Title: A FAST PULSE GENERATOR

Abstract: A pulse generator including a pulsed switch (12), for example a diode, connected between an input source (14), such as an oscillator, and a frequency multiplier (16).
A Fast Pulse Generator

The present invention relates to a fast pulse generator, and in particular a fast radio frequency pulse generator having an output in the frequency range of tens of kilohertz to 100s of gigahertz.

Figure 1 shows a conventional radio frequency switch pulse generator. This has an oscillator that is connected to a pulsed switch, thereby to provide a fast, pulsed output. In practice, the switch is typically a diode. A disadvantage of this arrangement is that the switch parameters determine the output pulse width. A further limitation is that when a diode is used, pulse rise times are limited by the intrinsic bandwidth of the switch pulse input, which in turn limits the output pulse rise time. In addition, the switch has an insertion loss, which reduces the output power. Also, the output power is restricted by the power handling capability of the switch. Any attempt to overcome the losses using an amplifier, places restrictions on the amplifier bandwidth, and as frequency increases these restrictions become more difficult to satisfy.

An object of the present invention is to provide an improved fast pulse generator.

According to one aspect of the present invention, there is provided a pulse generator including a pulsed switch connected between an ac source, such as an oscillator, and a non-linear frequency multiplier.

Because the frequency multiplier is a non-linear device that only conducts above a threshold and saturates very quickly, an effective sharpening of the pulse edges is provided, which allows for the generation of shorter, and so faster, output pulses.

The pulsed switch may be a semiconductor diode. The pulsed switch may be a mixer means. The switch may be operable to produce bi-phase pulses. The switch may be operable to produce multi-phasic pulses.

A plurality of frequency multipliers may be provided. In this case, the pulsed switch may be provided between adjacent multipliers.
The generator may include at least one amplifier. The amplifier may be connected between the pulsed switch and the frequency multiplier. Where a plurality of frequency multipliers is provided, the amplifier may be connected between two of these multipliers. The amplifier may be connected to an output of the frequency multiplier.

The pulse generator may be configured to provide a pulsed output having a frequency in the range of tens of kilohertz to 100s of gigahertz.

The pulse generator may be fabricated on a single chip, making it ideal for inclusion in integrated circuits. Alternatively, the generator could be constructed from separate components.

Various aspects of the invention will now be described by way of example only and with reference to the accompanying drawings, of which:

- Figure 2 is block diagram of a pulse generator;
- Figure 3 is modified version of the pulse generator of Figure 2;
- Figure 4 is another modified version of the generator of Figure 2;
- Figure 5 is yet another modified version of the generator of Figure 2, and
- Figure 6 is still another modified version of the generator of Figure 2.

Figure 2 shows a pulse generator 10 including a pulsed switch 12 connected between an oscillator 14 and a frequency multiplier 16. Any suitable oscillator 14 could be used, provided it is able to drive the frequency multiplier non-linearly 16. The multiplier 16 may include one or more non-linear devices, for example one or more varactor diodes, FETs, bipolar or other types of diode. Although Figure 2 shows only a single frequency multiplier 16, there may be a plurality of these, with the pulsed switch 12 connected between adjacent multipliers, as shown in Figure 3. The pulsed switch 12 may be a semiconductor device or a mixer means, for example, a diode or a four-quadrant multiplier or double balanced mixer or any other relatively fast switch. In any case, the switch 12 may be operable to produce bi-phase pulses. Alternatively, the switch 12 may be operable to produce multi-phasic pulses.
Because the multiplier 16 of Figures 2 and 3 is a nonlinear device that only conducts above a threshold and saturates very quickly, an effective sharpening of the pulse edges is observed. In practice, this means that the pulses are shorter and so faster.

Various device configurations have been tested. In one example, the oscillator 14 was a YIG (Yttrium Iron Garnet) oscillator tunable from 6.8 to 8.8GHz with a power output of +15dBm, followed by a varactor diode multiplier chain. The gating switch pulse width was 600ps at about 100 MHz. This provided output pulses having a width of 260ps at 94GHz. In another example, the oscillator used was a dielectric resonator oscillator, which provided a fixed frequency of 7.833GHz, followed by a varactor diode multiplier chain. In this case, the gating switch pulse width was 1ns at about 100 MHz and the output pulses had a width of 650ps at 94GHz. These examples are by no means exclusive, but instead are provided for the purposes of illustrating the benefits of the invention. The type of oscillator and required output power are dependant only upon system requirements.

The pulse generator in which the invention is embodied can be used for many applications, particularly radar applications. For example, the invention could be of particular use in radar based collision avoidance systems. Because of the very high speeds achievable using the generator, the accuracy and resolution of such systems would be greatly improved.

A skilled person will appreciate that variations of the disclosed arrangements are possible without departing from the invention. For example, because processing by the frequency multiplier will reduced the pulse signal amplitude, at least one amplifier 18 may be provided for recovering that pulse amplitude. This may be provided between the pulsed switch 12 and the frequency multiplier 16, as shown in Figure 4. Where a plurality of frequency multipliers 16 is provided, the amplifier 18 may provided between two of these multipliers 16, as shown in Figure 5. Alternatively or additionally, the amplifier 18 may be connected to an output of the frequency multiplier 16, as shown in Figure 6. Accordingly the above description of the specific embodiment is made by way of example only and not for the purposes of limitation. It will be clear to the skilled person that minor modifications may be made without significant changes to the operation described.
Claims

1. A pulse generator including a pulsed switch connected between an ac input source and a non-linear frequency multiplier.

2. A pulse generator as claimed in claim 1 wherein the pulsed switch is a semiconductor diode.

3. A pulse generator as claimed in claim 1 wherein the pulsed switch is a mixer.

4. A pulse generator as claimed in claim 1 wherein a plurality of frequency multipliers is provided and the pulsed switch is provide between adjacent such multipliers.

5. A pulse generator as claimed in any of the preceding claims including at least one amplifier.

6. A pulse generator as claimed in claim 5 wherein an amplifier is between the pulsed switch and the frequency multiplier.

7. A pulse generator as claimed in claim 5 of claim 6 wherein a plurality of frequency multipliers is provided and an amplifier is provided between two of these multipliers.

8. A pulse generator as claimed in any of claims 5 to 7 wherein an amplifier is connected to an output of the frequency multiplier.

9. A pulse generator as claimed in any of the preceding claims wherein the switch is operable to produce bi-phase pulses.

10. A pulse generator as claimed in any of the preceding claims wherein the switch is operable to produce multi-phasic pulses.
11. A pulse generator as claimed in any of the preceding claims wherein the ac input source is an oscillator.
Figure 1

Figure 2
Figure 3

14 → 16 → 12 → 16

- Frequency Multiplication Means
- switch
- Frequency Multiplication Means

Switch Pulse

Figure 4

14 → 12 → 18 → 16

- switch
- amplifier
- Frequency Multiplication Means

Switch Pulse

Figure 5

14 → 12 → 16 → 18

- switch
- Frequency Multiplication Means
- amplifier

Switch Pulse
Figure 6
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

H03B19/00

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H03B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:
 * "A" document defining the general state of the art which is not considered to be of particular relevance.
 * "E" earlier document but published on or after the international filing date.
 * "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another document, or to explain the principle or theory underlying the invention.
 * "O" document referring to an oral disclosure, use, exhibition or other means.
 * "P" document published prior to the international filing date but later than the priority date claimed.

Date of the actual completion of the international search:

10 February 2006

Date of mailing of the international search report:

16/02/2006

Name and mailing address of the ISA/Authorized officer:

European Patent Office, P.B. 5819 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Meulemans, B

Form PCT/SA/210 (second sheet) (April 2005)
INTERNATIONAL SEARCH REPORT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 3 711 784 A (HEISE R,DT) 16 January 1973 (1973-01-16) abstract column 1, line 51 - column 2, line 31 column 3, line 26 - column 4, line 21; figure 1</td>
<td>1-11</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 3384771 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BE 772987 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 931230 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH 529475 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 2047145 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2108440 A5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 1357145 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 50038544 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL 7113110 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 361991 B</td>
</tr>
</tbody>
</table>