OFFICE DE LA PROPRIETE

INTELLECTUELLE DU CANADA t‘:

OPIC CIPO

PROPERTY OFFICE

(12) (19) (CA) Demande-Application

(CANADIAN INTELLECTUAL

(21) (A1) 2,334,1 13

(86) 2000/03/20
72y BAN. AMIR. 1L (87)2000/10/12
(72) MORAN, DOV, IL
(72) OGDAN, ORON, IL
(7T1HM-SYSTEMS FLASH DISK PIONEERS LTD., IL
(51) Int.C1.” GO6F 13/36
(30) 1999/04/05 (09/285,706) US
534 ARCHITECTURE POUR DISQUE FLASH PC A BUS SERIE

UNIVERSEL
(34) ARCHITECTURE FOR A UNIVERSAL SERIAL BUS-BASED PC
FLASH DISK
A Computer Host System with a USB Flash Memory Device
44 /—‘ 42 52 60
Host Platform W Disk
use uss usB
controlier Conneclor | . Coennector Controlter
‘ Flash 38
. Componaents
50
54
62

(57) Une unit¢ de meémorisation constituée d'une matrice
flash (58) et d'un controleur (56) a bus série universel
(USB) est mise en oeuvre pour €tre compatible avec la
specification USB. L'unit¢ (46) comprend des modules
de meémoire (58) pouvant accepter des instructions
d'¢criture et des imstructions de lecture provenant d'un
hote (44), 1ls sont effacables et rémanents, et 1ls sont
appelés modules flash (58). Le contréleur USB/flash
(56) est configur¢ pour procurer une fonctionnalite et
une compatibilit¢ USB de méme que des opérations flash
communes telles que la programmation, la lecture et
l'effacement des modules flash (58).

I*I Industrie Canada Industry Canada

56

48

46

(57) A storage unit made of a flash array (5%) and a
Universal Serial Bus (USB) controller (56) 1s
implemented to be compatible with the USB
specification. The unit (46) mcludes memory modules
(58) which can accept write commands and read
commands from a host (44), and are erasable and non-
volatile, referred to as flash modules (58). The USB/flash
controller (56) 1s configured to provide USB
functionality and compatibility along with common flash

operations such as programming, reading, and erasing
the flash modules (58).

CA 02334113 2000-12-04

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 ;

GOO6F 13/36

Al

| (21) International Application Number: PCT/US00/07087

(22) International Filing Date: 20 March 2000 (20.03.00)

(30) Priority Data:

1 09/285,706 5 April 1999 (05.04.99) US

(71) Applicant (for all designated States except US): M-SYSTEMS
FLASH DISK PIONEERS LTD. [IL/IL]; P.O. Box 58036,
61850 Tel Aviv (IL.).

(11) International Publication Number:

(43) International Publication Date:

12 October 2000 (12.10.00)

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,
BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE,
ES, Fl, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP,

KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, |

MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU,
SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG,
US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE,
LS, MW, SD, SL, 8Z, TZ, UG, ZW), Eurasian patent (AM,
AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT,
BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,
MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GW, ML, MR, NE, SN, TD, TG).

WO 00/60476

(71) Applicant (for TJ only): FRIEDMAN, Mark, M. [US/IL};
Alharizi St. 1, 43406 Raanana (IL). Published

With international search report.

(72) Inventors; and

(75) Inventors/Applicants (for US only): BAN, Amir [IL/IL];
Yabok St. 5, 47205 Ramat Hasharon (IL). MORAN, Dov
[IL/IL); Itamar Ben Avi St. 15, 44406 Kfar Saba (IL).
OGDAN, Oron [IL/IL]; Massarik St. 4B, 93106 Jerusalem
(IL).

(74) Common Representative: FRIEDMAN, Mark, M.; c/o Casto-
rina, Anthony, 2001 Jefferson Davis Highway, Suite 207,
Arlington, VI 22202 (US).

i (54) Title: ARCHITECTURE FOR A UNIVERSAL SERIAL BUS-BASED PC FLLASH DISK

A Computer Host System with a USB Flash Memory Device
44 /—‘ 42 52

isk

60

Host Platform

Uss

e
Host usB H Use USBHG
controller Connector | Connector Controlier
I 50

58

62

W

56

48

46

(87) Abstract

}

A storage unit made of a flash array (58) and a Universal Serial Bus (USB) controller (56) is implemented to be compatible with
| the USB specification. The unit (46) includes memory modules (58) which can accept write commands and read commands from a host
(44), and are erasable and non-volatile, referred to as flash modules (58). The USB/flash controller (56) is configured to provide USB I
functionality and compatibility along with common flash operations such as programming, reading, and erasing the flash modules (58).

10

15

20

25

30

CA 02334113 2000-12-04

WO 00/60476 PCT/US00/07087

1

ARCHITECTURE FOR A UNIVERSAL SERIAL BUS-BASED
PC FLASH DISK

Field and Background of the Invention

The present invention is related to semiconductor memory devices, and in
particular to erasable and programmable nonvolatile memory modules which are
connected to a host platform using the USB PC Bus.

Erasable and programmable non-volatile memory modules, hereinafter
referred to as tlash memory or flash devices, are known in the art for storage of
information. Flash devices include electrically erasable and programmable read-only
memories (EEPROMs) made of flash-type, floating-gate transistors and are non-
volatile memonies similar in functionality and performance to EPROM memories,
with an additional functionality that allows an in-circuit, programmable, operation to
erase pages of the memory. One example of an implementation of such a flash device
1s given 1n U.S. Patent No. 5,799,168, incorporated by reference as if fully set forth
herein.

Flash devices have the advantage of being relatively inexpensive and requiring
relatively little power as compared to traditional magnetic storage disks. However, in
a flash device, 1t 1s not practical to rewrite a previously written area of the memory
without a preceding page erase of the area. This limitation of flash devices causes
them to be incompatible with typical existing operating system programs, since data
cannot be written to an area of memory within the flash device in which data has
previously been written, unless the area is first erased. A software management
system, such as that disclosed 1n U.S. Patent No. 5,404,485, filed on March 5, 1993,
which is incorporated as if fully set forth herein, 1s required to manage these functions
of the flash memory device.

Currently, these flash memory devices have a second limitation, which is that
they must be either attached statically to the host platform, or attached and detached
dynamically using the PCMCIA [Personal Computer Memory Card International
Association] interface. Both implementations have drawbacks, including difficulty of

use and high cost.

A more useful implementation would follow the USB standard, as described in

Ve el AR AR R ARl et e e e R R NPTt PR TR P R PR PEEE T T T PR et o e R L C ’

CA 02334113 2000-12-04

WO 00/60476 PCT/US00/07087

W

10

15

20

25

30

2

the USB Specification Version 1.1 which is incorporated as if fully set forth herein.
The USB standard offers a smaller form factor and greater ease of use for the end user,
while lowering the cost of the implementation. This standard is specified to be an
industry-wide standard promoted by companies such as Compaq Computer
Corporation, Microsoft , IBM and Intel to serve as an extension to the PC architecture
with a focus on Computer Telephony Integration (CTI), the consumer, and
productivity applications.

The criteria which were applied to define the architecture for the USB standard
include the ease of PC (personal computer) peripheral expansion, low cost, support of
transfer rates up to 12Mb/second and full support for real-time data, voice, audio, and
compressed video. This standard also offers protocol flexibility for mixed-mode
isochronous data transfers and asynchronous messaging, integration in commodity
device technology and provision of a standard interface for rapid integration into any
given host product. In addition, the USB standard represents a single model for
cabling and attaching connectors, such that all of the details of the electrical functions,
including bus terminations, are isolated from the end user. Through the standard, the
peripheral devices are self-identifying, and support automatic mapping of functions to
adnver. Furthermore, the standard enables all peripheral devices to be dynamically
attachable and re-configurable.

A system constructed according to the USB standard is described by three
separate, defined areas: USB interconnection, USB devices and the USB host
platform. The USB interconnection is the manner in which USB devices are
connected to, and communicate with, the host platform. The associated functions and
components include the bus topology, which is the connection model between USB
devices and the host platform.

The USB physical interconnection has a tiered star topology. A hub is at the
center of each star. Each wire segment 1s a point-to-point connection between the host
platform and a hub or function, or a hub connected to another hub or function.

In terms of a capability stack, the USB tasks which are performed at each layer
in the system include a data flow model and a schedule. A data flow model is the
manner i which data moves in the system over the USB between data producers and

data consumers. A schedule determines access to the interconnection, which is

X HeRHMBas Al v o f g PRI I L RS R H A e i s e
e, R sl

10

15

20

25

30

CA 02334113 2000-12-04

WO 00/60476 PCT/US00/07087

3

shared. Such scheduling enables 1sochronous data transfers to be supported and
climinates arbitration overhead.

The USB itself is a polled bus. The host controller on the host platform
initiates all data transfers. All bus transactions involve the transmission of up to three
packets. Each transaction begins when the host controller, on a scheduled basis, sends
a USB packet descnibing the type and direction of transaction, the USB device
address, and endpoint number. This packet is referred to as the “token packet.” The
USB device, to which the packet is addressed, selects itself by decoding the
appropriate address fields. In a given transaction, data is transferred either from the
host platform to a device or from a device to the host platform. The direction of data
transfer is specified in the token packet. The source of the transaction then sends a
data packet or indicates that the source has no data to transfer. The destination, in
general, responds with a handshake packet indicating whether the transfer was
successful.

The USB data transfer model between a source and destination on the host
platform and an endpoint on a device is referred to as a “pipe”. There are two types of

pipes: stream and message. Stream data has no USB-defined structure, while message

data does. Additionally, pipes have associations of data bandwidth, transfer service

type, and endpoint characteristics like directionality and buffer sizes. Most pipes come
into existence when a USB device is configured. One message pipe, the default
control pipe, always exists once a device 1s powered, in order to provide access to the
configuration, status, and control information for the device.

The transaction schedule for the USB standard permits flow control for some
stream pipes. At the hardware level, this prevents situations in which buffers
expertence underrun or overrun, by using a NAK handshake to throttle the data rate.
With the NAK handshake, a transaction 1s retried when bus time is available. The
flow control mechanism permuts the construction of flexible schedules which
accommodate concurrent servicing of a heterogeneous mix of stream pipes. Thus,
mulitiple stream pipes can be serviced at different intervals with packets of different
S1Zes.

The USB standard, as descrnibed, has three main types of packets, including
token packets, data packets and handshake packets. An eXample of each type of

e ATt 3 2o N PO AR AT R RIS R R M Bl e e

CA 02334113 2000-12-04

WO 00/60476 PCT/US00/07087

4

packet 1s shown 1n background art Figures 1-3. Background art Figure 4 shows an
exemplary USB abstract device.

A token packet 10, as shown in background art Figure 1, features a PID
(packet identification) field 12, specifying one of three packet types: IN, OUT, or
5 SETUP. IfPID field 12 specifies the IN packet type, the data transaction is defined
from a function to the host platform. If PID field 12 specifies the OUT or SETUP
packet type, the data transaction 1s defined from the host platform to a function.
An ADDR field 14 specifies the address, while an ENDP field 16 specifies the
endpoint for token packet 10. For OUT and SETUP transactions, in which PID field
10 12 specifies that token packet 10 1s an OUT packet type or a SETUP packet type,
ADDR field 14 and ENDP field 16 uniquely identify the endpoint for receiving the
subsequent data packet, shown in Figure 2, which follows after token packet 10. For
IN transactions, 1n which PID field 12 specifies that token packet 10 1s an IN packet
type, ADDR field 14 and ENDP field 16 uniquely identify which endpoint stransmit a
15 data packet. A CRCS5 field 18 contains the checksum, for determining that token
packet 10 has been received without corruption. Only host platform can issue token
packets 10, such that token packets 10 provide control over transmission of the
subsequent data packets.
As shown 1n background art Figure 2, a background art USB data packet 20
20 also features a PID (packet identification) field 22 for identifying the type of data
packet. Data packet 20 also features a data field 24 for optionally containing data, and
a CRC field 26 for containing the checksum as previously described.
Background art Figure 3 shows a background art USB handshake packet 28,
which features only a PID (packet identification) field 30. Handshake packets 28 are
25 used to report the status of a data transaction and can return values indicating
successful reception of data, command acceptance or rejection, flow control, and halt
conditions. Only transaction types which support flow control can return handshake
packets 28. Handshake packets 28 are always returned 1n the handshake phase of a
transaction and may be returned, instead of data packets 20, in the data phase of a
30 transaction.
These three different types of packets are exchanged during various phases of

the transaction which includes a USB device. A schematic block diagram of the

. . s P e . e ~ioaq 4013170 S PO S e A 54
O R P PPRTE R STeIT7, P1 P17 YT T o TPER L LT TP b A R (AR N Gl il

10

15

20

25

30

CA 02334113 2000-12-04

WO 00/60476 PCT/US00/07087

5

functional blocks in a typical USB device 32 is shown in Figure 4 for an abstract
background art USB device. USB device 32 typically includes a USB electrical
interface 34, featuring a cable and a connector, which 1s a physical interface for
receiving and transmitting electrical signals which are compatible with the USB
specification as previously described. The signals are then passed to a logical
interface 36, which includes one or more buffers, the device address decoder for
decoding the address of the source device for the signals, and a SYNC field
synchronizer for synchronizing the signals. Information and structures required for
management of USB abstract device 32 as a USB device are stored in a USB class
control and enumeration engine 38. A function and device engine 40, also termed the
“application”, controls and manages the specific functions and properties of USB
abstract device 32. In addition, function and device engine 40 also consumes and
produces most of the data over the USB bus.

The USB specification does not define the relationship between different
entities in USB abstract device 32, however. Rather, the USB specification describes
only the requirements for the packets, and for the electrical and physical connection
between USB abstract device 32 and the bus. Therefore the connections and
relationships shown in background art Figure 4 are only one example of an
implementation which fulfills the requirements of the USB specification. Thus, any
specific device for fulfilling the USB specification must have a specifically defined
and described architecture.

Unfortunately, no such architecture exists for a flash memory device
containing one or more flash memory modules, which would enable the flash memory
device to connect to a bus defined according to the USB specification and thereby to
form part of a USB system on a host platform. For example, U.S. Patent No.
5,799,168 does not teach or suggest such an implementation for the flash device. As
mentioned previously, such an architecture would be particularly useful for a number
of reasons, including low cost, ease of use and transparency to the end user.

There is thus a need for, and it would be useful to have, an architecture for
defining and describing a flash memory device which is compatible with a USB
system and which follows the USB specification, such that the flash memory device

could sit on a USB-defined bus and communicate with the host platform through this

10

15

20

25

30

CA 02334113 2000-12-04

WO 00/60476 PCT/US00/07087

bus.

Brief Description of the Drawings
FIG. 1 1s a schematic block diagram of a background art USB token packet

structure;

FIG. 2 1s a schematic block diagram of a background art USB data packet
structure,

FIG. 3 1s a schematic block diagram of a background art USB handshake data
packet structure;

FIG. 4 1s a schematic block diagram of an exemplary background art USB
device;

FIG. 5 1s a schematic block diagram of a system with a flash USB device
functionality according to the present invention;

FIG. 6 1s a schematic block diagram of the USB Flash disk;

FIG. 7 1s a schematic block diagram of a flash identification request packet;

FIG. 8 1s a schematic block diagram of a flash 1dentification status packet;

FIG. 9 1s a schematic block diagram of a flash write request packet;

FIG. 101s a schematic block diagram of a flash write status packet;

FIG. 11 1s a schematic block diagram of a flash read request packet;

FIG. 12 1s a schematic block diagram of a flash read status packet;

FIG. 13 1s a schematic block diagram of a flash erase request packet; and

FIG. 14 1s a schematic block diagram of a flash erase status packet.

Summary of the Invention
The present invention 1s of a flash memory device, containing one or more

flash modules, in which the flash memory is mapped to the address space of an ASIC
or a controller which has a USB-defined electrical interface and a USB-defined logical
interface. This controller/ASIC (hereinafter termed a “controller’) supports the USB
functionality according to the USB standard, thereby supporting enumeration onto the
USB bus, as well as data reception and transmission over USB pipes to and from USB
endpoints. This controller also supports the functionality and control of the flash

memory device, as well as the processing of command and data packets from the host

R el eadn R TRTIAT ETT

TR T nu:m.‘nmlﬁum(WINle&m“wM“‘T’m'M“‘ Rt ztand, ot e

CA 02334113 2000-12-04

WO 00/60476 PCT/US00/07087

10

20

30

7

controller. The host controller uses one of several possible protocols, either standard
or proprietary, to signal the next command to be performed to the USB flash
controller. Thus, the entire device acts as a dynamically attachable/detachable non-
volatile storage device for the host platform.

According to the present invention, there 1s provided a USB flash memory
device for connecting to a USB-defined bus, the flash memory device comprising: (a)
at least one flash memory module for storing data; (b) a USB connector for
connecting to the USB-defined bus and for sending packets on, and for receiving
packets from, the USB-defined bus; and (c) a USB controller for controlling the at
least one flash memory module and for controlling the USB connector according to at
least one packet received from the USB-defined bus, such that data i1s written to and
read from the at least one flash memory module.

Hereinafter, the term “computer” includes, but is not limited to, personal
computers (PC) having an operating system such as DOS, Windows™, OS/2™ or
Linux; Macintosh™ computers; computers having JAVA™-OS as the operating
system; and graphical workstations such as the computers of Sun Microsystems™ and
Silicon Graphics™, and other computers having some version of the UNIX operating
system such as AIX™ or SOLARIS™ of Sun Microsystems™; or any other known
and available operating system, including operating systems such as Windows CE™

for embedded systems, including cellular telephones, handheld computational devices

and palmtop computational devices, and any other computational device which can be

connected to a network. Hereinafter, the term “Windows™* includes but is not
limited to Windows95™, Windows 3.x™ 1n which “x’ 1s an integer such as “1”,

Windows NT™, Windows98™, Windows CE™ and any upgraded versions of these
operating systems by Microsoft Inc. (Seattle, Washington, USA).

Detailed Description of the Invention

The present invention is of a flash memory device, containing one or more
flash modules, in which the flash memory 1s mapped to the address space of an ASIC
or a controller which has a USB-defined electrical interface and a USB-defined logical
interface. This controller/ASIC (heremnafter termed a “controller’) supports the USB

functionality according to the USB standard, thereby supporting enumeration onto the

e weH a1 £ s A0 A i e T 5 Wit RATHAAS AN ot = e
- .o Pore = 40015 S AR s L e 34 1 Tere o0e e S et R M R T e e ' rord ORI RN A s - ubrides St L E A i
U i bR T e : = sealle i

CA 02334113 2000-12-04

WO 00/60476 PCT/US00/07087

N

10

15

20)

25

30

8

USB bus, as well as data reception and transmission over USB pipes to and from USB
endpoints. This controller also supports the functionality and control of the flash
memory dev, as well as the processing of command and data packets from the host
controller. The host controller uses one of several possible protocols, either standard
or proprietary, to signal the next command to be performed to the USB flash
controller. Thus, the entire device acts as a dynamically attachable/detachable non-
volatile storage device for the host platform.

While the invention is susceptible to various modifications and can be
implemented using many alternative forms, the embodiment is shown by way of
example in the drawings and will be described in details in the following pages. It
should be understood that one of ordinary skill in the art appreciates that the present
invention could be implemented in various other ways. The intention 1s to cover all
modifications and alternatives falling within the spint of the current invention.

The principles and operation of a USB flash device and system according to
the present invention may be better understood with reference to the drawings and the
accompanying description, it being understood that these drawings are given for
illustrative purposes only and are not meant to be limiting.

Referring now to the drawings, Figure 5 1s a schematic block diagram of the
main components of a flash memory device and system according to the present
invention. A flash memory system 42 includes a host platform 44 as shown. Host
platform 44 operates USB flash device 46 as a non-volatile storage space.

Host platform 44 is connected to USB flash device 46 according to the present
invention through a USB cable 48. Host platform 44 connects to USB cable 48
through a USB host connector 50, while USB flash device 46 connects to USB cable
48 through a USB flash device connector 52. Host platform 44 features a USB host
controller 54 for controlling and managing all USB transfers on the USB bus.

USB flash device 46 features a USB flash device controller 56 for controlling
the other components of USB flash device 46 and for providing an interface for USB
flash device 46 to the USB bus, USB flash device connector 52 and at least one flash
memory module 58. Flash memory module 58 1s preferably an array of flash memory
modules 58 in which the data 1s stored.

Whenever USB flash device 46 becomes connected to host platform 44, a

10

15

20

25

30

CA 02334113 2000-12-04

WO 00/60476 PCT/US00/07087

9

standard USB enumeration process takes place. In this process host platform 44
configures USB flash device 46 and the mode of communication with USB flash
device 46. Although there are many different methods for configuring USB flash
device 46, for the purposes of clanty only and without intending to be limiting, the
present invention is explained in greater detail below with regard to a method in
which host platform 44 1ssues commands and requests to USB flash device 46 through
one endpoint. Host platform 44 queries USB flash device 46 through the other
endpoint for status changes, and receives related packets 1f any such packets are
waiting to be received.

Host platform 44 requests services from USB flash device 46 by sending
request packets to USB host controller 54. USB host controller 54 transmits packets
on USB cable 48. These requests are received by USB flash device controlier 56 when
USB flash device 46 1s the device on the endpoint of the request. USB flash device
controller 56 then performs various operations such as reading, writing or erasing data
from or to flash memory module(s) 58, or supporting basic USB functionality such as
device enumeration and configuration. USB flash device controller 56 controls flash
memory module(s) 58 by using a control line 60 to control the power of flash memory
module(s) 58, and also through various other signals such as chip enable, and read and
write signals for example. Flash memory module(s) 58 are also connected to USB
flash device controller 56 by an address/data bus 62. Address/data bus 62 transfers
commands for performing read, write or erase commands on flash memory module(s)
58, as well as the addresses and data for these commands as defined by the
manufacturer of flash memory module(s) 58.

In order for USB flash device 46 to notify host platform 44 on the result and
status for different operations requested by host platform 44, USB flash device 46
transmits status packets using the “status end point”. According to this procedure,
host platform 44 checks (polls) for status packets and USB flash device 46 returns
either an empty packet 1f no packets for new status messages are present, or
alternatively returns the status packet 1tself.

A more detailed structure of the functional components of USB flash device
46 1s shown 1n Figure 6. USB flash device 46 includes the physical and electrical

interface defined for the USB standard, shown here as USB flash device connector 52

C b e AR Ll B S e et R A R R R g

CA 02334113 2000-12-04

‘WO 00/60476 PCT/US00/07087

h

10

15

20

25

30

10

and a connector interface 64. USB flash device connector 52 receives the electrical
signals from USB cable 48 which carries electrical signals from host controlier (not
shown). These signals are then passed through connector interface 64. Every
millisecond, a USB frame 1s carrted on the USB-defined bus, such that packets could
be sent to USB flash device 46.

Connector 1nterface 64 then receives these packets through a first interface
component, which i1s a combined physical and logical interface 66. A functional
interface 68 1s specifically designed to receive token packets as defined in the USB
specification and as previously described with regard to Figure 1. These token packets
are related only to particular functional aspects of USB flash device 46 which are
required for the USB standard, and do not have any relation to particular application
of USB flash device 46 as a flash disk according to the present invention. These token
packets and their respective returned data packets enable USB host controller 54 (not
shown) and host platform 44 (not shown) to identify USB flash device 46 and allocate
resources for USB flash device 46 on the USB bus. Thus, functional interface 68 only
supports USB functionality needed for the identification and registration of USB flash
device 46 on the USB bus.

USB flash device 46 also features an application packet extractor 70 which
extracts the application data and commands from the USB application packets, such
that application packet extractor 70 supports only application related packets. Next,
any requests to USB flash device 46 by host platform 44 (not shown), in the form of
read, write, 1dentify and erase commands, are interpreted by an application command

interpreter 72. For any commands which involve data or an address, such as read,

‘write and erase commands, an address resolve module 74 translates the address from

the logical address space to the physical address space. Host platform 44 (not shown)
relates to a linear address space of logical addresses, while USB flash device 46
contains at least one, and preferably a plurality of, flash modules 58, each of which
has a physical address space. Thus, a translation must be performed between the
logical address space of host platform 44 (not shown) and physical address space or
spaces of USB flash device 46. There are many ways to implement such a translation
which are suitable for the present invention. One example of a suitable

implementation of an address translation method is described with regard to U.S.

B LAl MHE SRR G RN R I 1At e T

. u...';.mmwlw-unu«nM;JM|WhWMlMiﬂTM"‘W““’N""”‘*‘"""

10

15

20

25

30

CA 02334113 2000-12-04

WO 00/60476 PCT/US00/07087

1]

Patent No. 5,404,485, previously incorporated by reference as if fully set forth herein,
which teaches a method for managing a flash memory as a flash disk and which is

suitable for operation with the present invention.
A data handler 76 handles data related aspects of any received commands, and

conveying the data through functional interface 68 to and from flash module(s) 58.

Optionally and preterably, data handler 76 performs any error correction and

detection methods. Application command interpreter 72, data handler 76 and address
resolve module 74 all operate with an underlying Memory Technology Driver (MTD)
78 to write, read or erase a particular flash module 58 and the desired address on that

flash module 58.
Host platform 44 checks for status changes in USB flash device 46 and reads

status packets from USB flash device 46 when a new status pacis available. Using
these status packets, USB flash device 46 can transmit, to host platform 44, the results
of different commands issued by host platform 44 in its requests (not shown). For
example, the read command status packet contains one of the available status words
such as “success”, “error’ or “invalid address”, which enables host platform 44 to
determine the result of the read command (not shown). Similarly, the erase status
packet contains a status word indicating the completion bf the erase process. A write
status packet 1s used by USB flash device 46 to notify host platform 44 about the
result of the write command, for example whether the command was successful or
erroneous, and whether USB flash device 46 is ready for additional write requests
from host platform 44.

A Memory Technology Dniver, or MTD 78 typically contains routines to read,
write and erase the flash memory device controlled by the controller operating MTD
78. In addition, MTD 78 optionally contains an identification routine for recognizing
the proper type of flash memory device for which MTD 78 was designed, so that the
controller can determine which MTD should be activated upon interacting.with a
particular flash memory device array. In addition, an identification routine should be
able to detect the size of the array of flash memory devices, including the number of
flash memory devices within the array, and various features of the flash array
geometry, such as interleaving and bus width. This information later enables host

platform 44 platform to determine the address space and size of the storage media.

entily Tt SHe & 4 e W e -1 e et T R R M R I ada L et
e s e aTIN A ot

10

15

20

25

30

CA 02334113 2000-12-04

WO 00/60476 PCT/US00/07087

12

U.S. Patent No. 5,799,168, previously incorporated by reference, discloses an example
of such an MTD for a flash device.

Using the above described protocol and architecture, host platform 44 can
optionally implement any application which 1s implementable with any regular
memory mapped or I/O mapped flash memory device. For example, host platform 44
can give a standard block device interface to each application, such as a magnetic
storage medium “hard disk’ drive, as disclosed in the previously described U.S.
Patent No. 5,404,485.

As an example of a preferred embodiment of the present invention, the
operation of a host system connected to a USB flash device accbrding to the present
invention 1s described with regard to the processes of identifying, programming,
reading and erasing the flash device. For the purposes of illustration only and without
intending to be limiting in any way, the exemplary USB flash device has an array of
two flash memory modules, each of which 1s 64Mbit in size. The address translation
table 1s within the flash device so that host platform operates with logical addresses.
All commands and return codes between the flash device and the host plattorm are
carried on USB data packets, and are transferred through USB data pipes. The exact
structure of the packets, pipes and timings are described in the USB specification.

The operation of the exemplary device and system according to the present
invention 1s as follows. When the USB flash device 1s first connected to the host
platform, the USB host controller assigns an address to the USB flash device on the
USB bus, and also assigns resources as described in the USB specification. The USB
flash device actually asks the host platform to assign these resources, and must inform
the host platform how much of these resources are needed. Thus, the USB flash disk
can optionally support slower device speeds if the USB host platform has already
allocated resources to other devices.

The USB controller also negotiates with the flash modules and determines the
size and manufacturing type of these modules. The controller then builds an
identification structure holding this information, as well as the translation table and
logical address space.

After the USB host controller identifies the USB flash device, the host

platform often uploads a USB client driver. The driver 1ssues an 1dentification request

' v e I b T R A M LD W LRt A M e e

10

15

20

25

30

CA 02334113 2000-12-04

WO 00/60476 PCT/US00/07087

13

command to the USB host controller, causing the controller to transmit an
identification data packet 80, shown in Figure 7. Identification packet 80 contains
PID field 22 and checksum field 26, as described previously for background art Figure
2. Identification packet 80 also contains an “identify” operation code 1n an operation
code field 82. The packet extractor of the USB flash device receives 1dentification
data packet 80 and transfers the operating code of the “identify” command to the
application command interpreter.

In response to the “identify” command, the flash device then sends an
identification data packet 84, shown in Figure 8. In addition to the fields shown in
Figure 7, identification data packet 84 also contains information about the size of the
flash device in a flash device size field 86, as well as infonnatioﬂ about the size of the
minimal erase unit for erasing the flash memory in an erase unit size ficld 88.

All of the packets described in this example are only data packets which are
sent on the USB bus. Before each data packet 1s sent, a USB token packet 1s
transmitted, instructing the USB controller as to the identity of the device end point to
which the data packet should be transmitted. Upon successful reception of the packet,
the USB controller issues a USB ACK packet as described in the USB specification.

Once the device drivers in the host platform receive this status packet, the
drivers can start issuing read and write commands to the USB flash device with the
application commands. When a wrnte request is sent, a USB data packet with the
operation code for the “write” command, and the buffer containing the data, 1s
transferred to the USB flash device. A write data packet 90 1s shown 1n Figure 9,
which again includes the fields shown previously in Figure 8, except that wnte data
packet 90 also includes a wnite field 92 with the “wnte” operational code; an ADDR
field 94 with the logical address to be written; a LEN field 96 with the length to be
written; and a DATA field 98 which contains the actual data to write. The packet
extractor extracts the operational code from write data packet 90 and transfers this
code to the application command interpreter. The logical address is transferred to the
address resolve module which translates this logical address to a physical address on
one of the flash modules. The data handler optionally calculates error correction and
detection mechanisms if employed by the USB flash device. Once all of the flash

memory modules are ready, a “write” command is sent to the flash module or modules

ST PN STTRTNPS VT T o T ol T Y b R R

e e e ¢T1mummlm-'-h O TR Rl

10

15

20

25

30

CA 02334113 2000-12-04

WO 00/60476 PCT/US00/07087

14

containing the physical address, which may optionally span across more than one
flash module to the MTD block. The MTD block then 1ssues a “write” command on
the data/address bus which connects the flash modules to the USB device controller.
Once the operation 1s complete and a status packet is returned to the MTD, the resulit
of the operation is transmitted to the host controller and passed to the device driver 1n
the host platform.

When the flash controller finishes the writing process, the controller signals to
the host platform that the status of the USB flash memory device has changed, by
sending a “write status” packet 100, as shown in Figure 10. In place of data field 98,
write status packet 100 contains a status field 102. The host platform reads the status
packets from the flash memory device, and from write status packet 100, the host
platform retrieves information on the completion status of the write command by
reading status field 102. In this example, the flash memory device repeats ADDR field
94 and LEN field 96 1n order for the host platform to have a reference to the specific
command related to status packet 100.

As shown 1n Figure 11, a “read request” packet 104 contains the operation

code for the “read” command 1n a read field 106, and the logical address of the desired
location from which the flash controller should read in an ADDR field 108. Upon
receiving this command, the flash controller issues a read command to the MTD
block, after the address resolve module has translated the address contained in ADDR
field 108 toa specific physical address in one of the flash components.

When the flash controller receives the data from the flash device, either after
the read command was 1ssued, or if an error occurred, the flash controller sends a
signal to the host platform to indicate that a new status packet must be read. The host
platform issues a read request and receives a “read status” packet 110 as shown 1n
Figure 12. Read status packet 110 contains the address of the read data in ADDR
field 108, as well as the length of the read data in a LEN field 112 and the data itself
in a data field 114. Read status packet 110 also features the status word, according to
which the operation was completed, in a status field 116. The read operation can be
completed with many different status situations such as success, fail, error detected,
invalid address, invalid length and so forth.

When the host platform needs to erase an erase unit in the flash device, the

N 02 o a R LR TR AR Y 1 sm e et M R TR N RTB A B 4 S et e b SRR TR AR RN M A st e
CEREEE LR ST 3 €y ,h LR

ST TR T P T LT PETTTRE -------a--mnplhq;r.qmTwmaamdmmwwo-"' .

CA 02334113 2000-12-04

WO 00/60476 PCT/US00/07087

[

10

15

15

host platform 1ssues an “‘erase request” packet 118, shown 1n Figure 13. This packet
contains the “erase” operation code in an erase field 120, and the logical address of the
erase unit in an ADDR field 122. Upon receiving such a request, the flash controller
translates the logical address to a physical erase unit address on one of the physical
address spaces of the flash modules, and 1ssues an erase command to the MTD block.
The erase process generally takes more time then a read or write process.
When this erase process 1s finished, the controller notifies the host platform a new
status packet 1s ready to transmit. The controller then transmits an “erase status™
packet 124, as shown 1n Figure 14. Erase status packet 124 contains the address of the
erased unit in ADDR field 122, thereby providing the host platform with a reference
to the erase requests. The status according to which the operation was completed 1s

provided in a status field 126.

[t will be appreciated that the above descrniptions are intended only to serve as
examples, and that many other embodiments are possible within the spirit and the

scope of the present invention.

WO 00/60476

CA 02334113 2000-12-04

PCT/US00/07087
16

WHAT IS CLAIMED IS:

. A USB flash memory device for connecting to a USB-defined bus, the

flash memory device comprising:

(a) at least one flash memory module for storing data;

(b) a USB connector for connecting to the USB-defined bus and for
sending packets on, and for receiving packets from, the USB-defined
bus; and

(¢c) aUSB controller for controlling said at least one flash memory module
and for controlling said USB connector according to at least one packet
received from the USB-defined bus, such that data is written to and
read from said at least one flash memory module.

2. The flash memory device of claim 1, further compnsing:

(d) an electrical interface for connecting to said USB connector and for
recerving said packets from said USB connector as a plurality of
electrical signals; and

(e) alogical interface for connecting to said electrical interface and for
translating said plurality of electrical signals to logic signals, said logic
signals being passed to said at least one flash memory module.

3. The flash memory device of claim 2, further comprising: |

(f) a functional interface for receiving said logic signals such that if said
logic signals represent a USB functional packet, said functional
interface sends a USB command to said USB controller according to
said USB functional packet.

4. The flash memory device of claim 3, further comprising:

(g) an application packet extractor for connecting to said logical interface
and for receiving said logic signals, said application packet extractor
extracting at least one packet from said logic signals; and

(h) an application command interpreter for receiving said at least one

WO 00/60476

(1)

6.

CA 02334113 2000-12-04

PCT/US00/07087

17

packet and for determining a command according to said at least one

packet, said command being passed to saad USB controller.

The flash memory device of claim 4, further comprising:

an address resolver module for receiving said at least one packet and
for resolving an address contained in said at least one packet, said
address being sent to said USB controller, such that said command 1s

performed according to said address.

The flash memory device of claim 5, wherein said command is a write

command for writing data to said at least one flash memory module and said address

is a logical address for writing said data, such that said address resolver module

resolves said logical address to a physical address of said at least one flash memory

module.

7.

The flash memory device of claim 5, wherein said command 1s a read

command for reading data from said at least one flash memory module and said

address 1s a logical address for reading said data, such that said address resolver

module resolves said logical address to a physical address of said at least one flash

memory module.

8.
0)

(k)

10.

e 1400 TS AU BRI NP RN e b T

The flash memory device of claim 5, further comprising:

a data handler for performing an error detection and correction routine

for said at least one flash memory module.

The flash memory device of claim 8, further comprising:

a status handler for recetving said USB functional packet from said
functional interface, and for sending a status packet concerning a status
of said at least one flash memory module according to said USB

functional packet.

The flash memory device of claim 9, further compnsing:

CA 02334113 2000-12-04

WO 00/60476 PCT/US00/07087

18

(1) a MTD (memory technology driver) for receiving a write command and
a physical address of said at least one flash memory module, and for

performing said write command to said physical address.

11. A USB flash system , the system featuring a USB-defined bus, the
system comprising:
(a) a flash memory device, comprising:

(1) at least one flash memory module for storing data;

(i1) a USB flash device connector for connecting to the USB-
defined bus and for sending packets on, and for receiving
packets from, the USB-defined bus; and

(ii) a USB flash device controller for controlling said at least one
flash memory module and for controlling said USB connector
according to at least one packet received from the USB-defined
bus, such that data is written to and read from said at least one
flash memory module; and

(b) a host platform for communicating with said flash memory device
through the USB-defined bus, said host platform comprising:

(1) a USB host controller for controlling said host platform; and

(ii) a USB host connector for connecting to the USB-defined bus.

N
I P T DYV : : C e e i TR MBS e ' ' ' AR h
T BT TT PRI YA v P SLENPET| 85

WO 00/60476

CA 02334113 2000-12-04

177

PCT/US00/07087

Figure 1- Background Art USB Token Packet Structure

8 Bit

7 Bit

4 Bit

O Bit

’/// 10

P

‘lr ADDR

ENDP

CRCS

L,

Figure 2 — Background Art USB Data Packet Structure/ 20
16 Bit

8 Bit

o \

0-1023 Bytes

|
\—- 18

|
PID

|

DATA

22

.

Figure 3 — Background Art USB Handshake Packet

8 Bit

/

T et R R P s A

28

CA 02334113 2000-12-04

WO 00/60476 PCT/US00/07087

217

|

|

| I

USlgtsrl?ctncal USB Buffers, USB Class I

ace

Cabe s decoders and Control and Enumeration |

onnector) Syncronizers Engine ‘

| ' |

. j '
- . . -

~ - i

[2 '

34 ' 'l
| AV -

. | :

: Function and Device engine ‘

| (Application) :

. | ‘

| ﬁ :

L. _ e l

. toeeees il Lt R R IR e e e

S RN e HMBEM | sl Rl et e T

PCT/US00/07087

3/7

CA 02334113 2000-12-04

WO 00/60476

Ov
8 —
9¢ ﬂ
r
9
| T
._
!

0§ |
| Sjusuodwo) |
| use|

ﬂ
w _ q - -
| , . Im
131|0U0Y , J0}38UUOD | JO}O3UUON _ Ja{loNQuQd
> |
| asn il asn asn g I 1SOH
asn |
AS10 YE®l4 gSn _ |
. . - WHOLBId ISOH |

- v ,\ vv.l||\l

ANAI(AIOWIA Yyse|,] €S0 & YI1as woys4g 1s0y RInduwio) y — ¢ aangry

COEER FT" 3 5 BN RAA P FTTT [FF T FET | TTEL? PRIt) ORL

¢ LIRS H HA e bR e i e

E ERREY r’,.‘-;(ﬁﬂi’jmdm‘““m“uu.i. L -

CA 02334113 2000-12-04

PCT/US00/07087

WO 00/60476

4/7

9L

— SMEBIS
pue ejeq

_
_
|
l Ja|puUeH
_
_
|

8¢ _ — ‘
ﬂcmcanoo’."J janjosey | |

ySe|4 QLN ssalppy |

 —

aya1diaul |
pUBWIWOY]
| yonediddy

k

—— 1

J0108J1X3
1930Ed
uoneoddy

]9
Vi
00
e —
80BLAU] SOELSU!
| uonoun |BaisAyd || Jopauuon
- UORUN 1 esi60; asn
asn acn |
S - .
llllllllllll J

3L — Y
0L 9v

CL

.

A AIOWIA] SB[¢S] JO s}o0[d [uuopdun, pajieja(g — 9 aandig

. P e DI AT s e

oo ladq D N L4 T g e { 1 A 15 - qedaionnde

TR e e DA RN R R 1€ ot e

CA 02334113 2000-12-04

WO 00/60476 5/7 PCT/US00/07087

Fig 7 — Flash Identification Request Packet

8 Bit 8 Bit 16 Bit
- IDNTIFY] 26
ﬁ PlD OP- CRC16 y
L CODE N |
82
22 N 20

Fig 8 — Flash ldentification Replay Packet

8 Bit 8 Bit 32 bit 32 bit 16 Bit
| IDNTIFY] S N
PID OP- | SIZE . E"a;;:"" CRC16
| CODE | 1 .)
\ NI
52 \ 86 _ o
22
84

/- 90

Fig 9 —Write Request Packet

8Bit 8 Bit 32 Bit 16 Bit Upto 512 Bytes 16 Bit
WRITE | _] |
PID J op.cope | APDR J LEN DATA CRC16
_ - i - — ! —
1
i
22 94

92

CA 02334113 2000-12-04

WO 00/60476

PCT/US00/07087
6/7
100
Fig 10 — Write Status Packet /~
8 Bit 8 Bit 32 Bit 16 Bit 16 Bit 16 Bit
| WRITE '] i |
OP_CODE ADDR LEN STATUS | CRC16
: \ i - _ ' 3
\ 92 L. |
94 76 102 26
| - 104
Fig 11 — Read Request Packet
8 Bit 8 Bit 32 Bit 16 Bit
| READ h * |
L | OP-CODE ADDR CRC16
\ \ \ 108

26

— 110
Fig‘lz — Read Status Packet /

8Bit 8Bt 32Bit 16 Bit 16 Bit Upto512Bytes 16 Bit

AP Py S—.

READ DDR

LEN STATUS } DATA CRC16

\ 1. \ LN

116

CA 02334113 2000-12-04

WO 00/60476

PCT/US00/07087
1/7
118
Fig 13 —Erase Request Packet /
8 Bit 8 Bit 32 Bit 16 Bit
ERASE o
PID] OP-CODE } ADDR —{ CRC16
\ 26
) 122
120
/ -~ 124
Fig 14 —Erase Status Packet
8 Bit 8 Bit 32 Bit 16 Bit 16 Bit
T N { o []
ERASE
PID I OP-CODE ADDR STATUS CRC16

) 1 |
\ N 26
\ s 126
27
120

A Computer Host System with a USB Flash Memory Device

Hast Platform

UsB
Host

controller

44

/—‘ 42

[z
vsa Use
. connector Controlter

50

48 46

52

Flash
Components

56

60

62

38

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - abstract drawing

