Our present invention is a novel and improved construction of needle fabrics and method of making same, and is directed particularly to improve and perfect felts for use in paper manufacture and industrial lines.

In carrying out our invention we prefer to utilize the improved methods and machines for the manufacture of our fabrics, such as are illustrated in the prior U. S. Patents No. 1,620,307, dated March 8, 1929, No. 1,743,668, dated Jan. 7, 1930, on Process of making textile fabrics; and No. 1,745,739, dated Feb. 14, 1930, and No. 1,863,961, dated April 12, 1933, on Needling apparatus, improving and modifying the fabric structure as will be hereinafter explained, and also building our improved article under suitable tension, all for the special purpose of producing an industrial felt and felts intended for paper-making machines.

The requirements for paper-makers' felts, for example, are extremely severe, the felt being in the form of a belt which will receive, transport, and remove water from the pulp material, permitting the water and moisture to drain from such pulp while being transported, and with a smooth finished surface which will tend to eliminate wrinkles, inequalities, or undesirable markings on the resultant paper product.

Furthermore, considerable difficulty has been experienced heretofore in providing a belt which will be wear-resistant to the extremely severe requirements where asbestos or cement shingles, or the like, are being formed, the filtering action quickly filling the usual felt material with the dirt, cement, or the like, carried off by the water as it filters thru the belt and filling up the same, as well as wearing the belt out on the suction boxes and rollers over which it has passed.

Thus it will be appreciated that extremely severe service is required from articles of this sort, from the one extreme of making soft, thin face tissues, such as cleansing tissue, paper towels, or the like, writing and bond paper, up to the heavier articles such as concrete and asbestos shingles and the like industrial articles.

And, carrying out our invention we practically eliminate the prior difficulties heretofore experienced, and have devised an extremely efficient, wear-resistant, and effective paper-makers' and industrial felt which will insure constant drainage, minimize filling and clogging of the felt, and insure easy cleaning of the same, thus maintaining the porosity of the felt in satisfactory condition during use, and which will also present a smooth, even surface for the layer of pulp and eliminate objectionable markings on the product.

It is a further feature of our present discovery to provide an extremely strong, wear-resistant structure with a special base fabric, preferably built under tension so as to permit tensioning of the belt in use without distorting the fabric and with special surface of the fabric, and all by the simple, efficient, and economical needling processes of said prior patents, and with great speed in operation.

Further improvements, novel combinations, and advantages will be hereinafter more fully pointed out and claimed, including our novel base fabric with ply strands for the warp, and cable twisted strands for the filling.

Referring to the drawings illustrating a preferred embodiment of our present invention,

Fig. 1 illustrates in diagrammatic form a fragmentary step in the process of manufacturing our improved felts, showing a schematic method of needling the layers to the base fabric, or fabrics, under tension utilizing a needling machine of said prior Patent No. 1,745,739, or the like;

Fig. 3 is an enlarged cross-sectional view illustrating a special type of needle which we have devised, and, preferably, employ during the needling operation;

Fig. 3 is a fragmentary cross-sectional view illustrating our improved fabric with a plurality of base members and a plurality of needled layers of different strength and texture;

Fig. 4 is a fragmentary cross-sectional view illustrating a preferred form of base fabric as woven for our particular industrial felt construction and for needling under tension;

Fig. 5 is a fragmentary view of our improved felt with a plurality of layers needled to a single base fabric;

Fig. 6 illustrates the same in detail and cross-sectional structure so far as possible;

Fig. 7 is a corresponding fragmentary side view of a plurality of base fabrics of different strength, diameters, and counts, wherein a plurality of different fleeces are needled thereto;

Fig. 8 shows the same in cross-sectional structure.

Our novel and improved felt structure is suitable for use with a wide range of material and capable of satisfactory manufacture with a plurality of fleece layers, preferably of wool, and with a plurality of degrees or grade of texture, as fine, coarse, thick, or mixed.

Thus we prefer to manufacture paper-makers' felts with, for example, an extremely heavy base
fabric especially woven for needling under tension to withstand the weight, strain, and tension of substantially actual paper-making machine service, without undue distortion. When a heavy layer, such as shingle, mill, or gasket board are formed or built up on paper-machine felts, a very considerable strain is necessarily imparted to the fabric and, hence, such felts are distorted in service, as heretofore made.

By our method of needling under tension, and with a specially formed fabric, we particularly prepare the felt for such stress during use of same and thus eliminate distortion, thereby still further improving our product and insuring long life, wear-resistance, and efficient service.

We also contemplate the utilization of extremely heavy fabric with a needled layer of relatively coarse weave thereon to take the strain of the fabric adjacent the suction boxes and rolls over which the belt is conducted, while we also needle to the opposite surface one or more layers of wool which may be, first, a coarse layer, and then an extremely finer layer to thus give a more uniform surface on which the pulp is carried. This is of still further advantage as the finer surface next to the pulp, while permitting free drainage of the same during the travel of the belt, will protect the rest of the belt against clogging as the lower and more open layers of coarser material will not be clogged or filled by any material which can escape thru the finer top surface.

A further advantage is that this finer top surface is more readily cleaned by the cleansing streams of water usually applied to the top surface of the felts once the pulp material is fed free therefrom. Thus it will be appreciated that we have devised a peculiarly beneficial structure for industrial and paper-makers' felts, and we shall now describe the same in detail.

Referring to Fig. 4, a preferred form of base fabric 1 is illustrated wherein the warp strands 2, 2 are shown running vertically in the drawings and the weft or filling is shown running horizontally in the drawings. The base fabric comprises two layers 2 and 3 of wool or other interleaf for needling. Each layer of base fabric is divided into two sections, one of which is needled to the top surface and the other to the back surface of the forming belt. These sections are needled separately to prevent the layers from becoming mixed.

Preferably and as herein shown the lower layers which are to contact with and withstand the wear of the rollers over which the felt passes have the layers 4, 5, and 6 of coarse, strong, wear-resistant wool while the upper layers 7 and 8 are of much finer wool material, thus giving a smooth top surface 10 to the belt on which the pulp will rest, with a relatively coarse wear-resistant surface 12 to contact with the rollers.

In Figs. 7 and 8, we have illustrated a plurality of base fabrics, the same also being of differing sizes of warp and wool threads of same and thus eliminating distortion, thereby still further improving our product and protecting long life, wear-resistance, and efficient service.

In Fig. 3 we have illustrated a still further modification in which the two base fabric layers are of the same grade, strength, and size of material, these being indicated at 22 and 23. Fig. 2 shows the needled layers of coarse wool 25, 26, and 27, and a top finishing layer of fine wool 28 to give a smooth pulp-receiving surface 30 on the top and a strong wear-resistant surface 31 on the bottom or inside of the belt where it goes over the rolls.

These layers are individually needled to the base fabric. We needle to the base fabric 24 the fleece layer 25 on one side, and the fleece 21 on the opposite side, and thereafter apply the second base fabric 22 and needle the fleece 26 thru said base fabric 22 to the previously needled layers and finally needle the layer 28 as a finishing surface thru the fleece 27, as shown in Fig. 3. This sequence may be varied, if desired, but the above are found to be advantageous and feasible.

Referring to the diagrammatic showing in Fig. 1, we illustrate a needling operation as applied under lengthwise tension, this diagram being shown merely for illustrative purposes.

A suitable roller 32 is shown over which the base material herein illustrated is that of Fig. 3, with the two layers 22 and 24 of base fabric, wherein the coarse layers 25, 26, and 27 have already been needled and the fourth or finishing layer 28 is being applied. A forward roll 33 is held under tension in any suitable manner, as for example by straps 37-37 attached to movable bearing blocks 38 carrying the axle for a shaft 39 on which the roller 33 runs, which is held under tension against the belt by weights 40-40 attached to each end of said straps and going over idle rolls 41-41 suitably mounted on a shaft 42, as shown, or in any other suitable manner.

The needle bar indicated as in Fig. 1 and designated at 30 comprises a plurality of movable needle-carrying members adapted to move in a timed relation with the feed of the belt during the needling operation, as explained and shown in said prior patents.

We have illustrated in enlarged view in Fig. 2 a needle holding bar 50 of a standard needle-carrying machine patents, wherein the needle with the bars 56-56 thereon point downwardly to engage and drive the layer of wool being needled into the fabric. After the needling operation is completed it is 75
customary and desirable to trim, singe, or shear the surface layer, viz., layer 10 of Fig. 7, also 20 of Fig. 9, or 30 of Fig. 3, and thereupon the now completed article is ready for use.

Our improved structure is practically non-stretching in service, more easily kept clean by reason of the coarser fabric or layers in the underneath part, and in addition the structure has an absorbing or blotting effect aiding in removing the water and moisture from the pulp as it is carried on the belt, not possible with other or prior articles.

We claim:

As a new article of manufacture, papermakers' felts in the form of an endless belt for use in papermaking machinery, made by needling a plurality of fleeces to a base fabric, said fabric consisting of non-stretching ply strands forming the warp, with cable twisted strands constituting the filling, a plurality of fleeces needled to the opposite surfaces of said base material, the top surface comprising a closely needled smooth fleece for carrying pulp material, and the bottom surface comprising a fleece of coarser form permitting drainage from the pulp material therethrough free of clogging, and said coarser fleece constituting a wear-resisting surface for driving over pulleys.

PATRICK H. WALSH.

PERCIVAL T. GATES.