

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
7 October 2010 (07.10.2010)

(10) International Publication Number
WO 2010/112871 A2

(51) International Patent Classification:

A01K 89/01 (2006.01)

(21) International Application Number:

PCT/GB2010/000663

(22) International Filing Date:

1 April 2010 (01.04.2010)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

0905869.4 3 April 2009 (03.04.2009) GB

(71) Applicant (for all designated States except US): FOX INTERNATIONAL GROUP LIMITED [GB/GB]; 56-58 Fowler Road, Hainault Industrial Estate, Hainault, Essex IG6 3UT (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): LITTLE, Andy [GB/GB]; Wheelgates, West Hanningfield Road, West Hanningfield, Essex CM2 8UE (GB). TAYLOR, Adam [GB/GB]; 28 Copper Beech Court, Goldings Road, Loughton, Essex IG10 2QH (GB).

(74) Agents: CROUCH, David, John et al.; Bromhead Johnson, 19 Buckingham Street, London WC2N 6EF (GB).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished upon receipt of that report (Rule 48.2(g))

(54) Title: A FIXED SPOOL FISHING REEL

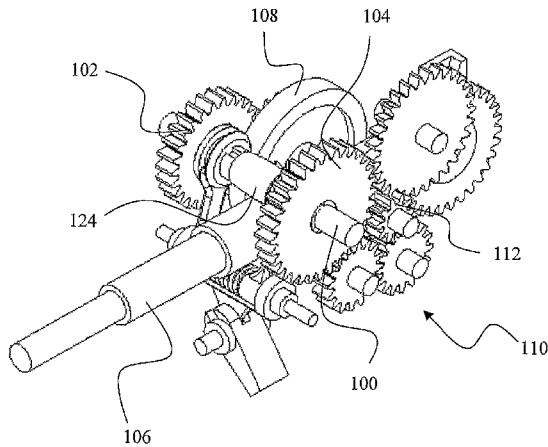


Fig. 13

(57) Abstract: A fixed spool fishing reel having a handle shaft connected to a handle to be rotated thereby and coupled to a bail arm drive of the wheel so that rotation of the handle shaft causes rotation of the bail arm. The handle shaft is coupled to the bail arm drive via a gear mechanism that enables the gear ratio between rotation of the handle shaft and rotation of the bail arm drive to be selectively altered. Also, a fixed spool fishing reel having a spool shaft and two gear wheels respectively on opposite sides of the spool shaft, both gear wheels being coupled to be driven by a rotary handle of the reel and both being selectable to be the one which drives a spool shaft oscillatory mechanism of the reel, the coupling between each of the said two gear wheels and the mechanism being via respective gearing arrangements to impart different respective ratios of handle rotary speed to oscillatory speed of the spool shaft.

WO 2010/112871 A2

-1-

A fixed spool fishing reel

The present invention relates to a fixed spool fishing reel having a handle shaft connected to a handle to be rotated thereby and coupled to a bail arm drive of 5 the wheel so that rotation of the handle shaft causes rotation of the bail arm.

Such a fishing reel is used in a sport referred to as "high speed jigging". This involves fishing at sea in which a jig comprising for example a hook, a lure and 10 a weight at the end of a line is cast into the sea and allowed to drop whilst attached to the line many hundreds of feet below the surface of the water. The reel is then used to wind-in the line, thus raising the rig at high speed. The raising of the jig in this way attracts a 15 fish which may bite on to the hook so that the fish may now be reeled-in.

A disadvantage of such a fishing reel which has already been proposed is that the forces which can be exerted on the fish by the angler with such a reel are 20 insufficient to play the fish towards the boat with reasonable ease.

The present invention seeks to provide a remedy, although it will be appreciated that the benefit of the present invention is not restricted to high speed 25 jigging.

Accordingly, a first aspect of the present invention is directed to a fixed spool fishing reel having the construction set out in the opening paragraph of the

-2-

present specification, in which the handle shaft is coupled to the bail arm drive via a gear mechanism that enables the gear ratio between rotation of the handle shaft and rotation of the bail arm drive to be 5 selectively altered.

It will be understood by those familiar with the art of fishing reels that a fixed spool fishing reel is one in which the spool itself does not rotate. However, it does reciprocate as the bail arm rotates to lay the line 10 evenly on to the spool.

The handle shaft may be longitudinally slid able and a portion of the handle shaft may be provided with external teeth around its circumference which can engage internal teeth of either selected one of two gear wheels 15 which surround and are generally or substantially orthogonal to the handle shaft axis, by virtue of its being able to slide longitudinally.

Each of the said internal teeth and/or the said external teeth may be chamfered or bevelled in a plane 20 which is generally or substantially orthogonal to the direction of projection of the tooth.

Alternatively or in addition, each of the said internal teeth and/or each of the said external teeth may be rounded in a plane generally or substantially 25 orthogonal to the direction of projection of the tooth.

Each tooth may be bevelled and/or rounded in this way on one side only, or it may be bevelled and/or rounded in this way more on one side than the other, the

-3-

side of the tooth which is less bevelled and/or rounded, or which is not bevelled and/or rounded, having a flat which is urged against one of the said internal teeth when the reel is in use to effect rotation of the bail 5 arm.

The slidable handle shaft may be hollow and of non-circular internal cross-section at least at its two ends to enable a spigot of the handle, having an external cross-section corresponding to the internal cross-section 10 of the slidable handle shaft, to be inserted therein at either selected one of the ends of the handle shaft to facilitate ready alteration of the reel between left and right-handed drive.

The construction of the reel may be such that either 15 selected one of the said two gear wheels may be used to drive one and the same crown wheel which constitutes a part of the bail arm drive. The crown wheel may be orientated generally or substantially orthogonally to the handle shaft axis. The axis of rotation of the crown 20 wheel may be generally or substantially co-linear with the handle shaft axis. One of the said two gear wheels may be fixed relative to the crown wheel. The other of the said two gear wheels may be coupled to drive the said one of the said two gear wheels through further gearing.

25 The reel may be provided with a user operable lever coupled to the slidable handle shaft by way of a shaft coupling to slide the latter into engagement with a selected one of the said two gear wheels and out of

-4-

engagement with the other of the said two gear wheels. The lever may be arranged on an intended underside of the reel underneath and generally or substantially equidistant from the two ends of the handle shaft.

5 The shaft coupling may comprise a first movable member which is movable longitudinally of the shaft axis and a second movable member which is movable transversely of the shaft axis, such transverse movement of the latter being effected by the said user operable lever and the 10 first movable member being coupled to the second movable member by way of at least one slanting recess or aperture in one of the said first and second movable members being engaged by a spigot on the other of the said first and second movable members so that such transverse movement 15 of the said second movable member effects such longitudinal movement of the said first movable member.

Such a shaft coupling does not interfere with a changeover between left-hand and right-hand drive.

20 Preferably, the slanting recess or aperture is provided in the said second movable member.

The shaft coupling may comprise a spring mechanism such that the operation of the lever urges the handle shaft in a longitudinal direction, and the shaft is actually moved in that direction if and when the said 25 external teeth are positioned to engage the internal teeth of the selected one of the said two gear wheels.

The spring mechanism may comprise first and second parts movable longitudinally of the handle shaft and

-5-

linked together by at least one tension spring, so that movement of one of those parts away from the other will urge the other to follow it in the same direction, a protuberance extending from the said shaft and located 5 between those parts, and a third part which is movable longitudinally of the handle shaft by operation of the said user operable lever, the said third part having at least one portion which extends between the said first and second parts, whereby such longitudinal movement of 10 the said third part may move the said first and second parts in the said direction and with them the said protuberance and hence the handle shaft, if the said external teeth are in a position at that time to engage the internal teeth of the selected one of the said two 15 gear wheels, whereas if such engagement is not possible at that time, only one of the said first and second parts is moved in the said direction, creating tension or increased tension in the said at least one spring, and the other of the said two parts and with it the said 20 protuberance and hence the handle shaft follow that movement under the action of the said at least one tension spring when the said external teeth are next in a position to engage the internal teeth of the selected one of the said two gear wheels.

25 The said protuberance may comprise a flange around the circumference of a portion of the slidable handle shaft.

The said third part may be the said first movable

member.

According to a second aspect of the present invention, there is provided a fixed spool fishing reel having a spool shaft and two gear wheels respectively on 5 opposite sides of the spool shaft, both gear wheels being coupled to be driven by a rotary handle of the reel and both being selectable to be the one which drives a spool shaft oscillatory mechanism of the reel, the coupling between each of the said two gear wheels and the 10 mechanism being via respective gearing arrangements to impart different respective ratios of handle rotary speed to oscillatory speed of the spool shaft.

This facilitates selective connection of the handle to one side of the reel or the other. To this end the 15 handle may be readily releaseably connected to either selected one of the two sides of the reel.

Advantageously, the spool shaft has a slot in it, and the coupling between one of the said gear wheels and the mechanism is by way of a shaft which passes through 20 the said slot.

This facilitates acceptable values for the said ratios.

The two gear wheels are preferably selectively engaged by at least one dog gear which is movable towards 25 and away from both of the said two gear wheels.

There may be two such dog gears at opposite ends of a shaft, the dog gears respectively engaging the said two gear wheels.

-7-

The dog gear shaft may be hollow and a drive shaft which drives both of the said two gear wheels via the dog gear shaft may extend through that hollow shaft.

The or both dog gears may be moved towards and away 5 from one or both of the said two gear wheels by way of a lever coupled to the or both dog gears via a resilient member whereby the or each dog gear will be urged into engagement with one of the said two gear wheels, and will so engage once they have an appropriate relative angular 10 position.

This enables the gearing between each of the said two gear wheels and the said mechanism to remain in engagement whether in use or not, and whether or not the lever is operated.

15 An example of a fixed spool fishing reel made in accordance with the present invention will now be described with reference to the accompanying drawings, in which:

20 Figure 1 shows a perspective view from the rear and to one side of a fixed spool fishing reel embodying the present invention;

Figure 2 shows a view from one side of parts of the fishing reel shown in Figure 1;

25 Figure 3 shows a cross-sectional view of the reel shown in Figure 2 in the plane indicated by the line III-III of Figure 2;

Figures 4 and 5 show respective views of parts of the reel shown in Figures 2 and 3 from

-8-

above and from the front of the reel shown in Figures 2 and 3;

5 Figure 6 shows on a larger scale a perspective partly exploded view from above and to one side of parts of a second embodiment of a fixed spool fishing reel made in accordance with the present invention;

10 Figures 7a to 7d show on a smaller scale an axial sectional view, a view from the rear and from one side, a view from one side, and a view from above, respectively, of the parts as well as further parts of the second embodiment, in a first setting;

15 Figures 8a to 8d show an axial sectional view, a view from the rear and from one side, a view from one side, and a view from above, respectively, of parts of the second embodiment in a second setting;

20 Figures 9a to 9d show respective views from above of parts of the reel shown in Figures 7 and 8, with respective different settings thereof;

25 Figures 10a to 10d show respective axial cross-sections from above of the parts shown in Figures 9a to 9d, respectively;

Figures 11a to 11d show respective side views of the parts shown in Figures 9a to 9d, respectively;

-9-

Figures 12a to 12d show respective axial sectional views of the parts shown in Figure 11, viewed from the side;

5 Figure 13 shows a perspective view from above, from one end and from one side of a modified form of drive for the reel;

Figure 14 shows a corresponding view of the drive shown in Figure 13 from the other end;

10 Figures 15a and 15b show opposite end views of the drive shown in Figures 13 and 14;

Figure 16 shows a view corresponding to that of Figure 13 with parts of the drive removed to reveal other features of the drive;

15 Figure 17 shows a view corresponding to that of Figure 14 with parts of the drive removed to reveal other features of the drive;

Figures 18a and 18b show opposite end views of the parts of the drive shown in Figures 16 and 17.

20 A fixed spool fishing reel 10 shown in Figure 1 comprises a mounting foot 12, a support arm 14 extending in an intended downward direction from the mounting foot 12 to the reel housing 16, a handle 18 rotatably mounted on a crank 20 connected to the housing 16, a bail arm 22 25 with a bail 24, and a skirted spool 26 extending forwardly from the front of the housing 16 with its axis parallel to the foot 12 and hence to an angling rod to which the reel is attached when the latter is in use.

-10-

When in use, with the fishing line 28 wound around the spool 26 and a rig (not shown) attached to the free end of the line 28, and with the bail arm 24 in an open position, the user holds the line against spillage with a 5 finger as he prepares to cast the line and then sharply whips the rod and the reel with the free end of the line on the rigging attached thereto forwardly so that the rigging is cast forwards as the line spills off the front end of the spool. Once the rigging has been cast and the 10 rigging has dropped many hundreds of feet below the surface of the water. The handle 18 is now rotated and the bail arm 24 is swivelled rearwardly to the position it has in Figure 1, to wind the line back on to the spool 26. This is effected by couplings within the housing 16 15 (not shown in Figure 1) which simultaneously cause rotation of the bail arm 22 about the axis of the spool 26 and reciprocation of the latter to and fro along its axis. This ensures an even lay of the line 28 on the spool 26. During this phase of operation of the reel, 20 which results in the rigging being lifted towards the surface of the sea very rapidly, the ratio of turns of the bail arm 22 completes seven turns for every single turn of the crank 20. In the event that a fish bites on the jiggling as it is being raised in this fashion, a user 25 operable lever 30 shown in Figures 2 to 5 is now shifted outwardly into its second position to change the gearing by way of a gearing mechanism 32 within the housing 16. This changes the ratio of turns of the bail arm 22 to

-11-

each turn of the crank 20 from 7:1 to 2:1. The lever 30 is shown in its setting 4 in this phase of operation of the reel.

Details of the manner in which this change of gear 5 is effected is shown more clearly in Figure 3. Thus, the crank 20 is connected to a handle shaft 34 which extends through the housing 16 transversely of the spool axis, the end of the shaft 34 that projects outwardly from the housing 16 on the crank side thereof is surrounded by a 10 compression spring 36 located between the housing 16 and an inner end of the crank 20. The spring 36 is covered by a skirt portion 38 extending from the inner end of the crank 20.

Figure 3 shows that the shaft 34 comprises a number 15 of parts to facilitate assembly. A portion of the shaft 34 extending from the crank 20 has an internally screw-threaded hollow which receives an externally screw-threaded shank portion 40 extending from that portion of the shaft 34 which projects from the housing 16 on the 20 side further from the crank 20. An outer end of the latter is provided with a pivot 42 to which is connected the lever 30 in such a manner that operation of the lever 30 outwardly from the housing 16 enables the shaft 34 to slide in a direction towards the crank 20 under the 25 action of the compression spring 36. Movement of the user operable lever 30 back to the position it has in Figures 2 and 3 draws the shaft 34 in a direction away from the crank 20 against the action of the compression

-12-

spring 36. A snap action (not shown) holds the lever 30 in this position until the user moves it once again to the outward position.

The shaft 34 is provided with a sleeve 44 which is 5 fixed relative to the portions of the shaft 34 which extend through it and which is provided with a series of splines or external teeth 46 extending around a portion of its circumference. In the setting shown in Figure 3, these teeth 46, which are external teeth in the sense 10 that they extend around the outside of the shaft 34, engage internal teeth of a first gear wheel 48 which surrounds the shaft 34 and is generally or substantially orthogonal thereto. This gear wheel 48 is fixed to and integral with a sleeve portion 50 which is coaxial with 15 and rotatable in relation to the shaft 34. The sleeve portion 50 in turn is fixed to and integral with a crown wheel 52, the latter having an axis of rotation which is co-linear with the axis of the shaft 34. It is coupled to drive a further gear 54 coupled to rotate the bail arm 20 22. A second gear wheel 56 also surrounds and is generally or substantially orthogonal to the shaft 34 and is also provided with internal teeth, and external teeth which engage the gearing mechanism 32 coupled to the said first gear wheel 48. This second gear wheel 56 is 25 immediately adjacent and on the crank side of the said first gear wheel 48. As a result, when the lever 30 is moved outwardly from the housing 16 to enable the shaft 34 to slide longitudinally in a direction towards the

-13-

crank 20 under the action of the compression spring 36, the splines or external teeth 46 of the shaft 34 slip out of engagement with the internal teeth of the gear wheel 48 and engage the internal teeth of the gear wheel 56.

5 Under such a change of gear, one portion of the crank 20 now rotates the crown wheel 52 a higher number of turns than it did in the setting illustrated in Figure 3, by virtue of the gearing mechanism 32.

The second embodiment of the present invention is
10 illustrated in Figures 6 to 12.

The parts shown in Figure 6, and the angle at which they are shown, is especially helpful to an understanding of how these parts cooperate together. So far as the parts shown in Figure 6 is concerned, apart from certain
15 dimensions and apart from a flange (to be referred to) around the shaft (also to be referred to herein), those parts shown in Figure 6 which correspond to parts already illustrated are accorded the same reference numerals as used in Figures 3 to 5.

20 It can be seen from Figure 6 that the gear wheels 48 and 56 are substantially and immediately adjacent to one another, such separation as there is between them being less than 10% of the width of each. The gear wheel 48 has internal teeth 60 and the gear wheel 56 has internal
25 teeth 62. Each tooth 60 and 62 has a flat 64 facing in an anti-clockwise sense about the common axes of these wheels 48 and 56, as viewed in the manner shown in Figure 6. The side of each tooth 60 which is adjacent to

-14-

the wheel 56, and the side of each tooth 62 which is adjacent to the wheel 48, is chamfered or bevelled in planes which are perpendicular to the direction of extension of the tooth. If the flat 64 of the tooth is 5 considered to be the front of the tooth, the face of the chamfering or bevelling is directed rearwardly of the tooth and outwardly of the wheel of which the tooth is a part. The edges of the tooth are generally rounded to reduce the likelihood of wear and friction. The splines 10 or external teeth 46 and the sleeve 44 are each provided with a flat 66 directed in a clockwise sense around the axis of the sleeve 44, and consequently also the axes of rotation of the gear wheels 48 and 56, viewing these parts in the direction of view of Figure 6. Considering 15 these flats 66 to be at the front of the splines or external teeth 46, the rear side 68 of each spline or external tooth 46 is generally arcuate and convex. In addition, the edges of the splines or external teeth 46 are rounded to reduce wear and friction.

20 A flange 70 is integral with and extends around a portion of the sleeve 44 spaced to the right of the splines or external teeth 46 as viewed in Figure 6. When the parts shown in Figure 6 are assembled for operation, the sleeve 44 is slidable in a longitudinal direction 25 relative to its axis so that the splines or external teeth 46 may engage the internal teeth 60 or 62 of either selected one of the two gear wheels 48 and 56. A mechanism to be described herein engages the flange 70 to

-15-

shift the sleeve 44 to the left or to the right as viewed in Figure 6. When a change of gear is made, the various component parts will usually, but not necessarily, be stationary. The change of engagement of the splines or 5 external teeth 46 from the internal teeth 60 of the gear wheel 48, so that the sleeve 44 is to be shifted to the right as in Figure 6 and the splines or external teeth 46 are to move into engagement with the internal teeth 62 of the gear wheel 56, will be considered first. The sleeve 10 44 is urged rightwardly to effect this change by a spring mechanism to be described herein. If the teeth 62 happen to be in registration with the teeth 60 at this stage, the sleeve 44 will move fully to the right to enable an immediate change of engagement of the teeth 46 from the 15 teeth 60 of the wheel 48 to the teeth 62 of the wheel 56.

It will be appreciated that because of the gear mechanism 32, the gear wheel 48 rotates faster than the gear wheel 56. If, therefore, at the time of switching, the teeth 62 and the teeth 60 are not in registration 20 with one another, the teeth 46 will slide towards the teeth 62 so that they engage the chamfered or bevelled sides of the teeth 62, until full engagement of the teeth 46 with the teeth 62 is possible when the teeth 60 are next in registration with the teeth 62.

25 Considering a transfer of engagement of the teeth 46 from the internal teeth 62 of the wheel 56 to the internal teeth 60 of the wheel 48, a similar sequence of events will occur bearing in mind now that the wheel into

-16-

which the teeth 46 are urged is the faster moving of the two wheels 48 and 56. Again, if the teeth 60 and 62 are in registration at the time the sleeve 44 is urged in the left direction as viewed in Figure 6, the change of gear 5 will be immediate. If, therefore at the time of switching the teeth 62 are positioned in a clockwise sense slightly ahead of the teeth 60, then at the time of switching, the teeth 46 will be unable to engage the internal teeth 60 fully until the latter have caught up with the teeth 62, 10 whereupon the teeth 46 will be free to slide into full engagement with the teeth 60.

If on the other hand at the time of switching, the teeth 60 are positioned slightly ahead of the teeth 62 in a clockwise sense, the teeth 46 will slide towards the 15 gap between the teeth 60 until a slanting rear flank of each tooth 46 abuts the chamfered or bevelled side of an adjacent tooth 60. From here, further rotation of the sleeve 44 by the crank 20 will cause the teeth 46 to rotate the wheel 56, and consequently through the gear 20 mechanism 32 the wheel 48 at a faster rate so that each tooth 60 will catch up and overtake the adjacent tooth 62. As this happens, the teeth 46 are first pushed out 25 of the gaps between the teeth 60 by virtue of the chamfered or bevelled sides thereof until the face 64 of each tooth 60 passes the flat face 66 of the adjacent tooth 46, whereupon the latter is now free to slide in the adjacent gap between teeth 60 so that the teeth 46 now fully engage the teeth 60.

-17-

A mechanism by which longitudinal sliding of the sleeve 44 is effected, is shown more clearly in Figures 7 to 12. In these Figures, corresponding parts, which have already been labelled with reference numerals in the 5 preceding Figures, have been given the same reference numerals in these Figures.

A shift member 80 extends above the and below the sleeve 44. It has inner portions 82 which are sandwiched between plates 84 and has a pair of spigots 86 projecting 10 outwardly from opposite sides of the switching member 80.

The plates 84 are connected together by tension springs 88. The flange 70 of the sleeve 44 is also sandwiched between the plates 84.

A stirrup 90 is provided with two sides 92 which 15 extend on opposite sides of the sleeve 44. Each side 92 is provided with a pair of elongate apertures 94, which slant in relation to a plane perpendicular to the axis of the sleeve 44. The spigots 84 extend into the slanting apertures 94. A user operable lever 96 is pivotally 20 attached to the underside of the housing 16 in Figure 1 so as to be pivotable to the left or to the right viewing the reel along the direction of the axis of the spool 26, or in the direction of view of Figures 11 and 12 for example. A mechanical link 98 couples the lever 96 to 25 the stirrup 90 such that viewing the parts as shown in Figure 11 for example a pivoting movement of the lever 96 from the left to the right lowers the stirrup 90, thus moving it transversely of the axis of the sleeve 44, and

-18-

slides the switching member 80 to the left, and thus longitudinally in relation to the axis of the sleeve 44, whereas movement of the lever to the left moves these various parts in the respective opposite directions. The 5 movement of the switching member 80 for example from its left-hand position as viewed in Figure 11 to its right-hand position as viewed in Figure 11 is the step represented by the change from Figure 11a to Figure 11b. The flange 70 and with it the sleeve 44 remain at this 10 stage in the left-hand position, but are nonetheless urged by the tension springs 88 acting on the left-hand plate 84 which in turn presses the flange 70 to urge the latter and with it the sleeve 44 towards the right-hand position. As and when the teeth 46 are able to slide 15 from engagement with the teeth 60 of the gear wheel 48 into engagement with the teeth 62 of the gear wheel 56, the left-hand plate 84 now moves to the right under the action of the tension springs 88, and with it the flange 70 and the sleeve 44. This is the change illustrated in 20 Figure 11c relative to Figure 11b.

Moving the lever 96 back to its left-hand position will now move the switching member 82 and with it the left-hand plate 84 leftwards, being the change illustrated in going from Figure 11c to Figure 11d. Once 25 the teeth 46 are free to disengage the teeth 62 of the wheel 56 and to engage the teeth 60 of the wheel 48, the action of the springs 88 on the right-hand plate 84 shifts that plate, and with it the flange 70 and the

-19-

sleeve 44 leftwards. This transition is represented in Figure 11 by going from Figure 11d back to Figure 11a.

Whilst the sleeve 44 has a wider cross-section at one end than at the other in Figures 6 to 12, it is 5 preferable for that sleeve to be formed so that it has hollows at least at both its ends of the same internal cross-section. These cross-sections are both non-circular. Rotatable spigots (not shown) having the same external cross-section as the internal cross-section of 10 these hollows extend respectively from the crank 20 and a securing portion on the opposite side of the housing 16. These spigots do not extend the whole way into the hollow, to ensure that the sleeve 44 is free to be moved to the left or to the right whilst the spigots (not 15 shown) inserted into the sleeve 44 remain fixed in the longitudinal direction of the axis of the sleeve 44. Furthermore, because of the symmetry of such a sleeve 44, the crank 20 and the securing portion (not shown) can be swapped to change the reel from a left-hand reel to a 20 right-hand reel or vice versa.

Numerous variations and modifications to the illustrated reel may occur to the reader without taking the resulting construction outside the scope of the present invention. To give one example only, instead of 25 a lever 96, the more direct link to the stirrup 90 could be effected by way of a push button on the underside of the housing 16 of the reel 10 to effect up and down movement of the stirrup 90. The gear ratios may be

-20-

different from the ones given herein.

In the modified drive shown in Figures 13 to 18, a transverse axle 100 can be connected by releasable connection devices (not shown) to the handle 18 5 selectively at either one of its two ends, to provide a right- or left-handed reel.

Two gear wheels 102 and 104 of different respective diameters are attached to this axle 100 so as to be in respective spaced apart fixed positions on the axle 100, 10 but also so as to be rotatable relative thereto and also therewith.

A spool shaft 106 to which the spool 26 is attached extends at right angles to the axle 100, longitudinally of the reel. The two gear wheels 102 and 104 are on 15 opposite respective sides of the spool shaft 106. The gear wheel 102 meshes directly with an oscillatory motion mechanism drive wheel 108. The gear wheel 104 is coupled to drive the wheel 108 via a gear train 110, the end gear wheel 112 of which is rotationally fixed to and is co- 20 axial with the wheel 108. The wheels 112 and 108 are fixed together by way of a transverse shaft 114 which extends through a slot 116 which is in and extends longitudinally along the spool shaft 106.

A block 118 at the end of the spool shaft 106 which 25 is further from the spool 26 is formed with an S-slot 119 which receives a spigot 121 on the side of an oscillatory motion effecting wheel 120 coupled to be driven by the wheel 108.

-21-

The wheel 108 is also coupled to drive a bevelled gear 122 itself coupled to rotate the bail arm 22 whilst the spool 26 is being moved forwards and backwards by the oscillating mechanism.

5 Rotationally fixed on but slideable along the axle 100 is a hollow shaft 124 at opposite ends of which are respective dog gears 126 and 128. The length of the shaft 124 is such that when the dog gear 126 is coupled to the gear wheel 102, the dog gear is uncoupled from the 10 gear wheel 104, and vice versa. A slideable bracket 130 below the shaft 124 can be moved transversely by the user by means of a lever 132 linked to the bracket 130. A helical compression spring 133 is located relative to the bracket in such a fashion that when the lever 132 is 15 operated, the shaft 124 is urged in a direction to change gear, but the gear is only actually changed when the relevant dog gear meshes with a part of the relevant one of the said two gears 102 and 104.

It will be appreciated that switching the lever 132 thereby changes the gearing between spool oscillation speed and bail arm speed on the one hand and the speed with which the handle 18 is rotated on the other hand. Desirably the two ratios either one of which can be selected are 6.5:1 and 2:1.

25 Numerous variations and modifications to the illustrated reel may occur to the reader without taking the resulting construction outside the scope of the present invention. To give one example only, the gear

-22-

ratios could be changed.

Claims:

1. A fixed spool fishing reel having a handle shaft connected to a handle to be rotated thereby and coupled to a bail arm drive of the wheel so that rotation of the handle shaft causes rotation of the bail arm, **characterised in that** the handle shaft is coupled to the bail arm drive via a gear mechanism that enables the gear ratio between rotation of the handle shaft and rotation of the bail arm drive to be selectively altered.
2. A fixed spool fishing reel according to claim 1, **characterised in that** the handle shaft is longitudinally slidable and a portion of the handle shaft is provided with external teeth around its circumference which can engage internal teeth of either selected one of two gear wheels which surround and are generally or substantially orthogonal to the handle shaft axis, by virtue of its being able to slide longitudinally.
3. A fixed spool fishing reel according to claim 2, **characterised in that** each of the said internal teeth and/or the said external teeth are chamfered or bevelled in a plane which is generally or substantially orthogonal to the direction of projection of the tooth.
4. A fixed spool fishing reel according to claim 2 or claim 3, **characterised in that** each of the said internal teeth and/or each of the said external teeth are rounded in a plane generally or substantially orthogonal to the

-24-

direction of projection of the tooth.

5. A fixed spool fishing reel according to claim 4, **characterised in that** each tooth is bevelled and/or rounded in this way on one side only, or it is bevelled 5 and/or rounded in this way more on one side than the other, the side of the tooth which is less bevelled and/or rounded, or which is not bevelled and/or rounded, having a flat which is urged against one of the said internal teeth when the reel is in use to effect rotation 10 of the bail arm.

6. A fixed spool fishing reel according to any preceding claim, **characterised in that** the slidable handle shaft is hollow and of non-circular internal cross-section at least at its two ends to enable a spigot 15 of the handle, having an external cross-section corresponding to the internal cross-section of the slidable handle shaft, to be inserted therein at either selected one of the ends of the handle shaft to facilitate ready alteration of the reel between left and 20 right-handed drive.

7. A fixed spool fishing reel according to claim 2 or any one of claims 3 to 6 read as appended to claim 2, **characterised in that** the construction of the reel is such that either selected one of the said two gear wheels 25 may be used to drive one and the same crown wheel which constitutes a part of the bail arm drive.

8. A fixed spool fishing reel according to any

-25-

preceding claim, **characterised in that** the reel may be provided with a user operable lever coupled to the slideable handle shaft by way of a shaft coupling to slide the latter into engagement with a selected one of the 5 said two gear wheels and out of engagement with the other of the said two gear wheels.

9. A fixed spool fishing reel according to claim 8, **characterised in that** the shaft coupling comprises a first movable member which is movable longitudinally of 10 the shaft axis and a second movable member which is movable transversely of the shaft axis, such transverse movement of the latter being effected by the said user operable lever and the first movable member being coupled to the second movable member by way of at least one 15 slanting recess or aperture in one of the said first and second movable members being engaged by a spigot on the other of the said first and second movable members so that such transverse movement of the said second movable member effects such longitudinal movement of the said 20 first movable member.

10. A fixed spool fishing reel according to claim 9, **characterised in that** the slanting recess or aperture is provided in the said second movable member.

11. A fixed spool fishing reel according to any one of 25 claims 8 to 10, **characterised in that** the shaft coupling comprises a spring mechanism such that the operation of the lever urges the handle shaft in a longitudinal

-26-

direction, and the shaft is actually moved in that direction if and when the said external teeth are positioned to engage the internal teeth of the selected one of the said two gear wheels.

5 12. A fixed spool fishing reel according to claim 11,
characterised in that the spring mechanism comprises
first and second parts movable longitudinally of the
handle shaft and linked together by at least one tension
spring, so that movement of one of those parts away from
10 the other will urge the other to follow it in the same
direction, a protuberance extending from the said shaft
and located between those parts, and a third part which
is movable longitudinally of the handle shaft by
operation of the said user operable lever, the said third
15 part having at least one portion which extends between
the said first and second parts, whereby such
longitudinal movement of the said third part may move the
said first and second parts in the said direction and
with them the said protuberance and hence the handle
20 shaft, if the said external teeth are in a position at
that time to engage the internal teeth of the selected
one of the said two gear wheels, whereas if such
engagement is not possible at that time, only one of the
said first and second parts is moved in the said
25 direction, creating tension or increased tension in the
said at least one spring, and the other of the said two
parts and with it the said protuberance and hence the

-27-

handle shaft follow that movement under the action of the said at least one tension spring when the said external teeth are next in a position to engage the internal teeth of the selected one of the said two gear wheels.

5 13. A fixed spool fishing reel according to claim 12, **characterised in that** the said protuberance comprises a flange around the circumference of a portion of the slidable handle shaft.

14. A fixed spool fishing reel according to claim 12 or 10 claim 13, **characterised in that** the said third part is the said first movable member.

15. A fixed spool fishing reel having a spool shaft and two gear wheels respectively on opposite sides of the spool shaft, both gear wheels being coupled to be driven by a rotary handle of the reel and both being selectable to be the one which drives a spool shaft oscillatory mechanism of the reel, the coupling between each of the said two gear wheels and the mechanism being via respective gearing arrangements to impart different 20 respective ratios of handle rotary speed to oscillatory speed of the spool shaft.

16. A fixed spool fishing reel according to claim 15, **characterised in that** the handle is readily releaseably connected to either selected one of the two sides of the 25 reel.

17. A fixed spool fishing reel according to claim 15 or claim 16, **characterised in that** the spool shaft has a

slot in it, and the coupling between one of the said gear wheels and the mechanism is by way of a shaft which passes through the said slot.

18. A fixed spool fishing reel according to any one of 5 claims 15 to 17, **characterised in that** the two gear wheels are selectively engaged by at least one dog gear which is movable towards and away from both of the said two gear wheels.

19. A fixed spool fishing reel according to claim 18, 10 **characterised in that** there are two such dog gears at opposite ends of a shaft, the dog gears respectively engaging the said two gear wheels.

20. A fixed spool fishing reel according to claim 19, 15 **characterised in that** the dog gear shaft may be hollow and a drive shaft which drives both of the said two gear wheels via the dog gear shaft extends through that hollow shaft.

21. A fixed spool fishing reel according to any one of claims 18 to 20, **characterised in that** the or both dog 20 gears may be moved towards and away from one or both of the said two gear wheels by way of a lever coupled to the or both dog gears via a resilient member whereby the or each dog gear will be urged into engagement with one of the said two gear wheels, and will so engage once they 25 have an appropriate relative angular position.

22. A fixed spool fishing reel according to any one of claims 18 to 20, **characterised in that** the reel also has

-29-

any of the features in any of the claims 1 to 17.

Fig. 1

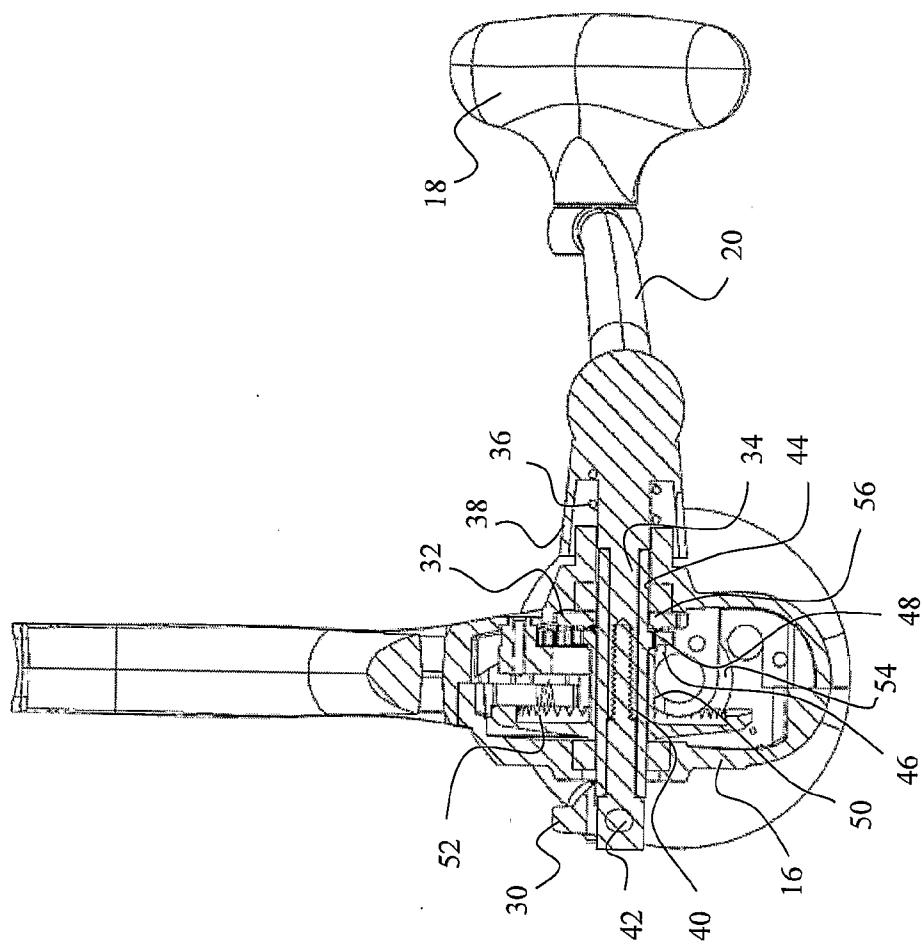


Fig. 3

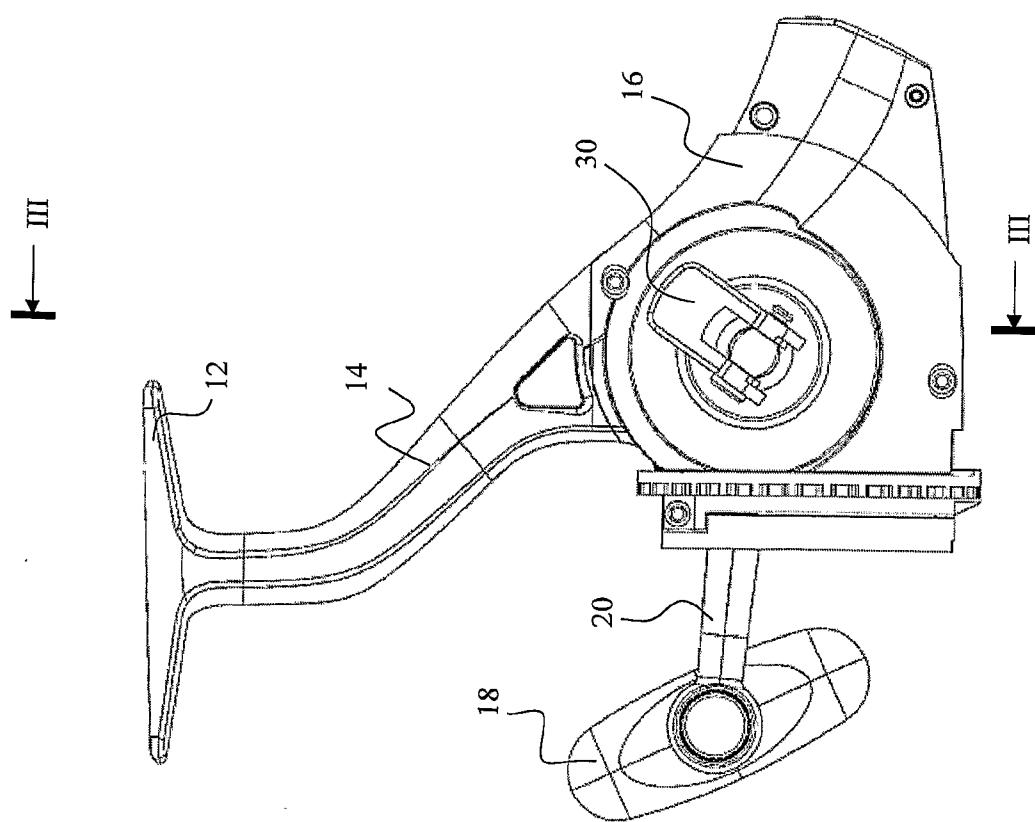


Fig. 2

Fig. 4

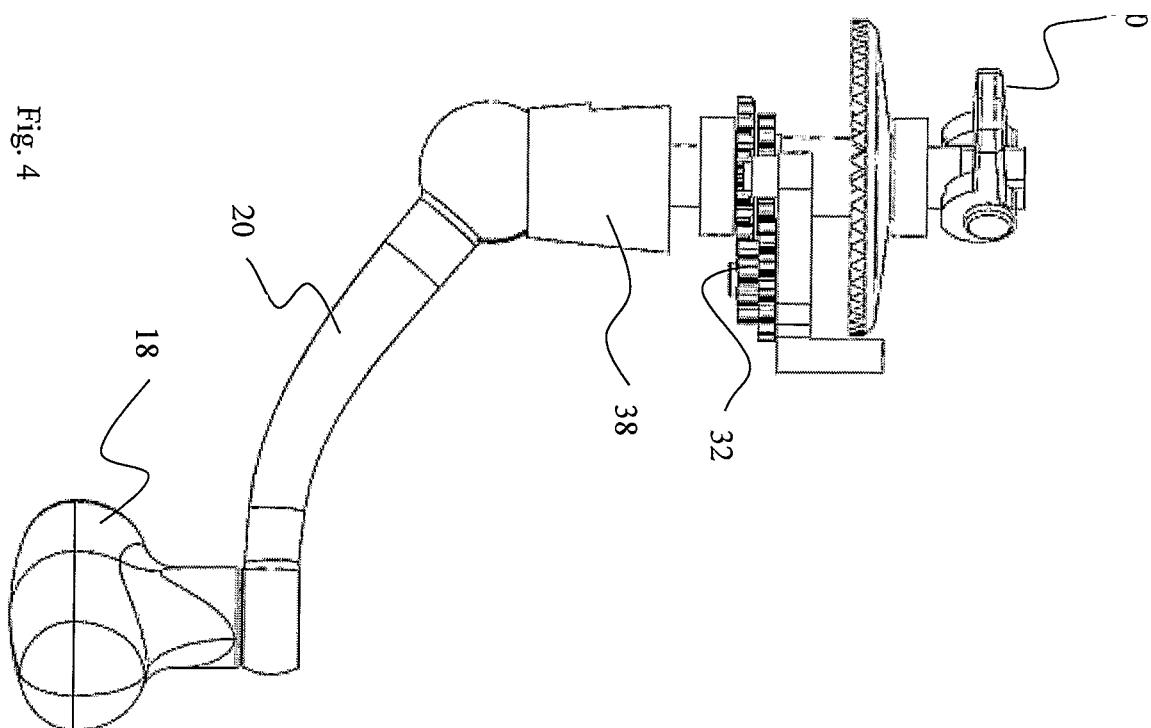
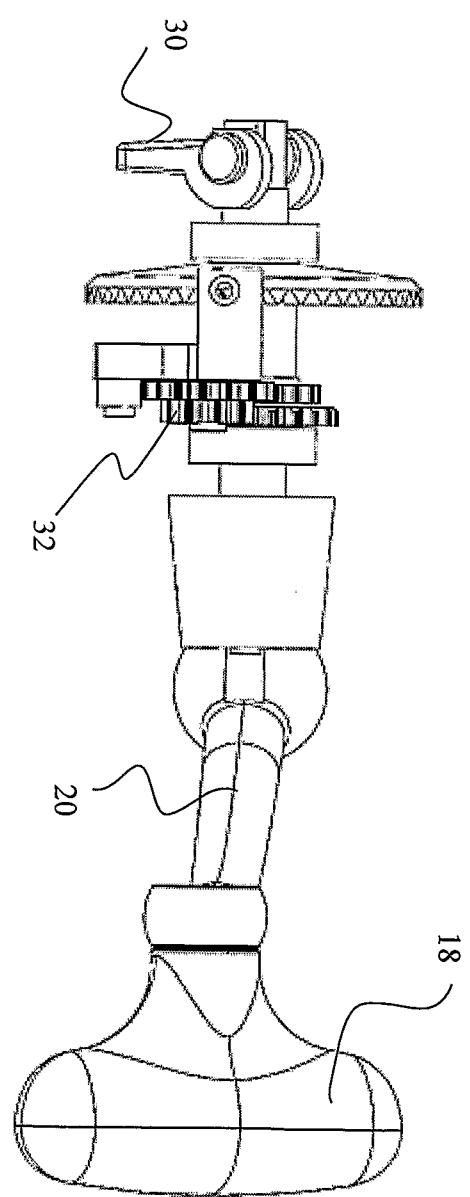



Fig. 5

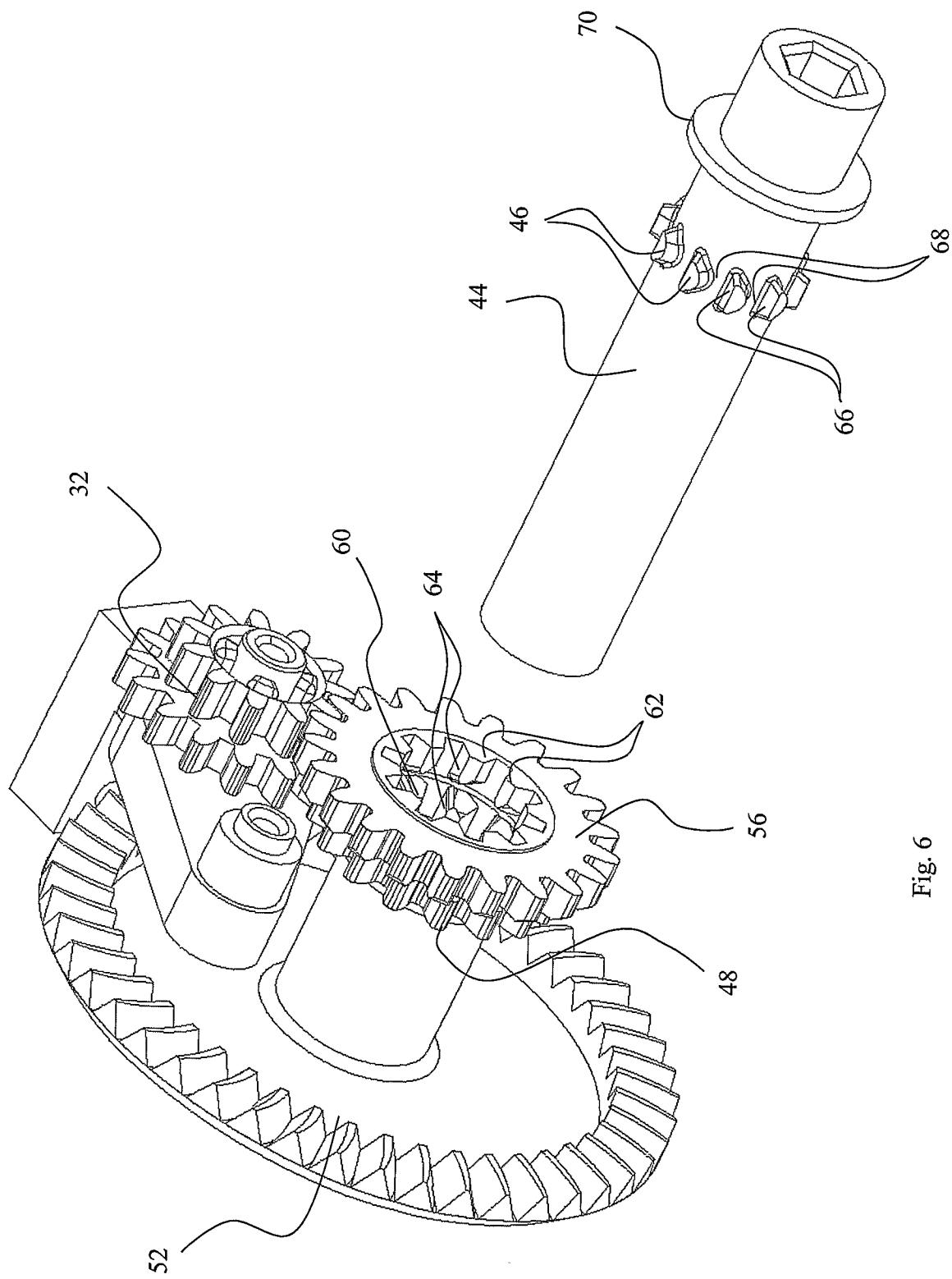


Fig. 6

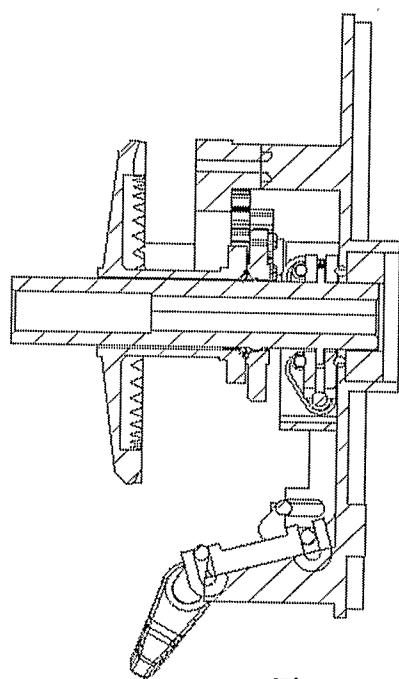


Fig. 7a

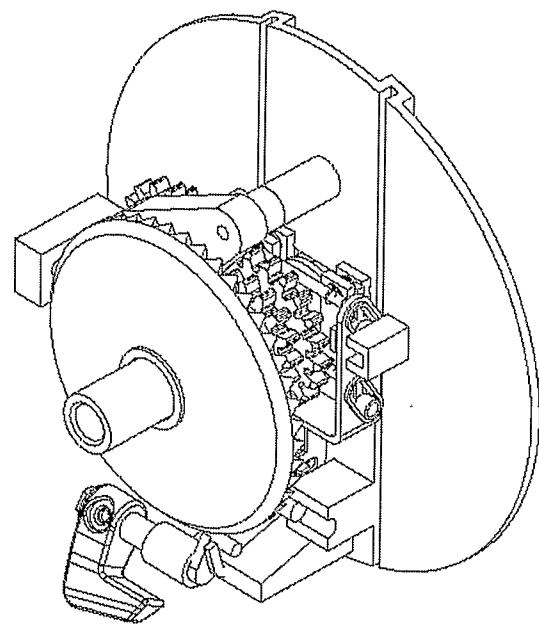


Fig. 7b

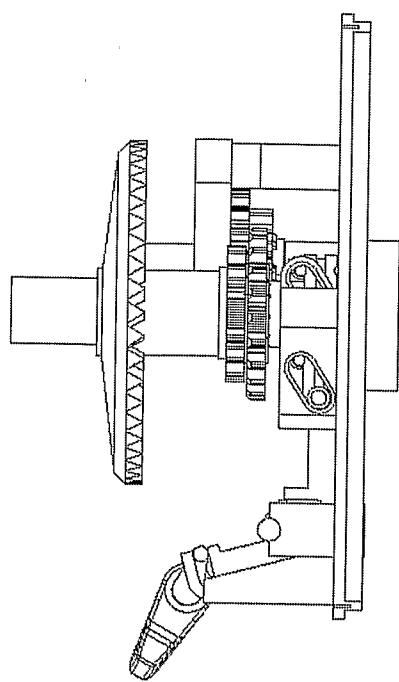


Fig. 7c

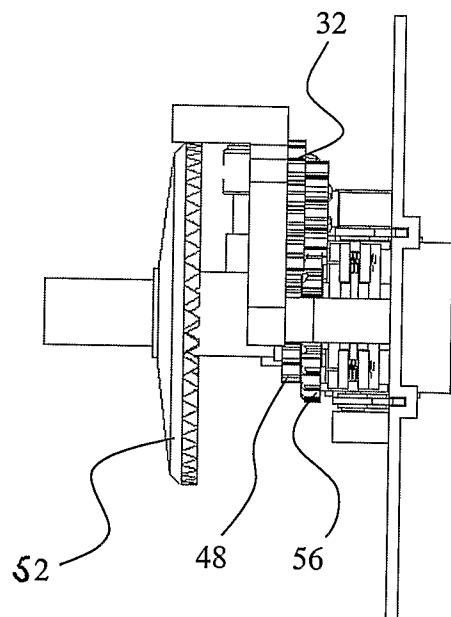
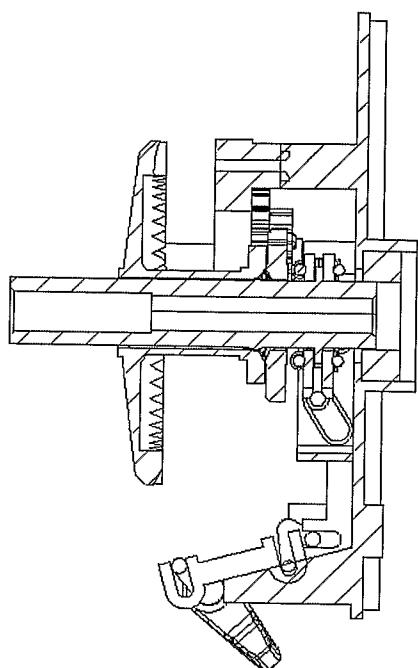
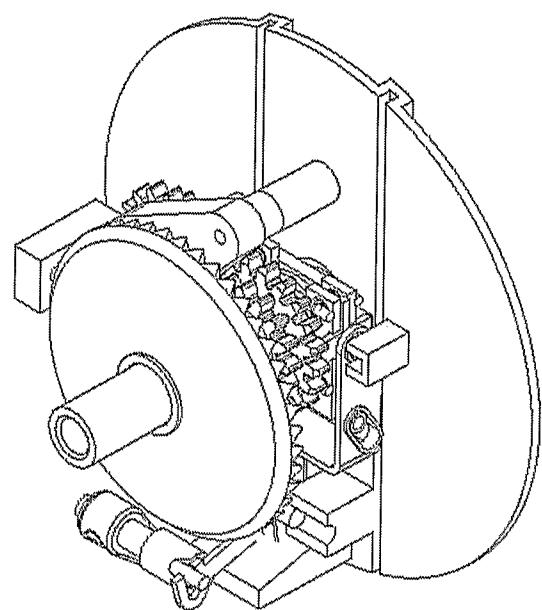
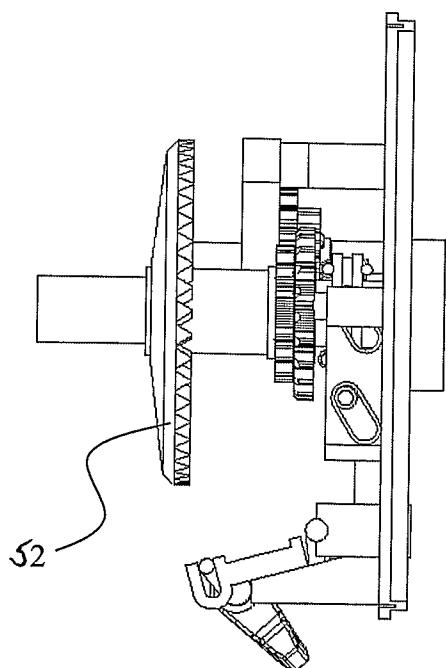
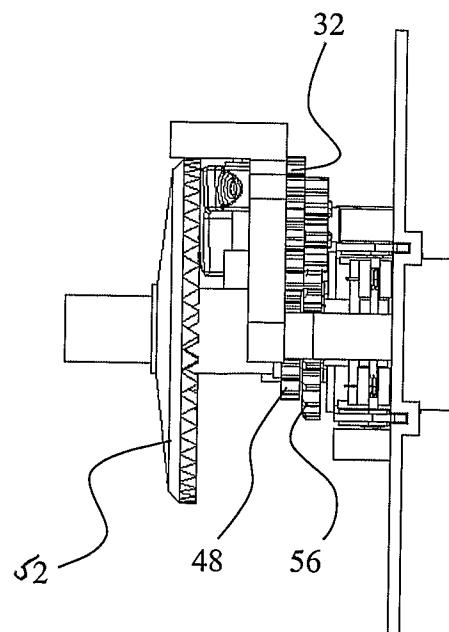






Fig. 7d

Fig. 8aFig. 8bFig. 8cFig. 8d

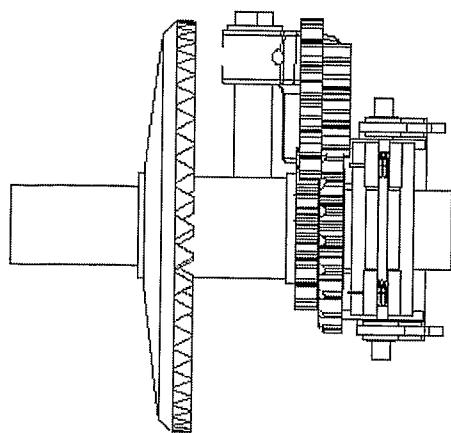


Fig. 9a

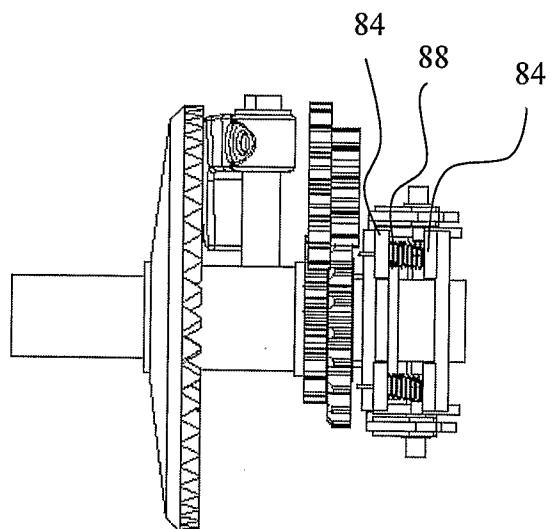


Fig. 9b

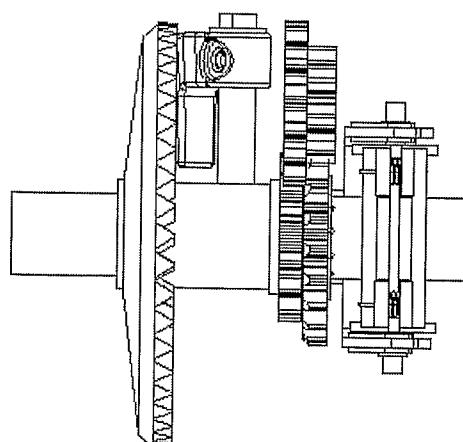


Fig. 9c

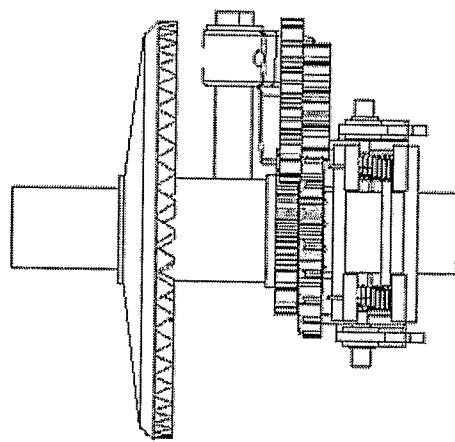


Fig. 9d

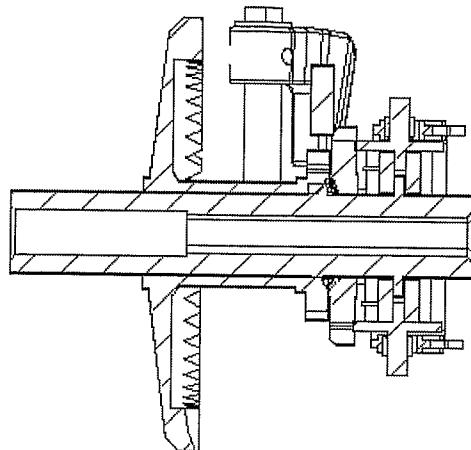


Fig. 10a

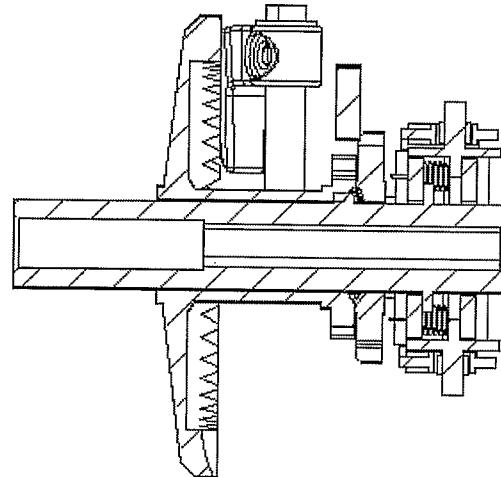


Fig. 10b

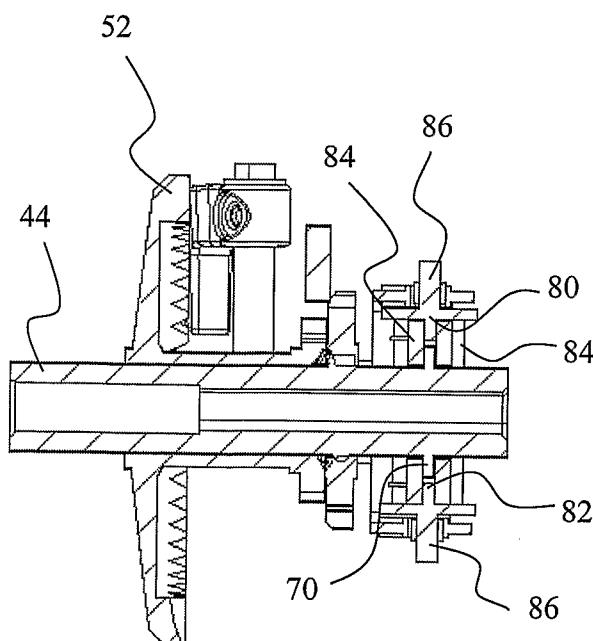


Fig. 10c

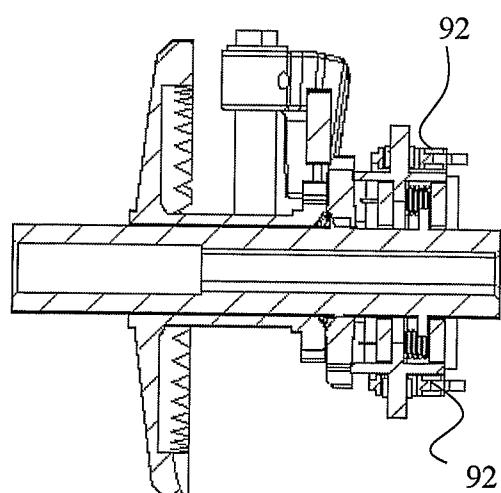


Fig. 10d

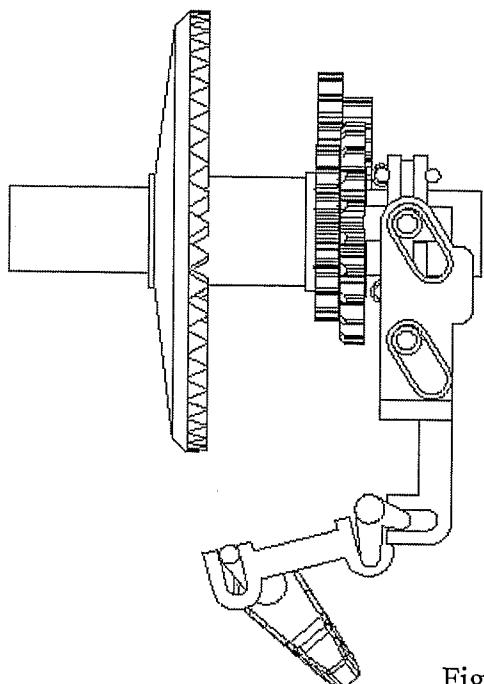


Fig. 11a

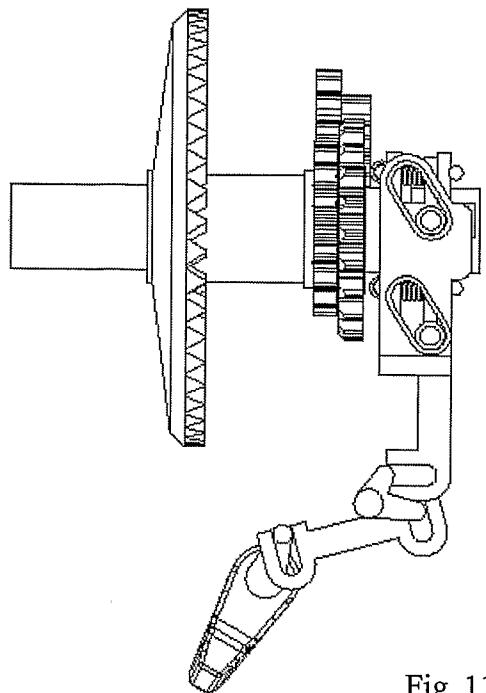


Fig. 11b

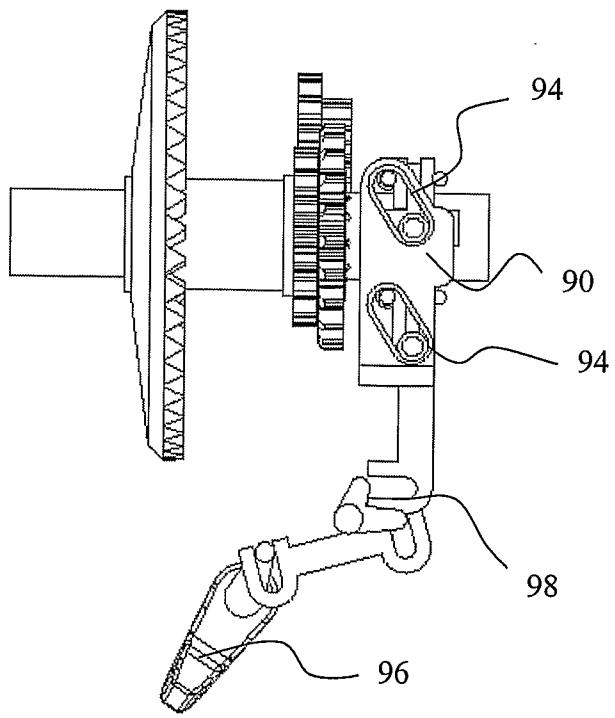


Fig. 11c

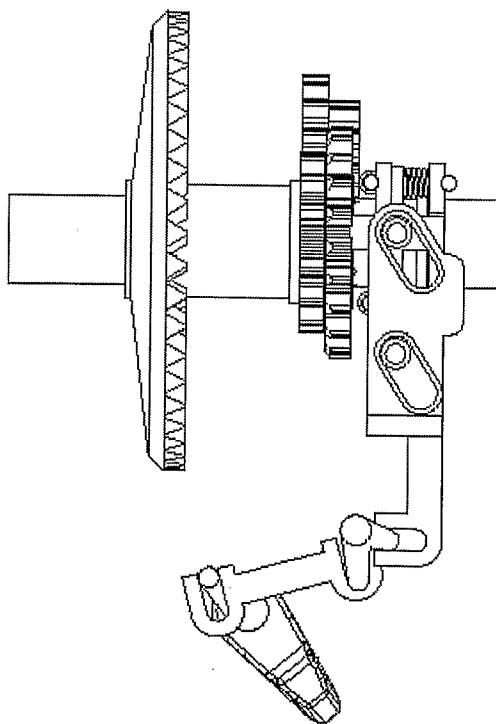


Fig. 11d

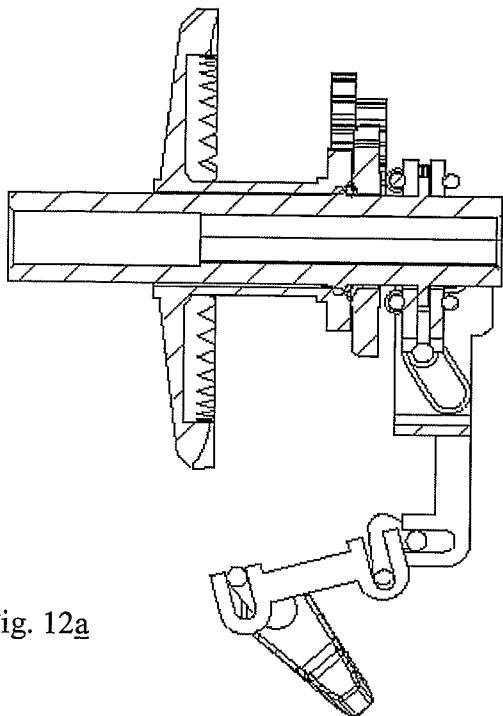


Fig. 12a

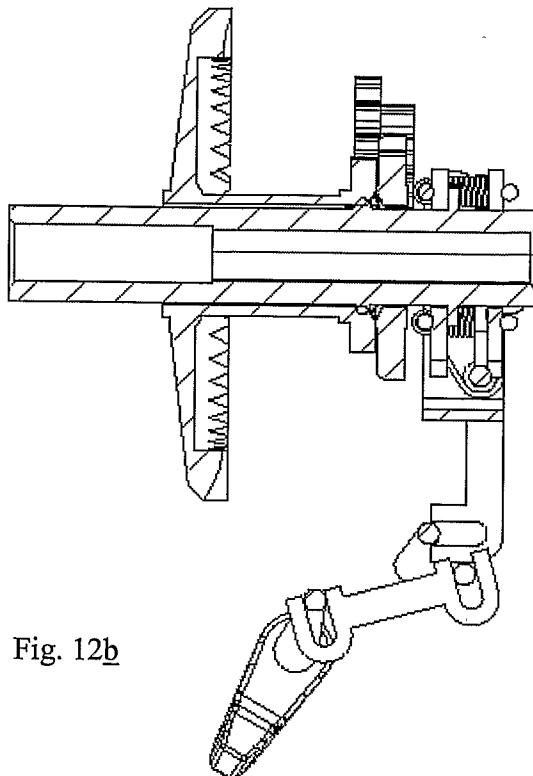


Fig. 12b

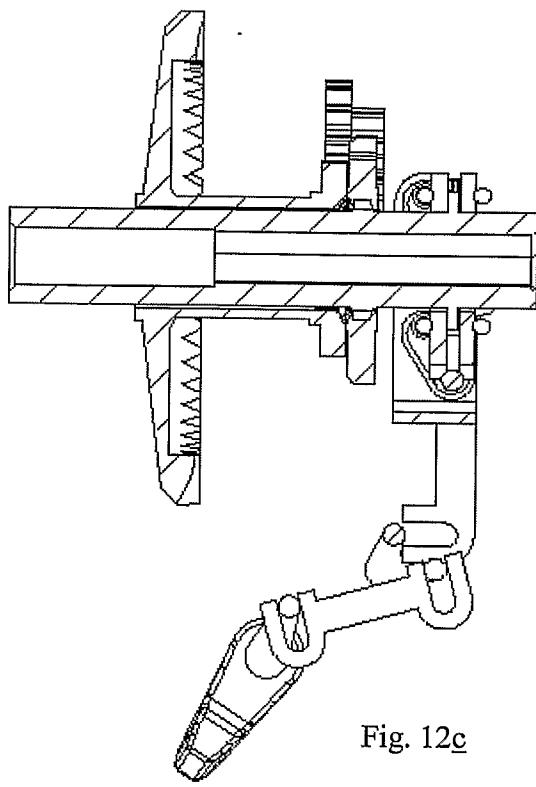


Fig. 12c

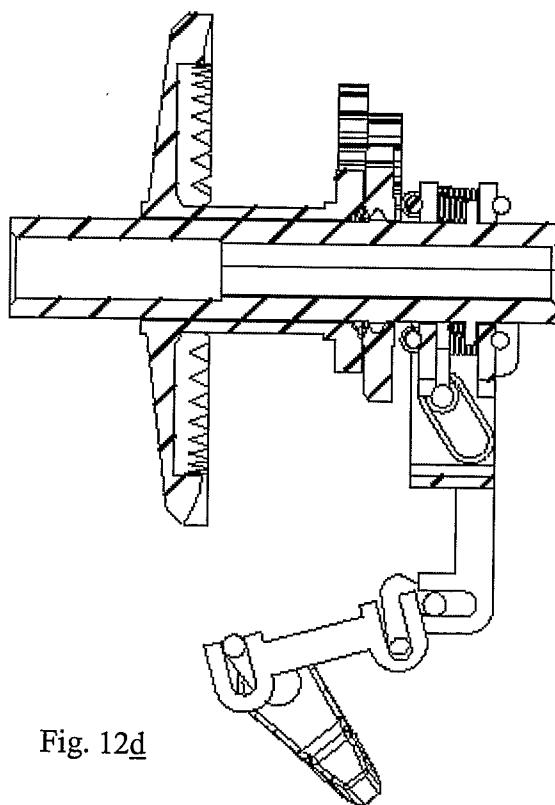


Fig. 12d

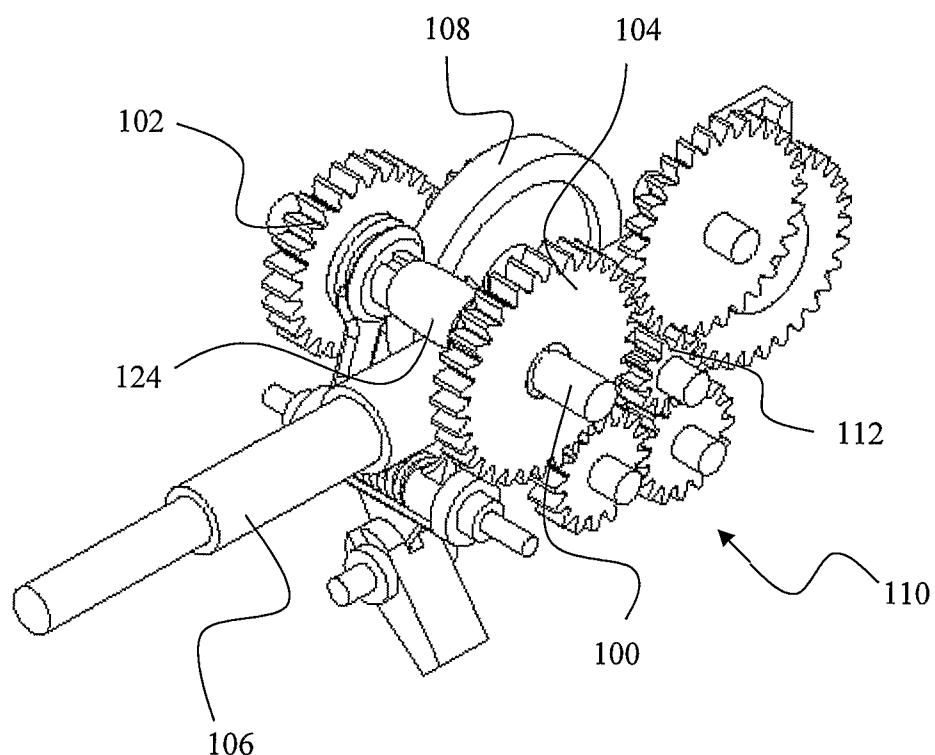


Fig. 13

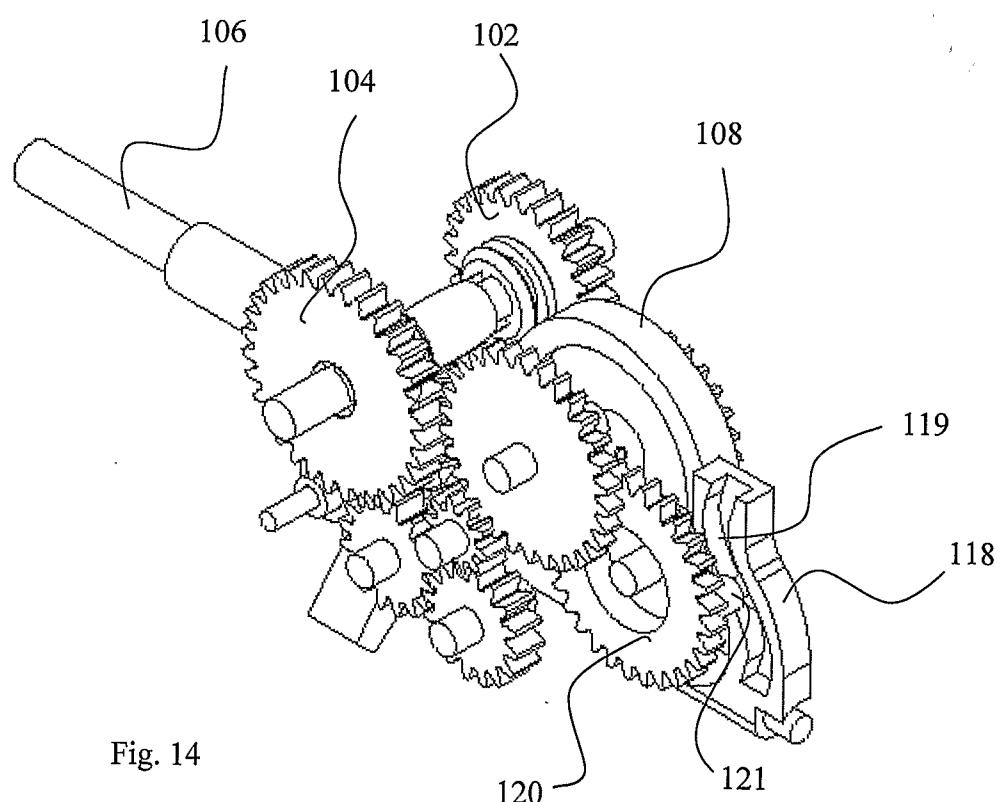


Fig. 14

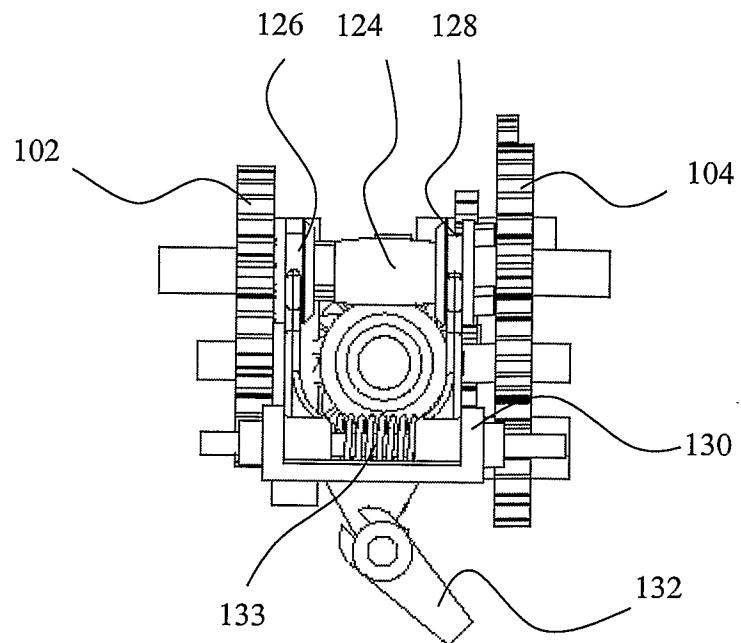


Fig. 15a

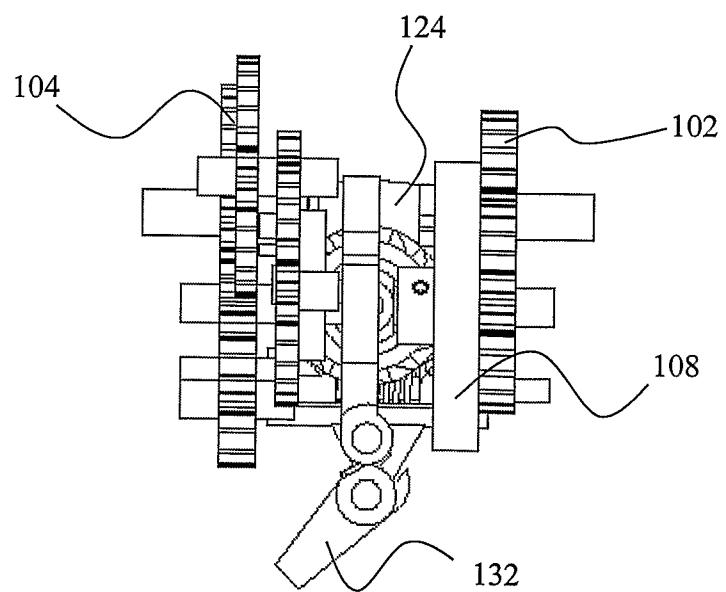


Fig. 15b

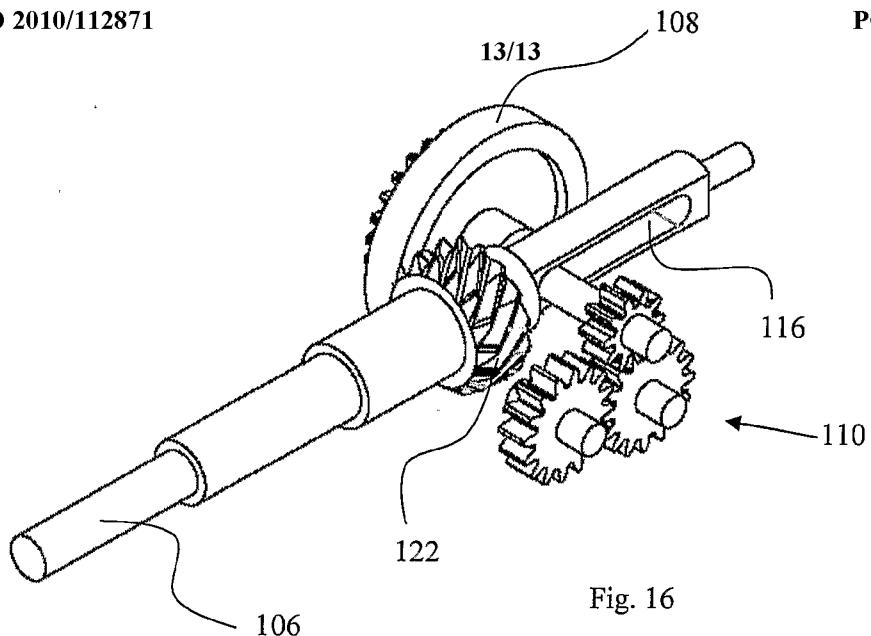


Fig. 16

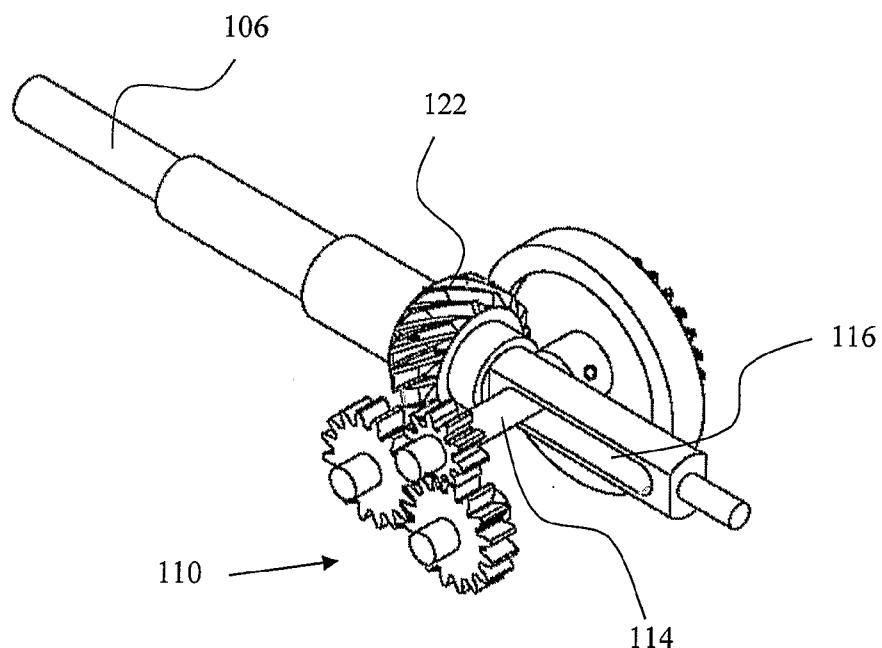


Fig. 17

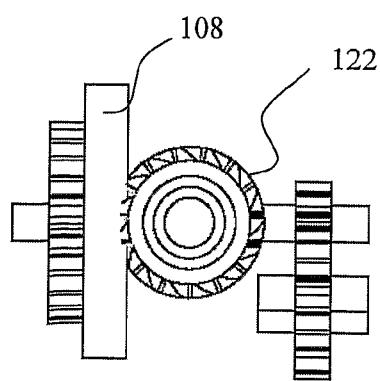


Fig. 18a

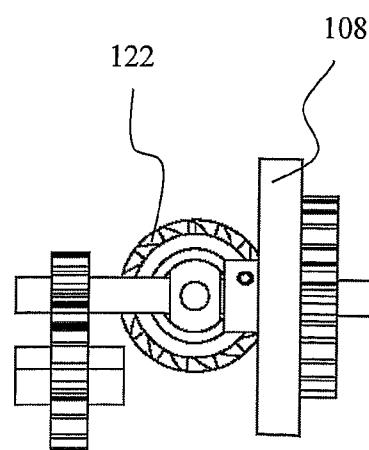


Fig. 18b