A drinking vessel, disposed within a hollow cylinder sealed at its bottom end and open at the top. The cylinder is formed of material that can stretch somewhat when forces directed outward are applied uniformly against the inner wall. The drinking vessel is spaced from the cylinder. Prior to use, water is poured through an opening in the wall of the cylinder into the annular region between drinking vessel and cylinder and is frozen thereafter.
CHILLED DRINKING GLASS CONTAINER

SUMMARY OF THE INVENTION

In my invention, a drinking glass or vessel is pre-treated prior to use whereby cold beverages of any kind in the glass will be kept cold for a prolonged period while the drinking glass is in use.

To this end, I employ a generally cylindrical hollow vertical container open at the top and closed at the bottom. The container is formed from a material which is sufficiently flexible or stretchable to be able to expand somewhat and thereafter to retract to original position as explained in more detail below. The drinking vessel rests on short legs which are fastened to the bottom of the container and the sides of the container and the sides of the drinking vessel are joined together. Water may be poured in the annular region between drinking vessel and container through an opening in the container wall. The assembly may then be placed into a refrigerator or freezer until the water in the annular region is frozen into ice. Thereafter, the assembly can be removed from the refrigerator for use. When beverages are poured into the drinking vessel surrounded by ice in the annular region, ice cubes will not melt away in the beverages in the drinking vessel until after the ice between vessel and container has melted. Consequently, the beverages will be held in a chilled condition for a prolonged period in the drinking vessel.

Since water expands when frozen, it is necessary for the external cylindrical container to be able to expand sufficiently when the ice freezes to avoid development of pressures which would crack the glass drinking vessel. Moreover, the external container should contact or retreat to its original dimensions when the ice melts.

BRIEF DESCRIPTION OF THE DRAWING

The objects and features of the invention may be understood with reference to the following detailed description of an illustrative embodiment of the invention, taken together with the accompanying drawing in which:

FIG. 1 is an elevation view of the invention;
FIG. 2 is an elevation sectional view of the invention;
FIG. 3 is an elevation view of an alternate form of the invention; and
FIG. 4 is a sectional view of the alternate form of the invention illustrated in FIG. 3.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Turning now descriptively to the drawing, in which similar reference characters denote similar elements throughout the several views, FIG. 1–2 illustrate the invention 20 which is formed by joining a drinking vessel 10 of cylindrical shape to a cylinder 14 about the lip 21 of the drinking vessel 10, with the drinking vessel 10 mounted internally of the cylinder 14, and an annular space 12 separating the sides of the cylinder 14 from the sides of the drinking vessel 10. The bottom 16 of the drinking vessel is supported off the bottom 23 of the cylinder 14 by means of short legs 18. An orifice 15 in the upper side of the cylinder 14 serves as a means of admitting water 24, or other coolant fluid into the annular space 12 surrounding the drinking vessel 10 as shown in FIG. 2.

In the alternate embodiment shown in FIG. 3–4, the external cylinder 34 is joined to the wall of the internal drinking vessel 30 along the lip 31 of the external cylinder to form a similar device.

In operation, the annular space 12 surrounding the drinking vessel 30 is filled with water or other coolant fluid and the device placed in a refrigerator or freezer for the purpose of chilling or freezing the fluid 24 in the annular space 12. Drinking beverage is then added to the drinking vessel 10. The beverage will remain chilled due to the effect of the chilled fluid 24 in the annular space 12.

It is to be noted that the device may be fabricated of glass which can withstand the temperatures and stresses that the device is subjected to. Alternately suitable plastics or metals may be employed separately or together to form the drinking vessel 10 and the external cylinder 14.

Since obvious changes may be made in the specific embodiment of the invention described herein, it is indicated that all matter contained herein is intended as illustrative and not as limiting in scope.

Having thus described my invention, what I claim as new and desire to secure by Letters Patent of the United States is:

1. In combination: a generally cylindrical hollow drinking vessel open at the top end and closed at the bottom end, said vessel being relatively rigid; a generally cylindrical hollow container open at the top and closed at the bottom end, said container being relatively flexible, the inner diameter of the container being larger than the outer diameter of the drinking vessel; and spacer means in the container whereby the drinking vessel is disposed in the container and rests on said spacer means such that an annular space separates the walls of the external container from the walls of the internal drinking vessel, with said space extending about said spacer means between the bottom of the container and the bottom of the drinking vessel, and said container walls being sealed along their upper perimeter to the walls of the drinking vessel, with an external orifice formed in the wall of the container in the vicinity of the uppermost section of the annular space when the container is resting on its bottom, said orifice serving as a port for the admission of water or other coolant fluid into said annular space.

2. The combination recited in claim 1 in which the container is made of material which absorbs the change in volume of the annular space occasioned by the expansion of the water freezing in the annular space, said material returning to its initial dimensions, when the expanded ice has melted to water.

* * * * *