«» UK Patent Application .,GB .,2498064

(13)A

(43)Date of A Publication 03.07.2013
(21) Application No: 1222083.6 (51) INT CL:
HO4L 29/08 (2006.01) GO6F 17/30 (2006.01)
(22) Date of Filing: 07.12.2012
(56) Documents Cited:
(30) Priority Data: GB 2495066 A US 20100180005 A1
(31) 61/567886 (32) 07.12.2011 (33) US US 20070101061 A1

(71) Applicant(s):
Seven Networks, Inc.
2100 Seaport Boulevard, Suite 100, Redwood City,
CA 94063, United States of America

(72) Inventor(s):
Michael Luna

(74) Agent and/or Address for Service:
Mewburn Ellis LLP
33 Gutter Lane, LONDON, EC2V 8AS, United Kingdom

(58) Field of Search:
INT CL GO6F, HO4L
Other: WPI, EPODOC, TXTE

(54) Title of the Invention: Flexible and dynamic integration schemas of a traffic management system with various

network operators for network traffic alleviation

Abstract Title: Distributed content caching mechanism using a network operator proxy

(57) Flexible and dynamic integration schemas of a traffic
management system with various network operators for
network traffic alleviation are disclosed. One embodiment
includes a method of integration of content caching with a
network operator for traffic alleviation in a wireless
network, including detecting 2304, by an operator proxy
of the network operator, a poll from an application on a
mobile device which would have been served using a
cache element from a local cache on the mobile device,
after the cache element stored in the local cache has
been invalidated 2302, and forwarding the poll from the
application on the mobile device to a proxy server 2306a.
Whether the poll is sent to a service provider of the
application directly by the proxy serve 2310r, or by the
proxy server through the operator proxy 2312, is
configurable or reconfigurable. Possible system
implementations and associated traffic flows are depicted
in Figures 1A-1 to 1A-3. Some embodiments involve
three network proxy entities: an operator proxy, a server-
side proxy and a caching proxy server as well as a client-
side local proxy. The local proxy on the mobile device
may be native to the operating system of the mobile
device. A cache element in the local cache may be
invalidated when a proxy server remote from the mobile
device detects2314 new or changed data at, or from, a
service provider of the application and notifies 2316 the
mobile device of the change.

Determine that a cache element stored inthe local cache has been invalidated ’
Detect, by an operator proxy of the network operator, a poll from an application on a mobile
device which would have been served using the cache element that was invalidated 2304

v 1

Forward the poll from the Forward the poll from the application on the mobile
application on the mobile device to device to another proxy remote from the mobile device
a proxy server 2306a which is different from the proxy server 2306b i

N
—

Receive a response to the poll from the service provider 2308
The other proxy sends the response to

Provide the response to the application on
- the application on the mobile device
through the operator proxy 2312

HERR

the mobile device 2310

v

7]

New or changed data is detected at or from a 1
service provider of the application 2314 The other proxy sends the response to
l the proxy server 2318

Cache element is invalided or removed on
the mobile device when notified of the new or
changed data 2316

an

The proxy server determines whether the
response is still valid for the poll 2320

FIG. 23

vV ¥9086¥¢ 89

1/39

'

IVI O

llllllllllllllll 1
[
OSSO S sy g
q - (Axoud |eao) !
i | > Axoid apig-juaty _
: D N
: | \ZJ |
: { —~ A _
[S ,
@ | ®® - |
m : y _ : v _
£} o s _ S .
{1ons9s Ax01g) - . uonedijddy uonesyddy
£xoid epig-1anieg PR Axoid tojeiedo 1< -_P > ~ paziundo 1oN paziwndo “
- RN ‘ . .
. i |
~ 1 Ao — A L~ —~ |
szr AU P 091 . “ vl S someg ooy |
m@ SRS I [B !
P : 0S5t ,
f H \ 4 « .
(43pinoid a31nt8g) oyjen paziwpdo JoN — - — =
49PIACId JUBUODIBNISS Lo ddy
Lo = :+x: ﬁwmzaﬂm
N

—

oLt

oX 3SBNBIY weveeemnnmnnin.

2/39

Z-vI ‘DI

T T e T e T e T e e - ~
__] _
7T e R »iL} "

: | - (Axoud |e207)
m [L | fxoud spiuao _
m Y : _
o &
® | ®® !
i s / [_ 4 - _
ﬁ-.-mt;o-.. DI@\ - _ _

(Janias Axoug) [€ &t — . L. uoneslddy : uonedddy

AXO1g SPIS-IONIDS |¢germrenes P hovn- fxoud soreiado < + > paZILNAO JoN pazILIdO "
S PN | |
ek | 9 m@ g “ vt St somegemaon |
i — [

&

M
{
I
[
I
!
I
I
I
[
I
|
!
[
I

’(— . .
(=)
1Yo

paceenea

.

Cmu_n,wwﬂwwmzmmv oyjes; paziwndo JoN — - —* —

JusuoD/IanIag uoneolddy w+X, 189Nnbay

; . . WX 1S9NDAY +eneesnnenaanns)
oLt _

3/39 -

VI OId

= T T T T T T T T e e e e e .—
A | |
 (Jansas Axoid) : | :

Ax0id BPIG-1OMIDS ferred 9 Foeeeees Sresseeesssemesemsssseconsemscsimnoniocany [PiLy w |
{ ¥ L o (Axoid jes07) _
. 1 Pl Axoid apiSuR)D _
A 1) {
14} P A l
" — i }
fviod .51 T 1
H \ 4 ﬁ [Y ; o
o @ >. . [

(1anyas Axoud Buiyoe)) . o . uoeslddy uoleo|ddy
Axoid - Axoid sojesado 4= .“.. > paziundo 1ON paziundo "

: - : A :
. | _ |
—~ 1 rd ~ % L~ —~ _
661 @ e 091 _ " VSl ST omegengon |
@ | © | | mprmmmmmmmmoeeee- !
P | oSt
% : \ 4 %

. {(1apinoid 3910138)
J9PINOI4 JUBlU0 D 19AIRS uoneolddy

\I\

oLt

‘oyjel} paziwlndo JON = ¢ - - —
«+X., ¥53nbay
X, 1S9NDBY -omemcreeenens

4/39-

¥ol

aoepaU|
Jasn

o0zl

AL}

g1 oId .

Sa0IAIDS

J3Y10 ‘syiomiau |e1o0S

1suedjul ,m_m.toﬂ

Buibessapy
12U 'SWIN ‘'SNS

{lews3 [euosiad
__mE.m sjelodio)
suodnog oluoxoal3

JUB)UOD [BLOROWO.H

. ‘(s)ianiasg
Saneas ue0g
\4 jeuonowold
g0z! 174}
ayoe) -
PETVELS
901 - < 801
Gel
- IomisN
JOAJDS
/ 1S0H
/

~

001

o.:\.

WBLWaSIHAAPY

(1ap1nouad adias9g)
iapiroid uajuoy |
'JaAl9g uoneddy

5/39

110 120A
App Server/ -
Content Provider I LJ’ :
(Service provider)

— Ad Server(s)

J 1208
Promotional

. Content
Network Server(s)
. 108 1
199 L=
120C
PR = - v
! ' t e-Coupon
) Optional Caching 1 Server(s)
, Proxy Server !
| -) -
Attt et ’ Host Server
| ostwerve Ts 100°
Proxy Server
(seg\r/g)r(;s)lde Server Cache
125 - 135

.

Short Message

Service Center
Network 1nz2
, 106
1e/1/
112
/
/
/
Mobile Device .

Local Proxy

(client-side

proxy)
. 178
L
L

FIG. IC

veold

6/39

02 502
welshs | : JNeinRD | | 41 14 4/1 SNS
Bunesadop Idv X3ju0g
: o : - BOC 8veusju| xIom)aN
L L I
1
S1Z 2ANpon Awanoy Jasn , : 792 592
: - . Jabeuepy yesqpesy Jajonuon opey
; A A S $92 Jebeuep uoposuuoy
W :
aubug uoyeznuold) ,
— — 8¢ T4
6€C J0jejSuUlg 8¢ . ainpoly Buiyojeg a|npoly juswubiy
3|i4014 uogeaijddy J0}93}3(Qg uIsyed ‘ -
_ , §Gg aubug Budeys oyes|
9ET J0j99jaQ Joineyag uonesiiddy) : A
Jabeue uonoesuel | Asanbay - 7
2Inpoy 1090j0.d uonesiddy
S22 \dv Axoid She Jebeuepy Aoijod Buyoes
6.2 _ —] ——
Axo1d |eo0T 0ce : 1]4
. uoneosyddy uonesiddy

| olgow aiemy-Axoud |- aliqo auemeun-Axold

052 831Aa(3|IqoN

7/39

qc¢ OId

Tve suibu3 uonezjuoud

e

28€EC

“Aoyisoday
apoid

Bged
Jaxoel | [enssiul Kejaq asuodsay

Jojoayaq Bununy =.o.n_ Buoq

uonesyddy

BEC JojeIauan) 3jyoid uoneoyddy

a8ec

auibuz bunpoel | asuodsax/isanbay

€¢ 4003818 uldned

BgEe J0)091a(jlod buon

-]

8EC Joy03j8Q [eAIRY) Jlog

gee

110}23)9Q Jolneyag uonesijddy

=
[
1

P9ve o9re -
Jazhjeuy ssuodsay JazAjeuy jsanbay
1424 - BETS
J3|NPaYss asuodsay a9ve egve
. Joypipaid juauo) J0pIpald Bulwi)
B¥¢ suibug - -
uono9|8s 1dvauu0) 40 ayoeg Sp¢ auibu3 uosieq sssusrudoiddy ayoe)

£9C
Loysodoay
Koo 4 ayoeqy:

uojedlddy

102,
Jabeuepy

)sipoelg

ﬂ g BS0¢
_ B4 19N Jo at -
. S0C.
87z a.bz suibug e/ auibug . suibug dny-yooT auyoen
a|npow wawisnipy ajepdn BppZ Jabeueiy 111
jod0)old [wi{ SNpsysg :
uoneoyddy T¥Z i0jeiauss) 8Npayds |10 $hZ Jolepieau) ayoe) |B207 £0z Jojesausn ejepelspy
_ ey Aojog Buyoesn

S¥c Jobeu

8/39

07 ‘OId

e

aulbuz uoneznuoud

8eZ -
Jojosyeg lensaiu) Jjod

3

ve¢ ge¢ (434
. lopsjeq 10}93J8(3 sinpopy
Z5 Klolsods Ippweled Jejpweled uonoexXy
cve o_cwi m %52 . ayeq/ewl) wopuey EN:
3) neoydd j
uonesiddy 40jeJ3URD 3(}§0id UoRENddY 752 10108)aq uianed
Qg JopajeQ _o_>m:um.:o:mu__aa<
T
L
T Monsoday -
: Aojod syoe) 22 1008190 $2Z 10199190 cee
57 uoned)|ddy Iajaweled ajeg/owi], Igjaweled wopuey :wﬁﬂmﬁm
bmw_n_wv%r__\umo £27 1010919 J3)8WelRd JEa}a(Q SUOED UjsKed
) ; T¢¢ aulbug uonnjosay yeaeq ayoe)
(74 5[4 ?
suibug uoospg | auibug uoisivaqg
Ja8UU0) o 3ydeD ssauajeldosddy ayose) ﬁ :
_r \ﬁ r - ; ¥4 12T 1slpueH
Igjpweled
: autbu3 yseH jeaeg ayoe)
572 Ji7 77 .
a|npo |09010.d lojesauss 10jepljeAu|
uoljealddy a[npayosg |lod ayoen o207 JOZI[BWION Jsyliuap|
(574

Jabeuepy Aoljod Buiyoed

.9/39

.3

az ‘o1d

Jyel| oieiy

| soueuaLIEY

aAdRIA|

-

Pi¥c J9zuobaje) oujes) uonedyddy

- qiye

auibug

ﬁ. uond9R(Q
Anjeanug awny

[
L

punosbyoeg

chohmugom

olve

Jaz10b3e) 8jels uopes)ddy

_| elye
aulBug
uonezpoud

51

Jopayeq ubipoeg

gg¢ Joyajaq Joneyag uonedddy

plsc
10108198
JUI04 $S900Y

. . 2l9¢
auibug uonoaley’
|suuey) ssad%oy

i AnSN
Jalyoadg ayey eled

BlG6Z

J0J09)9S piepuElS |

uOJLRIBUAS) SS[SIN

9GI¢ qsic BT
Jabeuep auibug _mmw_mm
uoneoadx3y uonoIpald 3_>=u< Lw_,m n
1esn AiAnay lesn S
§TZ 2Inpow Aoy Jasn
15¢ 952 .

a|npopy Buyoleg

ainpoip yuawubiyy

Gz oaulbug Buideys owes|

T6Z awbu3g uonoslag uoneinbyuo) slomaN

10/39

o Ve DI

9t

, Kfoysoday
e w || e ot - P
Jebeuepy J9|104U00) 19]104)U0D). SINPON SOINBS HIOMIBN .
jeaqueaH | |1Mweuwely)| | opey . 10303014
K uoljediddy
6T sobeuepy uonosuuo) ‘GGt Jobeuepy
: Aaijod Buiyoe —
llod buiyaed 5T
fioysoday
1 uonewlIo| 8d1Aa(
1€ A . 1 mwdm 18
sInpoly Bulysleg 9|npoly Joieplieau| ejeq
— ~ZGE 3npoly 7€ J010912Q
9Lt ssaualemy Ajuold eleq MaN 7TE
, 10903014 |013U0D Kiopsoday
] 90¢ 2NPON SSAUIBMY .) - ele Ew. JuBJo
=7F oubug Joineyag/AuAoY SVE auibuz. o co__\w_omccooo
Buideys oyyes | TG sel0nu0) Axold $S990V dl1H _ T
mNm>. . :
lanag Axold:
| dneneo || /1 11 | | answs -]
. BOE 20BUBIU| YIOMON
1

\ik

00¢
JaNI3G JSOH

0le 202¢ _goce Vo7E
J3pINOIH 3DIMBS (s)1enag (s)19nu3g JualUOD (s)1ano
janss uonesiddy | || uodnon-3 [euonowold . spv

11/39

g€ DI

- PBSE
aubu3 juswysnlpy awi)

J86¢
auibu3 aepdn aInpayss

. -08Gf Jabeuep
[10}03)3(Q 1sanbay jlod BuoT

BgGE
Jojenuug Buiwi | 3sOH

_ 8G¢
Jsbeueyy s|npayog Jjod

I8¢

auibug Bunoyuol 82JN0G JUSOD

198
18zfjeUYy Bsuodsay

65¢
Jopelag usuod
M3N Jo payepdn

JabBeuely Aoljod Buiyoen

.GSE

35t
3NPO 10903044 uonesyddy

" GOE.
mc_m:ma:-xoﬂmcumo

€OE
10}RIBUBS) BJEPEIDIN

(TR
ayoe) Janleg

12/39

O€ OIA

BGE
10303} JUU0)
MmaN Jo pajepdn

8G¢-
3|Inpojy
|090j01d uojedlddy

86t - ¥SE - §5¢
Jabeueipy s|npoy Buppoelj anpoiN
8INPayds |iod ujaned Jaynuapl JayIpoln Jaynuspl
I8¢

auibug buuioyiuop
821n0S JUsu0)

" TG¢

Jabeuepy asinog buneayaqg ayoe)

e

Jabeueyy Aoljod Buiyoen

13/39

a¢ ‘OId

oied] ayged| qTHe
soueUSUR aAnoeIaIY] suibug LOKoSIRQ
] Aeonug swi
Pive Jozuobayed oyyes) .
— B
|
vc:o‘_mv_omm punoibsio4 e Fmvm
suibug

3TFE iezuobajed ajeis uoneoyddy

et Jozh|euy el

Jy

ajnpoy Buyojeg

8/t
a|NPo Wby

€7t aulbug mc_am:w o_t&._.

uoneznyond

14/39

N

vy ‘OId

wayshs 90¢ dneniRo | | 0 19m | 41 sws
_ Bunesad IdV X309 ;
Helsdo, . 80Z 2depaju| yomaN
[L J

0%

ainpoy Aagedwoy Jojesado

i

SIC aAnpop Ayanoy 1asn

we - .
aulbug uonezjuoug

BEZ J0)eI9UID) 7€2
8|oid uonesyddy 10j09)aQ uieyed

ote boﬁmuwow_osgmm uoneo)ddy -

.5¢¢

19z
labeuep jeaqueay

992
Jsjjonuos olpey

G9Z Jebeuepy uonosuuog

a|npop

L

14
Buiyoreg

95¢
“@Inpoy juswubiy

§6¢ aulbuz buideys owel |

1ebeuepy uofoesuel | Asanbay

§2Z Idv Axoid

(574
a|NpoOy |020}0.d uonesddy

Sve Jebeuepy Aotjod Buyoey
Csi — H L
fxoid [eoo - 0ce 0i¢ 98¢
uonesyddy uonesiddy ayoen
3O SuEMY-AX0Ig allqoyy asemeun-Axold ‘

052 991Aa(] 3|iqoN

)

15/39

ar ‘OId

v0b R

0B © ' 3%euB
Axoid apIS JanBg - Axoid s01R12d0

T0% aInpo Auanedwo? Jolesado

Vs ‘OI4d

16/39

9l
Aoysoday
— — — 95¢ -~ Japlaold -
86¢ B¢ 96¢ .
Jabeuep Jajouon_ | | Jejionuon SINPON 201G NJOMIBN
eaguean | [1imaneussiuy| | oipey 109010l . T0%
' , uones|ddy y 3|npowy :
. ghedwo
GHE Jobeueyy uoinosuuo) GGE 19beuepy «.L_%a.%maoo
faljod Buiyoe —
llod buiyoed PTE
foysoday
r T uoneulou| 301A8Q
IIE n ._o.molm_mé Ble
ainpoyy Bumeg ainNPolN Jojepifeny| eleQ
— Z9% ainpoly —_ ST
9.¢ © ssauaiemy Ajoud IYE soy0031Q Lig cle
10003014 |0JU0D e}eq MaN auibug . Kiojisoday
FOT 9|NPOYN SSaUBIEMY :wnw%ﬂm_(. BJEPEISIA JUBlUO]
ST’ auibug Joineyag/AyAnoY TFF auibug 1eal 3 pue UoROBULOY
Buideys oyjea) "GOE J4a)|01ju0) Axold SS80Y dilH
mmw . . 4
Janiag Axoud i
. | anemeo | [amam | [dnsws |

80E 8|oepH3lul YIoMIBN

\l\

00¢
19AI0S 1SOH

01€ 2025 a0¢s V075
J3PINOI IDINIDS (s)1ansas (s)1aniasg JUBU0D

0se /13N uoieolddy uodnon-3 |euonoLWwoId (s)laniag py

17/39

qs ‘OId

505
9oepau| Axold JojesadO

0§ B 208
aJepau| Japinoid . : aoepay|
wsjuoeneg ddy . ~ kxouid apig-jusin

T

105 sinpoly Aanedwod sojelado

18/39

V9 DIAd
»{ asuodsai Janjeg e

4]

asuodsai
Bunepijea wio4

3UOED WOy
asuodsas wio4

asuodsal ayoes - jlod jsenbay asuodsal anI0ay

a|qeayoen -

asuodsal o3y asuodsa: m>_mu_mm

1sanbai puag

a|qeayoes
1sanbai yoay9

IC}EplEA SUIBJUOD
ysanbai yosuyD

ayoes dnyoon _ MN 9zZiBWION

}ssnbal an@2ay

209

+.19/39

g9 ‘oI

-

p8¥|Ax0id gop Buiyaen wpiy paysieg jsanbay |

| zspisenbay
eleq paixold

L 7A4

9/ asuodsay pabueyn i

Y

v.v €yeq Joyuop

3

99y 9suodsay awes

<

LORESUON ‘Blep)EAU|

(.

Ly aydeD {207 Whi4 paysyes jsenbay e

al

89¢ 1senbay
ejeq paixoid

v9 e1eq Jopuo

29t 1senbay
. eje(Jojiuopy

g6 asuodsay
Eje(] paixold

»
Y o

9G¥ 1sanbay
e)e(poixoid

G asuodsay eleq

Z5p 1sonbay gleQ

G6p dapinold

§8p JaMss 1S0H

buiyoen

S Axoid , 5o%
Axo1d |ed07]

SG¥ 196pIn
Ua3J0g awoH

Jusjuo/enIag ddy

\.

_J

W
N -

0Lv
apig-aniag

Y
oSy
821neQ 9)IqoN

"
oSy

waysAg Axold panqguisiq .

20/39

Traffic Category/Application Category 700

Interactive traffic 1 Background traffic
User waiting for response User not waiting for response
Applicatioh ir; foreground Application in background
Backlight on | . Backlight off

 FIG. 7

Content Category 800

" High priority A Low priofity

Time critical Non-time critical

FIG. 8

6 OId

21/39

956 Japinoadyiamas uonedijdde
au} WoJyj pausnes 1sanhay

¥86 asuodsai ay} spuas
PUE w0y} jjod SaA1809Y

786 Japinoidiianias uojeoidde
ay} o} |jod ay) spJemioy pue a|qe|ieAE
s1 AJjua ayoed pljea ou jey} ssUILWIBRQ

086 4apinoud
Jusuoo/IaAIRs uoneoldde sjjod

876 Axoud Buiyoes 10 ayoes
J9AISS 9y} WOy paysyes }sanbay -

976 Axoud [eo0] ayj 0) asuodsal ay) spuas
pue asuodsal Mau ay} Joj isanbal sanR0aYy

Y76 2yoed JaAIas ay) Wodj
asuodsal 3y} Sanau}al pue 3Igejlene
si A1jua ayoed pijeA ou jey} sauuaReqg

726 Japinoad
JU2jU0/IaAIS uolieoldde sjjod

026 SSWLe auped \UeASRU SSIEPEALl 'SideteAe
s1 ggep pebuewp Jo mau JEL) LOJEOYIOU SSAB0SY

§86 £xoud Buyses ayy 1o ayoeo Janss
8yj Ul paiojs asuodsai mau Jo pabuey)n

998 Axoud |ed0| au)
mmc_Gc ‘asuodsa. mau Jo pabueyo ﬂom;mo

796 wm:omww._ BU} spuas pue
Janas Jsoy woy Jlod seAIoey

Z96 2|npayos Buyjod ayy uo paseq
uones)dde ayj s|nd ‘panidoss ssuodsal sweg

096 asuodsal atf} Spuas pue
Janas }soy wioy jlod sanizoay

866 1sanbal ay} 0} asuodsal ayy Jojuowl
'0} Japinoidyianias uonedijddy au) sjlod

966 a|npayas Bulljod e pue pajjod aq 0}
Jopinosdianias uonedydde sy jo uoResyRUIP)
ue Buipnjoul dnjas ayoes aY) SaAIR9RY

¥56 Jonuas
}soy ayj o} dnjas ayoes 3y} spuag

256 Janps’1s0y au Jos anpaygs Bupod e dnsies
pue co_ﬁo_&m a0 fouanbay BL __8 spel]

056 Jepnaidsnies uoedidde g wiay
159nbal 3y Asies 0} asuodsal oL SN0y

L L sanbal jod aup SaNBoey

7
. 9v6 .
82n0s 8y} 0} papJesmuo; Jsanbal jjod

¥P6 buiyoes Joj asinos pajjod
ay) dnjas 0} SapIdap pue a|qejieAeun
SI JUIU0D 3YOED JeY) 5)0313p Ax0id

V6 paydasiajul |lod

0v6 Jepinoidiianias uonedljdde sjjod

BEB Aujua ayoes e oY -
jlod a8y} 0} asuodsal e SaAI8I8Y

O¢6 ljod aup Ajsnes 0} ssuodsal e soAsljal
SNY pUE PifeA si pue JuajIod pajiod ayj Jo}
SjgEJIRAR SI JUALIOD AYOED 1BL) sajep Axold

$£6 paydaasaul jiod

€6 Jopinoidyiantas uonesidde sjjod

G66 49pIA0Id JUdUO)

[Hanles uonesjddy

G216 Axoad Buiyoes 1o GE6 ayoses) JoAleg

G86 42A13S JSOH

§9g Axo.d |e207]

§56 196pia/uonesyddy w__aos_

01 'OIA

22139

8807 Japinoid/snies uogesydde

a8y wioy paysies jsanbay

PLE BIGENIEAE S| AfUS 3400 PifeA OU JBR SSUILLIRIS(T

9801 asuodsal ay} spuas 7801 Jepnaxiusnes uogeddde au) a od 3L SpeMIG 2801 Japinoud
pue wodj jjod saai@day PUE afefene st AQus aLped PifeA Ou e\ SSUILLETaC] | JUSU0D/IaAIES uayesydde sjod
' | 080T Axoud Buiyoes Jo syoed
: Janas sy} woy paysies jsanbay
8Z0T Axoud 220} By} 0} asuodsas au) spuss | G707 aLped oS I way asuodsal 2} SoAsUaS ¥201 Jopinoad

Jusjuog/ianIas uolealdde sjjoq

pue asuodsal mau sy} Jo} }sanbas sanieday

CZ01 Sal4Ua ayoed JUBAS|RI SI)EPIBAUI ‘SjqE|IEAR

0Z01 Axo1d Buyoes ay} 1o syde3 Jamas
3y u) paioys asuodsas mau Jo pabueyn

S| Elep pabueup 1o Mau JeLs UoKRIYGoU SIAIROY

8901 Axoud |ea0] 3y
sayjjou ‘asuodsas mau 1o pabueys spsjag

9001 esuodsal auy spuss pue
JenRs jsey wiay jod sensoay

907 anpayos bujjjod ayy uo paseq
uopedydde ay) sjnd 'paniasal asuodsal sweg

2501, esuodsal au spuss pue

0907 1sanbad sy} 0} asuodsa. ayj Jojuow
0} Japlaosd/ianias uoneslddy sy sjjod

JBAISS Js0Y Woy od Sansoay

8501 @npayos Buijjod e pue pajjod aq o}
Japira.dyianias uonediidde ayy o uoyesyRUSP
ue Buipnjour dnjss ayoeo ay} SaAI0EY

5501 JOURUSPI SUF JO UOTIBA
pazijeuuou e Jo Jayyuap! ay; buipnioul
JaAI3S Js0y ay) 0} dmas ayoed sy spuag.

750} [EASLIR PLE UOREyRUSP! 21Ny Jo} 95U0dSal
POAROR BLj LM UOKEDOSSE L JSYILISDI SLR IO
UOISISA PRZIEULIOU B 2I0JS PUB asuodsal sl aLpeD)

7501 Japinoidiantes
uoneoidde sy} woy 1sanbau ayy
Aisies o} asuodsal auy sanleoey

0501 1sanbaujuauno aLp
Aisges o) ssuodsal e sapinoud
pue uogeadde au Wiy

1sanbau [jod au] SIS

8901 924n0s ay) 0} papJemioy jsanbal (04

OV0l 1enes S0y au) Jo) 8inpayos Bugiod e dn
sjas pue Uojeddde auy jo Aouanbay Buijod syoeq
pue sanbai a1 o Jsyuapl Ue o waged e speixg

7701 BuiLen oy saunos pajod auy dnyes o) seppap
Pue 3[ge|ieABUN S| JUSIUCD 3YdE0 Jel SSIap AXQld

Zv0l Japinoidiianias atj
Aq pakojduwia st wsiueydsw Bugesjop ayoes
B JBey) sauualep Axoud pue paidadiaiul jjo4

0%0[J9pinoid
/1anas uoneoljdde sjjoy

8E01 Anus ayses e wolyy
llod 3y} 0} asuodsal e sanRIaYy

9g0! liod alp aw_umm 0} asuodsal
B 9A3UII 0} S3PIP puk W3juod pafjod au}
40} S|qEJiEAR SIJUIUOD 8y Jey] S108)ap AX0iA

¢

© PE0l Jepincidiaanes auyy
Aq pakodwe st wsiueydaw Bunyesssp syoeo

cE0} Japinosd :
~ [4onsas uonesydde sjjog

5607 49piroid Juajuon

{AaAag uonesyddy

SZ01 Axoad Buiyose) 1o SEOT ayaen s19alag

€ 1By} sauuusiep Axoid pue pajdaoseul (jod
§a01 Ax0id |e207]

S801 J9A19S JSOH

5501
1eBpipyuoneaddy ajiqo

23/39

Collect information about a request and information about the
response received for the request <
1102

nE

T

}

Use information about the

p device 1104

request initiated at the mobile

Use information about the
response received for the
request 1106

L

|

Response not cached
1110

Store the response in the cache as a cache
entry including metadata having additional
information regarding caching of the response
1112

1

r

Detect a subsequent request
1114 :

T

Perform cache look-up in the focal

cache to identify the cache entry to

be used in responding to the
subsequent request 1116

v

Serve the response from the cache

to satisfy the subsequent request
1118

Does the
fesponse stored in the™
cache needs to be
updated?

1120

Yes

Invalidate the response stored
in the cache of the mobile
device or remove the response
from the cache

1122

FIG. 11

e

24/39

wr €T OIA

- . geel PR s
. 1 . id payoed 8q ueo asuodsay . 7
. 148 .
"| payoeojou ssuodsay | h -
K A
. oN
cect
LUBUOD B AR i
ouueup oteT oN Jacs
OoN U oz m_aowmgomo,

ON sasuodsa m_nmw;omo IT saA \ € Padoxe azis 3

PUIOT/ gax\ B P30XD aZIs PAAUBPI - Nysenba ey, ON

. gzer saA \ Aoipouad
9ZclL SOA seiqeayoed
ayj ul pasn .
Buipoous voer)
13)sue)) Apog - T . ATy C
st mm:w amwh el osuodsal 0zcr a0 awes sy Aq pajessuab ﬁmmhw LFmE
a3y jo 8218 9pod snieS sisanbaiy 1ayjo pue }sanbai - o . . 80¢l
azA[euy sy suILLB}RQ ay) Ajpuspl . 3U) USaM}AQ UCHEBULOJUI joezis 8y powaL 3sanbal
ﬂ ﬁ H - Ayotpouad suuuayeq suluugiag 1 aui fnuspi
G021 Isenbal ay) Joj paAIeoal soA) H ; wﬂﬂﬂ — H
asuodsal sy} Yim PolRInoSSE LUORULIOJUL SJNSHaIoRIBYY asuodsal aZzAjeuy 1sanba) 9y} YIm PBIEIDOSSE ORI SONSUIBIoB.IEYP Jsenba: azhjeuy

h 3

Oljeunsap.palsIpRe|
B 0} pajallp ammace

ON

25/39

sco4

-

° g6¢el

¢, sosuodsail ay}
0 OM]]SES| JB JO JUSju0T
3y} ut Alejiwis aJaL) s Jo
awes ay) sasuodsal

G8el

payoes jou asuodsay

Payoed 3q Ue JujU0D asuodsay

A

[1

sasuodsal sasuodsal
ay} yim pajerdosse auy} Jo salpog asuodsal
$8pP09 SNJE}S dUIWEX] JO sanjeA ysey aulwex3

(i h)
|

o€l
sasuodsal ay} Jo uajuod ul Aypgelesdal
10919p 0] Jua) sy} Aq pajessuab
s)sanbal Joy paA@dal sasuodsal yoel|

4

PN

SOA

80ET
AL

AJURII|O} B LY (el
sjeasajul ysanbal -
og

~~ 90t
¢S1senbai ay Jo
Bul ayy w suiayed
alqeolpald asay

|

20gl
sysanbai auy Jo Ayaipouad

19919p 0} a0 sy Aq pajesauab sjsenbas yoely

26/39

Track requests generated by a client or
directed to a host at the mobile device
to detect periodicity of the request

1402 :

B

[

Determine that the request
intervals between the two or more
requests are the same or -
approximately the same
~1404

3

Determine that the request

T

Receive the response received for

the requests for which periodicity is

: . detected
1408

T

Cache a response as a cache entry
in-a cache of the mobile device
1412

-

Monitor the host at a rate
to verify relevance or
validity of the cache entry
1414 -

>3

intervals between the two or more
requests fall within a tolerance level
1406

3

Determine a rate to monitor a host,

from the request intervals
1410

\

A

Set or update the
rate at which the
given host is

=

Serve the response from the cache
to satisfy a subsequent request

1416

monitored to verify

of the cache entry
1420

" Detect change in request

intervals for requests
generated by the client
1422 -

T

relevance or validity |

Compute a different rate
based on the change in
request intervals

1424 |

FIG. 14

27/39

ST °OIA

7261 Elep pabueyo 1o mau ay) jo m.:_u:o,w ay) ssaiddng

ON

ON

9251 @01A8p 3jiqow 3y 0} ejep pabueyd Jo mau sy} puss

—
A (Y Ay
S8A
SBA S9A SaA
. 2I5L
ommmw, wE N N > °N pisl °N ¢,301A8p

X — BTET 9164 (B0 ajiqow ey
mc_ vww%n:ma j moh_vwwvmg ; m :w_ d ¢punosbxoeq 9jlgow syy uo Jasn e yim
q Ur ey éleon! n bm_u. o 3y} ui Buluuny uo punosbaioy Bunoessjul syels

asuodsal e Joy Elep ayl yoly exep uoneo)dde ayy u Suuny aAIjoe ue ul

Buijiem Jasn S| ay; st o S| ! kit e

ON

0151
ejep ay} azuobajes

1

ejep pabueyo 1o mau auy jo Ajeonud awn Jo Auoud suiuuasieg

8051

t

ON

ON

90st
uoneo|dde sy azuobajen

h

$0S1

pajauip s| elep pabueud 10 mau suy yoiym 0} Lonedydde ue Aiuap)

1

TOGT e01nep 8jiqows & 0} Juss 29 0) 3jgejieae ejep pabueyd Jo Mau JejeQ

28/39

T

Wait until for a time period to | Wait until there is additional
elapse 1602 : data to be sent 1604.

y

Transmit the new or changed data 1606

FIG. 164

29/39

029l siulod ssaode
Buifyoads Ag uoneinbyuod
HOMBU B 103198

A .

* 4991 DI

gLgl
8jes1 eyep Aq uoneanbyuos

YIOM]aU B 198|ag -
4

— GE9T
Amwwmv . (HOV)
|ouueLd I3uueyo
paIEoIpaa ssanoe
pIeMIO 4
; A
9191 adfy

[2Uueyd sSadde JO 03198

y

|

2o}
[
O,
~)

oF

veor
o¢
!

9zoT zZzor

31 95'2/9

A

$197 piepuels

ssejaum Jo uonelauab oajag |

A

HIOMIBU SSB[RIIM DY) UI IBAISS JSOY B PUB BIIASD S[IqOW B USIMISQ dUyen Buipuas ul asn 1oy uoneinbyuod yiomau e 103|9G

zior

olol

JaAIDS JSOY U} PUB S2IABP IO B} LUBOMIB] JUaS aq

0} OyJe.} 9Yj Ul PaUIRIUOD BIEP JO AJIEDNLD BW) B SUILLISBQ

wouy pajeutbuo Jo 0} pajaalp S1.oWEI} YdiYm JO) S3IASD

8091

3)igow sy uo uonedijdde ue jo ajels ApAnoe ue Paje(

30/39

291 ‘OId

A2 ovol
80IA8p 3)Iqow ayy ybnouy) ssed
woyy pue oy ael) Buissed u) 0} pamoile Si dujel} ay} Yaiym
3SN 10} YIOM)BU SS3JRJIM BU) Ul yim Buiwny sy uo paseq adinap
uoljeinbyuos yJomjau e 109jes 3llqow ayj uo 3sSn oIpe. |0U0Y |
Aeanuo awiy ayy Jo sjels AYAIOE 9Y) Uo paseq
‘Ybno.y} ssed o3 ayjesy syl Mojje 03 YdIUM Uim Burwi e sulwisyag

| —]

9tar - . EqT

Ja/J3S JS0U By} PUE 3DIASP BlIqOW 3Y) wioly pajeuiBuo Jo o) peyoesnp
UBBM}BG JUSS 3Q 0} JIEL) DY) Ul PIUIEILOD S JWe.} Y2Iym 1O} 9IASP 3liqowW Y} U0
Blep JO Al|eanus awi e sulwislsq uoliesiidde ue jo ayejs Alanoe ue 19180

31/39

=

il

Detect backlight status
of the mobile device
1702

il

Determine whether
a user is expecting
data contained in the
traffic directed to the
mobile device

. 1706

Detect user interaction
with an application on
a mobile device
1704

v

N

Determine an activity state of an application on thé mobile
device for which traffic is originated from or directed to

1708

5

_Select whether 3G, 4G or LTE network is used
in sending traffic between a mobile device and
a host server in the wireless network

1710

FIG. 17

32/39

00:00

0i81 : 81 ‘OIA
I 8081 .
90'€0 PUE 5:20 . ~ 008t
usamaq pausddey jeAssul dnoy |
}1 ased ul o1pouad Joaseo Uy uw z} 9l
palapIsSuQd udaq aney ‘|BAJBUI SNOIASD By}
os|e pjnom }sanbay 40 9%0Z SI SMOpPUIA
inoy | mnoy |
00:€0 - 00:20 - 00°20-00:10 .
: . A : Al
0040 , . N ~
90:€0_ S
| . - senbau ¢)sanbas .z) }sanbau |
' 00:€0 00:20 - 00:10

f

s

Jansas Axoud ay) o) payidads (unoy |
6°8)-leAayul yyum Jsanbal Buijjod uels
spuas pue asuodsa) sayoed Axoid
[BJ0| ‘pa)aslap si}sanbal oipouad

[BAIRW) Yum pajepdn
buiaq st Aijua aysen

\uw

908

y081

pajeats Buiaq |
s1 Ajus ayoe) |

—

[40]:1%

33/39

s

61 ‘DI

SaNUIL GG

’

sajnuIw gg anoy |
0S'¥0 —GS:€0 65:€0 — 000 00:€0 - 00:20
00:50 A A N A ~ © 00140
90:701F5:€0
Jsanbau S }sanba) oV 3sanbay ol
0S¥0 S5:€0 00:¢0
. «.wm:mm: o€
'SAINUIW || 0} Z) oy 00:€0
sabueys azis mopuipp “(sajnuiu gg
0} }3s mou “6°3) Jenssyul pajepdn mopuim ayy

yim 3sanbay Buyjod ueys Buipuasas Ojul S |13S feassiu| 1onies Axoxd 0y (Inoy |, 0} " 63)
W_ﬁm m%owmwwh_mwﬂ%“ mwi%..ﬂmwﬁm \l\ 185 |ersdjul Yum jsanbal Buijjod pels

4 InaLSY ey spuas pue asuodsai sayaed Axosd
fAOPUIM SU O3ul 1§ 10U S50 [RAIBH] |e20] ‘pajoayap jsanbai sipouay)
9061 ol

¢06l 0061

34/39

0z

OIA

panas asuodsay

—

9200¢

paAias asuodsay

0£:€0 _ 00:€0
~ < P
~ : 7
N < ysanbai punoibaloy oul 1sanbas punosbaloy .| . P 7 /
02:€0 0L:€0 : e " jsenbai ¢
>3 . 8002 Ve can”
~ / 00-¢0
~ - . I . . . p
N "JaAIas ay) s
~ 0} Juas JOU sI [ersdjul y -
~ ~ maN ‘payepdn 186 jpm ~
~ ejep asuodsal payoe) . dhoy
~ / ~00:€0 - 00:20
s 7 A :
: TN :
. 00:90 /A..I(I..I-\\ —\ 00:10
[:
(
ysenbay G 1senbal p . jsenbas 7 o
00:50 00:¥0 00-20
Isanbai ¢
00:€0
SYIed Woy ayoed Wouy /

Januss 0} (inoy) 0y '6'8)

\l\

¥00¢2

- 39S [eadajul Yim ysanbau Buyjod ooam
HE)S SpuUas pue asuodsal saydeo
2002 .\. a0 ‘pajoalap isanbai oipouad

<

- 35/39

0012 I "OIA
inoy ¢ noy |)
20:50 — 20-%0 Z0:¥0 ~ 20:€0
00:£0 -~ A ~ A ~ 0020
:o_ﬂﬂ_ﬂﬁ“w@mo , sabueys ou _85.89 sjjod Janlag
SPuss 18NS . abueys spajep '801n0s 3l sjjod Janiag No.vowmwmmmp.v__ od SaA189 m.v 1 1OMISS
c0<0 . 2020 _
oLie . . . A : .
sabueyd aainosay / 80i2
B 0¢:¥0 Jnoy | 0} }8s jeAsyu| .
00:20 . ! , 0020
bl »\ O\
uoljeplleaul ayoen Jsenbai ¢
¥0:50 00:€0
foentolu. 1sanbas ¢ /
00°90) : , o ‘
’ 1sanbal WS 00-v0 Jansas 0} ysanbal Buijjod
00:50 -Jels Spuas pue asuodsal sayoed

Joje| pouad | pasaniep
MOU JUSJUOD Usalg

~

901¢

paJaAijap uaaq aney
boLZ S

pINoM Juajuod ysai4

U312 ‘pajoslap 1senbal oipousd

. —~

cole

36/39

(¢ 'Ol

21¢c
. ~ , 0iez 2022
JaMes o} (Jnoy | 0} ©6°9) »\;k)
18s feasajul ypm isanbai Buijjod : [EAJBIUI UM L
tmuw Wﬁcmm ,UCN meOQmm‘— WOSUNO U@uNUQD @C._OD UO#NO_._O UC_QQ
JuaI)o ‘pajasIap Jsanbal dipouad si Aua .mco.mo st Aijus aysen .
00:¥0 00:00
=< \
~~a ; \
_ ~—_ Isenbal 7 \ -
- jsenbay ¢ ~~_ 00:20 \
: 0050 _ - ysenbas) \
T~ 00:10 : Y0:00
00:G60] ™~
0102/1 LIOE . ~a _ 0L0%/LL/6C
‘ |
b
h ~ ‘Irlll — e — —
panowal s)ab ~ ysenbay)
B)ED 3suodsay 00:10
00:€0
.) " jsenbai S
)sanbaus gz "00:50
00:¥0 \
/ aYyaeo wouy .
A 5 v. panJSs asuodsay ,
JanIes 0y (Jnoy | o) b -
Jas [ensajutl yyum isanbas Buijod mowm. \n\ . 0572
HE}s spuss pue asuodsal sayoes . . 022 : (san0 03 '6'3)
a2 ‘pajosiap jsanbail oipouay 0022 Y e ol

189S 7111 eiep asuodsay

37/39

Determine that a cache element stored inthe local cache has been invalidated
2302 o

)

Detect, by an operator proxy of the network operator, a poll from an application on a maobile
device which would have been served using the cache element that was invalidated 2304

T - v

Forward the poll from the ‘Forward the poll from the application on the mobile
application on the mobile device to device to another proxy remote from the mobile device
a proxy server 2306a . which is different from the proxy server 2306b ‘

Receive a response to the poll from the service provider 2308

v ‘ v

Provide the response to the application on The other proxy sends the response to
the mobile device 2310 - the application on the mobile device
: 1 through the operator proxy 2312

New or changed data is detected at or from a 1
service provider of the application 2314 | The other proxy sends the response to
1‘ the proxy server 2318

Céche element js invalided or removed' on - 1 _
the maobile device when notified of the new or The proxy server determines whether the

changed data 2316 response is still valid for the poll 2320

FIG.23

Yes

Is a cache :
element stored in a local cache

on a mobile device for an application poll
on the mobile device still valid?
2402 '

38/39

No

F

13

Respond to the application poli
using the cache element
2404

Forward the application poll to an
external entity to service the application
poll 2406

v

The external entity sends the application
poll to a service provider to which the
application poll is directed 2408

v

The external entity receives a response
and provides the response to the mobile
: device 2410

!

Store a response received from the
application poli in the local cache on the
mobile device 2412

FIG. 24

39/39

2500 -

Progessor
Video Display
Instructions
Alpha-numeric Input Device
Main Memory
Cursor Control Device
- Bus
Instructions
' Drive Unit

Machine-readable

(Storage) Medium
Non-volatile Memory

lnstructibns

Network Interface Device

Signal Generation Device

J L

FIG. 25

s’ INTELLECTUAL

®ee e’ PROPERTY OFFICE

Application No. GB1222083.6 RTM Date :29 April 2013

The following terms are registered trademarks and should be read as such wherever
they occur in this document:

LTE

3GPP
Blackberry
Palm

iPad
iPhone
Bluetooth
Wi-Fi
iBurst
UMTS
Windows
Android
Symbian
Brew MP
Java
Facebook
LinkedIn
ActiveSync
Oracle
DB2
Microsoft Access
MySQL
Filemaker
Informix
Virtuoso

Intellectual Property Office is an operating name of the Patent Office

www.ipo.gov.uk

FLEXIBLE AND DYNAMIC INTEGRATION SCHEMAS OF A TRAFFIC
MANAGEMENT SYSTEM WITH VARIOUS NETWORK OPERATORS FOR
NETWORK TRAFFIC ALLEVIATION

BACKGROUND

{0001} Network operators/carriers have the will and the resources to fix the wireless network
overload problem. But where do they start? Move to 4G networks? Buy more spectrum? Add

WiFi overlays? Use pricing as a way to control usage? Or, add more small cells?

[0002] So far, the solution has been elusive because the growth in bandwidth consumption has
been so rapid that it overruns any and all fixes that carriers have put in place. The network clog

seems to be moving as the adoption and use of smartphones puts more pressure on the network.

[0003] Part of that consideration includes traffic optimization, which can ameliorate signaling
that comes from applications and from the network and optimizing traffic for resource
conservation. However, integration of new traffic optimization technologies with existing
network operator or carrier infrastructure and processes has become a challenge in order to lower

the barrier of adoption and streamline integration.

BRIEF DESCRIPTION OF THE DRAWINGS

{0004} FIG. 1A-1 illustrates an example diagram showing one example configuration of
operation of the distributed proxy and/or cache system (e.g.,(distributed) traffic optimizer, traffic
management system, (distributed) content caching mechanism for traffic alleviation) (client-side
proxy and server-side proxy) with an operator where the application server/content provider can

be accessed by the server-side proxy directly.

[0005] FIG. 1A-2 illustrates an example diagram showing one example configuration of

operation of the distributed proxy and/or cache system (e.g.,(distributed) traffic optimizer, traffic
management system, (distributed) content caching mechanism for traffic alleviation) (client-side
proxy and server-side proxy) with an operator where the application server/content provider can

be accessed by the server-side proxy through the operator proxy.

{0006] FIG. 1A-3 illustrates an example diagram showing one example configuration of

operation of the distributed proxy and/or cache system (e.g.,(distributed) traffic optimizer, traffic
management system, (distributed) content caching mechanism for traffic alleviation) (client-side
proxy and server-side proxy) with an operator where the application server/content provider can

be accessed by the server-side proxy through a host server.

[0007] FIG. 1B illustrates an example diagram of a system where a host server facilitates
management of traffic, content caching, and/or resource conservation between mobile devices
(e.g., wireless devices), an application server or content provider, or other servers such as an ad
server, promotional content server, or an e-coupon server in a wireless network (or broadband
network) for resource conservation. The host server can be integrated with a network operator as

illustrated in the examples of F1G. 1A-1-FIG. 1A-3.

[0008] FIG. 1C illustrates an example diagram of a proxy and cache system distributed between
the host server and device which facilitates network traffic management between a device, an

application server or content provider, or other servers such as an ad server, promotional content
server, or an e-coupon server for resource conservation and content caching. The host server can

be integrated with a network operator as illustrated in the examples of FIG. 1A-1-FIG. 1A-3.

[0009] FIG. 2A depicts a block diagram illustrating an example of client-side components in a
distributed proxy and/or cache system (e.g.,(distributed) traffic optimizer, traffic management
system, (distributed) content caching mechanism for traffic alleviation) (e.g.,(distributed) traffic
optimizer, traffic management system, (distributed) content caching mechanism for traffic
alleviation) residing on a mobile device (e.g., wireless device) that manages traffic in a wireless
network (or broadband network) for resource conservation, content caching, and/or traffic
management. The client-side proxy (or local proxy) can further categorize mobile traffic and/or
implement delivery policies based on application behavior, content priority, user activity, and/or

user expectations.

[0010] FIG. 2B depicts a block diagram illustrating a further example of components in the
cache system shown in the example of FIG. 2A which is capable of caching and adapting
caching strategies for mobile application behavior and/or network conditions. Components

capable of detecting long poll requests and managing caching of long polls are also illustrated.

o

[0011] FIG. 2C depicts a block diagram illustrating additional components in the application
behavior detector and the caching policy manager in the cache system shown in the example of
FIG. 2A which is further capable of detecting cache defeat and perform caching of content

addressed by identifiers intended to defeat cache.

[0012] FIG. 2D depicts a block diagram illustrating examples of additional components in the
local cache shown in the example of FIG. 2A which is further capable of performing mobile
traffic categorization and policy implementation based on application behavior and/or user

activity.

{0013} FIG. 3A depicts a block diagram illustrating an example of server-side components
in a distributed proxy and/or cache system (¢.g.,(distributed) traffic optimizer, traffic
management system, (distributed) content caching mechanism for traffic alleviation)
(e.g.,(distributed) traffic optimizer, traffic management system, (distributed) content caching
mechanism for traffic alleviation) that manages traffic in a wireless network (or broadband
network) for resource conservation, content caching, and/or traffic management. The server-side
proxy (or proxy server) can further categorize mobile traffic and/or implement delivery policies

based on application behavior, content priority, user activity, and/or user expectations.

[0014] F1G. 3B depicts a block diagram illustrating a further example of components in the
caching policy manager in the cache system shown in the example of FIG. 3A which is capable
of caching and adapting caching strategies for mobile application behavior and/or network
conditions. Components capable of detecting long poll requests and managing caching of long

polls are also illustrated.

{0015] FIG. 3C depicts a block diagram illustrating another example of components in the
proxy system shown in the example of FIG. 3A which is further capable of managing and

detecting cache defeating mechanisms and monitoring content sources.

[0016] FIG. 3D depicts a block diagram illustrating examples of additional components in
proxy server shown in the example of FIG. 3A which is further capable of performing mobile
traftic categorization and policy implementation based on application behavior and/or traffic

priority.

('S

[0017] FIG. 4A depicts a block diagram tlfustrating another example of client-side
components in a distributed proxy and/or cache system (e.g.,(distributed) traffic optimizer, traffic
management system, (distributed) content caching mechanism for traffic alleviation)
(e.g.,(distributed) traffic optimizer, traffic management system, (distributed) content caching

mechanism for traffic alleviation), further including an operator compatibility module.

[0018] FIG. 4B depicts a block diagram illustrating additional components in the operator
compatibility module shown in the example of FIG. 4A.

[0019] FIG. 5A depicts a block diagram illustrating an example of server-side components
in a distributed proxy and/or cache system (¢.g.,(distributed) traffic optimizer, traffic
management system, (distributed) content caching mechanism for traffic alleviation)
(e.g.,(distributed) traffic optimizer, traffic management system, (distributed) content caching

mechanism for traffic alleviation), further including an operator compatibility module.

[0020] FIG. 5B depicts a block diagram illustrating additional components in the operator
compatibility module shown in the example of FIG. 5A.

{0021} FIG. 6A depicts a flow diagram illustrating an example process for distributed
content caching between a mobile device (e.g., any wireless device) and remote proxy and the

distributed management of content caching.

[0022) FIG. 6B depicts a timing diagram showing how data requests from a mobile device
(e.g., any wireless device) to an application server/content provider in a wireless network (or
broadband network) can be coordinated by a distributed proxy system in a manner such that
network and battery resources are conserved through using content caching and monitoring

performed by the distributed proxy system.

[0023] FIG. 7 depicts a table showing examples of different traffic or application category

types which can be used in implementing network access and content delivery policies.

[0024] F1G. 8 depicts a table showing examples of different content category types which

can be used in implementing network access and content delivery policies.

[0025] FIG. 9 depicts an interaction diagram showing how polls having data requests from
a mobile device (e.g., any wireless device)to an application server/content provider over a
wireless network (or broadband network) can be can be cached on the local proxy and managed

by the distributed caching system.

[0026] FIG. 10 depicts an interaction diagram showing how polls for content from an
application server/content provider which employs cache-defeating mechanisms in identifiers
(e.g., identifiers intended to defeat caching) over a wireless network {(or broadband network) can

be detected and locally cached.

{0027} FIG. 11 depicts a flow chart illustrating an example process for collecting
information about a request and the associated response to identify cacheability and caching the

response.

[0028] FIG. 12 depicts a flow chart illustrating an example process showing decision flows

to determine whether a response to a request can be cached.

[0029] FIG. 13 depicts a flow chart illustrating an example process for determining

potential for cacheability based on request pertodicity and/or response repeatability.

(0030} FIG. 14 depicts a flow chart illustrating an example process for dynamically

adjusting caching parameters for a given request or client.

{0031} FIG. 15 depicts a flow chart illustrating example processes for application and/or
traffic (data) categorization while factoring in user activity and expectations for implementation

of network access and content delivery polictes.

{0032} FIG. 16A depicts a flow chart illustrating example processes for handling traffic

which is to be suppressed at least temporarily determined from application/traffic categorization.

[0033] FIG. 16B depicts a flow chart illustrating an example process for selection of a
network configuration for use in sending traffic based on application and/or traffic (data)

categorization.

[0034] FIG. 16C depicts a flow chart illustrating an example process for implementing
network access and content delivery policies based on application and/or traffic (data)

categorization.

{0035} FIG. 17 depicts a flow chart illustrating an example process for network sclection

based on mobile user activity or user expectations.

{0036} FIG. 18 depicts a data timing diagram showing an example of detection of periodic

request which may be suitable for caching.

[0037] F1G. 19 depicts a data timing diagram showing an example of detection of change in

request intervals and updating of server polling rate in response thereto.

{0038] FIG. 20 depicts a data timing diagram showing an example of serving foreground

requests with cached entries.

{0039} FIG. 21 depicts a data timing diagram showing an example of the possible effect of
cache invalidation that occurs after outdated content has been served once again to a requesting

application.

[0040] FIG. 22 depicts a data timing diagram showing cache management and response

taking into account the time-to-live (TTL) set for cache entries.

[0041] FIG. 23 illustrates a flow chart showing an example flow of integration of content

caching with a network operator for traffic alleviation a wireless network.

[0042] FIG. 24 illustrates a flow chart showing an example flow of content caching

mechanisms integrated with a network operator for traffic alleviation in a wireless network.

[0043] FIG. 25 shows a diagrammatic representation of a machine in the example form of a
computer system within which a set of instructions, for causing the machine to perform any one

or more of the methodologies discussed herein, may be executed.

DETAILED DESCRIPTION

[0044] The following description and drawings are illustrative and are not to be construed
as limiting. Numerous specific details are described to provide a thorough understanding of the
disclosure. However, inn certain instances, well-known or conventional details are not described
in order to avoid obscuring the description. References to “one embodiment” or “an
embodiment” in the present disclosure can be, but not necessarily are, references to the same

embodiment and such references mean at least one of the embodiments.

[0045] Reference in this specification to “one embodiment™ or ““an embodiment” means that
a particular feature, structure, or characteristic described in connection with the embodiment is
included in at least one embodiment of the disclosure. The appearances of the phrase “in one
embodiment” in various places in the specification are not necessarily all referring to the same
embodiment, nor are separate or alternative embodiments mutually exclusive of other
embodiments. Moreover, various features are described which may be exhibited by some
embodiments and not by others. Similarly, various requirements are described which may be

requirements for some embodiments but not other embodiments.

[0046] The terms used in this specification generally have their ordinary meanings in the
art, within the context of the disclosure, and in the specific context where each term is used.
Certain terms that are used to describe the disclosure are discussed below, or elsewhere in the
specification, to provide additional guidance to the practitioner regarding the description of the
disclosure. For convenience, certain terms may be highlighted, for example using italics and/or
quotation marks. The use of highlighting has no influence on the scope and meaning of a term;
the scope and meaning of a term is the same, in the same context, whether or not it is

highlighted. It will be appreciated that same thing can be said in more than one way.

{0047} Consequently, alternative language and synonyms may be used for any one or more
of the terms discussed herein, nor is any special significance to be placed upon whether or not a
term is elaborated or discussed herein. Synonyms for certain terms are provided. A recital of
one or more synonyms does not exclude the use of other synonyms. The use of examples
anywhere in this specification, including examples of any terms discussed herein, is illustrative

only, and is not intended to further limit the scope and meaning of the disclosure or of any

exemplified term. Likewise, the disclosure is not limited to various embodiments given in this

specification.

[0048] Without intent to limit the scope of the disclosure, examples of instruments,
apparatus, methods and their related results according to the embodiments of the present
disclosure are given below. Note that titles or subtitles may be used mn the examples for
convenience of a reader, which in no way should limit the scope of the disclosure. Unless
otherwise defined, all technical and scientific terms used herein have the same meaning as
commonly understood by one of ordinary skill in the art to which this disclosure pertains. In the

case of conflict, the present document, including definitions, will control.

{0049] Embodiments of the present disclosure include flexible and dynamic integration
schemas of a traffic management system with various network operators for network traffic

alleviation.

[0050] There are multiple factors that contribute to the proliferation of data: the end-user,
mobile devices, wireless devices, mobile applications, and the network. As mobile devices
evolve, so do the various clements associated with them-availability, applications, user behavior,

Jocation thus changing the way the network interacts with the device and the application.

[0051] The disclosed technology provides a comprehensive and end-to-end solution that is
able to address each element for operators and devices manufacturers to support both the shift in
mobile or wireless devices and the surge in data by leveraging the premise that mobile content
has a definable or relevant “freshness” value. The “freshness” of mobile content can be
determined, either with certainty, or with some heuristics having a tolerance within which the
user experience is enhanced, or not negatively impacted, or negatively impacted but is either not

perceptible to the user or within a tolerable threshold level.

{0052} The disclosed innovation transparently determines such “freshness” by monitoring,
analyzing, and applying rules (which may be heuristically determined) the transactions
(requests/responses) between applications (¢.g., mobile applications) and the peers
(corresponding server or other clients). Moreover, the technology is further able to effectively

cache content which may be marked by its originating/host server as being “non-cacheable” and

identify some “freshness’ value which can then be used in implementing application-specific
caching. In general, the “freshness” value has an approximate minimum value which is typically
determined using the update interval (e.g., interval with which requests are sent) between the

application and its corresponding server/host.

[0053] One embodiment of the disclosed technology includes a system that optimizes
multiple aspects of the connection with wired and wireless networks and devices through a
comprehensive view of device and application activity including: loading, current application
needs on a device, controlling the type of access (push vs. pull or hybrid), location, concentration
of users in a single areca, time of day, how often the user interacts with the application, content or
device, and using this information to shape traffic to a cooperative client/servet or
simultaneously mobile devices without a cooperative client. Because the disclosed server is not
tied to any specific network provider it has visibility into the network performance across all
setvice providers. This enables optimizations to be applied to devices regardless of the operator
or service provider, thereby enhancing the user experience and managing network utilization
while roaming. Bandwidth has been considered a major issue in wireless networks today. More
and more research has been done related to the need for additional bandwidth to solve access
problems. Many of the performance enhancing solutions and next generation standards, such as
those commonly referred to as 3.5G, LTE, 4G, and WiMAX, are focused on providing increased
bandwidth. Although partially addressed by the standards, a key problem that remains 1s lack of
bandwidth on the signaling channel more so than the data channel and the standard does not

address battery life very well.

[0054] Embodiments of the disclosed technology includes, for example, alignment of
requests from multiple applications to minimize the need for several polling requests; leverage
specific content types to determine how to proxy/manage a connection/content; and applying
specific heuristics associated with device, user behavioral patterns (how often they interact with

the device/application) and/or network parameters.

[0055] Embodiments of the present technology can further include, moving recurring HTTP
polls performed by various widgets, RSS readers, etc., to remote network node (e.g., Network

Operation Center (NOC)), thus considerably lowering device battery/power consumption, radio

channel signaling and bandwidth usage. Additionally, the offloading can be performed

transparently so that existing applications do not need to be changed.

[0056] In some embodiments, this can be implemented using a local proxy on the mobile
device (c.g., any wireless device) which automatically detects recurring requests for the same
content (RSS feed, Widget data set) that matches a specific rule (e.g., happens every 15 minutes).
The local proxy can automatically cache the content on the mobile device while delegating the
polling to the server (e.g., a proxy server operated as an element of a communications network).
The server can then notify the mobile/client proxy if the content changes, and if content has not
changed (or not changed sufficiently, or in an identified manner or amount) the mobile proxy
provides the latest version in its cache to the user (without need to utilize the radio at all). This
way the mobile or wireless device (e.g., a mobile phone, smart phone, M2M module/MODEM,
or any other wireless devices, etc.) does not need to open (¢.g., thus powering on the radio) or
use a data connection if the request is for content that is monitored and that has been not flagged

as new/changed.

[0057] The logic for automatically adding content sources/application servers (e.g.,
including URLs/content) to be monitored can also check for various factors like how often the
content is the same, how often the same request is made (is there a fixed interval/pattern?), which
application is requesting the data, etc. Similar rules to decide between using the cache and
request the data from the original source may also be implemented and executed by the local

proxy and/or server.

[0058] For example, when the request comes at an unscheduled/unexpected time (user
initiated check), or after every (n) consecutive times the response has been provided from the
cache, etc., or if the application is running in the background vs. in a more interactive mode of
the foreground. As more and more mobile applications or wircless ¢nabled applications base
their features on resources available in the network, this becomes increasingly important. In
addition, the disclosed technology allows elimination of unnecessary chatter from the network,

benefiting the operators trying to optimize the wireless spectrum usage.

10

Traffic Categorization and Policy

[0059] In some embodiments, the disclosed proxy system is able to establish policies for
choosing traffic (data, content, messages, updates, etc.) to cache and/or shape. Additionally, by
combining information from observing the application making the network requests, getting
explicit information from the application, or knowing the network destination the application is
reaching, the disclosed technology can determine or infer what category the transmitted traffic

belongs to.

{0060] For example, in one embodiment, mobile or wireless traffic can be categorized as:
(al) interactive traffic or (a2) background traffic. The difference is that in (al) a user is actively
waiting for a response, while in (2) a user is not expecting a response. This categorization can be
used in conjunction with or in lieu of a second type of categorization of traffic: (b1) immediate,

(b2) low priority, (b3) immediate if the requesting application is in the foreground and active.

{0061} For example, a new update, message or email may be in the (bl) category to be
delivered immediately, but it still is (a2) background traffic — a user is not actively waiting for
it. A similar categorization applies to instant messages when they come outside of an active chat
session. During an active chat session a user is expecting a response faster. Such user
expectations are determined or inferred and factored into when optimizing network use and

device resources in performing traffic categorization and policy implementation.

[0062] Some examples of the applications of the described categorization scheme, include
the following: (al) interactive traffic can be categorized as (bl) immediate — but (a2)
background traffic may also be (b2) or (b3). An example of a low priority transfer is email or
message maintenance transaction such as deleting email or other messages or marking email as
read at the mail or application server. Such a transfer can typically occur at the earlier of (a)
timer exceeding a timeout value (for example, 2 minutes), and (b) data being sent for other

PUrposes.

[0063] An example of (b3) is IM presence updates, stock ticker updates, weather updates,
status updates, news feeds. When the Ul of the application s in the foreground and/or active (for

example, as indicated by the backlight of the device/phone being lit or as determined or inferred

1

from the status of other sensors), updates can be considered immediate whenever server has
something to push to the device. When the application is not in the foreground or not active,

such updates can be suppressed until the application comes to foreground and is active,

{0064} With some embodiments, networks can be selected or optimized simultaneously for

{al) interactive traffic and (a2) background traffic.

[0065] In some embodiments, as the wircless device or mobile device proxy (separately or
in conjunction with the server proxy) is able to categorize the traffic as (for example) (al)
interactive traffic or (a2) background traffic, it can apply different policies to different types of
traffic. This means that it can internally operate differently for (al) and (a2) traffic (for example,
by allowing interactive traffic to go through to the network in whole or in part, and apply stricter
traffic control to background traffic; or the device side only allows a request to activate the radio

if it has received mformation from the server that the content at the host has been updated, etc.).

[0066] When the request does require access over the wireless network, the disclosed
technology can request the radio layer to apply different network configurations to different

traffic. Depending on the type of traffic and network this may be achieved by different means:
{0067} (1) Using 3G/A4G for (al) and 2G/2.5G for (a2),

[0068] (2) Explicitly specifying network configuration for different data sets (e.g. in terms
of use of FACH (forward access channel) vs. DCH (dedicated channel), or otherwise requesting

Jower/more network efficient data rates for background traffic); or

{0069] (3) Utilizing different network access potnts for different data sets (access points

which would be configured to use network resources differently similar to (1) and (2) above).

{0070} Additionally, 3GPP Fast Dormancy calls for improvements so that applications,
operating systems or the mobile device would have awareness of the traffic type to be more
efficient in the future. Embodiments of the disclosed system, having the knowledge of the traffic
category and being able to utilize Fast Dormancy appropriately may solve the problem identified

in Fast Dormancy. This way the mobile or broadband network does not need to be configured

12

with a compromised configuration that adversely impacts both battery consumption and network

signaling resources.

Polling schedule

[0071] Detecting (or determining) a polting schedule allows the proxy server (server-side of
the distributed cache system) to be as close as possible with its polls to the application polls.
Many applications employ scheduled interval polling (e.g., every 4 hours or every 30 seconds, at
another time interval). The client side proxy can detect automatic polls based on time
measurements and create a automatic polling profile for an application. As an example, the local
proxy attempts to detect the time interval between requests and after 2, 3, 4, or more polls,
determines an automatic rate if the time intervals are all within 1 second (or another measure of
relative closeness) of each other. Ifnot, the client may collect data from a greater number of
polling events (e.g., 10-12 polls) and apply a statistical analysis to determine, compute, or
estimate a value for the average interval that is used. The polling profile is delivered to the
server where it is used. If it is a frequent manual request, the locally proxy can substitute it with

a default interval for this application taken from a profile for non-critical applications.

[0072] In some embodiments, the local proxy (e.g., device side proxy) may keep monitoring
the application/client polls and update the polling interval. If it changes by more than 30% (or
another predetermined/dynamic/conditional value) from the current value, it is communicated to
the proxy server (¢.g., server-side proxy). This approach can be referred to as the scenario of
“lost interest.” In some instances, the local proxy can recognize requests made outside of this

schedule, consider them “manual,” and treat them accordingly.

Application classes/Modes of caching

[0073] In some embodiments, applications can be organized into three groups or modes of
caching. Each mobile client/application can be categorized to be treated as one of these modes,

or treated using multiple modes, depending on one or more conditions.

{0074} A) Fully cached — local proxy updates (e.g., sends application requests directly over
the network to be serviced by the application server/content host) only when the proxy server

tells the Jocal proxy to update. In this mode, the local proxy can ignore manual requests and the

13

proxy server uses the detected automatic profile (e.g., sports score applets, Facebook, every 10,

15, 30, or more polls) to poll the application server/content provider.

[0075] B) Partially cached — the local proxy uses the local or internal cache for automatic
requests (¢.g., application automatic refreshes), other scheduled requests but passes through

some manual requests (¢.g., email download, Ebay or some Facebook requests); and

[0076] C) Never cached (e.g., real-time stock ticker, sports scores/statuses; however, in
some instances, 15 minutes delayed quotes can be safely placed on 30 seconds schedules — B or

even A).

{0077} The actual application or caching mode classification can be determined based on
the rate of content change and critical character of data. Unclassified applications by default can

be set as class C.

Backlight and active applications

{0078} In some embodiments, the local proxy starts by detecting the device backlight status.
Requests made with the screen light ‘off” can be allowed to use the local cache if a request with
identical signature 1s registered with the proxy server, which is polling the original host
server/content server(s) to which the requests are directed. If the screen light is ‘on’, further
detection can be made to determine whether 1t is a background application or for other indicators
that local cache entries can or cannot be used to satisfy the request. When identified, the
requests for which local entries can be used may be processed identically to the screen light off
situation. Foreground requests can use the aforementioned application classification to assess

when cached data is safe to use to process requests.

[0079] FIG. 1A-1 illustrates an example diagram showing one example configuration or
integration scheme of operation of the distributed proxy and/or cache system (e.g.,(distributed)
traffic optimizer, traffic management system, (distributed) content caching mechanism for traffic
alleviation) (client-side proxy or “local proxy” 175 and server-side proxy, or “proxy server” 125)
with an operator (c.g., network operator) where the application server/content provider 110 or
“service provider” can be accessed by the server-side proxy 125 directly (e.g., without proxies).

The distributed proxy and/or cache system (e.g.,(distributed) traffic optimizer, traffic

14

management system, (distributed) content caching mechanism for traffic alleviation) is also

herein referred to as a distributed traffic optimizer or traffic management system.

[0080] Assuming that the chent-side proxy 175 started polling for request “X”, an example

flow for the polling is as follows:

[0081] Instep #1: The server-side proxy 125 polls service provider 110
periodically with request “X” and an application (¢.g., an optimized application 152 or a

not optimized application 154) in the device 150 will do polling.

[0082] In step #2: Service provider (e.g., application server/content provider 110)

responds to server-side proxy 125.

[0083] At step #3: The server-side proxy 125 can compare the response with a
previous one received for the application poll: In one embodiment, in case they are
equivalent or sufficiently similar, flow can end till next iteration. As long as no
mvalidation messages are received by the client-side proxy 175 and the local cache on the
mobile device 150 for request “X” is not empty, the client-side proxy 175 can continue

answering the application with local cache content.

[0084] Instep #4: In case last two responses are not equivalent, the server-side
proxy 125 can send an invalidate message for request “X” to the client-side proxy 175 via
a mobile network optimized protocol (e.g., if a 7TP connection is currently active) or via
SMS or other standard or proprietary protocol (if a 7TP connection is not currently

active) which may or may not be optimized.

[0085] In step #5: Once invalidation request reaches the client-side proxy 175, the
mobile device 150 empties or deletes the cache entries related to the invalidation request
from the local cache on the mobile device 150. The client side proxy 175 can wait for the

optimized application 152 to poll again.

[0086] Instep #6: An application (e.g., the optimized application 152) polls for

new updates or content.

[0087] Instep #7: In one embodiment, the application’s poll request (e.g.,

Request “X+7) reaches operator proxythe operator proxy 160 directly.

15

[0088] In step #8: The operator proxy 160 can, for example, forward the poll or
the request (¢.g., the request X+, or poll request) to the server-side proxy 125, as a part of
the integration with the network operator (e.g., an operator associated with the operator

proxy 160) of content caching for traffic alleviation in a wireless network.

[0089] Instep #9: The server-side proxy 125 can send the application 152 poll or
request (e.g., request “X”) to service provider (e.g., application server/content provider

110).

[0090] In step #10: The service provider (e.g., application server/content provider
110) can respond, for example, with new content including new or changed data or

content to the server-side proxy 125,

[0091] Instep #11: The server-side proxy 125 can, for example, route the answer
or response through the operator proxy 160 through integration with the network operator

associated with the operator proxy 160.

[0092] Instep #12: The operator proxy 160 can send the response to the client-
side proxy 175.

[0093] Instep #13: The client-side proxy 175 can store the service provider’s
response in local cache at the mobile device 150 and sends the response to the application
152. Next time the application 152 sends the same request “X” or any subsequent same
request “X+”, the client-side proxy 175 can respond using cache entries (e.g., with local
cache content stored in the local cache on mobile deice 150) for request ”X” or any
subsequent same request “X+”, unless invalidation messages has been received for this

request “X” or for the stored response/cache entry.

[0094] FIG. 1A-2 illustrates an example diagram showing one example configuration or
integration scheme of operation of the distributed proxy and/or cache (client-side proxy or “local
proxy” 175 and server-side proxy, or “proxy server” 125) with an operator where the application
server/content provider 110 can be accessed by the server-side proxy 125 through the operator
proxy 160. The flow here is similar to the scenario of FIG. 1A-1 with the difference being that
the requests now pass through the operator proxy 160.

16

[0095] In step #1: The server-side proxy 125 polls a service provider (e.g., application
server/content provider 110) periodically with request “X” and the application 152 in the
device can do polling. The server-side proxy 125 polls the service provider 119 on behalf

of an application (e.g., application 152) on the mobile device 150.

[0096] In step #2: The server-side proxy 125 request “X” goes via the operator proxy 160
to service provider 110, since the operator proxy 160 1s integrated with the content
caching mechanisms provided by the distributed proxy and/or caching system of client-

side proxy 175 and the server-side proxy 125.

[0097] In step #3: Service provider (¢.g., application server/content provider 110)

responds to operator proxy server 160.
[0098] In step #4: Operator proxy 160 transmits response to the server-side proxy 125.

[0099] In step #5: The server-side proxy 125 can compare the response with the previous
response received for a same or similar request (€.g., request “X”): In case they are same
or sufficiently similar, the ends until next iteration when another request ‘X’ is sent. As
long as no invalidation messages are received by the client-side proxy 175 and the local
cache on the mobile device 150 for request “X” is not empty, the client-side proxy 175
can continue to respond to the application 152 with cache entries including local cache

content.

{00100} In step #6: In case last two responses are not equivalent or meet a certain
criteria, the server-side proxy 125 can send an invalidate message for request “X” to the
client-side proxy 175 via a mobile network optimized protocol (¢.g., if a 7TP connection
is currently active) or via SMS or other standard or proprietary protocol (if a 7TP

connection 1s not currently active).

{00101} In step #7: Once invalidation reaches the client-side proxy 175, it empties,
clears or deletes cache entries relating to the request from the local cache and waits for

the application 152 to poll again.

[00102] In step #8: The application (e.g., application 152) polls for new updates.

17

[00103] In step #9: The application’s poll or request reaches operator proxy 160,
since the network operator is integrated with the traffic management system (e.g., the

distributed caching and/or proxy system).

[00104] In step #10: Operator proxy 160 can forward the poll or poll request to the
server-side proxy 1235

[00105] In step #11: The server-side proxy 125 can be configured to send the

application’s poll or poll request through operator proxy 160.

[00106] In step #12: Operator proxy 160 sends the application’s poll or poll

request ‘X to service provider (e.g., application server/content provider 110).

[00107) In step #13: Service provider (e.g., application servet/content provider

110) can respond with new content or response to operator proxy 160.

{00108} In step #14: The server-side proxy 125 can be configured to send the
response to the client-side proxy 175 through operator proxy 160, via integration with the
network operator, such that the network operator is enabled with content caching

mechanisms for traffic alleviation in the wireless network.

[00109] In step #15: The chent-side proxy 175 can store the service provider’s
(e.g., application server/content provider 110) response in as cache entries in local cache

on device 150.

[00110] In step #16: The client-side proxy 175 sends the response to application 152. Next
time application 152 sends the a same or similar request (e.g., request “X”), or any subsequent
same request “X+", the chient-side proxy 175 can respond or answer with local cache content for
request "X, unless invalidation messages has been received for this request indicating that new

or changed data/response is available.

{00111} FIG. 1A-3 illustrates an example diagram showing one example configuration or
integration scheme of operation of the distributed proxy and/or cache system (e.g.(distributed)
traffic optimizer, traffic management system, (distributed) content caching mechanism for traffic
alleviation) (client-side proxy or “local proxy” 175 and server-side proxy, or “proxy server” 125)
with an operator (¢.g., network operator) where the application server/content provider/service

provider 110 can be accessed by the server-side proxy 125 through another proxy 199 (e.g.,

18

caching proxy server) or other host. The flow described here is similar to scenatio of FIG. 1A-1

but with the requests going through the proxy 199.

[00112] In step #1: The server-side proxy 125 polls service provider (e.g.,
application server/content provider 110) pertodically with request “X” and an application
(e.g., an optimized application 152 or a not optimized application 154) in the device 150

can do polling.

[00113] In step #2: The server-side proxy 125 request can be configured to be sent
via the proxy 199 or any other host to service provider (e.g., application server/content

provider 110).

[00114] In step #3: Service Provider (e.g., application server/content provider 110)

responds to proxy 199 or other host.

[00115] In step #4: In accordance with the embodiment, the proxy 199 or any other

host can send the response to the server-side proxy 125.

[00116] In step #5: The server-side proxy 125 can compare the response with a
previous response received for request ‘X': In case they are equivalent, sufficiently
similar, or otherwise meets a criteria, flow can be suspended until next iteration. As long
as no invalidation messages are received by the client-side proxy 175 and the local cache
for request “X” 1s not empty on the mobile device 150, the client-side proxy 175 can
continue responding to the application 152 with cache entries in the local cache content

of the local cache on device 130.

[00117] In step #6: In case the last two responses are not equivalent or similar, or
not meeting a certain criteria, the server-side proxy 125 can send an invalidate message
for request “X” directly to the chent-side proxy 175 via mobile network optimized
protacol (e.g., if a 7TP connection is currently active) or via SMS or other standard or

proprictary protocol (if a 7TP connection is not currently active)

[00118] In step #7: Once wnvalidation reaches the client-side proxy 175, the mobile
device 150 can delete, or empty cache entries in the local cache and wait for the

application 152 to poll again.

[00119] In step #8: The application (e.g., application 152) polls for new updates.

19

[00120] In step #9: The application’s poll or request reaches operator proxy 160,
since the network operator is integrated with the traffic management system (e.g., the

distributed caching and/or proxy system).

{00121} In step #0: In one embodiment, operator proxy 160 forwards poll or poll

request to the proxy 199 or other host.

[00122] In step #11: The proxy 199 or other host forwards the request to the

service provider 110,

[00123] In step #12: Service provider (e.g., application server/content provider

110) can respond with new or changed content/data to the proxy 199 or other host.

[00124] In step #13: Proxy 199 or other host can be configured to send the

answer/updated response to operator proxy 160.

{00125} In step #14: Operator proxy 160 can be configured to route or send the
response/answer to the client-side proxy 175 in its integration with content caching
mechanisms implemented by the distributed proxy and/or caching system for traffic

alleviation in the wireless network.

[00126] In step #15: The chent-side proxy 175 can store the service provider’s
(e.g., application server/content provider 110) response in local cache and can provide the
response to the application 152. Next time application sends a same or similar request
(e.g., request “X”), or any subsequent same request “X+”, the client-side proxy 175 can
respond with cache entries stored in the local cache on device 150 for request "X, unless

invalidation messages was received for this request/poll.

[00127] In some instances, the proxy 199 includes a proxy cache storage and is able to
store responses at the proxy cache storage to service the polls forwarded from the operator proxy
which are repeated. The proxy 199 can be able to provide a response from the proxy cache
storage to the application through the operator proxy 160 such that the service provider need not
be polled to speed up response time to the application 152. The proxy 199 can also store DNS
cache entries in the proxy cache storage, for example, for multiple mobile devices on the

witeless network.

20

[00128] Note that in the example integration schemes illustrated in FIG. 1-A-FIG. 1-C,
the distributed traffic optimizer that is integrated with a network operator comprises a distributed
caching or proxy system comprising a client-side component 175 residing on a mobile device
150 in the wireless network and a server-side component 125 remote from the mobile device
150. The integration schemes are dynamic and may be used alternately among one another for a
given network operator. The network operator can have the ability to adjust or dynamically tune
between the various schemes described above or any other variations, and/or combinations
thereof. The integration schemes may be automatically dynamically adjusted or
adjusted/configured or reconfigured by the traffic optimizer (distributed proxy and/or cache

system) based on current network, equipment, or usage conditions.

[00129] In some instances, network operators adopt one or more of the integration
schemes, and can vary based on geographical location of the cell tower or infrastructure type, or

number of subscribers.

[00130] F1G. 1B illustrates an example diagram of a system where a host server 100
facilitates management of traffic, content caching, and/or resource conservation between mobile
devices (e.g., wireless devices 150), and an application server or content provider 110, or other
servers such as an ad server 120A, promotional content server 120B, or an e-coupon server 120C
in a wireless network (or broadband network) for resource conservation. The host server can
further monitor mobile application activities for malicious traffic on a mobile device and/or
automatically generate and/or distribute policy information regarding malicious traffic in a

wireless network.

[00131] The client devices 150 can be any system and/or device, and/or any combination
of devices/systems that is able to establish a connection, including wired, wireless, cellular
connections with another device, a server and/or other systems such as host server 100 and/or
application server/content provider 110. Client devices 150 will typically include a display
and/or other output functionalities to present information and data exchanged between among the
devices 150 and/or the host server 100 and/or application server/content provider 110. The
application server/content provider 110 can by any server including third party servers or

service/content providers further including advertisement, promotional content, publication, or

21

electronic coupon servers or services. Similarly, separate advertisement servers 1204,
promotional content servers 120B, and/or e-Coupon servers 120C as application servers or

content providers are illustrated by way of example.

[00132] For example, the client devices 150 can include mobile, hand held or portable
devices, wireless devices, or non-portable devices and can be any of, but not limited to, a server
desktop, a desktop computer, a computer cluster, or portable devices, including a notebook, a
laptop computer, a handheld computer, a palmtop computer, a mobile phone, a cell phone, a
smart phone, a PDA, a Blackberry device, a Palm device, a handheld tablet (e.g., an iPad or any
other tablet), a hand held console, a hand held gaming device or console, any Super Phone such
as the iPhone, and/or any other portable, mobile, hand held devices, or fixed wireless interface
such as a M2M device, etc. In one embodiment, the client devices 150, host server 100, and
application server 110 are coupled via a network 106 and/or a network 108. In some

embodiments, the devices 150 and host server 100 may be directly connected to one another.

[00133] The input mechanism on client devices 130 can include touch screen keypad
(including single touch, multi-touch, gesture sensing in 2D or 3D, etc.), a physical keypad, a
mouse, a pointer, a track pad, motion detector (¢.g., including 1-axis, 2-axis, 3-axis
accelerometer, etc.), a light sensor, capacitance sensor, resistance sensor, temperature sensor,
proximity sensor, a piezoelectric device, device orientation detector (e.g., electronic compass, tilt

sensor, rotation sensor, gyroscope, accelerometer), or a combination of the above.

[00134] Signals received or detected indicating user activity at client devices 150 through
one or more of the above input mechanism, or others, can be used in the disclosed technology in
acquiring context awareness at the client device 150. Context awareness at client devices 150
generally includes, by way of example but not limitation, client device 150 operation or state
acknowledgement, management, user activity/behavior/interaction awareness, detection, sensing,
tracking, trending, and/or application (¢.g., mobile applications) type, behavior, activity,

operating state, etc.

[00135] Context awareness in the present disclosure also includes knowledge and
detection of network side contextual data and can include network information such as network

capacity, bandwidth, traffic, type of network/connectivity, and/or any other operational state

22

data. Network side contextual data can be received from and/or queried from network service
providers {(e.g., cell provider 112 and/or Internet service providers) of the network 106 and/or
network 108 (e.g., by the host server and/or devices 150). In addition to application context
awareness as determined from the client 150 side, the application context awareness may also be
received from or obtained/queried from the respective application/service providers 110 (by the

host 100 and/or client devices 150).

[00136] The host server 100 can use, for example, contextual information obtained for
client devices 150, networks 106/108, applications (¢.g., mobile applications), application
server/provider 110, or any combination of the above, to manage the traffic in the system to
satisfy data needs of the client devices 150 (e.g., to satisfy application or any other request
including HTTP request). In one embodiment, the traffic 1s managed by the host server 100 to
satisfy data requests made in response to explicit or non-explicit user 103 requests and/or
device/application maintenance tasks. The traffic can be managed such that network
consumption, for example, use of the cellular network is conserved for effective and efficient
bandwidth utilization. In addition, the host server 100 can manage and coordinate such traffic in
the system such that use of device 150 side resources (e.g., including but not limited to battery
power consumption, radio use, processor/memory use) are optimized with a general philosophy

for resource conservation while still optimizing performance and user experience.

{00137} For example, in context of battery conservation, the device 150 can observe user
activity (for example, by observing user keystrokes, backlight status, or other signals via one or
more input mechanisms, ¢tc.) and alters device 150 behaviors. The device 150 can also request
the host server 100 to alter the behavior for network resource consumption based on user activity

or behavior.

[00138] In one embodiment, the traffic management for resource conservation 1s
performed using a distributed system between the host server 100 and client device 150. The
distributed system can include proxy server and cache components on the server side 100 and on
the device/client side , for example, as shown by the server cache 135 on the server 100 side and

the local cache 185 on the client 150 side.

23

[00139] Functions and techniques disclosed for context aware traffic management for
resource conservation in networks (e.g., network 106 and/or 108) and devices 150, reside in a
distributed proxy and/or cache system (e.g.,(distributed) traffic optimizer, traffic management
system, (distributed) content caching mechanism for traffic alleviation) (¢.g.,(distributed) traffic
optimizer, traffic management system, (distributed) content caching mechanism for traffic
alleviation). The proxy and cache system can be distributed between, and reside on, a given
client device 150 in part or in whole and/or host server 100 in part or in whole. The distributed
proxy and/or cache system (e.g.,(distributed) traffic optimizer, traffic management system,
(distributed) content caching mechanism for traffic alleviation) (e.g.,(distributed) traffic
optimizer, traffic management system, (distributed) content caching mechanism for traffic
alleviation) are illustrated with further reference to the example diagram shown in FIG. 1C.
Functions and techniques performed by the proxy and cache components in the client device
150, the host server 100, and the related components therein are described, respectively, in detail

with further reference to the examples of FIG. 2-3.

[00140] In one embodiment, client devices 150 communicate with the host server 100
and/or the application server 110 over network 106, which can be a cellular network and/or a
broadband network. To facilitate overall traffic management between devices 150 and various
application servers/content providers 110 to implement network (bandwidth utilization) and
device resource (e.g., battery consumption), the host server 100 can communicate with the
application server/providers 110 over the network 108, which can include the Internet (e.g., a

broadband network).

{00141} In general, the networks 106 and/or 108, over which the client devices 150, the
host server 100, and/or application server 110 communicate, may be a cellular network, a
broadband network, a telephonic network, an open network, such as the Internet, or a private
network, such as an intranet and/or the extranet, or any combination thercof. For example, the
Internet can provide file transfer, remote log in, email, news, RSS, cloud-based services, instant
messaging, visual voicemail, push mail, VoIP, and other services through any known or
convenient protocol, such as, but is not limited to the TCP/IP protocol, UDP, HTTP, DNS, FTP,
UPnP, NSF, ISDN, PDH, RS-232, SDH, SONET, etc.

24

[00142] The networks 106 and/or 108 can be any collection of distinct networks operating
wholly or partially in conjunction to provide connectivity to the client devices 150 and the host
server 100 and may appear as one or more networks to the serviced systems and devices. In one
embodiment, communications to and from the client devices 150 can be achieved by, an open
network, such as the Internet, or a private network, broadband network, such as an intranet
and/or the extranet. In one embodiment, communications can be achieved by a secure

communications protocol, such as secure sockets layer (SSL), or transport layer security (TLS).

[00143] In addition, communications can be achieved via one or more networks, such as,
but are not limited to, one or more of WiMax, a Local Area Network (LAN), Wireless Local
Areca Network (WLAN), a Personal area network (PAN), a Campus area network (CAN), a
Metropolitan area network (MAN), a Wide area network (WAN), a Wireless wide area network
(WWAN), or any broadband network, and further enabled with technologies such as, by way of
example, Global System for Mobile Communications (GSM), Personal Communications Service
(PCS), Bluetooth, WiFi, Fixed Wireless Data, 2G, 2.5G, 3G, 4G, IMT-Advanced, pre-4G, LTE
Advanced, mobile WiMax, WiMax 2, WirclessMAN-Advanced networks, enhanced data rates
for GSM evolution (EDGE), General packet radio setvice (GPRS), enhanced GPRS, tBurst,
UMTS, HSPDA, HSUPA, HSPA, UMTS-TDD, 1xRTT, EV-DO, messaging protocols such as,
TCP/IP, SMS, MMS, extensible messaging and presence protocol (XMPP), real time messaging
protocol (RTMP), instant messaging and presence protocol (IMPP), instant messaging, USSD,

IRC, or any other wircless data networks, broadband networks, or messaging protocols.

[00144] FIG. 1C illustrates an example diagram of a proxy and cache system distributed
between the host server 100 and device 150 which facilitates network traffic management
between the device 150 and an application server or content provider 110, or other servers such
as an ad server 120A, promotional content server 120B, or an e-coupon server 120C for resource
conservation and content caching. The proxy system distributed among the host server 100 and
the device 150 can further monitor mobile application activities for malicious traffic on a mobile
device and/or automatically generate and/or distribute policy information regarding malicious

traffic in a wireless network.

25

[00145] The distributed proxy and/or cache system (¢.g.,(distributed) traffic optimizer,
traffic management system, (distributed) content caching mechanism for traffic alleviation)
(c.g.,(distributed) traffic optimizer, traffic management system, (distributed) content caching
mechanism for traffic alleviation) can include, for example, the proxy server 125 (e.g., remote
proxy) and the server cache, 135 components on the server side. The server-side proxy 125 and
cache 135 can, as illustrated, reside internal to the host server 100. In addition, the proxy server
125 and cache 135 on the server-side can be partially or wholly external to the host server 100
and in communication via one or more of the networks 106 and 108. For example, the proxy
server 125 may be external to the host server and the server cache 135 may be maintained at the
host server 100. Alternatively, the proxy server 125 may be within the host server 100 while the
server cache is external to the host server 100. In addition, each of the proxy server 125 and the
cache 135 may be partially internal to the host server 100 and partially external to the host server
100. The application server/content provider 110 can by any server including third party servers
or service/content providers further including advertisement, promotional content, publication, or
electronic coupon servers or services. Similarly, separate advertisement servers 120A,
promotional content servers 120B, and/or e-Coupon servers 120C as application servers or

content providers are illustrated by way of example.

[00146] The distributed system can also, include, in one embodiment, client-side
components, including by way of example but not limitation, a local proxy 175 (¢.g., a mobile
client on a mobile device) and/or a local cache 183, which can, as illustrated, reside internal to

the device 150 (e.g., 2 mobile device).

{00147} In addition, the client-side proxy 175 and local cache 185 can be partially or
wholly external to the device 150 and in communication via one or more of the networks 106
and 108. For example, the local proxy 175 may be external to the device 150 and the local cache
185 may be maintained at the device 150. Alternatively, the local proxy 175 may be within the
device 150 while the local cache 185 is external to the device 150. In addition, each of the proxy
175 and the cache 185 may be partially internal to the host server 100 and partially external to
the host server 100.

26

[00148] In one embodiment, the distributed system can include an optional caching proxy
server 199. The caching proxy server 199 can be a component which 1s operated by the
application server/content provider 110, the host server 100, or a network service provider 112,
and or any combination of the above to facilitate network traffic management for network and
device resource conservation. Proxy server 199 can be used, for example, for caching content to
be provided to the device 150, for example, from one or more of, the application server/provider
110, host server 100, and/or a network service provider 112. Content caching can also be
entirely or partially performed by the remote proxy 125 to satisfy application requests or other

data requests at the device 150.

[00149] In context aware traffic management and optimization for resource conservation
in a network (e.g., cellular or other wireless networks), characteristics of user activity/behavior
and/or application behavior at a mobile device (e.g., any wireless device) 150 can be tracked by
the local proxy 175 and communicated, over the network 106 to the proxy server 125 component
in the host server 100, for example, as connection metadata. The proxy server 125 which in tumn
is coupled to the application server/provider 110 provides content and data to satisfy requests

made at the device 150,

[00150] In addition, the local proxy 175 can identify and retrieve mobile device properties,
including one or more of, battery level, network that the device is registered on, radio state, or
whether the mobile device is being used (e.g., interacted with by a user). In some instances, the
Jocal proxy 175 can delay, expedite (prefetch), and/or modify data prior to transmission to the
proxy server 125, when appropriate, as will be further detailed with references to the description

associated with the examples of FIG. 2-3.

[00151] The local database 185 can be included in the local proxy 175 or coupled to the
local proxy 175 and can be queried for a locally stored response to the data request prior to the
data request being forwarded on to the proxy server 125. Locally cached responses can be used
by the local proxy 175 to satisfy certain application requests of the mobile device 130, by

retrieving cached content stored in the cache storage 185, when the cached content is still valid.

[00152] Similarly, the proxy server 125 of the host server 100 can also delay, expedite, or

modify data from the local proxy prior to transmission to the content sources (e.g., the

27

application server/content provider 110). In addition, the proxy setver 125 uses device
propertics and connection metadata to generate rules for satisfying request of applications on the
mobile device 150. The proxy server 125 can gather real time traffic information about requests
of applications for later use in optimizing similar connections with the mobile device 150 or

other mobile devices.

[00153] In general, the local proxy 175 and the proxy server 125 are transparent to the
multiple applications executing on the mobile device. The local proxy 175 is generally
transparent to the operating system or platform of the mobile device and may or may not be
specific to device manufacturers. In some instances, the local proxy 175 is optionally
customizable in part or in whole to be device specific. In some embodiments, the local proxy

175 may be bundled into a wireless model, a firewall, and/or a router.

[00154] In one embodiment, the host server 100 can in some instances, utilize the store
and forward functions of a short message service center (SMSC) 112, such as that provided by
the network service provider, in communicating with the device 150 in achieving network traffic
management. Note that 112 can also utilize any other type of alternative channel including
USSD or other network control mechanisms. As will be further described with reference to the
example of FIG. 3, the host server 100 can forward content or HTTP responses to the SMSC 112
such that it is automatically forwarded to the device 150 if available, and for subsequent

forwarding if the device 150 is not currently available.

[00155] In general, the disclosed distributed proxy and/or cache system (¢.g.(distributed)
traffic optimizer, traffic management system, (distributed) content caching mechanism for traffic
alleviation) (e.g.,(distributed) traffic optimizer, traffic management system, (distributed) content
caching mechanism for traffic alleviation) allows optimization of network usage, for example, by
serving requests from the local cache 185, the local proxy 175 reduces the number of requests
that need to be satisfied over the network 106. Further, the local proxy 175 and the proxy server
125 may filter irrelevant data from the communicated data. In addition, the local proxy 175 and
the proxy server 125 can also accumulate low priority data and send 1t in batches to avoid the
protocol overhead of sending individual data fragments. The local proxy 175 and the proxy

server 125 can also compress or transcode the traffic, reducing the amount of data sent over the

28

network 106 and/or 108. The signaling traffic in the network 106 and/or 108 can be reduced, as
the networks are now used less often and the network traffic can be synchronized among

individual applications.

{00156} With respect to the battery life of the mobile device 150, by serving application or
content requests from the local cache 183, the local proxy 175 can reduce the number of times
the radio module is powered up. The local proxy 175 and the proxy server 125 can work in
conjunction to accumulate low priority data and send it in batches to reduce the number of times
and/or amount of time when the radio is powered up. The local proxy 175 can synchronize the

network use by performing the batched data transfer for all connections simultancously.

{00157} FIG. 2A depicts a block diagram illustrating an example of client-side
components in a distributed proxy and/or cache system (e.g.,(distributed) traffic optimizer, traffic
management system, (distributed) content caching mechanism for traffic alleviation)
(e.g.,(distributed) traffic optimizer, traffic management system, (distributed) content caching
mechanism for traffic alleviation) residing on a mobile device (e.g., wireless device) 250 that
manages traffic in a wireless network (or broadband network) for resource conservation, content
caching, and/or traffic management. The client-side proxy (or local proxy 275) can further
categorize mobile traffic and/or implement delivery policies based on application behavior,

content priority, user activity, and/or user expectations.

[00158] The device 250, which can be a portable or mobile device (¢.g., any wireless
device), such as a portable phone, generally includes, for example, a network interface 208 an
operating system 204, a context API 206, and mobile applications which may be proxy-unaware
210 or proxy-aware 220. Note that the device 250 is specifically illustrated in the example of
FI1G. 2 as a mobile device, such is not a limitation and that device 250 may be any wireless,
broadband, portable/mobile or non-portable device able to receive, transmit signals to satisfy
data requests over a network including wired or wireless networks (e.g., WiFi, cellular,

Bluetooth, LAN, WAN, etc.).

[00159] The network interface 208 can be a networking module that enables the device
250 to mediate data in a network with an entity that is external to the host server 250, through

any known and/or convenient communications protocol supported by the host and the external

29

entity. The network interface 208 can include one or more of a network adaptor card, a wircless
network interface card (e.g., SMS interface, WiFi interface, interfaces for various generations of
mobile communication standards including but not limited to 2G, 3G, 3.5G, 4G, LTE, etc.,),
Bluetooth, or whether or not the connection 18 via a router, an access point, a wireless router, a
switch, a multilayer switch, a protocol converter, a gateway, a bridge, a bridge router, a hub, a

digital media receiver, and/or a repeater.

{00160} Device 250 can further include, client-side components of the distributed proxy
and/or cache system {e.g..(distributed) traffic optimizer, traffic management system, (distributed)
content caching mechanism for traffic alleviation) (e.g.,(distributed) traffic optimizer, traffic
management system, (distributed) content caching mechanism for traffic alleviation) which can
include, a local proxy 275 (c.g., a mobile client of a mobile device) and a cache 285. In one
embodiment, the local proxy 275 includes a user activity module 215, a proxy API 225, a
request/transaction manager 235, a caching policy manager 245 having an application protocol
module 248, a traffic shaping engine 255, and/or a connection manager 265. The traffic shaping
engine 255 may further include an alignment module 256 and/or a batching module 257, the
connection manager 265 may further include a radio controller 266. The request/transaction
manager 235 can further include an application behavior detector 236 and/or a prioritization
engine 241, the application behavior detector 236 may further include a pattern detector 237
and/or and application profile generator 239, Additional or less components/modules/engines

can be included in the local proxy 275 and each illustrated component.

[00161] As used herein, a “module,” “a manager,” a “handler,” a “detector,” an
“interface,” a “controller,” a “normalizer,” a “generator,” an “invalidator,” or an “engine”
includes a general purpose, dedicated or shared processor and, typically, firmware or software
modules that are executed by the processor. Depending upon implementation-specific or other
considerations, the module, manager, handler, detector, interface, controller, normalizer,
generator, invalidator, or engine can be centralized or its functionality distributed. The module,
manager, handler, detector, interface, controller, normalizer, generator, invalidator, or engine can
include general or special purpose hardware, firmware, or software embodied in a computer-

readable (storage) medium for execution by the processor.

30

[00162] As used herein, a computer-readable medium or computer-readable storage
medium is intended to include all mediums that are statutory (e.g., in the United States, under 35
U.S.C. 101), and to specifically exclude all mediums that are non-statutory in nature to the extent
that the exclusion is necessary for a claim that includes the computer-readable (storage) medium
to be valid. Known statutory computer-readable mediums include hardware (¢.g., registers,
random access memory (RAM), non-volatile (NV) storage, to name a few), but may or may not

be limited to hardware.

[00163] In one embodiment, a portion of the distributed proxy and/or cache system
(e.g.,(distributed) traffic optimizer, traffic management system, (distributed) content caching
mechanism for traffic alleviation) (e.g.,(distributed) traffic optimizer, traffic management
system, (distributed) content caching mechanism for traffic alleviation) for network traffic
management resides in or 1s in communication with device 250, including local proxy 275
(mobile client) and/or cache 285. The local proxy 275 can provide an interface on the device
250 for users to access device applications and services including email, IM, voice mail, visual

voicemail, feeds, Internet, games, productivity tools, or other applications, etc.

[00164] The proxy 275 is generally application independent and can be used by
applications (e.g., both proxy-aware and proxy-unaware applications 210 and 220 and other
maobile applications) to open TCP connections to a remote server (2.g., the server 100 in the
examples of FIG. 1A-1C and/or server proxy 125/325 shown in the examples of FIG. 1B and
F1G. 3A). In some instances, the local proxy 275 includes a proxy API 225 which can be
optionally used to interface with proxy-aware applications 220 (or applications (e.g., mobile

applications) on a mobile device (e.g., any wireless device)).

[00165] The applications 210 and 220 can generally include any user application, widgets,
software, HTTP-based application, web browsers, video or other multimedia streaming or
downloading application, video games, social network applications, email clients, RSS
management applications, application stores, document management applications, productivity
enhancement applications, etc. The applications can be provided with the device OS, by the
device manufacturer, by the network service provider, downloaded by the user, or provided by

others.

31

[00166] One embodiment of the local proxy 275 includes or is coupled to a context API
206, as shown. The context API 206 may be a part of the operating system 204 or device
platform or independent of the operating system 204, as illustrated. The operating system 204
can include any operating system including but not limited to, any previous, current, and/or
future versions/releases of, Windows Mobile, 10S, Android, Symbian, Palm OS, Brew MP, Java

2 Micro Edition (J2ME), Blackberry, etc.

{00167} The context API 206 may be a plug-in to the operating system 204 or a particular
client/application on the device 250. The context API 206 can detect signals indicative of user or
device activity, for example, sensing motion, gesture, device location, changes in device

location, device backlight, keystrokes, clicks,, activated touch screen, mouse click or detection of
other pointer devices. The context API 206 can be coupled to input devices or sensors on the
device 250 to 1dentify these signals. Such signals can generally include input received in
response to explicit user input at an input device/mechanism at the device 250 and/or collected
from ambient signals/contextual cues detected at or in the vicinity of the device 250 (e.g., light,

motion, piczoelectric, etc.).

[00168] In one embodiment, the user activity module 215 interacts with the context APl
206 to identify, determine, infer, detect, compute, predict, and/or anticipate, characteristics of
user activity on the device 250. Various mputs collected by the context API 206 can be
aggregated by the user activity module 215 to generate a profile for characteristics of user
activity. Such a profile can be generated by the user activity module 215 with various temporal
characteristics. For instance, user activity profile can be generated in real-time for a given
instant to provide a view of what the user is doing or not doing at a given time (¢.g., defined by a
time window, in the last minute, in the last 30 seconds, etc.), a user activity profile can also be
generated for a ‘session” defined by an application or web page that describes the characteristics
of user behavior with respect to a specific task they are engaged in on the device 250, or fora

specific time period (e.g., for the last 2 hours, for the last 5 hours).

[00169] Additionally, characteristic profiles can be generated by the user activity module
215 to depict a historical trend for user activity and behavior (e.g., 1 week, 1 mo., 2 mo., etc.).

Such historical profiles can also be used to deduce trends of user behavior, for example, access

32

frequency at different times of day, trends for certatn days of the week (weekends or week days),
user activity trends based on location data {(e.g., IP address, GPS, or cell tower coordinate data)
or changes in location data (¢.g., user activity based on user location, or user activity based on
whether the user is on the go, or traveling outside a home region, etc.) to obtain user activity

characteristics.

[00170] In one embodiment, user activity module 215 can detect and track user activity
with respect to applications, documents, files, windows, icons, and folders on the device 250.
For example, the user activity module 215 can detect when an application or window (e.g., a web
browser or any other type of application) has been exited, closed, minimized, maximized,

opened, moved into the foreground, ot into the background, multimedia content playback, etc.

[00171] In one embodiment, characteristics of the user activity on the device 250 can be
used to locally adjust behavior of the device (e.g., mobile device or any wireless device) to
optimize its resource consumption such as battery/power consumption and more generally,
consumption of other device resources including memory, storage, and processing power. In one
embodiment, the use of a radio on a device can be adjusted based on characteristics of user
behavior (e.g., by the radio controller 266 of the connection manager 265) coupled to the user
activity module 215. For example, the radio controller 266 can turn the radio on or off, based on
characteristics of the user activity on the device 250. In addition, the radio controller 266 can
adjust the power mode of the radio (e.g., to be in a higher power mode or lower power mode)

depending on characteristics of user activity.

[00172] In one embodiment, characteristics of the user activity on device 250 can also be
used to cause another device (¢.g., other computers, a mobile device, a wireless device, or a non-
portable device) or server (e.g., host server 100 and 300 in the examples of FIG. 1A-1C and
FIG. 3A) which can communicate (e.g., via a cellular or other network) with the device 250 to
modify its communication frequency with the device 250. The local proxy 275 can use the
characteristics information of user behavior determined by the user activity module 215 to
instruct the remote device as to how to modulate its communication frequency (e.g., decreasing

communication frequency, such as data push frequency if the user is idle, requesting that the

33

remote device notify the device 250 if new data, changed, data, or data of a certain level of

importance becomes available, etc.).

[00173] In one embodiment, the user activity module 215 can, in response to determining
that user activity characteristics indicate that a user is active after a period of inactivity, request
that a remote device (¢.g., server host server 100 and 300 in the examples of FIG. 1A-1C and
FIG. 3A) send the data that was buffered as a result of the previously decreased communication

frequency.

[00174] In addition, or in alternative, the local proxy 275 can communicate the
characteristics of user activity at the device 250 to the remote device (e.g., host server 100 and
300 in the examples of FIG. 1A-1C and FIG. 3A) and the remote device determines how to alter
its own communication frequency with the device 250 for network resource conservation and

conservation of device 250 resources..

[00175] One embodiment of the local proxy 275 further includes a request/transaction
manager 235, which can detect, identify, intercept, process, manage, data requests initiated on
the device 250, for example, by applications 210 and/or 220, and/or directly/indirectly by a user
request. The request/transaction manager 235 can determine how and when to process a given

request or transaction, or a sct of requests/transactions, based on transaction characteristics.

[00176] The request/transaction manager 235 can prioritize requests or transactions made
by applications and/or users at the device 250, for example by the prioritization engine 241.
Importance or priority of requests/transactions can be determined by the request/transaction
manager 235 by applying a rule set, for example, according to time sensitivity of the transaction,
time sensitivity of the content in the transaction, time criticality of the transaction, time criticality
of the data transmitted in the transaction, and/or time criticality or importance of an application

making the request.

[00177) In addition, transaction characteristics can also depend on whether the transaction
was a result of user-interaction or other user-initiated action on the device (e.g., user interaction
with a application (e.g., a mobile application)). In general, a time critical transaction can include

a transaction resulting from a user-initiated data transfer, and can be prioritized as such.

34

Transaction characteristics can also depend on the amount of data that will be transferred or 1s
anticipated to be transferred as a result of the requested transaction. For example, the connection
manager 265, can adjust the radio mode (e.g., high power or low power mode via the radio

controller 266) based on the amount of data that will need to be transferred.

[00178] In addition, the radio controller 266/connection manager 265 can adjust the radio
power mode (high or low) based on time criticality/sensitivity of the transaction. The radio
controller 266 can trigger the use of high power radio mode when a time-critical transaction
(e.g., a transaction resulting from a user-initiated data transfer, an application running in the

foreground, any other event meeting a certain criteria) is initiated or detected.

{00179} In general, the priorities can be set by default, for example, based on device
platform, device manufacturer, operating system, etc. Priorities can alternatively or in
additionally be set by the particular application; for example, the Facebook application (e.g., a
mobile application) can set its own priorities for various transactions (e.g., a status update can be
of higher priority than an add friend request or a poke request, a message send request can be of
higher priority than a message delete request, for example), an email client or IM chat client may
have its own configurations for priority. The prioritization engine 241 may include set of rules

for assigning priority.

[00180] The prioritization engine 241 can also track network provider limitations or
specifications on application or transaction priority in determining an overall priority status for a
request/transaction. Furthermore, priority can in part or in whole be determined by user
preferences, etther explicit or implicit. A user, can in general, set priorities at different tiers,
such as, specific priorities for sessions, or types, or applications (e.g., a browsing session, a
gaming session, versus an IM chat session, the user may set a gaming session to always have
higher priority than an IM chat session, which may have higher priority than web-browsing
session). A user can set application-specific priorities, (e.g., a user may set Facebook-related
transactions to have a higher priority than LinkedlIn-related transactions), for specific transaction
types (e.g., for all send message requests across all applications to have higher priority than
message delete requests, for all calendar-related events to have a high priority, etc.), and/or for

specific folders.

35

[00181] The prioritization engine 241 can track and resolve conflicts in priorities set by
different entities. For example, manual settings specified by the user may take precedence over
device OS settings, network provider parameters/limitations (e.g., set in default for a network
service area, geographic locale, set for a specific time of day, or set based on service/fee type)
may limit any user-specified settings and/or application-set priorities. In some instances, a
manual synchronization request received from a user can override some, most, or all priority
settings in that the requested synchronization is performed when requested, regardless of the

individually assigned priority or an overall priority ranking for the requested action.

[00182] Priority can be specified and tracked internally in any known and/or convenient
manner, including but not limited to, a binary representation, a multi-valued representation, a

graded representation and all are considered to be within the scope of the disclosed technology.

Change Priority Change Priority
(initiated on device) (initiated on server)
Send email High Receive email High
Delete email Low Edit email Often not possible to sync
) (Low if possible)
(Un)read email Low
Move message Low New email in deleted items Low
Read more High
Download High Delete an email Low
t i .
attachment (Un)Read an email Low
New Calendar event High Move messages Low
Edit/change Calendar event High Any calendar change High
Any contact change High
Add a contact High Wipe/lock device High
Edit a contact High Settings change High
Search contacts High Any folder change High
Change a setting High Connector restart High (if no changes nothing is
sent)
Manual send/receive High
IM status change Medium Social Network Status Updates ~ Medium
Auction outbid orchange High Sever Weather Alerts High
notification

36

Weather Updates Low News Updates Low

Table 1

[00183] Table I above shows, for illustration purposes, some examples of transactions
with examples of assigned priorities in a binary representation scheme. Additional assignments
are possible for additional types of events, requests, transactions, and as previously described,
priority assignments can be made at more or less granular levels, e.g., at the session leve] or at

the application level, etc.

{00184} As shown by way of example in the above table, in general, lower priority
requests/transactions can include, updating message status as being read, unread, deleting of
messages, deletion of contacts; higher priority requests/transactions, can in some instances
include, status updates, new IM chat message, new email, calendar event
update/cancellation/deletion, an event in a mobile gaming session, or other entertainment related
events, a purchase confirmation through a web purchase or online, request to load additional or
download content, contact book related events, a transaction to change a device setting, location-
aware or location-based events/transactions, or any other events/request/transactions initiated by
a user or where the user is known to be, expected to be, or suspected to be waiting for a response,

etc.

[00185] Inbox pruning events (e.g., email, or any other types of messages), are generally
considered low priority and absent other impending cvents, generally will not trigger use of the
radio on the device 250. Specifically, pruning events to remove old email or other content can
be ‘piggy backed’ with other communications if the radio is not otherwise on, at the time of a
scheduled pruning event. For example, if the user has preferences set to ‘keep messages for 7
days old,” then instead of powering on the device radio to initiate a message delete from the
device 250 the moment that the message has exceeded 7 days old, the message is deleted when
the radio 1s powered on next. If the radio is already on, then pruning may occur as regularly
scheduled.

[00186] The request/transaction manager 235, can use the priorities for requests (e.g., by

the prioritization engine 241) to manage outgoing traffic from the device 250 for resource

37

optimization (¢.g., to utilize the device radio more efficiently for battery conservation). For
example, transactions/requests below a certain priority ranking may not trigger use of the radio
on the device 250 if the radio is not already switched on, as controlled by the connection
manager 265. In contrast, the radio controller 266 can turn on the radio such a request can be

sent when a request for a transaction is detected to be over a certain priority level.

[00187] In one embodiment, priority assignments (such as that determined by the local
proxy 275 or another device/entity) can be used cause a remote device to modify its
communication with the frequency with the mobile device or wireless device. For example, the
remote device can be configured to send notifications to the device 250 when data of higher

importance is available to be sent to the mobile device or wireless device.

[00188] In one embodiment, transaction priority can be used in conjunction with
characteristics of user activity in shaping or managing traffic, for example, by the traffic shaping
engine 255. For example, the traffic shaping engine 255 can, in response to detecting that a user
is dormant or inactive, wait to send low priority transactions from the device 250, for a period of
time. In addition, the traffic shaping engine 255 can allow multiple low priority transactions to
accumulate for batch transferring from the device 250 (e.g., via the batching module 257).In one
embodiment, the priorities can be set, configured, or readjusted by a user. For example, content
depicted in Table I in the same or similar form can be accessible in a user interface on the device

250 and for example, used by the user to adjust or view the priorities.

[00189] The batching module 257 can initiate batch transfer based on certain criteria. For
example, batch transfer (e.g., of multiple occurrences of events, some of which occurred at
different instances in time) may occur after a certain number of low priority events have been
detected, or after an amount of time elapsed after the first of the low priority event was initiated.
In addition, the batching module 257 can initiate batch transfer of the cumulated low priority
events when a higher priority event is initiated or detected at the device 250. Batch transfer can
otherwise be initiated when radio use is triggered for another reason (e.g., to receive data from a
remote device such as host server 100 or 300). In one embodiment, an impending pruning event
(pruning of an inbox), or any other low priority events, can be executed when a batch transfer

occurs.

38

[00190] In general, the batching capability can be disabled or enabled at the
event/transaction level, application level, or session level, based on any one or combination of
the following: user configuration, device limitations/settings, manufacturer specification,
network provider parameters/limitations, platform-specific limitations/settings, device OS
settings, etc. In one embodiment, batch transfer can be initiated when an application/window/file
is closed out, exited, or moved into the background; users can optionally be prompted before

inttiating a batch transfer; users can also manually trigger batch transfers.

[00191] In one embodiment, the local proxy 275 locally adjusts radio use on the device
250 by caching data in the cache 285. When requests or transactions from the device 250 can be
satisfied by content stored in the cache 2835, the radio controller 266 need not activate the radio to
send the request to a remote entity (e.g., the host server 100, 300, as shown in FIG. 1B and FIG.
3A or a content provider/application server such as the server/provider 110 shown in the
examples of FIG. 1B and FIG. 1C). As such, the local proxy 275 can use the local cache 285
and the cache policy manager 245 to locally store data for satisfying data requests to eliminate or
reduce the use of the device radio for conservation of network resources and device battery

consumption.

[00192] In leveraging the local cache, once the request/transaction manager 225 intercepts
a data request by an application on the device 250, the local repository 285 can be queried to
determine if there is any locally stored response, and also determine whether the response 1s
valid. When a valid response is available in the local cache 283, the response can be provided to
the application on the device 250 without the device 250 needing to access the cellular network

or wireless broadband network.

[00193] If a valid response is not available, the local proxy 275 can query a remote proxy
(e.g., the server proxy 325 of FIG. 3A) to determine whether a remotely stored response is valid.
If so, the remotely stored response (e.g., which may be stored on the server cache 135 or optional
caching server 199 shown in the example of FIG. 1C) can be provided to the mobile device,
possibly without the mobile device 250 needing to access the cellular network, thus relieving

consumption of network resources.

39

[00194] If a valid cache response is not available, or if cache responses are unavailable for
the intercepted data request, the local proxy 275, for example, the caching policy manager 245,
can send the data request to a remote proxy (e.g., server proxy 325 of FIG. 3A) which forwards
the data request to a content source (e.g., application server/content provider 110 of FIG. 1B)
and a response from the content source can be provided through the remote proxy, as will be
further described in the description associated with the example host server 300 of F1G. 3A. The
cache policy manager 245 can manage or process requests that use a variety of protocals,
including but not limited to HTTP, HTTPS, IMAP, POP, SMTP, XMPP, and/or ActiveSync.

The caching policy manager 245 can locally store responses for data requests in the local

database 285 as cache entries, for subsequent use in satisfying same or similar data requests.

[00195] The caching policy manager 245 can request that the remote proxy monitor
responses for the data request and the remote proxy can notify the device 250 when an
unexpected response to the data request is detected. In such an event, the cache policy manager
245 can erase or replace the locally stored response(s) on the device 250 when notified of the
unexpected response (¢.g., new data, changed data, additional data, etc.) to the data request. In
one embodiment, the caching policy manager 245 is able to detect or identify the protocol used
for a specific request, including but not limited to HTTP, HTTPS, IMAP, POP, SMTP, XMPP,
and/or ActiveSync. In one embodiment, application specific handlers (e.g., via the application
protocol module 246 of the caching policy manager 245) on the local proxy 275 allows for
optimization of any protocol that can be port mapped to a handler in the distributed proxy (c.g.,

port mapped on the proxy server 325 in the example of FIG. 3A).

{00196} In one embodiment, the local proxy 275 notifies the remote proxy such that the
remote proxy can monitor responses received for the data request from the content source for
changed results prior to returning the result to the device 250, for example, when the data request
to the content source has yielded same results to be returned to the mobile device. In general, the
Jocal proxy 275 can simulate application server responses for applications on the device 250,
using locally cached content. This can prevent utilization of the celtular network for transactions
where new/changed data is not available, thus freeing up network resources and preventing

network congestion.

40

[00197] In one embodiment, the local proxy 275 includes an application behavior detector
236 to track, detect, observe, monitor, applications (¢.g., proxy-aware and/or unaware
applications 210 and 220) accessed or installed on the device 250. Application behaviors, or
patterns in detected behaviors (e.g., via the pattern detector 237) of one or more applications
accessed on the device 250 can be used by the local proxy 275 to optimize traffic in a wireless

network needed to satisfy the data needs of these applications.

[00198] For example, based on detected behavior of multiple applications, the traffic
shaping engine 255 can align content requests made by at least some of the applications over the
network (wireless network) (e.g., via the alignment module 256). The alignment module 256 can
delay or expedite some earlier received requests to achieve alignment. When requests are
aligned, the traffic shaping engine 255 can utilize the connection manager to poll over the
network to satisfy application data requests. Content requests for multiple applications can be
aligned based on behavior patterns or rules/settings including, for example, content types
requested by the multiple applications (audio, video, text, etc.), device (e.g., mobile or wireless
device) parameters, and/or network parameters/traffic conditions, network service provider

constraints/specifications, etc.

[00199] In one embodiment, the pattern detector 237 can detect recurrences in application
requests made by the multiple applications, for example, by tracking patterns in application
behavior. A tracked pattern can include, detecting that certain applications, as a background
process, poll an application server regularly, at certain times of day, on certain days of the week,
periodically in a predictable fashion, with a certain frequency, with a certain frequency
response to a certain type of event, in response to a certain type user query, frequency that
requested content is the same, frequency with which a same request is made, interval between

requests, applications making a request, or any combination of the above, for example.

[00200] Such recurrences can be used by traffic shaping engine 255 to offload polling of
content from a content source (€.g., from an application server/content provider 110 of FIG. 1A)
that would result from the application requests that would be performed at the mobile device or
wireless device 250 to be performed instead, by a proxy server (¢.g., proxy server 125 of FIG.

1C or proxy server 325 of FIG. 3A) remote from the device 250, Traffic shaping engine 255 can

41

decide to offload the polling when the recurrences match a rule. For example, there are multiple
occurrences or requests for the same resource that have exactly the same content, or returned
value, or based on detection of repeatable time periods between requests and responses such as a
resource that is requested at specific times during the day. The offloading of the polling can
decrease the amount of bandwidth consumption needed by the mobile device 250 to establish a
wireless (cellular or other wireless broadband) connection with the content source for repetitive

content polls.

(00201} As a result of the offloading of the polling, locally cached content stored in the
local cache 285 can be provided to satisfy data requests at the device 250, when content change
is not detected in the polling of the content sources. As such, when data has not changed,
application data needs can be satisfied without needing to enable radio use or occupying cellular
bandwidth in a wircless network. When data has changed and/or new data has been received, the
remote entity to which polling is offloaded, can notify the device 250. The remote entity may be

the host server 300 as shown in the example of F1G. 3A.

[00202] In one embodiment, the local proxy 275 can mitigate the need/use of periodic
keep-alive messages (heartbeat messages) to maintain TCP/IP connections, which can consume
significant amounts of power thus having detrimental impacts on mobile device battery life. The
connection manager 265 in the local proxy (e.g., the heartbeat manager 267) can detect, identify,

and intercept any or all heartbeat (keep-alive) messages being sent from applications.

[00203] The heartbeat manager 267 can prevent any or all of these heartbeat messages
from being sent over the cellular, or other network, and instead rely on the server component of
the distributed proxy system (c.g., shown in FIG. 1C) to generate and send the heartbeat
messages to maintain a connection with the backend (e.g., application server/provider 110 in the

cxample of FIG. 1A).

{00204} The local proxy 275 generally represents any one or a portion of the functions
described for the individual managers, modules, and/or engines. The local proxy 275 and device
250 can include additional or less components; more or less functions can be included, in whole

or in part, without deviating from the novel art of the disclosure.

42

[00205] FIG. 2B depicts a block diagram illustrating a further example of components in
the cache system shown in the example of FIG. 2A which is capable of caching and adapting

caching strategies for mobile application behavior and/or network conditions.

{00206} In one embodiment, the caching policy manager 245 includes a metadata
generator 203, a cache look-up engine 205, a cache appropriateness decision engine 246, a poll
schedule generator 247, an application protocol module 248, a cache or connect selection engine
249 and/or a local cache invalidator 244. The cache appropriateness decision engine 246 can
further include a timing predictor 246a,a content predictor 246b, a request analyzer 246¢, and/or
a response analyzer 246d, and the cache or connect selection engine 249 includes a response
scheduler 249a. The metadata generator 203 and/or the cache look-up engine 205 ate coupled to

the cache 285 (or local cache) for modification or addition to cache entries or querying thercof.

[00207] The cache look-up engine 205 may further include an ID or URI filter 205a, the
local cache invalidator 244 may further include a TTL manager 244a, and the poll schedule
generator 247 may further include a schedule update engine 247a and/or a time adjustment
engine 247b. One embodiment of caching policy manager 245 includes an application cache
policy repository 243. In one embodiment, the application behavior detector 236 includes a
pattern detector 237, a poll interval detector 238, an application profile generator 239, and/or a
priority engine 241. The poll interval detector 238 may further include a long poll detector 238a
having a response/request tracking engine 238b. The poll interval detector 238 may further
include a long poll hunting detector 238c. The application profile generator 239 can further

inchude a response delay interval tracker 239a,

[00208] The pattern detector 237, application profile generator 239, and the priority
engine 241 were also described in association with the description of the pattern detector shown
in the example of FIG. 2A. One embodiment further includes an application profile repository
242 which can be used by the local proxy 275 to store information or metadata regarding

application profiles (e.g., behavior, patterns, type of HTTP requests, etc.)

[00209] The cache appropriateness decision engine 246 can detect, assess, or determine
whether content from a content source (e.g., application server/content provider 110 in the

example of FIG. 1B) with which a mobile device 250 interacts and has content that may be

43

suitable for caching. For example, the decision engine 246 can use information about a request
and/or a response received for the request initiated at the mobile device 250 to determine
cacheability, potential cacheability, or non-cacheability. In some instances, the deciston engine
246 can mitially verify whether a request is directed to a blacklisted destination or whether the
request itself originates from a blacklisted client or application. If so, additional processing and
analysis may not be performed by the decision engine 246 and the request may be allowed to be
sent aver the air to the server to satisfy the request. The black listed destinations or
applications/clients (e.g., mobile applications) can be maintained locally in the local proxy (e.g.,
in the application profile repository 242) or remotely (e.g., in the proxy server 325 or another

entity).

{00210} In one embodiment, the decision engine 246, for example, via the request
analyzer 246¢, collects information about an application or client request generated at the mobile
device 250. The request information can include request characteristics information including,
for example, request method. For example, the request method can indicate the type of HTTP
request generated by the mobile application or client. In one embodiment, response to a request
can be identified as cacheable or potentially cacheable if the request method 1s a GET request or
POST request. Other types of requests (¢.g., OPTIONS, HEAD, PUT, DELETE, TRACE, or
CONNECT) may or may not be cached. In general, HTTP requests with uncacheable request

methods will not be cached.

(00211} Request characteristics information can further include information regarding
request size, for example. Responses to requests (¢.g., HTTP requests) with body size exceeding
a certain size will not be cached. For example, cacheability can be determined if the information
about the request indicates that a request body size of the request does not exceed a certain size.
In some instances, the maximum cacheable request body size can be set to 8092 bytes. In other
instances, different values may be used, dependent on network capacity or network operator

specific settings, for example.

[00212] In some mstances, content from a given application server/content provider (¢.g.,
the server/content provider 110 of FIG. 1C) is determined to be suitable for caching based on a

sct of criteria, for example, criteria specifying time criticality of the content that is being

44

requested from the content source. In one embodiment, the local proxy (e.g., the local proxy 175
or 275 of FIG. 1C and FIG. 2A) applics a selection criteria to store the content from the host
server which is requested by an application as cached elements in a local cache on the mobile

device to satisfy subsequent requests made by the application.

[00213] The cache appropriateness decision engine 246, further based on detected patterns
of requests sent from the mobile device 250 (e.g., by a mobile application or other types of
clients on the device 250) and/or patterns of received responses, can detect predictability in
requests and/or responses. For example, the request characteristics information collected by the
decision engine 246, (e.g., the request analyzer 246¢) can further include periodicity information
between a request and other requests generated by a same client on the mobile device or other

requests directed to the same host (e.g., with similar or same identifier parameters).

[00214] Periodicity can be detected, by the decision engine 246 or the request analyzer
246¢, when the request and the other requests generated by the same client occur at a fixed rate
or nearly fixed rate, or at a dynamic rate with some identifiable or partially or wholly
reproducible changing pattern. If the requests are made with some identifiable pattern (e.g.,
regular intervals, intervals having a detectable pattern, or trend (e.g., increasing, decreasing,
constant, etc.) the timing predictor 246a can determine that the requests made by a given
application on a device is predictable and identify it to be potentially appropriate for caching, at

least from a timing standpoint.

[00215] An identifiable pattern or trend can generally include any application or client
behavior which may be simulated either locally, for example, on the local proxy 275 on the
mobile device 250 or simulated remotely, for example, by the proxy server 325 on the host 300,

or a combination of local and remote simulation to emulate application behavior.

[00216] In one embodiment, the decision engine 246, for example, via the response
analyzer 246d, can collect information about a response to an application or client request
generated at the mobile device 250. The response is typically received from a server or the host
of the application (e.g., mobile application) or client which sent the request at the mobile device

250. In some instances, the mobile client or application can be the mobile version of an

45

application (¢.g., social networking, search, travel management, voicemail, contact manager,

email) or a web site accessed via a web browser or via a desktop client.

[00217] For example, response characteristics information can include an indication of
whether transfer encoding or chunked transfer encoding is used in sending the response. In some
instances, responses to HTTP requests with transfer encoding or chunked transfer encoding are
not cached, and therefore are also removed from further analysis. The rationale here is that
chunked responses are usually large and non-optimal for caching, since the processing of these
transactions may likely slow down the overall performance. Therefore, in one embodiment,
cacheability or potential for cacheability can be determined when transfer encoding 1s not used in

sending the response.

[00218] In addition, the response characteristics information can include an associated
status code of the response which can be identified by the response analyzer 246d. In some
instances, HTTP responses with uncacheable status codes are typically not cached. The response
analyzer 246d can extract the status code from the response and determine whether it matches a
status code which 1s cacheable or uncacheable. Some cacheable status codes include by way of
example: 200-OK, 301-Redirect, 302-Found, 303-See other, 304 - Not Modified, 307 Temporary
Redirect, or 500 — Internal server error. Some uncacheable status codes can include, for

example, 403 — Forbidden or 404 — Not found.

[00219] In one embodiment, cacheability or potential for cacheability can be determined if
the information about the response does not indicate an uncacheable status code or indicates a
cacheable status code. If the response analyzer 246d detects an uncacheable status code
associated with a given response, the specific transaction (request/response pair) may be
eliminated from further processing and determined to be uncacheable on a temporary basis, a
semi-permanent, or a permanent basis. If the status code indicates cacheability, the transaction
(e.g., request and/or response pair) may be subject to further processing and analysis to confirm

cacheability, as shown in the example flow charts of F1G. 9-10.

[00220] Response characteristics information can also include response size information.
In general, responses can be cached locally at the mobile device 250 if the responses do not

exceed a certain size. In some instances, the default maximum cached response size is set to 115

46

KB. In other instances, the max cacheable response size may be different and/or dynamically
adjusted based on operating conditions, network conditions, network capacity, user preferences,
network operator requirements, or other application-specific, user specific, and/or device-specific
reasons. In one embodiment, the response analyzer 246d can identify the size of the response,
and cacheability or potential for cacheability can be determined if a given threshold or max value

is not exceeded by the response size.

{00221} Furthermore, response characteristics information can include response body
information for the response to the request and other response to other requests generated by a
same client on the mobile device, or directed to a same content host or application server. The
response body information for the response and the other responses can be compared, for
example, by the response analyzer 2464, to prevent the caching of dynamic content (or responses
with content that changes frequently and cannot be efficiently served with cache entries, such as
financial data, stock quotes, news feeds, real-time sporting event activities, etc.), such as content

that would no longer be relevant or up-to-date if served from cached entries.

[00222] The cache appropriateness decision engine 246 (e.g., the content predictor 246b)
can definitively identify repeatability or identify indications of repeatability, potential
repeatability, or predictability in responses received from a content source (e.g., the content
host/application server 110 shown in the example of FIG. 1C). Repeatability can be detected by,
for example, tracking at least two responses received from the content source and determines if
the two responses are the same. For example, cacheability can be determined, by the response
analyzer 246d, if the response body information for the response and the other responses sent by
the same mobile client or directed to the same host/server are same or substantially the same.
The two responses may or may not be responses sent in response to consecutive requests. In one
embodiment, hash values of the responses received for requests from a given application are
used to determine repeatability of content (with or without heuristics) for the application in
general and/or for the specific request. Additional same responses may be required for some

applications or under certain circumstances.

[00223] Repeatability in received content need not be 100% ascertained. For example,

responses can be determined to be repeatable if a certain number or a certain percentage of

47

responses are the same, or similar. The certain number or certain percentage of same/similar
responses can be tracked over a select period of time, set by default or set based on the
application generating the requests (e.g., whether the application is highly dynamic with constant
updates or less dynamic with infrequent updates). Any indicated predictability or repeatability,
or posstble repeatability, can be utilized by the distributed system in caching content to be

provided to a requesting application or client on the mobile device 250,

[00224] In one embodiment, for a long poll type request, the local proxy 175 can begin to
cache responses on a third request when the response delay times for the first two responses are
the same, substantially the same, or detected to be increasing in intervals. In general, the
recetved responses for the first two responses should be the same, and upon verifying that the
third response received for the third request is the same (e.g., if RO = R1 = R2), the third
response can be locally cached on the mobile device. Less or more same responses may be
required to begin caching, depending on the type of application, type of data, type of content,

user preferences, or carrier/network operator specifications.

[00225] Increasing response delays with same responses for long polls can indicate a
hunting period (e.g., a period in which the application/client on the mobile device is secking the
Jongest time between a request and response that a given network will allow), as detected by the

long poll hunting detector 238c¢ of the application behavior detector 236.

[00226] An example can be described below using T0, T1, T2, where T indicates the delay
time between when a request is sent and when a response (¢.g., the response header) is

detected/received for consecutive requests:

TO = Responsel(t) — Request0(t) = 180 s. (+/- tolerance)
T1=Responsel(t) — Requesti(t) =240 s. (+/- tolerance)
T2 = Response2(t) — Request2(t) = 500 s. (+/- tolerance)

{00227} In the example timing sequence shown above, TO <T1 < T2, this may indicate a
hunting pattern for a long poll when network timeout has not yet been reached or exceeded.
Furthermore, if the responses R0, R1, and R2 received for the three requests are the same, R2

can be cached. In this example, R2 is cached during the long poll hunting period without waiting

48

for the long poll to settle, thus expediting response caching (e.g., this is optional accelerated

caching behavior which can be implemented for all or select applications).

[00228] As such, the local proxy 275 can specify information that can be extracted from
the timing sequence shown above (c.g., polling schedule, polling interval, polling type) to the
proxy server and begin caching and to request the proxy server to begin polling and monitoring
the source (e.g., using any of TO, T1, T2 as polling intervals but typically T2, or the largest
detected interval without timing out, and for which responses from the source is received will be
sent to the proxy server 325 of FIG. 3A for use in polling the content source (e.g., application

server/service provider 310)).

{00229] However, if the time intervals are detected to be getting shorter, the application
(e.g., mobile application)/client may still be hunting for a time interval for which a response can
be reliably recetved from the content source (¢.g., application/server server/provider 110 or 310),
and as such caching typically should not begin until the request/response intervals indicate the

same time interval or an increasing time interval, for example, for a long poll type request.

[00230] An example of handling a detected decreasing delay can be described below using
T0O, T1, T2, T3, and T4 where T indicates the delay time between when a request is sent and

when a response (¢.g., the response header) is detected/received for consecutive requests:

TO = ResponseQ(t) — Request((t) = 160 s. (+/- tolerance)

T1 = Responsel(t) — Request1(t) = 240 s. (+/- tolerance)

T2 = Response2(t) — Request2(t) = 500 s. (+/- tolerance)

T3 = Time out at 700 s. (+/- tolerance)

T4 = Responsed(t) — Requestd(t) = 600 (+/- tolerance)
{00231} If a pattern for response delays T1 <T2 <T3 > T4 is detected, as shown in the
above timing sequence (e.g., detected by the long poll hunting detector 238c¢ of the application
behavior detector 236), it can be determined that T3 likely exceeded the network time out during
a long poll hunting period. In Request 3, a response likely was not recetved since the connection
was terminated by the network, application, server, or other reason before a response was sent or
available. On Request 4 (after T4), if a response (¢.g., Response 4) is detected or received, the

local proxy 275 can then use the response for caching (if the content repeatability condition is

49

met). The local proxy can also use T4 as the poll interval in the polling schedule set for the

proxy server to monitor/poll the content source.

[00232] Note that the above description shows that caching can begin while long polls are
in hunting mode in the event of detecting increasing response delays, as long as responses are
received and not timed out for a given request. This can be referred to as the optional
accelerated caching during long poll hunting. Caching can also begin after the hunting mode
(e.g., after the poll requests have settled to a constant or near constant delay value) has
completed. Note that hunting may or may not occur for long polls and when hunting occurs; the
proxy 275 can generally detect this and determine whether to begin to cache during the hunting

period (increasing intervals with same responses) or wait until the hunt settles to a stable value.

[00233] In one embodiment, the timing predictor 246a of the cache appropriateness
deciston engine 246 can track timing of responses received from outgoing requests from an
application (c.g., mobile application) or client to detect any identifiable patterns which can be
partially wholly reproducible, such that locally cached responses can be provided to the
requesting client on the mobile device 250 1 a manner that simulates content source (e.g.,
application server/content provider 110 or 310) behavior. For example, the manner in which
(e.g., from a timing standpoint) responses or content would be delivered to the requesting
application/client on the device 250. This ensures preservation of user experience when
responses to application or mobile client requests are served from a local and/or remote cache
instead of being retrieved/received directly from the content source (e.g., application, content

provider 110 or 310).

[00234] In one embodiment, the decision engine 246 or the timing predictor 246a
determines the timing characteristics a given application (e.g., mobile application) or client from,
for example, the request/response tracking engine 238b and/or the application profile generator
239 (e.g., the response delay interval tracker 239a). Using the timing characteristics, the timing
predictor 246a determines whether the content received in response to the requests are suitable or
are potentially suitable for caching. For example, poll request intervals between two consecutive
requests from a given application can be used to determine whether request intervals are

repeatable (e.g., constant, near constant, increasing with a pattern, decreasing with a pattern, ctc.)

50

and can be predicted and thus reproduced at teast some of the times either exactly or

approximated within a tolerance level.

[00235] In some instances, the timing characteristics of a given request type for a specific
application, for multiple requests of an application, or for multiple applications can be stored in
the application profile repository 242. The application profile repository 242 can generally store
any type of information or metadata regarding application request/response characteristics

including timing patterns, timing repeatability, content repeatability, etc.

[00236] The application profile repository 242 can also store metadata indicating the type
of request used by a given application (e.g., long polls, long-held HTTP requests, HTTP
streaming, push, COMET push, etc.) Application profiles indicating request type by applications
can be used when subsequent same/similar requests are detected, or when requests are detected
from an application which has already been categorized. In this manner, timing characteristics
for the given request type or for requests of a specific application which has been tracked and/or

analyzed, need not be reanalyzed.

[00237] Application profiles can be associated with a time-to-live (e.g., or a default
expiration time). The use of an expiration time for application profiles, or for various aspects of
an application or request’s profile can be used on a case by case basis. The time-to-live or actual
expiration time of application profile entries can be set to a default value or determined
individually, or a combination thereof. Application profiles can also be specific to wireless

networks, physical networks, network operators, or specific carriers.

[00238] One embodiment includes an application blacklist manager 201. The application
blacklist manager 201 can be coupled to the application cache policy repository 243 and can be
partially or wholly internal to local proxy or the caching policy manager 245. Similarly, the
blacklist manager 201 can be partially or wholly internal to local proxy or the application
behavior detector 236. The blacklist manager 201 can aggregate, track, update, manage, adjust,
or dynamically monitor a list of destinations of servers/host that are “blacklisted,” or identified as
not cached, on a permanent or temporary basis. The blacklist of destinations, when identified in

a request, can potentially be used to allow the request to be sent over the (cellular) network for

51

servicing. Additional processing on the request may not be performed since it is detected to be

directed to a blacklisted destination.

[00239] Blacklisted destinations can be identified in the application cache policy
repository 243 by address identifiers including specific URISs or patterns of identifiers including
URI patterns. In general, blacklisted destinations can be set by or modified for any reason by
any party including the user (owner/user of mobile device 250), operating system/mobile
platform of device 250, the destination itself, network operator (of celtular network), Internet
service provider, other third parties, or according to a list of destinations for applications known
to be uncacheable/not suited for caching. Some entries in the blacklisted destinations may
include destinations aggregated based on the analysis or processing performed by the local proxy

(e.g., cache appropriateness decision engine 246).

[00240] For example, applications or mobile clients on the mobile device for which
responses have been identified as non-suitable for caching can be added to the blacklist. Their
corresponding hosts/servers may be added in addition to or in lieu of an identification of the
requesting application/client on the mobile device 250. Some or all of such clients identified by
the proxy system can be added to the blacklist. For example, for all application clients or
applications that are temporarily identified as not being suitable for caching, only those with
certain detected characteristics (based on timing, periodicity, frequency of response content

change, content predictability, size, etc.) can be blacklisted.

[00241] The blacklisted entries may include a list of requesting applications or requesting
clients on the mobile device (rather than destinations) such that, when a request is detected from
a given application or given client, it may be sent through the network for a response, since

responses for blacklisted clients/applications are in most circumstances not cached.

[00242] A given application profile may also be treated or processed differently (e.g.,
different behavior of the local proxy 275 and the remote proxy 325) depending on the mobile
account associated with a mobile device from which the application is being accessed. For
example, a higher paying account, or a premier account may allow more frequent access of the
wireless network or higher bandwidth allowance thus affecting the caching policies implemented

between the local proxy 275 and proxy server 325 with an emphasis on better performance

52

compared to conservation of resources. A given application profile may also be treated or
processed differently under different wireless network conditions (e.g., based on congestion or

network outage, etc.).

{00243} Note that cache appropriateness can be determined, tracked, and managed for
multiple clients or applications on the mobile device 250. Cache appropriateness can also be
determined for different requests or request types mitiated by a given client or application on the
mobile device 250. The caching policy manager 245, along with the timing predictor 246a
and/or the content predictor 246b which heuristically determines or estimates predictability or
potential predictability, can track, manage and store cacheability information for various
application or various requests for a given application. Cacheability information may also
include conditions (e.g., an application can be cached at certain times of the day, or certain days
of the week, or certain requests of a given application can be cached, or all requests with a given
destination address can be cached) under which caching is appropriate which can be determined
and/or tracked by the cache appropriateness decision engine 246 and stored and/or updated when
appropriate in the application cache policy repository 243 coupled to the cache appropriatencss

deciston engine 246.

[00244] The information in the application cache policy repository 243 regarding
cacheability of requests, applications, and/or associated conditions can be used later on when
same requests are detected. In this manner, the decision engine 246 and/or the timing and
content predictors 246a/b need not track and reanalyze request/response timing and content
characteristics to make an assessment regarding cacheability. In addition, the cacheability
information can in some instances be shared with local proxies of other mobile devices by way

of direct communication or via the host server (e.g., proxy server 325 of host server 300).

[00245] For example, cacheability information detected by the local proxy 275 on various
mobile devices can be sent to a remote host server or a proxy server 325 on the host server (e.g.,
host server 300 or proxy server 325 shown in the example of FIG. 3A, host 100 and proxy server
125 in the example of FIG. 1A-1C). The remote host or proxy server can then distribute the
information regarding application-specific, request-specific cacheability information and/or any

associated conditions to various mobile devices or their local proxies in a wireless network or

53

across multiple wireless networks (same service provider or multiple wireless service providers)

for their use.

[00246] In general, the selection criteria for caching can further include, by way of
example but not limitation, the state of the mobile device indicating whether the mobile device is
active or inactive, network conditions, and/or radio coverage statistics. The cache
appropriateness decision engine 246 can in any one or any combination of the criteria, and in any

order, identifying sources for which caching may be suitable.

(00247} Once application servers/content providers having identified or detected content
that is potentially suitable for local caching on the mobile device 250, the cache policy manager
245 can proceed to cache the associated content received from the identified sources by storing
content received from the content source as cache elements in a local cache (e.g., local cache 185
or 285 shown in the examples of FIG. 1B-1C and FIG. 2A, respectively) on the mobile device
250.

[00248] The response can be stored in the cache 285 (¢.g., also referred as the local cache)
as a cache entry. In addition to the response to a request, the cached entry can include response
metadata having additional information regarding caching of the response. The metadata may be
generated by the metadata generator 203 and can include, for example, timing data such as the
access time of the cache entry or creation time of the cache entry. Metadata can include
additional information, such as any information suited for use in determining whether the
response stored as the cached entry is used to satisfy the subsequent response. For example,
metadata information can further include, request timing history (e.g., including request time,
request start time, request end time), hash of the request and/or response, time intervals or

changes in time intervals, etc.

[00249] The cache entry is typically stored in the cache 285 in association with a time-to-
live (TTL), which for example may be assigned or determined by the TTL manager 244a of the
cache invalidator 244. The time-to-live of a cache entry is the amount of time the entry is
persisted in the cache 285 regardless of whether the response s still valid or relevant for a gtven
request or client/application on the mobile device 250. For example, if the time-to-live of a

given cache entry is set to 12 hours, the cache entry is purged, removed, or otherwise indicated

54

as having exceeded the time-to-live, even if the response body contained in the cache entry is

still current and applicable for the associated request.

[00250] A default time-to-live can be automatically used for all entries unless otherwise
specified (e.g., by the TTL manager 244a), or each cache entry can be created with its individual
TTL (e.g., determined by the TTL manager 244a based on various dynamic or static criteria).
Note that cach entry can have a single time-to-live associated with both the response data and
any associated metadata. In some instances, the associated metadata may have a different time-

to-live (c.g., a longer time-to-live) than the response data.

[00251] The content source having content for caching can, in addition or in alternate, be
identified to a proxy server {(¢.g., proxy server 125 or 325 shown in the examples of F1G. 1A-1C
and FIG. 3A, respectively) remote from and in wireless communication with the mobile device
250 such that the proxy server can monitor the content source (e.g., application server/content
provider 110) for new or changed data. Similarly, the local proxy (e.g., the local proxy 175 or
275 of FIG. 1A-1C and F1G. 2A, respectively) can identify to the proxy server that content
received from a specific application server/content provider is being stored as cached elements in

the local cache 285.

[00252] Once content has been locally cached, the cache policy manager 245, upon
recetving future polling requests to contact the application server/content host (¢.g., 110 or 310),
can retrieve the cached elements from the local cache to respond to the polling request made at
the mobile device 250 such that a radio of the mobile device is not activated to service the
polling request. For example, the cache look-up engine 205 can query the cache 285 to identify
the response to be served to a response. The response can be served from the cache in response
to identifying a matching cache entry and also using any metadata stored with the response in the
cache entry. The cache entries can be queried by the cache look-up engine using a URI of the
request or another type of identifier (¢.g., via the ID or URI filter 205a). The cache-lookup
engine 205 can further use the metadata (e.g., extract any timing information or other relevant
information) stored with the matching cache entry to deternrmne whether response 1s still sutted

for use in being served to a current request.

55

[00253] Note that the cache-look-up can be performed by the engine 205 using one or
more of various multiple strategies. In one embodiment, multiple cook-up strategies can be
exccuted sequentially on each entry store din the cache 285, until at least one strategy identifies a
matching cache entry. The strategy employed to performing cache look-up can include a strict

matching criteria or a matching criteria which allows for non-matching parameters.

[00254] For example, the look-up engine 205 can perform a strict matching strategy which
searches for an exact match between an identifier (¢.g., a URI for a host or resource) referenced
in a present request for which the proxy is attempting to identify a cache entry and an identifier
stored with the cache entries. In the case where identifiers include URIs or URLS, the matching
algorithm for strict matching will search for a cache entry where all the parameters in the URLs

match. For example:

Example 1.

L. Cache contains entry for http://test.com/products/
2. Request is being made to URI http://test.com/products/

Strict strategy will find a match, since both URISs are same.
Example 2.

1. Cache contains entry for http://test.com/products/?query=all
2. Request is being made to URI hitp://test.com/products/?query=sub
[00255] Under the strict strategy outlined above, a match will not be found since the URIs

differ in the query parameter.

[00256] In another example strategy, the look-up engine 205 looks for a cache entry with an
identifier that partially matches the identifier references in a present request for which the proxy
18 attempting to identify a matching cache entry. For example, the look-up engine 205 may look
for a cache entry with an identifier which differs from the request identifier by a query parameter
value. In utilizing this strategy, the look-up engine 203 can collect information collected for
multiple previous requests (e.g., a list of arbitrary parameters in an identifier) to be later checked
with the detected arbitrary parameter in the current request. For example, in the case where

cache entries are stored with URI or URL identifiers, the look-up engine scarches for a cache

56

entry with a URI differing by a query parameter. If found, the engine 205 can examine the cache
entry for information collected during previous requests (c.g. a list of arbitrary parameters) and
checked whether the arbitrary parameter detected in or extracted from the current URI/URL

belongs to the arbitrary parameters list.

Example 1.

1. Cache contains entry for http://test.com/products/?query=all, where query is marked
as arbitrary.
2. Request is being made to URIT http://text.com/products/?query=sub

Match will be found, since query parameter 1s marked as arbitrary.
Example 2.

I. Cache contains entry for http:/test.com/products/?query=all, where query s marked
as arbitrary.
2. Request is being made to URL http://test.com/products/?query=sub&sort=asc

Match will not be found, since current request contains sort parameter which is not marked as
arbitrary in the cache entry.

[00257] Additional strategies for detecting cache hit may be employed. These strategies
can be implemented singly or in any combination thereof. A cache-hit can be determined when
any one of these strategies determines a match. A cache miss may be indicated when the look-up
engine 205 determines that the requested data cannot be served from the cache 285, for any
reason. For example, a cache miss may be determined when no cache entries are identified for

any or all utilized look-up strategies.

[00258] Cache miss may also be determined when a matching cache entry exists but
determined to be invalid or irrelevant for the current request. For example, the look-up engine
205 may further analyze metadata (e.g., which may include timing data of the cache entry)
associated with the matching cache entry to determine whether it is still suitable for use in

responding to the present request.

57

[00259] When the look-up engine 205 has identified a cache hit (e.g., an event indicating
that the requested data can be served from the cache), the stored response in the matching cache

entry can be served from the cache to satisfy the request of an application/client.

{00260} By servicing requests using cache entries stored in cache 285, network bandwidth
and other resources need not be used to request/receive poll responses which may have not
changed from a response that has already been received at the mobile device 250. Such
servicing and fulfilling application (e.g., mobile application) requests locally via cache entries in
the local cache 2835 allows for more efficient resource and mobile network traffic utilization and
management since the request need not be sent over the wireless network further consuming
bandwidth. In general, the cache 285 can be persisted between power on/off of the mobile

device 250, and persisted across application/client refreshes and restarts.

[00261] For example, the local proxy 2735, upon receipt of an outgoing request from its
mobile device 250 or from an application or other type of client on the mobile device 250, can
intercept the request and determine whether a cached response is available in the local cache 285
of the mobile device 250. If so, the outgoing request is responded to by the local proxy 275
using the cached response on the cache of the mobile device. As such, the outgoing request can
be filled or satisfied without a need to send the outgoing request over the wireless network, thus

conserving network resources and battery consumption.

[00262] In one embodiment, the responding to the requesting application/client on the
device 250 is timed to correspond to a manner in which the content server would have responded
to the outgoing request over a persistent connection (e.g., over the persistent connection, or long-
held HTTP connection, long poll type connection, that would have been established absent
interception by the local proxy). The timing of the response can be emulated or simulated by the
local proxy 275 to preserve application behavior such that end user experience is not affected, or
minimally affected by serving stored content from the local cache 285 rather than fresh content
received from the intended content source (¢.g., content host/application server 110 of F1G. 1B-
FIG. 1C). The timing can be replicated exactly or estimated within a tolerance parameter, which
may go unnoticed by the user or treated similarly by the application so as to not cause operation

issues.

58

[00263] For example, the outgoing request can be a request for a persistent connection
intended for the content server (e.g., application server/content provider of examples of FIG.
1A-1C). In a persistent connection (¢.g., long poll, COMET-style push or any other push
simulation in asynchronous HTTP requests, long-held HTTP request, HTTP streaming, or
others) with a content source (server), the connection is held for some time after a request is sent.
The connection can typically be persisted between the mobile device and the server until content
is available at the server to be sent to the mobile device. Thus, there typically can be some delay
in time between when a long poll request is sent and when a response 1s received from the
content source. If a response is not provided by the content source for a certain amount of time,
the connection may also terminate due to network reasons (e.g., socket closure) if a response is

not sent.

[00264] Thus, to emulate a response from a content server sent over a persistent
connection (¢.g., a long poll style connection), the manner of response of the content server can
be simulated by allowing a time interval to elapse before responding to the outgoing request with
the cached response. The length of the time interval can be determined on a request by request

basis or on an application by application (client by client basis), for example.

[00265] In one embodiment, the time interval is determined based on request
characteristics (e.g., timing characteristics) of an application on the mobile device from which
the outgoing request originates. For example, poll request intervals (e.g., which can be tracked,
detected, and determined by the long poll detector 238a of the poll interval detector 238) can be
used to determine the time interval to wait before responding to a request with a local cache

entry and managed by the response scheduler 249a.

[00266] One embodiment of the cache policy manager 245 includes a poll schedule
generator 247 which can generate a polling schedule for one or more applications on the mobile
device 250. The polling schedule can specify a polling interval that can be employed by an
entity which is physically distinct and/or separate from the mobile device 250 in monitoring the
content source for one or more applications (such that cached responses can be verified
periodically by polling a host server (host server 110 or 310) to which the request is directed) on

behalf of the mobile device. One example of such an external entity which can monitor the

59

content at the source for the mobile device 250 is a proxy server (e.g., proxy server 125 or 325

shown 1n the examples of FIG. 1A-1C and FIG. 3A-C).

[00267] The polling schedule (e.g., including a rate/frequency of polling) can be
determined, for example, based on the interval between the polling requests directed to the
content source from the mobile device. The polling schedule or rate of polling may be
determined at the mobile device 250 (by the local proxy). In one embodiment, the poll interval
detector 238 of the application behavior detector 236 can monitor polling requests directed to a
content source from the mobile device 250 in order to determine an interval between the polling

requests made from any or all application (e.g., mobile application).

{00268] For example, the poll interval detector 238 can track requests and responses for
applications or clients on the device 250. In one embodiment, consecutive requests are tracked
prior to detection of an outgoing request initiated from the application (e.g., mobile application)
on the mobile device 250 by the same mobile client or application (¢.g., mobile application).
The polling rate can be determined using request information collected for the request for which
the response is cached. In one embodiment, the rate 1s determined from averages of time
intervals between previous requests generated by the same client which generated the request.
For example, a first interval may be computed between the current request and a previous
request, and a second interval can be computed between the two previous requests. The polling
rate can be set from the average of the first interval and the second interval and sent to the proxy

server in setting up the caching strategy.

[00269] Alternate intervals may be computed in generating an average; for example,
multiple previous requests in addition to two previous requests may be used, and more than two
intervals may be used in computing an average. In general, in computing intervals, a given
request need not have resulted in a response to be received from the host server/content source in
order to use 1t for interval computation. In other words, the timing characteristics of a given
request may be used in interval computation, as long as the request has been detected, even if the

request failed in sending, or if the response retrieval failed.

[00270] One embodiment of the poll schedule generator 247 includes a schedule update

engine 247a and/or a time adjustment engine 247b. The schedule update engine 247a can

60

determine a need to update a rate or polling interval with which a given application
server/content host from a previously set value, based on a detected interval change in the actual
requests generated from a client or application (e.g., mobile application) on the mobile device

250.

[00271] For example, a request for which a monitoring rate was determined may now be
sent from the application (¢.g., mobile application) or client at a different request interval. The
scheduled update engine 247a can determine the updated polling interval of the actual requests
and generate a new rate, different from the previously set rate to poll the host at on behalf of the
mobile device 250. The updated polling rate can be communicated to the remote proxy (proxy
server 325) over the cellular network for the remote proxy to monitor the given host. In some
instances, the updated polling rate may be determined at the remote proxy or remote entity which

monitors the host.

[00272] In one embodiment, the time adjustment engine 247b can further optimize the poll
schedule generated to monitor the application server/content source (110 or 310). For example,
the time adjustment engine 247b can optionally specify a time to start polling to the proxy server.
For example, in addition to setting the polling interval at which the proxy server is to monitor the
application, server/content host can also specify the time at which an actual request was

generated at the mobile client/application.

{00273} However, in some cases, due to inherent transmission delay or added network
delays or other types of latencies, the remote proxy server receives the poll setup from the local
proxy with some delay (e.g., a few minutes, or a few seconds). This has the effect of detecting
response change at the source after a request is generated by the mobile client/application
causing the invalidate of the cached response to occur after it has once again been served to the

application after the response is no longer current or valid.

{00274} To resolve this non-optimal result of serving the out-dated content once again
before invalidating it, the time adjustment engine 247b can specify the time (t0) at which polling
should begin in addition to the rate, where the specified imitial time t0 can be specified to the
proxy server 325 as a time that is less than the actual time when the request was generated by the

mobile app/client. This way, the server polls the resource slightly before the generation of an

61

actual request by the mobile client such that any content change can be detected prior to an
actual application request. This prevents invalid or irrelevant out-dated content/response from

being served once again before fresh content is served.

[00275] In one embodiment, an outgoing request from a mobile device 250 is detected to
be for a persistent connection (e.g., a long poll, COMET style push, and long-held (HTTP)
request) based on timing charactenistics of prior requests from the same application or client on
the mobile device 250. For example, requests and/or corresponding responses can be tracked by
the request/response tracking engine 238b of the long poll detector 238a of the poll interval
detector 238.

{00276} The timing characteristics of the consecutive requests can be determined to set up
a polling schedule for the application or client. The polling schedule can be used to monitor the
content source (content source/application server) for content changes such that cached content
stored on the local cache in the mobile device 250 can be appropriately managed (e.g., updated
or discarded). In one embodiment, the timing characteristics can include, for example, a

response delay time (‘D’) and/or an idle time (‘IT°).

[00277] In one embodiment, the response/request tracking engine 238b can track requests
and responses to determine, compute, and/or estimate, the timing diagrams for applicant or client

requests.

[00278] For example, the response/request tracking engine 238b detects a first request
(Request 0) initiated by a client on the mobile device and a second request (Request 1) initiated
by the client on the mobile device after a response is received at the maobile device responsive to

the first request. The second request is one that is subsequent to the first request.

[00279] In one embodiment, the response/request tracking engine 238b can track requests
and responses to determine, compute, and/or estimate the timing diagrams for applicant or client
requests. The response/request tracking engine 238b can detect a first request initiated by a
client on the mobile device and a second request initiated by the client on the mobile device after
a response is recetved at the mobile device responsive to the first request. The second request is

one that 1s subsequent to the first request.

62

[00280] The response/request tracking engine 238b further determines relative timings
between the first, second requests, and the response received in response to the first request. In
general, the relative timings can be used by the long poll detector 238a to determine whether

requests generated by the application are long poll requests.

[00281}] Note that in general, the first and second requests that are used by the
response/request tracking engine 238b in computing the relative timings are selected for use after
a long poll hunting period has settled or in the event when long poll hunting does not occur.
Timing characteristics that are typical of a long poll hunting period can be, for example, detected
by the long poll hunting detector 238c. In other words, the requests tracked by the
response/request tracking engine 238b and used for determining whether a given request 1s a

Jong poll occurs after the long poll has settled .

[00282] In one embodiment, the long poll hunting detector 238¢ can identify or detect
hunting mode, by identifying increasing request intervals (e.g., increasing delays). The long poll
hunting detector 238a can also detect hunting mode by detecting increasing request intervals,
followed by a request with no response (e.g., connection timed out), or by detecting increasing
request intervals followed by a decrease in the interval. In addition, the long poll hunting
detector 238c can apply a filter value or a threshold value to request-response time delay value
(e.g., an absolute value) above which the detected delay can be considered to be a long poll
request-response delay. The filter value can be any suitable value characteristic of long polls
and/or network conditions (e.g., 2 s, 5s, 10s, 15 s, 20s., etc.) and can be used as a filter or

threshold value.

[00283] The response delay time ('D') refers to the start time to receive a response after a
request has been sent and the idle refers to time to send a subsequent request after the response
has been received. In one embodiment, the outgoing request is detected to be for a persistent
connection based on a comparison (e.g., performed by the tracking engine 238b) of the response
delay time relative ('D') or average of ('D') (e.g., any average over any period of time) to the idle
time ('IT"), for example, by the long poll detector 238a. The number of averages used can be
fixed, dynamically adjusted, or changed over a longer period of time. For example, the requests

initiated by the client are determined to be long poll requests if the response delay time interval

63

is greater than the idle time tnterval (D >IT or D>>IT). In one embodiment, the tracking engine
238b of the long poll detector computes, determines, or estimates the response delay time
interval as the amount of time elapsed between time of the first request and initial detection or

full receipt of the response.

[00284] In one embodiment, a request is detected to be for a persistent connection when
the 1dle time (‘IT”) 1s short since persistent connections, established in response to long poll
requests or long poll HTTP requests for example, can also be characterized in detecting
immediate or near-immediate issuance of a subsequent request after receipt of a response to a
previous request (e.g., IT ~0). As such, the idle time (‘IT”) can also be used to detect such
immediate or near-immediate re-request to identify long poll requests. The absolute or relative
timings determined by the tracking engine 238b are used to determine whether the second
request is immediately or near-immediately re-requested after the response to the first request is
recetved. For example, a request may be categorized as a long poll request if D+ RT + T~ D +
RT since IT is small for this to hold true. IT may be determined to be small if it is less than a
threshold value. Note that the threshold value could be fixed or calculated over a limited time
period (a session, a day, a month, etc.), or calculated over a longer time period (¢.g., several
months or the life of the analysis). For example, for every request, the average IT can be
determined, and the threshold can be determined using this average IT (e.g., the average IT less a
certain percentage may be used as the threshold). This can allow the threshold to automatically
adapt over time to network conditions and changes in server capability, resource availability or
server response. A fixed threshold can take upon any value including by way of example but not

limitation (e.g., I 5. 2.3 s. ¢tc.).

[00285] In one embodiment, the long poll detector 238a can compare the relative timings
(e.g., determined by the tracker engine 238b) to request-response timing characteristics for other
applications to determine whether the requests of the application are long poll requests. For
example, the requests initiated by a client or application can be determined to be long poll
requests if the response delay interval time (‘D’) or the average response delay interval time
(e.g., averaged over x number of requests or any number of delay interval times averaged over x

amount of time) is greater than a threshold value.

64

[00286] The threshold value can be determined using response delay interval times for
requests generated by other clients, for example by the request/response tracking engine 238b
and/or by the application profile generator 239 (e.g., the response delay interval tracker 239a).
The other clients may reside on the same maobile device and the threshold value is determined
Jocally by components on the mobile device. The threshold value can be determined for all
requests over all resources server over all networks, for example. The threshold value can be set
to a specific constant value (¢.g., 30 seconds, for example) to be used for all requests, or any
request which does not have an applicable threshold value (e.g., long poll is detected if D > 30

seconds).

[00287] In some instances, the other clients reside on different mobile devices and the
threshold can be determined by a proxy server (e.g., proxy server 325 of the host 300 shown in
the example of FIG. 3A-B) which is external to the mobile device and able to communicate over
a wireless network with the multiple different mobile devices, as will be further described with

reference to FIG. 3B.

[00288] In one embodiment, the cache policy manager 245 sends the polling schedule to
the proxy server (e.g., proxy server 125 or 325 shown in the examples of FIG. 1A-1C and FIG.
3A) and can be used by the proxy server in monitoring the content source, for example, for
changed or new content (updated response different from the cached response associated with a
request or application). A polling schedule sent to the proxy can include multiple timing
parameters including but not limited to interval (time from request 1 to request 2) or a time out
interval (time to wait for response, used in long polls, for example). Referring to the timing
diagram of a request/response timing sequence timing intervals ‘RI’, ‘D’, ‘RT’, and/or ‘IT’, or
some statistical manipulation of the above values (e.g., average, standard deviation, etc.) may all

or in part be sent to the proxy server.

[00289] For example, in the case when the local proxy 275 detects a long poll, the various
timing intervals in a request/response timing sequence (e.g., ‘D’, ‘RT’, and/or ‘IT’) can be sent
to the proxy server 325 for use in polling the content source (e.g., application server/content host
110). The local proxy 275 can also identify to the proxy server 325 that a given application or

request to be monitored is a long poll request (e.g., instructing the proxy server to set a ‘long poll

65

flag’, for example). In addition, the proxy server uses the various timing intervals to determine

when to send keep-alive indications on behalf of mobile devices.

[00290] The local cache invalidator 244 of the caching policy manager 245 can invalidate
cache clements in the local cache (e.g., cache 185 or 285) when new or changed data (c.g.,
updated response) is detected from the application server/content source for a given request. The
cached response can be determined to be invalid for the outgoing request based on a notification
received from the proxy server (e.g., proxy 325 or the host server 300). The source which
provides responses to requests of the mobile client can be monitored to determine relevancy of
the cached response stored in the cache of the mobile device 250 for the request. For example,
the cache invalidator 244 can further remove/delete the cached response from the cache of the
mobile device when the cached response is no longer valid for a given request or a given

application.

[00291] In one embodiment, the cached response is removed from the cache after it is
provided once again to an application which generated the outgoing request after determining
that the cached response is no longer valid. The cached response can be provided again without
waiting for the time interval or provided again after waiting for a time interval (e.g., the time
interval determined to be specific to emulate the response delay in a long poll). In one
embodiment, the time interval is the response delay ‘D’ or an average value of the response

delay ‘D’ over two or more values.

[00292] The new or changed data can be, for example, detected by the proxy server (e.g.,
proxy server 125 or 325 shown in the examples of FIG. 1A-1C and FIG. 3A). When a cache
entry for a given request/poll has been invalidated, the use of the radio on the mobile device 250
can be enabled (c.g., by the local proxy 2750r the cache policy manager 245) to satisfy the
subsequent polling requests, as further described with reference to the interaction diagram of
FI1G. 9-10.

[00293] One embodiment of the cache policy manager 245 includes a cache or connect
selection engine 249 which can decide whether to use a locally cached entry to satisfy a
poll/content request generated at the mobile device 250 by an application or widget. For

example, the local proxy 275 or the cache policy manger 245 can intercept a polling request,

66

made by an application (e.g., mobile application) on the maobile device, to contact the application
server/content provider. The selection engine 249 can determine whether the content received
for the intercepted request has been locally stored as cache elements for deciding whether the
radio of the mobile device needs to be activated to satisfy the request made by the application
(e.g., mobile application) and also determine whether the cached response is still valid for the

outgoing request prior to responding to the outgoing request using the cached response.

{00294} In one embodiment, the local proxy 2793, in response to determining that relevant
cached content exists and is still valid, can retrieve the cached elements from the local cache to
provide a response to the application (¢.g., mobile application) which made the polling request
such that a radio of the mobule device is not activated to provide the response to the application
(e.g., mobile application). In general, the local proxy 275 continues to provide the cached
response cach time the outgoing request is received until the updated response different from the

cached response is detected.

[00295] When it is determined that the cached response is no longer valid, a new request
for a given request 1s transmitted over the wireless network for an updated response. The request
can be transmitted to the application server/content provider (e.g., server/host 110) or the proxy
server on the host server (e.g., proxy 325 on the host 300) for a new and updated response. In
one embodiment the cached response can be provided again as a response to the outgoing request
if a new response is not received within the time interval, prior to removal of the cached response

from the cache on the mobile device.

[00296] FIG. 2C depicts a block diagram illustrating another example of components in
the application behavior detector 236 and the caching policy manager 245 in the local proxy 275
on the client-side of the distributed proxy system shown in the example of FIG. 2A. The
ilfustrated application behavior detector 236 and the caching policy manager 245 can, for
example, enable the local proxy 275 to detect cache defeat and perform caching of content

addressed by identifiers intended to defeat cache.

[00297] In one embodiment, the caching policy manager 245 includes a cache defeat
resolution engine 221, an identifier formalizer 211, a cache appropriateness decision engine 246,

a poll schedule generator 247, an application protocol module 248, a cache or connect selection

67

engine 249 having a cache query module 229, and/or a local cache invalidator 244. The cache
defeat resolution engine 221 can further include a pattern extraction module 222 and/or a cache
defeat parameter detector 223. The cache defeat parameter detector 223 can further include a
random parameter detector 224 and/or a time/date parameter detector 226. One embodiment

further includes an application cache policy repository 243 coupled to the decision engine 246.

[00298] In one embodiment, the application behavior detector 236 includes a pattern
detector 237, a poll interval detector 238, an application profile generator 239, and/or a priority
engine 241. The pattern detector 237 can further include a cache defeat parameter detector 223
having also, for example, a random parameter detector 233 and/or a time/date parameter detector
234. One embodiment further includes an application profile repository 242 coupled to the
application profile generator 239. The application profile generator 239, and the priority engine
241 have been described in association with the description of the application behavior detector

236 in the example of FIG. 2A.

[00299] The cache defeat resolution engine 221 can detect, identify, track, manage, and/or
monitor content or content sources (€.£., servers or hosts) which employ identifiers and/or are
addressed by identifiers (e.g., resource identifiers such as URLs and/or URIs) with one or more
mechanisms that defeat cache or are intended to defeat cache. The cache defeat resolution
engine 221 can, for example, detect from a given data request generated by an application or
client that the identifier defeats or potentially defeats cache, where the data request otherwise
addresses content or responses from a host or server (e.g., application server/content host 110 or

310) that is cacheable.

[00300] In one embodiment, the cache defeat resolution engine 221 detects or identifies
cache defeat mechanisms used by content sources (e.g., application server/content host 110 or
310) using the identifier of a data request detected at the mobile device 250. The cache defeat
resolution engine 221 can detect or identify a parameter in the identifier which can indicate that
cache defeat mechanism is used. For example, a format, syntax, or pattern of the parameter can
be used to identify cache defeat (¢.g., a pattern, format, or syntax as determined or extracted by

the pattern extraction module 222).

68

[00301] The pattern extraction module 222 can parse an identifier into multiple parameters
or components and perform a matching algorithm on each parameter to identify any of which
match one or more predetermined formats (e.g., a date and/or time format). For example, the
results of the matching or the parsed out parameters from an identifier can be used (e.g., by the
cache defeat parameter detector 223) to identify cache defeating parameters which can include

one or more changing parameters.

[00302] The cache defeat parameter detector 223, in one embodiment can detect random
parameters (e.g., by the random parameter detector 224) and/or time and/or date parameters
which are typically used for cache defeat. The cache defeat parameter detector 223 can detect
random parameters and/or time/dates using commonly employed formats for these parameters

and performing pattern matching algorithms and tests.

[00303] In addition to detecting patterns, formats, and/or syntaxes, the cache defeat
parameter detector 223 further determines or confirms whether a given parameter is defeating
cache and whether the addressed content can be cached by the distributed caching system. The
cache defeat parameter detector 223 can detect this by analyzing responses received for the
identifiers utilized by a given data request. In general, a changing parameter in the identifier is
identified to indicate cache defeat when responses corresponding to multiple data requests are
the same even when the multiple data requests uses identifiers with the changing parameter being
different for each of the multiple data requests. For example, the request/response pairs tllustrate
that the responses received are the same, even though the resource identifier includes a parameter

that changes with cach request.

[00304] For example, at least two same responses may be required to identify the
changing parameter as indicating cache defeat. In some instances, at least three same responses
may be required. The requirement for the number of same responses needed to determine that a
given parameter with a varying value between requests is cache defeating may be application
specific, context dependent, and/or user dependent/user specified, or a combination of the above.
Such a requirement may also be static or dynamically adjusted by the distributed cache system to
meet certain performance thresholds and/or either explicit/implicit feedback regarding user

experience (e.g., whether the user or application is receiving relevant/fresh content responsive to

69

requests). More of the same responses may be required to confirm cache defeat, or for the
system to treat a given parameter as intended for cache defeat if an application begins to
malfunction due to response caching and/or if the user expresses dissatisfaction (explicit user

feedback) or the system detects user frustration (implicit user cues).

[00305] The cache appropriateness decision engine 246 can detect, assess, or determine
whether content from a content source (2.g., application server/content provider 110 in the
example of FIG. 1C) with which a mobile device 250 interacts, has content that may be suitable
for caching. In some instances, content from a given application server/content provider (e.g.,
the server/provider 110 of FIG. 1C) is determined to be suitable for caching based on a set of
criteria (for example, criteria specifying time criticality of the content that is being requested
from the content source). In one embodiment, the local proxy (e.g., the local proxy 175 or 275
of FIG. 1A-1C and FIG. 2A) applies a selection criteria to store the content from the host server
which is requested by an application as cached clements in a local cache on the mobile device to

satisfy subsequent requests made by the application.

[00306] The selection criteria can also include, by way of example, but not limitation,
state of the mobile device indicating whether the mobile device is active or inactive, network
conditions, and/or radio coverage statistics. The cache appropriateness decision engine 246 can
any one or any combination of the criteria, and in any order, in identifying sources for which

caching may be suitable.

{00307} Once application servers/content providers having identified or detected content
that is potentially suitable for local caching on the mobile device 250, the cache policy manager
245 can proceed to cache the associated content received from the identified sources by storing
content received from the content source as cache elements in a local cache (e.g., local cache 185
or 285 shown in the examples of FIG. 1A-1C and FIG. 2A, respectively) on the mobile device
250. The content source can also be identified to a proxy server (e.g., proxy server 125 or 325
shown in the examples of FIG. 1A-1C and FIG. 3A, respectively) remote from and in wireless
conmunication with the mobile device 250 such that the proxy server can monitor the content
source (¢.g., application server/content provider 110) for new or changed data. Similarly, the

local proxy (¢.g., the local proxy 175 or 275 of FIG. 1A-1C and FIG. 2A, respectively) can

70

identify to the proxy server that content received from a specific application servet/content

provider 1s being stored as cached elements in the local cache.

[00308] In one embodiment, cache elements are stored in the local cache 285 as being
assoctated with a normalized version of an identifier for an identifier employing one or more
parameters intended to defeat cache. The identifier can be normalized by the identifier
normalizer module 211 and the normalization process can include, by way of example, one or
more of: converting the URI scheme and host to lower-case, capitalizing letters in percent-

encoded escape sequences, removing a default port, and removing duplicate slashes.

[00309] In another embodiment, the identifier is normalized by removing the parameter
for cache defeat and/or replacing the parameter with a static value which can be used to address
or be associated with the cached response received responsive to a request utilizing the identifier
by the normalizer 211 or the cache defeat parameter handler 212, For example, the cached
elements stored in the local cache 285 (shown in FIG. 2A) can be identified using the
normalized version of the identifier or a hash value of the normalized version of the identifier.
The hash value of an identifier or of the normalized identifier may be generated by the hash

engine 213.

[00310] Once content has been locally cached, the cache policy manager 245 can, upon
recetving future polling requests to contact the content server, retrieve the cached elements from
the local cache to respond to the polling request made at the mobile device 250 such that a radio
of the mobile device is not activated to service the polling request. Such servicing and fulfilling
application (e.g., mobile application) requests locally via local cache entries allow for more
efficient resource and mobile network traffic utilization and management since network
bandwidth and other resources need not be used to request/receive poll responses which may

have not changed from a response that has already been received at the mobile device 250.

[00311] One embodiment of the cache policy manager 245 includes a poll schedule
generator 247 which can generate a polling schedule for one or more applications on the mobile
device 250. The polling schedule can specify a polling interval that can be employed by the
proxy server (e.g., proxy server 125 or 325 shown in the examples of FIG. 1A-1C and FIG. 3A)

in monitoring the content source for one or more applications. The polling schedule can be

71

determined, for example, based on the interval between the polling requests directed to the
content source from the mobile device. In one embodiment, the poll interval detector 238 of the
application behavior detector can monitor polling requests directed to a content source from the
mobile device 250 in order to determine an interval between the polling requests made from any

or all application (e.g., mobile application).

[00312] In one embodiment, the cache policy manager 245 sends the polling schedule is
sent to the proxy server (e.g., proxy server 125 or 325 shown in the examples of FIG. 1A-1C and
F1G. 3A) and can be used by the proxy server in monitoring the content source, for example, for
changed or new content. The local cache invalidator 244 of the caching policy manager 245 can
invalidate cache elements in the local cache (e.g., cache 185 or 285) when new or changed data
is detected from the application server/content source for a given request. The new or changed
data can be, for example, detected by the proxy server. When a cache entry for a given
request/poll has been invalidated and/or removed (¢.g., deleted from cache) after invalidation, the
use of the radio on the mobile device 250 can be enabled (e.g., by the local proxy or the cache
policy manager 245) to satisfy the subsequent polling requests, as further described with

reference to the interaction diagram of FIG. 4B.

[00313] In another embodiment, the proxy server (e.g., proxy server 125 or 325 shown in
the examples of FIG. 1A-1C and FIG. 3A) uses a modified version of a resource identifier used
in a data request to monitor a given content source (the application server/content host 110 of
F1G. 1A-1C to which the data request is addressed) for new or changed data. For example, in
the instance where the content source or identifier is detected to employ cache defeat
mechanisms, a modified (e.g., normalized) identifier can be used instead to poll the content
source. The modified or normalized version of the identifier can be communicated to the proxy
server by the caching policy manager 245, or more specifically the cache defeat parameter

handler 212 of the identifier normalizer 211.

[00314] The modified identifier used by the proxy server to poll the content source on
behalf of the mobile device/application (e.g., mobile application) may or may not be the same as
the normalized identifier. For example, the normalized identifier may be the original identifier

with the changing cache defeating parameter removed whereas the modified identifier uses a

72

substitute parameter in place of the parameter that is used to defeat cache (e.g., the changing
parameter replaced with a static value or other predetermined value known to the local proxy
and/or proxy server). The modified parameter can be determined by the local proxy 275 and
communicated to the proxy server. The modified parameter may also be generated by the proxy

server (e.g., by the identifier modifier module 353 shown in the example of FIG. 3C).

[00315] One embodiment of the cache policy manager 245 includes a cache or connect
selection engine 249 which can decide whether to use a locally cached entry to satisfy a
poll/content request generated at the mobile device 250 by an application or widget. For
example, the local proxy 275 or the cache policy manger 245 can intercept a polling request
made by an application (¢.g., mobile application) on the mobile device, to contact the application
server/content provider. The selection engine 249 can determine whether the content received
for the intercepted request has been locally stored as cache elements for deciding whether the a
radio of the mobile device needs to be activated to satisfy the request made by the application
{c.g., mobile application). In one embodiment, the local proxy 2735, in response to determining
that relevant cached content exists and is still valid, can retrieve the cached elements from the
local cache to provide a response to the application (e.g., mobile application) which made the
polling request such that a radio of the mobile device is not activated to provide the response to

the application (¢.g., mobile application).

[00316] In one embodiment, the cached elements stored in the local cache 285 (shown in
F1G. 2A) can be identified using a normalized version of the identifier or a hash value of the
normalized version of the identifier, for example, using the cache query module 229. Cached
elements can be stored with normalized identifiers which have cache defeating parameters
removed or otherwise replaced such that the relevant cached elements can be identified and
retrieved in the future to satisfy other requests employing the same type of cache defeat. For
example, when an identifier utilized in a subsequent request is determined to be utilizing the
same cache defeating parameter, the normalized version of this identifier can be generated and
used to identify a cached response stored in the mobile device cache to satisfy the data request.
The hash value of an identifier or of the normalized identifier may be generated by the hash

engine 213 of the identifier normalizer 211.

73

[00317] FIG. 2D depicts a block diagram illustrating examples of additional components
in the local proxy 275 shown in the example of FIG. 2A which is further capable of performing
mobile traffic categorization and policy implementation based on application behavior and/or

user activity.

[00318] In this embodiment of the local proxy 275, the us<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>