings are, accordingly, to be regarded in an illustrative

sense rather than a restrictive sense.

-38-

WO 2009/014731 PCT/US2008/008998

CLAIMS

What is claimed is:

1. A method of designing an integrated circuit, the method comprising:
iteratively and incrementally changing a state of the design at a high

level design representation of the integrated circuit.

2. A method as in claim 1 wherein the iterative process progresses toward at
least one of:
an incremental reduction in level of abstraction of device
representations in the integrated circuit;
an incremental maturity of a RTL netlist; and

an incremental maturity of a placement configuration.

3. A method as in claim 1 wherein the high level design representation
includes at least one component which has not had an implementation, in

a chip primitive, selected for the component.

4. A method as in claim 1 wherein the iterative process progresses toward at
least one of a desired timing, a reduction in congestion per layer, an
improvement in area utilization, and an improvement in power

consumption.
5. A method as in claim 1 wherein the state of the design of the integrated
circuit comprises a netlist with at least one of timing data, resource

information, placement information, routing information, and power data.

6. A method as in claim 1 wherein the changing process is at least one of a

synthesis transform and a placement transform.

7. A machine readable medium containing a plurality of executable

instructions, which when executed on a digital processing system cause

-39.

WO 2009/014731 PCT/US2008/008998

said digital processing system to perform a method of designing an
integrated circuit (IC), said method comprising:
iteratively and incrementally changing a state of the design at a high

level design representation of the integrated circuit.

8. A medium as in claim 7 wherein the iterative process progresses toward
at least one of:
an incremental reduction in level of abstraction of device
representations in the integrated circuit;
an incremental maturity of a RTL netlist; and

an incremental maturity of a placement configuration.

9. A medium as in claim 7 wherein the high level design representation
includes at least one component which has not had an implementation, in

a chip primitive, selected for the component.

10. A medium as in claim 7 wherein the iterative process progresses toward
at least one of a desired timing, a reduction in congestion per layer, an
improvement in area utilization, and an improvement in power

consumption.

11. A medium as in claim 7 wherein the state of the design of the integrated
circuit comprises a netlist with at least one of timing data, resource

information, placement information, routing information, and power data.

12. A medium as in claim 7 wherein the changing process is at least one of a

synthesis transform and a placement transform.
13. A method of designing an integrated circuit, the method comprising:

iteratively selecting and performing at least one of a synthesis

transform and a placement transform to incrementally change a

-40-

WO 2009/014731 PCT/US2008/008998

state of the design at a high level representation of the integrated

circuit,

14. A method as in claim 13 wherein the high level design representation
includes at least one component which has not had an implementation, in

a chip primitive, selected for the component.

15. A method as in claim 13 wherein the iterative process progresses toward
at least one of:
an incremental reduction in level of abstraction of device
representations in the integrated circuit;
an incremental maturity of a RTL netlist; and

an incremental maturity of a placement configuration.

16. A method as in claim 15 wherein a netlist is more mature if there is at
least one of the following:
it consists of less high level RTL instances and more gate level
instances; and

it has less level of abstraction.

17. A method as in claim 15 wherein a placement configuration is more
mature if it meets more of the rules governing the resource usage of the

integrated circuit.

18. A method as in claim 13 wherein the iterative process progresses toward
at least one of a desired timing, a reduction in congestion per layer, an
improvement in area utilization, and an improvement in power

consumption.

-4]-

WO 2009/014731 PCT/US2008/008998

19.

20.

21.

22.

23.

A method as in claim 13 wherein the state of the design of the integrated
circuit comprises a netlist with at least one of timing data, resource

information, placement information, routing information, and power data.

A machine readable medium containing a plurality of executable
instructions, which when executed on a digital processing system cause
said digital processing system to perform a method of designing an
integrated circuit (IC), said method comprising:
iteratively selecting and performing at least one of a synthesis
transform and a piacement transform to incrementally change a
state of the design at a high level design representation of the

integrated circuit.

A medium as in claim 20 wherein the high level design representation
includes at least one component which has not had an implementation, in

a chip primitive, selected for the component.

A medium as in claim 20 wherein the iterative process progresses toward
at least one of:
an incremental reduction in level of abstraction of device
representations in the integrated circuit;
an incremental maturity of a RTL netlist; and

an incremental matﬁrity of a placement configuration.

A medium as in claim 22 wherein a netlist is more mature if there is at
least one of the following:
it consists of less high level RTL instances and more gate level
instances; and

it has less level of abstraction.

-42-

WO 2009/014731 PCT/US2008/008998

24, A medium as in claim 22 wherein a placement configuration is more
mature if it meets more of the rules governing the resource usage of the

integrated circuit.

25. A medium as in claim 20 wherein the iterative process progresses toward
at least a desired timing, a reduction in congestion per layer, an
improvement in area utilization, and an improvement in power

consumption.

26. A medium as in claim 20 wherein the state of the design of the integrated
circuit comprises a netlist with at least one of timing data, resource

information, placement information, routing information, and power data.

27. A method of designing an integrated circuit, the method comprising:
generating an initial state of the design of the integrated circuit; and
iteratively evaluating a cost function for a plurality of potential

transforms; and
performing the transform providing the best cost function;
wherein each iteration incrementally changes a state of the design at a

high level design representation of the integrated circuit.

28. A method as in claim 27 wherein the high level design representation
includes at least one component which has not had an implementation, in

a chip primitive, selected for the component.

29. A method as in claim 27 wherein the iterative process progresses toward
at least one of:
an incremental reduction in level of abstraction of device
representations in the integrated circuit;
an incremental maturity of a RTL netlist; and

an incremental maturity of a placement configuration.

-43-

WO 2009/014731 PCT/US2008/008998

30.

31.

32.

33.

34.

35.

36.

A method as in claim 29 wherein at least one of the reduction of level of
abstraction and the maturity of the netlist comprises a synthesis

transform.

A method as in claim 29 wherein the maturity of placement configuration
comprises a second iteration of at least one of a placement transform and

a synthesis optimization.

A method as in claim 29 wherein a netlist is more mature if there is at
least one of the following:
it consists of less high level RTL instances and more gate level
instances; and

it has less level of abstraction.

A method as in claim 29 wherein a placement configuration is more
mature if it meets more of the rules governing the resource usage of the

integrated circuit.

A method as in claim 29 wherein a global placement is used for placing

less matured netlists and placement configurations.

A method as in claim 34 wherein the global placement is a force directed

placement method.

A method as in claim 27 wherein the iterative process progresses toward
at least one of a desired timing, a reduction in congestion per layer, an
improvement in area utilization, and an improvement in power

consumption.

-44-

WO 2009/014731 PCT/US2008/008998

37. A method as in claim 27 wherein the cost function comprises at least one

of timing, congestion per layer, area utilization, and power.

38. A method as in claim 27 wherein the cost function is based on the state of

the design of the integrated circuit.

39. A method as in claim 27 wherein the cost function is based on a

convergence criterion.

40. A method as in claim 27 wherein the state of the design of the integrated
circuit comprises a netlist with at least one of timing data, resource

information, placement information, routing information, and power data.

41. A method as in claim 40 wherein the netlist is optimized by a plurality of

neutral optimizations based on timing.

42. A method as in claim 41 wherein the neutral optimization comprises at
least one of a reversible area recovery, an adder tree decomposition, an
obvious resource assignment, a flattening of the netlist, and an electronic

multiplexer decomposition.

43. A method as in claim 40 further comprising estimating shapes and

resources for each element of the netlist for a rough global placement.

44, A method as in claim 27 wherein the potential transform comprises at
least one of an undo/do resource sharing, an adder tree decomposition, an
and/or gate decomposition, a logic replication, a Shannon expansion, a bit
splicing, a mux/pmux collapsing and timing driven decomposition, a
detour removal, an assignment to discrete resources, a factorization, and a

placement.

-45-

WO 2009/014731 PCT/US2008/008998

45.

46.

47.

438.

49.

50.

51.

52.

A method as in claim 27 wherein the potential transform comprises at
least one of a placement, an updated placement, a placement
optimization, a resource assignment, a resource utilization, a logic
optimization, a logic decomposition, a logic mapping, and a logic

synthesis.

A method as in claim 45 wherein the resource utilization process
comprises ranking and removing low ranking resources based on a quality

metric.

A method as in claim 45 wherein the quality metric comprises the

distance from usage of a resource.

A method as in claim 45 wherein the resource utilization process
comprises calculating a force on each circuit instance, the force being a

weighted sum of the forces calculated from a plurality of ranges.

A method as in claim 48 wherein the weight for a short range force is
proportional to the instance’s density and the weight for a long range

force is inversely proportional to the instance’s density.

A method as in claim 45 wherein the resource assignment comprises

heterogeneous resource assignment.

A method as in claim 45 wherein the heterogeneous resource assignment
comprises assigning a non-primitive instance having a heterogeneous
resource to all layers that the instance has resources and the force on the

instance is a weighted sum of the forces from all layers.

A method as in claim 45 wherein the heterogeneous resource assignment

comprises assigning a non-primitive instance having a heterogeneous

-46-

WO 2009/014731 PCT/US2008/008998

53.

54.

55.

56.

resource to all layers that the instance has resources and the force on the
instance is the force having the least magnitude among the forces from all

layers.

A method as in claim 45 wherein the heterogeneous resource assignment
comprises assigning the resource of a non-primitive instance having a
heterogeneous resource to a layer providing the least disruptive if the
instance is placed in this layer calculating from a poéition of not

considering the placement of the instance’s resource.

A method as in claim 27 wherein the potential transform comprises at
least one of a synthesis mapping, a synthesis optimization, a synthesis for
a reduction in level of abstraction of device representations in the design
of the integrated circuit, and an increase in level of maturity of a RTL

netlist.

A method as in claim 27 wherein the potential transform further

comprises a second iteration process.

A machine readable medium containing a plurality of executable
instructions, which when executed on a digital processing system cause
said digital processing system to perform a method of designing an
integrated circuit (IC), said method comprising:
generating an initial state of the design of the integrated circuit; and
iteratively evaluating a cost function for a plurality of potential
transforms; and
performing the transform providing the best cost function;
wherein each iteration incrementally changes a state of the design at a

high level design representation of the integrated circuit.

-47-

WO 2009/014731 PCT/US2008/008998

57.

58.

59.

60.

61.

62.

63.

A medium as in claim 56 wherein the high level design representation
includes at least one component which has not had an implementation, in

a chip primitive, selected for the component.

A medium as in claim 56 wherein the iterative process progresses toward
at least one of:
an incremental reduction in level of abstraction of device
representations in the integrated circuit;
an incremental maturity of a RTL netlist; and

an incremental maturity of a placement configuration.

A medium as in claim 58 wherein at least one of the reduction of level of
abstraction and the maturity of the netlist comprises a synthesis

transform.

A medium as in claim 58 wherein the maturity of placement
configuration comprises a second iteration of at least one of a placement

transform and a synthesis optimization.

A medium as in claim 58 wherein a netlist is more mature if there is at
least one of the following:
it consists of less high level RTL instances and more gate level
instances; and

it has less level of abstraction.
A medium as in claim 58 wherein a placement configuration is more
mature if it meets more of the rules governing the resource usage of the

integrated circuit.

A medium as in claim 58 wherein a global placement is used for placing

less matured netlists and placement configurations.

-48-

WO 2009/014731 PCT/US2008/008998

64.

65.

66.

67.

68.

69.

70.

71.

A medium as in claim 63 wherein the global placement is a force directed

placement method.

A medium as in claim 56 wherein the iterative process progresses toward
at least one of a desired timing, a reduction in congestion per layer, an
improvement in area utilization, and an improvement in power

consumption.

A medium as in claim 56 wherein the cost function comprises at least one

of timing, congestion per layer, area utilization, and power.

A medium as in claim 56 wherein the cost function is based on the state

of the design of the integrated circuit.

A medium as in claim 56 wherein the cost function is based on a

convergence criterion.

A medium as in claim 56 wherein the state of the design of the integrated
circuit comprises a netlist with at least one of timing data, resource

information, placement information, routing information, and power data.

A medium as in claim 69 wherein the netlist is optimized by a plurality of

neutral optimizations based on timing.

A medium as in claim 70 wherein the neutral optimization comprises at
least one of a reversible area recovery, an adder tree decomposition, an
obvious resource assignment, a flattening of the netlist, and an electronic

multiplexer decomposition.

-49-

WO 2009/014731 PCT/US2008/008998

72. A medium as in claim 69 further comprising estimating shapes and

resources for each element of the netlist for a rough global placement.

73. A medium as in claim 56 wherein the potential transform comprises at
least one of an undo/do resource sharing, an adder tree decomposition, an
and/or gate decomposition, a logic replication, a Shannon expansion, a bit
splicing, a mux/pmux collapsing and timing driven decomposition, a
detour removal, an assignment to discrete resources, a factorization, and a

placement.

74. A medium as in claim 56 wherein the potential transform comprises at
least one of a placement, an updated placement, a placement
optimization, a resource assignment, a resource utilization, a logic
optimization, a logic decomposition, a logic mapping, and a logic

synthesis.

75. A medium as in claim 74 wherein the resource utilization process
comprises ranking and removing low ranking resources based on a quality

metric.

76. A medium as in claim 74 wherein the quality metric comprises the

distance from usage of a resource.

77. A medium as in claim 74 wherein the resource utilization process
comprises calculating a force on each circuit instance, the force being a

weighted sum of the forces calculated from a plurality of ranges.
78. A medium as in claim 77 wherein the weight for a short range force is

proportional to the instance’s density and the weight for a long range

force is inversely proportional to the instance’s density.

-50-

WO 2009/014731 PCT/US2008/008998

79.

80.

81.

82.

83.

84.

85.

A medium as in claim 74 wherein the resource assignment comprises

heterogeneous resource assignment.

A medium as in claim 74 wherein the heterogeneous resource assignment
comprises assigning a non-primitive instance having a heterogeneous
resource to all layers that the instance has resources and the force on the

instance is a weighted sum of the forces from all layers.

A medium as in claim 74 wherein the heterogeneous resource assignment
comprises assigning a non-primitive instance having a heterogeneous
resource to all layers that the instance has resources and the force on the
instance is the force having the least magnitude among the forces from all

léyers.

A medium as in claim 74 wherein the heterogeneous resource assignment
comprises assigning the resource of a non-primitive instance having a
heterogeneous resource to a layer providing the least disruptive if the
instance is placed in this layer calculating from a position of not

considering the placement of the instance’s resource.

A medium as in claim 56 wherein the potential transform comprises at
least one of a synthesis mapping, a synthesis optimization, a synthesis for
a reduction in level of abstraction of device representations in the design
of the integrated circuit, and an increase in level of maturity of a RTL

netlist.

A medium as in claim 56 wherein the potential transform further

comprises a second iteration process.

A method of designing an integrated circuit, the method comprising;:

-51-

WO 2009/014731 PCT/US2008/008998

determining synthesis transforms of a design at a high level circuit
description; and
determining placement decisions while synthesis from the high level

circuit description is still to be completed.

86. A method as in claim 85 wherein the high level circuit description is a
representation which includes at least one component which has not had

an implementation, in a chip primitive, selected for the component.

87. A method as in claim 85 further comprising:
repeating a synthesis transform for a portion of the high level circuit

presentation previously synthesized.

88. A method as in claim 85 wherein the synthesis transform is one of:
an adder tree decomposition;
an and/or gate decomposition;
a flattening of the netlist;
an electronic multiplexer decomposition;
a logic optimization;
a logic decomposition;
an undo/do resource sharing;
a logic replication,;
a logic factorization.
a Shannon expansion;
a bit splicing;
a mux/pmux collapsing and timing driven decomposition; and

a detour removal.

89. A method as in claim 85 wherein the synthesis transform assembles RTL

components compiled from the high level circuit representation.

-52-

WO 2009/014731 PCT/US2008/008998

90.

91.

92.

93.

94.

95.

96.

A method as in claim 85 wherein the placement decisions are

incremental.

A method as in claim 85 wherein the placement decisions are partial

placement for a few objects for a portion of the circuit design.

A method of designing an integrated circuit (IC), the method comprising:
determining an incomplete placement information; and
determining synthesis transforms of a design at a high level circuit
representation using the incomplete placement information,
wherein the incomplete placement information includes a placement

decision relative to a portion of the IC.

A method as in claim 92 wherein the high level circuit description is a
representation which includes at least one component which has not had -

an implementation, in a chip primitive, selected for the component.

A method as in claim 92 further comprising:
repeating a synthesis transform for a portion of the high level circuit

presentation previously synthesized.

A method as in claim 92 further comprising:
determining placement decisions while synthesis from the high level

circuit description is still to be completed.

A method as in claim 92 wherein the synthesis transform is one of:
an adder tree decomposition;
an and/or gate decomposition;
a flattening of the netlist;
an electronic multiplexer decomposition;

a logic optimization;

-53-

WO 2009/014731 PCT/US2008/008998

97.

98.

99.

a logic decomposition;

an undo/do resource sharing;

a logic replication;

a logic factorization;

a Shannon expansion;

a bit splicing;

a mux/pmux collapsing and timing driven decomposition; and

a detour removal.

A method as in claim 92 wherein the synthesis transform assembles RTL

components compiled from the high level circuit representation.

A method as in claim 92 wherein the synthesis transform is incremental.

A method as in claim 92 wherein the synthesis transform is partial

synthesis for a few objects for a portion of the circuit design.

-54-

WO 2009/014731

1/17

Prepare HDL code
11

Synthesis to gate level netlist, using
gate delay and wire loading for
timing analysis
13

Performing Placement
15

Make local changes in netlist based
on placement information at chip
primitive or cell or gate level
17

A

Routing
19

Fig. 1

PCT/US2008/008998

WO 2009/014731

2/17

Prepare HDL code
21

A

Synthesis to gate level netlist, using
gate delay and wire loading for
timing analysis
22

Performing Initial Placement
23

!

Physical Synthesis
Loop making localized changes in
synthesis and placement at chip
primitive or cell or gate level
24

Routing
25

Fig. 2

PCT/US2008/008998

WO 2009/014731 PCT/US2008/008998

3/17

Generating an initial state of the IC design
30

A
Performing partial synthesis
31

Performing partial placement
32

N

Calculating readiness of the state of the IC
design
34

Meet design objectives and
Placement is locally legalizable?
36

Performing traditional physical synthesis
38

Fig. 3

WO 2009/014731 PCT/US2008/008998

4/17

Generating an initial state of the IC design
40

Changing the state of the IC design (either
through synthesis or placement
transformations) incrementally

42

Calculating readiness of the state of the IC
design
44

Meet design objectives and
Placement is locally legalizable?
46

Performing traditional physical synthesis
48

Fig. 4

WO 2009/014731

|

Placement transform of
portion of high level
design representation

h

Synthesis or placement
transform of portion of
high level design
representation

l

Fig. 5A

5/17

PCT/US2008/008998

l

Synthesis transform of
portion of high level
design representation

A

Placement or synthesis
transform of portion of
high level design
representation

l

Fig. 5B

WO 2009/014731 PCT/US2008/008998

6/17

Generating an initial state of the IC design
61

A

Pick next transform based on placement,
netlist, resource, timing, power, routing

62
Y
A A
Update Assign —)
placement resources Facéosrlze Néasp
63 64
A A A
Optimize Create/refine Update Abstraction
logic implementation routing update
67 68 69 70
A A A
No .
Complete timing enclosure?

l/ Yes

Placement and routing

Fig. 6

PCT/US2008/008998

WO 2009/014731
7/17
A[15:0] |
: 5 | o[50
A[31:0] B[15.0] E LAB 1__E_ []
0[31:0] sl , ;
Al31:16] | 5
B[31:0] | Lag 4 o116l
BI31:16]—] :

Shape: 1x2 (LAB) : :
Resources: 32 (LUT)
Pin locations:
Layer: COMB

Fig. 7

PCT/US2008/008998

WO 2009/014731

8/17

ol
ol I B B .

I
5 |
0o0o
0000
o0d
Do0o
0o
uood
o000
oood
0000
[
0ooo
000

Logic

= 5 O O

0ood
15 5
000
0B0o
HEN
0000
oood
oooo
0o00
000
I
0000
ood
0oad
oaod
I |
0ot
0otno
0oad
|,
Da0d
0500
0000
000d
I |

85
0ofd
0ooo
[
[R
oo
CE00
0o0o
0000
000o
Oooo
| |
0ood
oood
ooad
0aod
000
0oda
[
|
0000
|
N
L0004
0o0ad

0 |
|
o0

0o0o
oota
|
0o0ad
0ooo
oot
OOE0
(|
0o0o
oood
I [
0ocd
NN
oo
oocd
0000

I |
DOB0
0000
([||
o0
Qoodd
oo
0o0gd
0000
N
oodd
0o0d
HEnn
oooo
[|
D000
0000
oo
|
0odo
(B |
aood
0o00
oood
(s

<
~ I I I N .

Fig. 8

WO 2009/014731 PCT/US2008/008998

9/17

[00000000000000000070000 00000 s s v, i

VL0007 7000000 00700000000 s s Z s s i 2

Fig. 9A

A/,

(L0000 7000 2022 s 2 2o 20 s b i s

Fig. 9B

WO 2009/014731

10/17

:®———_\7 Multiplexer
Sy D

22

C ENB

PCT/US2008/008998

Fig. 10A

Fig. 10B

WO 2009/014731 PCT/US2008/008998

11/17

IEERVAERVAV
ab\/::f.; %\g‘//l) +,+/

Fig. 11

WO 2009/014731 PCT/US2008/008998

12/17

Fig. 12

WO 2009/014731 PCT/US2008/008998

13/17

Slicing

Fig. 13A

Fig. 13B

WO 2009/014731 PCT/US2008/008998

14/17

Replication

Fig. 14

WO 2009/014731 PCT/US2008/008998

15/17

Fig. 15

WO 2009/014731 PCT/US2008/008998

16/17
a
»— T ED— N
+..
]) S B
—o——— [:
a
—_—]
—— b e
pmux emux
Fig. 16A

Grouping on
critical path

o 4

Fig. 16B

Fig. 17

WO 2009/014731 PCT/US2008/008998
17/17
/101
Cache
104
A
A
Read-Only
Processor(s) Memory (RAM)
103 105 Memo%;ROM)
A A A
A A \
Bus
102
A A A
A A A
110 Display & Display Non-Volatile
Controller Controller Storage
109 108 106
A
4
/0O Device(s)
110

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - claims
	Page 46 - claims
	Page 47 - claims
	Page 48 - claims
	Page 49 - claims
	Page 50 - claims
	Page 51 - claims
	Page 52 - claims
	Page 53 - claims
	Page 54 - claims
	Page 55 - claims
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings

