发明名称
具有多态性序列位点的核酸的鉴定方法

摘要
本发明是一种在具有多态性序列位点的核酸中，多态性序列位点是否具有所希望的碱基序列的鉴定方法，包括将下列的(1)和(2)与具有多态性序列位点的目的核酸杂交，再将这些杂交物放在能够进行引物链置换延伸反应的条件下：(1)鉴定引物(在这里鉴定引物在3’端部分具有多态性序列鉴定用碱基序列)及(2)没有引物机能的寡核苷酸(在这里该寡核苷酸是与上述的鉴定引物相比，相对于目的核酸5’侧区域，全部或者一部分互补)。根据本发明的方法，能够迅速，简便且高精度地检测出核酸1个碱基的差异。
1. 一种在具有多态性序列位点的核酸中鉴定多态性序列位点是否具有所希望的碱基序列的方法，该方法包括：

将下列的(1)和(2)与具有多态性序列位点的目的核酸杂交，将它们置于能够进行引物链置换延伸反应的反应条件下，其中，上述的(1)和(2)为

(1) 鉴定引物，其中该鉴定引物在 3’端部分具有多态性序列鉴定用碱基序列，和

(2) 没有引物机能的寡核苷酸，其中该寡核苷酸是与上述的鉴定引物相比，相对于目的核酸的 5’侧区域全部或一部分互补。

2. 如权利要求 1 所述的方法，鉴定引物的多态性序列鉴定用碱基序列与目的核酸的多态性序列位点的碱基序列互补时，由引物链置换延伸反应引起的引物的延伸。

3. 如权利要求 1 或 2 所述的方法，鉴定引物中多态性序列鉴定用碱基序列的碱基数是 1 个。

4. 如权利要求 1 所述的方法，前述目的核酸是目标核酸的互补链。

5. 如权利要求 1 所述的方法，包括将通过引物链置换延伸反应生成的延伸反应生成物扩增的步骤。

6. 如权利要求 5 所述的方法，延伸反应生成物的扩增是通过选自 PCR 法、NASBA 法、TMA 法、SDA 法、LAMP 法或 ICAN 法的核酸扩增方法进行的。

7. 如权利要求 1 所述的方法，还包括检测由引物链置换延伸反应生成的延伸反应生成物的存在步骤。

8. 如权利要求 5 所述的方法，还包括在由引物链置换延伸反应生成的延伸反应生成物的扩增步骤之后，检测该延伸反应生成物的存在步骤。

9. 如权利要求 1 所述的方法，其中没有引物功能的寡核苷酸的 5’末端部分具有相对于目的核酸与鉴定引物的 3’末端部分相重叠地设置的序列。

10. 如权利要求 9 所述的方法，没有引物功能的寡核苷酸的 5’末端部分与鉴定引物的 3’末端部分相重叠部分的碱基数是 1-5 个。

11. 如权利要求 1 所述的方法，其中没有引物功能的该寡核苷酸的 5’末端部分具有相对于目的核酸与鉴定引物的 3’末端部分相连续地设置的序列。
12. 如权利要求 1 所述的方法，在没有引物机能的寡核苷酸的 5’末端部分具有与目的核酸不互补的碱基。

13. 如权利要求 1 所述的方法，没有引物机能的寡核苷酸的 3’末端的核苷酸的羟基被磷酸基修饰。

14. 如权利要求 1 所述的方法，在没有引物机能的寡核苷酸的 3’末端部分具有与目的核酸不互补的碱基。

15. 如权利要求 1 所述的方法，没有引物机能的寡核苷酸，在其序列中含有修饰碱基或非天然的核酸结构。

16. 如权利要求 1 所述的方法，没有引物机能的寡核苷酸与目的核酸之间的结合的解链温度比鉴定引物与目的核酸之间的结合的解链温度高。

17. 如权利要求 1 所述的方法，引物链置换延伸反应是由互补链置换型的模板依赖性核酸合成酶引起的反应。

18. 如权利要求 17 所述的方法，模板依赖性核酸合成酶是 DNA 聚合酶。

19. 如权利要求 17 所述的方法，模板依赖性核酸合成酶是逆转录酶。

20. 一种试剂盒，其用于在具有多态性序列位点的核酸中鉴定多态性序列位点是否具有所希望的碱基序列，该试剂盒包括下述(A)和(B):

(A) 鉴定引物，其中该鉴定引物在 3’端部分具有多态性序列鉴定用碱基序列，和

(B) 没有引物机能的寡核苷酸，其中该寡核苷酸是与上述的鉴定引物相比，相对于目的核酸的 5’侧区域全部或者一部分互补。
具有多态性序列位点的核酸的鉴定方法

【发明背景】

发明领域

本发明涉及一种能高度精确地检测核酸序列差异，例如核酸序列中1个碱基的差异也能检测的核酸鉴定方法。

相关技术

近年来，由于在世界范围内开展了人类基因组解析，大约31亿个碱基对的序列被测定的同时，也确定了基因数大概是3-4万个。

人类个体之间碱基序列存在着差别，特定的群体人群中以1%以上的频率存在的差异叫做基因多态性。其中表明基因碱基序列只有一个碱基不同的SNP(单核苷酸多态性)与多种疾病具有关连性。例如，人类基因病其病因被认为是基因中的一个碱基的不同。另外，生活习惯病、癌症等，也被认为是由于在多个基因中几个基因中的一个碱基的差别的原因。因此，SNP的解析被认为是探索制药目标和预见副作用等医药品的开发上极为有效。因此，SNP解析作为世界性的巨大项目被推进着。

关于药物的效果和副作用的个体差别，是每个人的药物代谢的酶群差别的原因，最近发现，其差异也是基因上的细微差别所造成的。另外，针对病源菌和病毒的药物疗效、病源菌和病毒的耐药性，个体之间都有差异，这也是由于个体的基因的细微差异所造成的。

因此，认为可以事先分析患者的基因，选择最佳的药物对患者给药。而且，不仅单一基因疾病，即使对于多因素的疾病，基因诊断意义也在不断地快速提高。而且，对于外部因素的病源菌和病毒的基因诊断，预测今后，检查对象一定会增加。

在这样的后基因组时代的医疗中，可以检测出人类和病源微生物的基因的细微差别，特别是1个碱基的差异，是是非常重要的，预计今后重要性还会增强。

迄今为止，关于检测碱基序列的细微差异的方法，特别是检测1个碱基的
差异的方法，进行了许多研究（Landegren，变种检测的实验室草案，牛津大学出版，1996年）Ahmadian等，Biotechniques 32, 1122-1137 (2002)）。

但是，为了进行具有实用性的检测，在低成本、使方法简便、缩短检测时间、确保检测结果正确等方面都有较高的要求。具体发明人的了解，到目前为止，还没有具有实用性的检测方法。

检测基因的细微差异，特别是1个碱基的差异时，一般的说，目的基因片段在样品中只含有很少量。这种情况下，用某种方法将目的基因事先扩增是必要的。如此扩增基因的方法，可举出例PCR（聚合酶链反应）法。

一般地说，为了检测目的基因的1个碱基的差异，需要基因扩增阶段和检测被扩增的基因的1个碱基的差异阶段的两个阶段的工序（Ahmadian等，Biotechniques 32, 1122-1137 (2002)）。但是，需要两个阶段的工序的方法，由于工序多，处理上会很麻烦。

但是，对于该方法，其反应很容易受到反应条件的影响，例如，模板的量，温度，引物的量，及反应基质的dNTP的浓度等。因此，常常不容易获得具有

另外，也有其他的方法正在研究中，例如，引物的 3'端附近导人人工变异(与模板不互补的碱基)的方法(Newton 等, Nucleic Acids Res. 17, 2503 (1989))。但是，即使是这种方法，引物的最适化仍需要耗费一定的人力物力，由于鉴定精度也由于样品的品质不同，有时结果也会受到影响。

为了解决这个问题，探讨了将非天然的核酸导人引物的方法(美国专利第 6, 316, 198 号说明书)，但仍然有改进的必要。另外，也开发了在两个烯丙基本上使引物特异地共存，通过竞争反应鉴定 1 个碱基的方法(McClay, Anal. Biochem., 301, 2000-2006 (2002))。但是，该方法还不能充分满足要求。

因此，依然期待着一种能够迅速而简便地检测出基因的细微差别，特别是 1 个碱基的差异的方法，鉴定精度和适用性高的方法。

【发明概述】

本发明人，在这里发现了，为了能够鉴定 3'端部分多态性序列，使用配置了碱基序列的引物进行链置换型的引物延伸反应，在鉴定目的核酸中 1 个碱基时，加入该引物，由于使用没有引物机能的寡核苷酸，所以能够显著提高鉴定多态性位点的 1 个碱基的能力。本发明即基于此机理。

本发明的目的是提供具有多态性序列位点的核酸的鉴定方法，即使被测样品只有微量，只要是其中含有 1 个不同碱基的核酸，也能迅速简便地检测出来，而且是一种检测精度优良的方法。

并且，本发明的具有多态性序列位点的核酸的鉴定方法，是在具有多态性序列位点的核酸中鉴定多态性序列位点是否具有所希望的碱基序列的方法，该方法包括：

将下列的(1)和(2)与具有多态性序列位点的目的核酸杂交，将这些杂交物放在能进行引物链置换延伸反应的条件下，

(1) 鉴定引物(在这里该鉴定引物在 3'端部分具有多态性序列鉴定用碱基序列)，和

(2) 没有引物机能的寡核苷酸(在这里该寡核苷酸是与上述的鉴定引物相比，相对于目的核酸 5'侧区域，全部或者一部分互补)。
本发明的用于鉴定具有多样性序列位点的核酸的试剂盒是在具有多样性序列位点的核酸中用于鉴定多样性序列位点是否具有所希望的碱基序列的试剂盒，含有下列的(A)和(B):

(A) 鉴定引物(在这里该鉴定引物在 3'端部分具有多样性序列鉴定用碱基序列)，和

(B) 没有引物机能的寡核苷酸(在这里该寡核苷酸是与上述的鉴定引物相比，相对于目的核酸 5'侧区域，全部或者一部分互补)。

根据本发明的方法或者试剂盒，能够迅速而简便的鉴定目的核酸在某一个多样性序列中是否是任一类型。该方法或者试剂盒与仅仅使用在 3'端有多样性序列鉴定用碱基序列的引物的以往的方法相比，多样性的鉴定精度更为优异。

【附图简述】

图 1 是显示本发明中鉴定引物与没有引物机能的寡核苷酸的位置关系的模式图。图中，(a)、(d)和(e)是鉴定引物与该寡核苷酸的序列重合的情况，(b) 是鉴定引物与该寡核苷酸的序列连续分布的情况，(c)是鉴定引物与该寡核苷酸的序列离散分布的情况。

图 2 是显示实施例中鉴定引物与该寡核苷酸的相互位置关系的图。

图 3 是显示实施例 1 的结果的图。在图中模板一栏中的 A 和 T 表示模板序列上多样性序列位点的碱基的种类。引物一栏表示使用的引物的种类，DEO一栏表示使用的没有引物机能的寡核苷酸的种类。

图 4 是显示实施例 2 结果的图。在图中，模板一栏中的 A 和 T 表示模板序列上多样性序列位点的碱基的种类。引物一栏表示使用的引物的种类，DEO一栏表示使用的没有引物机能的寡核苷酸的种类。

图 5 是显示实施例 3 结果的图。在图中，模板一栏中的 A 和 T 表示模板序列上多样性序列位点的碱基的种类。引物一栏表示使用的引物的种类，DEO一栏表示使用的没有引物机能的寡核苷酸的种类。

图 6 是显示实施例 4 结果的图。在图中，模板一栏中的 A 和 T 表示模板序列上多样性序列位点的碱基的种类。引物一栏表示使用的引物的种类，DEO一栏表示使用的没有引物机能的寡核苷酸的种类。

【发明的具体说明】

核酸的鉴定方法
本发明是在具有多态性序列位点的核酸中鉴定多态性序列位点是否具有所希望的碱基序列的方法。

本说明书中的“核酸”可以是 DNA 或 RNA，单链或双链都可以。另外，能够通过本发明方法鉴定的核酸，对于核酸的由来没有限制，即本发明对于来自于真核生物、原核生物、病毒的核酸甚至合成的核酸都能够适用。

本说明书中的“目的核酸”是指用本发明方法希望鉴定的目标核酸自身或者是该目标核酸的互补链。

本说明书中的“多态性序列位点”是指存在于核酸之间的序列上的不同部分的碱基序列，或者由于因点突变生成的核酸序列上的变异部分的碱基序列。即，“多态性序列位点”是指对于作为基准的碱基序列发生 1 个碱基或者多个碱基的置换、缺失或插入的位点。因此，根据本发明的鉴定方法，可以鉴定出在象这样的多态性位点是所希望的碱基序列的核酸和多态性位点不是这样的碱基序列的核酸。

在这里，“所希望的碱基序列”是指可能存在于核酸序列的相当于多态性序列位点的碱基序列，用本发明的鉴定方法鉴定的标记碱基序列。象这样的碱基序列，可根据鉴定目的，例如希望鉴定的疾病或根据鉴定对象的动物种类等适当选择。

本发明的具有多态性序列位点的核酸的鉴定方法包括，如前面所述，至少使用鉴定引物和没有引物机能的寡核苷酸，使它们与目的核酸杂交，将杂交后的这些物质放置于能进行引物的链置换延伸反应的反应条件下。

鉴定引物

本发明中的“鉴定引物”是对目的核酸具有引物机能，其 3’端部分至少具有多态性序列鉴定用的碱基序列。这时，鉴定引物的所谓“3’端部分”并不是仅指引物的 3’最末端部分，从 3’最末端开始的几个碱基附近都可以，该引物的上流位置也可以。优选从 3’最末端的碱基数是包含最末端的碱基的 1-5 个碱基的范围，更优选 1-3 个碱基的范围，最优选是 1-2 个碱基。

在这里所说的“多态性序列鉴定用的碱基序列”是指可以鉴定目的核酸中存在的多态性序列位点的鉴定引物中存在的碱基序列。“多态性序列鉴定用的碱基序列”是在目的核酸中的多态性序列位点是希望的碱基序列时，可以是与该位点互补或者非互补的。
鉴定引物中多态性序列鉴定用的碱基数，可以是2~几个，也可以是1个。一般地，该碱基数是2个以上的时候，由引物进行多态性序列的鉴定极为容易，该碱基数是1个的时候，不易鉴定。在本发明中，即使该碱基数是1个的时候，仍能很容易地进行多态性序列的鉴定。

本发明中的鉴定引物被设计为，当鉴定引物中多态性序列鉴定用碱基与目的核酸的多态性序列位点的碱基序列相互互补的时候，由于引物的链置换延伸反应进行引物的延伸，且当鉴定多态性序列用碱基序列与目的核酸的多态性序列位点的碱基序列不互补的时候，不再进行引物的链置换延伸反应。

如此的多态性序列鉴定用的碱基序列如果与目的核酸的多态性序列位点的碱基序列互补，由该鉴定引物引起引物的链置换延伸反应，引物延伸，能够形成延伸反应生成物，即与目的核酸互补的核酸。

但是，多态性序列鉴定用的碱基序列如果与目的核酸的多态性序列位点的碱基序列不互补，由该引物引起的链置换延伸反应被抑制，几乎无法进行引物的延伸。因此，也几乎无法形成延伸反应生成物。以往的方法，即使有如此的状况，引物的延伸反应也能稍微进行一点。因此，过去的鉴定方法的精确度并不是很高。在本发明的成功之处在于，在该鉴定引物的下游由于使用了没有引物机能的寡核苷酸，有效地提高了能否进行延伸反应的精确度。

也就是说，对于鉴定引物，如果多态性序列鉴定用的碱基序列与目的核酸的多态性序列位点的碱基序列相匹配，鉴定引物与目的核酸完全互补，该引物下游结合的没有引物机能的寡核苷酸被排除，能够进行引物的延伸反应。与此相对，对于鉴定引物，如果多态性序列鉴定用的碱基序列与目的核酸的多态性序列位点的碱基序列不相匹配，引物的延伸反应几乎不能进行，这时，如果在该引物下游的没有引物机能的寡核苷酸还存在，几乎完全能够抑制引物的延伸反应的进行。本发明，利用此现象，根据检测获得的延伸生成物，能够以极高的精确度鉴定具有多态性序列位点的核酸。

本发明的鉴定引物，可以是与从目的核酸的多态性序列位点到目的核酸的3’末端方向的全部区域互补的，也可以是包括多态性序列位点，并且比上述全部区域短的部分互补的。

本发明的鉴定引物的链长，可以根据适用的目的核酸的链长相应的适宜选择，典型的是6-100个碱基，优选10-50个碱基，更优选15-30个碱基。
本发明的鉴定引物，能够按照常规的方法合成。例如，本发明的鉴定引物，较之在目的核酸中的多态性序列位点，可以选择与目的核酸的3′侧的区域相互补的。另外，按照希望鉴定的碱基序列，也可以适当选择鉴定引物中存在的多态性序列鉴定用的碱基序列。

没有引物机能的寡核苷酸

在本发明中，与鉴定引物相比较，“没有引物机能的寡核苷酸”，对于目的核酸的5′侧的区域互补是必要的。换而言之，较之鉴定引物，该寡核苷酸在下游区域，与目的核酸互补。

在这里所说的“没有引物机能”是指该寡核苷酸与目的核酸杂交，即使其放置于引物的延伸反应的反应条件下，也不会从该寡核苷酸引起延伸反应的状态。

在本发明中，没有引物机能的寡核苷酸与目的核酸互补的位置，较之鉴定引物与目的核酸互补的位置，只要下游，没有特别的限制。因此，

(a) 该寡核苷酸的5′末端部分具有相对于目的核酸与鉴定引物的3′末端部分相重叠地设置的序列(参照图1(a))。

(b) 该寡核苷酸的5′末端部分具有相对于目的核酸与鉴定引物的3′末端部分相关连续地设置的序列(参照图1(b))，以及

(c) 该寡核苷酸的5′末端部分具有相对于目的核酸与鉴定引物的3′末端部分相分离地设置的序列(参照图1(c))。

在这里所说的没有引物机能的寡核苷酸的5′末端部分与鉴定引物的3′末端部分“相重叠”，是鉴定引物和没有引物机能的寡核苷酸与目的核酸形成互补链时，引物的3′末端部分与该寡核苷酸的5′末端部分，对于目的核酸的同一序列或者同一碱基，同时具有互补的序列或者碱基的状态。

另外，这时候，该寡核苷酸的5′末端部分“相重叠”的部分，对于目的核酸未必是完全互补的，这样的状态也包含在“相重叠”范围里。因此本发明的另一个优选的方式是没有引物机能的寡核苷酸的5′末端部分也可以有与目的核酸非互补的碱基。这时候，存在于该没有引物机能的寡核苷酸的5′末端部分的与目的核酸非互补的碱基数例如是1-15个，优选1-5个。

同样，鉴定引物的3′末端部分的“相重叠”部分对于目的核酸未必是完全互补的，这样的状态也包含在“相重叠”范围里。因此本发明的另一个优选的方式
是鉴定引物，其 3’末端部分也可以有与目的核酸非互补的碱基。

另外，鉴定引物的 3’末端部分的“相重叠”部分也可以含有外性序列鉴定用的碱基序列，也可以不含有。这时候，对于鉴定引物的 3’末端部分的“相重叠”部分，外性序列鉴定用的碱基序列可以不是 3’末端的最末端的碱基。因此，没有引物功能的寡核苷酸的 5’末端部分，较之鉴定引物中的外性序列鉴定用的碱基序列，可以只和 3’末端侧的区域的碱基序列重复，但是外性序列鉴定用的碱基序列也可以与含有 5’侧的区域的碱基序列的序列重复。

如此的“相重叠”，包含以下任一种情况：鉴定引物的 3’末端部分和没有引物功能的寡核苷酸的 5’末端部分对于目的核酸双方都互补的情况，无论哪一方或者双方对于目的核酸不互补并且在原本有互补的碱基的位置存在非互补的碱基的情况。

作为“相重叠”的情况的例子，除了前面所述的(a)的情况以外，可以举出象下述(d)以及(e)的情况:

(d) 不具有引物功能的寡核苷酸的 5’末端部分具有相对于目的核酸与鉴定引物的 3’末端部分相重合地设置的序列，该寡核苷酸的 5’末端部分与目的核酸相互补的情况(参照图 1(d))。这时，鉴定引物的 3’末端部分与目的核酸也可以不互补。

(e) 不具有引物功能的寡核苷酸的 5’末端部分不具有相对于目的核酸与鉴定引物的 3’末端部分相重合地设置的序列，该寡核苷酸的 5’末端部分与目的核酸相互补的情况(参照图 1(e))。这时，鉴定引物的 3’末端部分与目的核酸也可以不互补。

本发明的优选形态在于，具有对于目的核酸构建为没有引物功能的寡核苷酸的 5’末端部分与鉴定引物的 3’末端部分相重叠地设置的序列，或者具有对于目的核酸构建为没有引物功能的寡核苷酸的 5’末端部分与鉴定引物的 3’末端部分相连接地设置的序列，没有引物功能的寡核苷酸与鉴定引物有“相重叠”的序列时，相重叠部分的碱基数优选 1-5 个，更优选 1-3 个。

在本发明中，没有引物功能的寡核苷酸的全部碱基构成，对于目的核酸来说，并不需要完全互补，即使一部分的碱基不互补也可以。但那种情况下，在该寡核苷酸中所含的与目的核酸不互补的碱基的比例希望是即当该寡核苷酸与目的核酸特异地结合时，在本发明的链置换延伸反应中，能够维持与目的核酸
结合的程度。

在本发明中的“没有引物机能的寡核苷酸”是只要没有引物的机能，没有特别的限制。脱氧寡核苷酸，核糖寡核苷酸都可以，其嵌合体也可以。另外，该寡核苷酸可以含有修饰碱基，也可以含有非天然型的核酸结构(例如，非天然型的修饰碱基，非天然型的糖结构)。另外，作为该寡核苷酸，也可以使用具有不同主链的 PNA 等。

本发明的优选形态在于没有引物机能的寡核苷酸是，没有引物机能的寡核苷酸与目的核酸之间的结合的解链温度比鉴定引物与目的核酸之间的解链温度高。例如，没有引物机能的寡核苷酸与目的核酸之间的结合的解链温度能够比鉴定引物与目的核酸之间的解链温度高 1-15℃。该寡核苷酸如果有的这样的解链温度，当由鉴定引物引起延伸反应时，没有引物机能的寡核苷酸必定与目的核酸相结合。由此，鉴定引物的 3’末端部分的多态性序列鉴定用的碱基序列和目的核酸的多态性序列位点之间不匹配时，引物的延伸反应一定会受到抑制。

在本发明中，没有引物机能的寡核苷酸可以根据希望鉴定的目的核酸的序列适当选择。没有引物机能的寡核苷酸，例如，也可以按照常规的方法合成，也可以将希望鉴定的核酸用其他方法制备，再任意切断而获得。

另外，可以对该寡核苷酸进行适用的常规方法(例如，美国专利第 5, 849, 497 号说明书记载的方法)使该寡核苷酸没有引物机能。此外，根据合成等获得的寡核苷酸的 3’末端部分的核苷酸的羟基用任意的保护基(例如，磷酸基)修饰，或在此 3’末端部分导入与目的核酸不互补的碱基，寡核苷酸便没有了引物的机能。

因此，本发明的另一优选形态是没有引物机能的寡核苷酸，其 3’末端部分的核苷酸的羟基可以被磷酸基修饰。

另外，本发明另一优选形态，没有引物机能的寡核苷酸，在其 3’末端部分可以有与目的核酸非互补的碱基。这时候，在没有引物机能的寡核苷酸的 3’末端部分存在的与目的核酸非互补的碱基的碱基数例如可以是 1-30 个，优选 3-10 个。

在本发明中，没有引物机能的寡核苷酸的链长可以根据适用的目的核酸的链长进行适当地选择，希望最少含有 10 个碱基以上，优选 15-50 个碱基，更优选 25-35 个碱基。
本发明中所用的没有引物的寡核苷酸的量可以根据目的核酸的量适宜选择，在鉴定引物与目的核酸完全互补时，是不抑制引物的延伸反应的量，并且优选其在延伸反应中能够与所有目的核酸结合的量。这样的情况下，该寡核苷酸的量与目的核酸的量相比，至少要过量存在。

本发明的更优选形态在于该寡核苷酸的量相对鉴定引物的量是 0.1-5 当量，优选 1-3 当量，更优选 1-1.5 当量。

其他

在本发明中，使鉴定引物和没有引物机能的寡核苷酸与目的核酸杂交，按常规的方法，例如，将它们一起适当地设定温度条件，易于操作。

在本说明书中，所说的“放置于引物的链置换延伸反应能进行的反应条件下”是指能够进行引物的链置换延伸反应的反应条件，例如，在规定的酶存在下、温度条件下和/或基质存在下，放置杂交的引物等。这样的反应条件的典型实例是本领域技术人员所公知的，在本发明中，根据目的核酸、引物等，可以适当地调整最佳条件。例如，根据使用的酶，可以适当的设定温度条件。

作为这里使用的酶，优选互补链置换型的模板依赖性核酸合成酶。这样的酶，当目的核酸是 RNA 时可以使用逆转录酶，而且，当目的核酸是 DNA 时，可以使用 DNA 聚合酶。这时可以使用的 DNA 或 RNA 聚合酶重要的是不具有 5'→ 3' 核酸外切酶活性和 3'→ 5' 核酸外切酶活性，但具有链置换活性。

作为所述 RNA 聚合酶，例如可举出的有 M-MLV 逆转录酶等。

另外，对于具有 5'→ 3' 核酸外切酶活性和 3'→ 5' 核酸外切酶活性的天然的酶，可以人工除去这些活性。因此，作为 DNA 聚合酶，可以使用除去活性的酶。在本发明中，作为能够使用的酶，例如，可举出的有 Bst DNA 聚合酶大片段(New England Biolabs 公司制)，Stoffel 片段 DNA 聚合酶(アプライドバイオシステムズ公司制)等。

本发明的方法优选适用由 1 次延伸反应即能够进行 1 个碱基的鉴定的方法。这样的方法，例如可举出 1 个碱基延伸法(SBE 法)(Syvanen 等, Genomics, 8, 684-692(1990))。该方法是对由 PCR 法扩增的 DNA 进行引物延伸反应的方法。即该方法是利用引物的 3' 末端和由 PCR 扩增所获得的目的核酸完全互补或者不互补，从而决定延伸反应能否进行。根据本发明所用的方法，可以提高 SBE 法的鉴定能力，另外，能够缩短条件设定的时间。SBE 法是广泛普及
的方法，然而与本发明相结合则能形成更优良的鉴定方法。

本发明的一个优选方式是将本发明的方法能够与 SBE 法结合实施。

因此，本发明的优选方式是本发明的方法还包括引物链置换延伸反应扩增延伸反应生成物的工序。该扩增法可以是选自上述的 PCR 法、NASBA 法、TMA 法、SDA 法、LAMP 法或者 ICAN 法的核酸扩增法。

本发明的优选方式是本发明的方法还包括引物链置换延伸反应所生成的延伸反应生成物的存在的检测工序。因此，例如，如果检测出延伸反应生成物，即可判断在多态性序列位点是所希望的碱基序列。

延伸反应生成物的存在可通过用一般的核酸检测方法来检测。

因此，例如，将本发明与上述的 SBE 法相组合时，使用荧光标记的单核苷酸三磷酸，通过将进入的单核苷酸特定化，能够鉴定出 1 个碱基的差异 (Syvanen 等，Genomics, 8, 684-692 (1990))。另外，本发明与 PCR 法组合时，例如，向发荧光的物质中加入得到的扩增物，根据是否发荧光，能够很容易地检测出 1 个碱基的差异。这些检测方法在其他情况下也能适用(Foy 等，Clinical Chem. 47, 990-1000 (2002))，由此，可以非常容易地检测出样品中的核酸序列的细微差异(例如数个碱基的差异)，或者 1 个碱基的差异。

本发明的另一个方式提供用于鉴定的包括下述的(A) 和(B)而构成的，在有多态性序列位点的核酸中多态性序列位点是否具有所希望的碱基的试剂盒。

(A) 鉴定引物(在这里该鉴定引物在 3’端部分具有多态性序列鉴定用碱基序列)，及

(B) 没有引物机能的寡核苷酸(在这里该寡核苷酸是与上述的鉴定引物相比，相对于目的核酸的 5’侧区域，全部或者一部分互补)。
本发明的优选方式是该试剂盒还包括下述（C）而构成：

(C) 互补链置换型的模板依赖性核酸合成酶。

本发明的其他优选方式是上述的试剂盒，含有延伸反应的基质单核苷三磷酸和/或适于上述酶的酶反应的缓冲液。

在这里，作为延伸反应的基质单核苷三磷酸，通常是指4种脱氧核苷酸三磷酸（dNTP），作为适于上述酶的酶反应的缓冲液，可以根据所用酶适当地选自公知的缓冲液。

【实施例】

以下，通过实施例对本发明进行具体说明，但本发明并不限于此。

在本实施例中所用的寡核苷酸是由ABI 392 DNA合成仪（アプライドバイオシステム公司制）合成的。向寡核苷酸的3'末端导入磷酸时，使用3'磷酸化CPG（グレンリサーチ公司制）。

合成的寡核苷酸在脱保护后，由聚丙烯酰胺凝胶电泳纯化，然后使用。

作为扩增的模板，各自使用含有带有A烯丙基或T烯丙基的β-珠蛋白基因的Pst I片段的质粒（各自为pBR322-βA，pER322-βT（Ikuta等，Nucleic Acids Res. 15, 797-811））。

引物延伸反应是按照实施PCR法进行的。在这里作为DNA聚合酶，使用Stoffel片段DNA聚合酶Stoffel fragment DNA polymerase（アプライドバイオシステム公司制），反应装置使用Thermal Cycler 9700（Roche Diagnostics公司制）。扩增反应生成物是将反应液进行3%琼脂糖凝胶电泳，溴化乙锭染色加以确认。

使用的寡核苷酸，即引物和没有引物功能的寡核苷酸如以下所示。以下的下划线部分是表示与A-烯丙基或T-烯丙基的位置对应的碱基，3'末端的p表示磷酸。

引物（鉴定引物）（与模板相同的链）：
bGT: 5’ATG GTG CAC CTG ACT CCT GT （序列号1）
bGA: 5’ATG GTG CAC CTG ACT CCT GA （序列号2）

引物（与模板互补的）：
ASP6: 5’TGT CIT GTA ACC TTG ATA CC （序列号3）

没有引物功能的寡核苷酸：
DEO-1A: 5’ΔGG AGA AGT CTG CCG TTA CTGp （序列号 4）
DEO-2A: 5’ΔGG AGA AGT CTG CCG TTA CTG CCC TGT GGGp （序列号 5）
DEO-3A: 5’GAG GAG AAG TCT GCC GTT ACT GCC CTG TGT GGGp （序列号 6）
DEO-1T: 5’ TGG AGA AGT CTG CCG TTA CTGp （序列号 7）
DEO-2T: 5’TGG AGA AGT CTG CCG TTA CTG CCC TGT GGGp （序列号 8）
DEO-3T: 5’GTG GAG AAG TCT GCC GTT ACT GCC CTG TGGGp （序列号 9）
DEO-4: 5’GGA GAA GTC TGC CGT TAC TGC CCT GTG GGGCp （序列号 10）
DEO-5: 5’ TGC CGT TAC TGC CCT GTG GGGC AAGG TGAACp （序列号 11）

这些引物与没有引物机能的寡核苷酸之间的位置关系如图 2 所示。

例 1

使用引物 bGT(0.5μM)、引物 ASP6(0.5μM)、没有引物机能的寡核苷酸 (0.5μM) 和作为模板的质粒 pBR322-β²(A 稀丙基，300 pg) 或质粒 pBR322-β³(T 稀丙基，300 pg) 进行扩增反应。含有上述各成分的反应液中加入与 A、G、T 和 C 对应的 4 种脱氧核苷三磷酸(各 200μM)、反应缓冲液(Stoffel 片段 DNA 聚合酶用缓冲液(アプライドバイオシステム公司制)，并加入 DNA 聚合酶(Stoffel 片段 DNA 聚合酶) (1.5 单位) (アプライドバイオシステム公司制)，反应液的总量是 50μL。将反应液置于一定的温度条件，使其进行扩增反应。温度条件的一个循环依次是 94°C(15 秒)、55°C(15 秒)、72°C(30 秒)，反应时将该循环进行 40 次。

获得的反应液 10μL，进行 3%的琼脂糖凝胶电泳，加以分析。

结果如图 3 所示。

引物 bGT 的多态性序列鉴定位点和模板中的多态性序列位点相匹配时，核酸特异地扩增了。另一方面，引物 bGT 的多态性序列鉴定位点和模板中的多态性序列位点不相匹配时，几乎不能够看到核酸的扩增。因此，能够明确地
鉴定所希望的具有多态性序列位点的核酸。

使用 DEO-3A 或 DEO-3T 时，鉴定能力极为优良。

例 2
除了将实施扩增反应时的温度条件的一个循环设为 94°C(15 秒)、50°C(15 秒)、72°C(30 秒) 以外，进行与例 1 同样的反应及分析。
另外这个例子，为降低引物特异性，有意地降低了的退火温度。
结果如图 4 所示。
由于降低了的退火温度，引物的特异性全部被降低，但使用 DEO-3A 或 DEO-3T 时，所希望的核酸的鉴定能力极为优良。

例 3
除了使用引物 bGA 代替引物 bGT 以外，与例 1 进行同样的反应和分析。
结果如图 5 所示。
发现了关于使用任一种没有引物机能的寡核苷酸时鉴定的效果优良。

例 4
除了使用引物 bGA 代替引物 bGT，并且将实施扩增反应时的温度条件的一个循环设为 94°C(15 秒)、50°C(15 秒)、72°C(30 秒)，除此之外，与例 1 进行相同的反应及分析。
另外这个例子，为降低引物特异性，有意地降低了的退火温度。
结果如图 6 所示。
也发现了关于使用任一种没有引物机能的寡核苷酸时鉴定的效果优良。
序列表

(110) Wakunaga Pharmaceutical Co., Ltd.
(120) 具有多态性序列位点的核酸的鉴定方法
(130) 143669Q1
(140)
(141)
(160) 11
(170) PatentIn Ver. 2.1

(210) 1
(211) 20
(212) DNA
(213) 人工序列
(220)
(223) 人工序列描述：引物
(400) 1
stgtgacc tgacctctgt

(210) 2
(211) 20
(212) DNA
(213) 人工序列
(220)
(223) 人工序列描述：引物
(400) 2
stgtgacc tgacctctga

(210) 3
(211) 20
(212) DNA
(213) 人工序列
(220)
(223) 人工序列描述：引物
(400) 3
tgtcttgaa ccttgatcacc

(210) 4
(211) 21
(212) DNA
(213) 人工序列
(220)
(223) 人工序列描述：合成的寡核酸
aggagaagtc tgccgttact g

<210> 5
<211> 30
<212> DNA
<213> 人工序列
<220>
<223> 人工序列描述：合成的寡核苷酸
<400> 5
aggagaagtc tgccgttact gccccgtgag

<210> 6
<211> 31
<212> DNA
<213> 人工序列
<220>
<223> 人工序列描述：合成的寡核苷酸
<400> 6
gaggagaagtc tgccgttact tgccctgtgag g

<210> 7
<211> 21
<212> DNA
<213> 人工序列
<220>
<223> 人工序列描述：合成的寡核苷酸
<400> 7
tggagaagtc tgccgttact g

<210> 8
<211> 30
<212> DNA
<213> 人工序列
<220>
<223> 人工序列描述：合成的寡核苷酸
<400> 8
tggagaagtc tgccgttact gccccgtgag

<210> 9
<211> 31
<212> DNA
<213> 人工序列
<220>
<223> 人工序列描述：合成的寡核苷酸
<210> 9
gtggagaagt ctgcctgtac tgcctgtgg g
31

<211> 10
<212> DNA
<213> 人工序列
<220>
<223> 人工序列描述： 合成的寡核苷酸
<400> 10
ggagaagtct gcgcctactg cccctgtggg g
31

<210> 11
<211> 31
<212> DNA
<213> 人工序列
<220>
<223> 人工序列描述： 合成的寡核苷酸
<400> 11
tgcctgtact gcctgtggg gcaggtgaa c
31
图 1
5′ATGGTGACCTGACTCCTGA 引物 bGA
5′ATGGTGACCTGACTCCTGT 引物 bGT

DEO·1A 5′AGGAGAAAGTCTGCCGTTACTGp
DEO·2A 5′AGGAGAAAGTCTGCCGTTACTGCGCTGTGGGp
DEO·3A 5′AGGAGAAAGTCTGCCGTTACTGCGCTGTGGGp
DEO·1T 5′TGGAGAAAGTCTGCCGTTACTGp
DEO·2T 5′TGGAGAAAGTCTGCCGTTACTGCGCTGTGGGp
DEO·3T 5′TGGAGAAAGTCTGCCGTTACTGCGCTGTGGGp
DEO·4 5′TGGAGAAAGTCTGCCGTTACTGCGCTGTGGGp
DEO·5 5′TGGAGAAAGTCTGCCGTTACTGCGCTGTGGGp

5′ATGGTGACCTGACTCCTGAGGAAGAAGTCTGCCGTTACTGCGCTGTGGGp

图 2

β- 球蛋白
图 3
图 6