发明名称：在与静态混合器耦合的整块催化反应器中进行反应的方法

摘要

本发明涉及一种由整块催化反应器和静态混合器构成的改进型设备。反应器和混合器均有入口和出口，静态混合器的出口与整块催化反应器的入口相通。本发明还涉及用于在整块催化反应器中实施反应的方法的改进，其中将反应气和反应液导入整块催化反应器的入口，并使其反应，然后反应产物经整块催化反应器的出口排出。
1. 一种在整块催化反应器中在反应条件下使反应气和反应液的混合物进行非均相催化反应的方法，其改进包括在静态混合器中使反应气和反应液进行初始混合，由此形成泡沫状混合物；将所得的泡沫状混合物送入整块催化反应器中进行反应；然后从整块催化反应器回收反应产物。

2. 权利要求1的方法，其中整块催化反应器有15.5-186小孔/平方厘米。

3. 权利要求2的方法，其中泡沫状混合物向上通过整块催化反应器，其表面速度为0.1-2米/秒。

4. 权利要求3的方法，其中静态混合器由多个混合区组成，每个混合区对其前一区在流向上有绕纵轴的旋转。

5. 权利要求4的方法，其中交替的平行通道对纵轴45-90度的角相互交叉。

6. 权利要求5的方法，其中静态混合器的多个区对其前一区在流向上以45-90度绕纵轴旋转。

7. 权利要求6的方法，其中反应气的气泡大小是小孔径或小孔水力学直径的0.5-5倍，并且整块催化反应器的小孔数为31-93孔/平方厘米。

8. 权利要求7的方法，其中在氯化反应中所用的有机化合物选自硝基芳族化合物、腈、不饱和有机化合物、和酮或酯与氯或位胺或仲胺的反应产物。

9. 权利要求8的方法，其中有机化合物是硝基芳族化合物。

10. 权利要求9的方法，其中硝基芳族化合物是硝基苯、硝基甲苯、硝基二甲苯、硝基苯香醚和卤化的硝基芳族化合物，其中卤化的硝基芳族化合物中的卤素为Cl、Br、I或F。

11. 权利要求8的方法，其中硝基芳族化合物是二硝基甲苯。
在与静态混合器耦合的整块催化反应器中进行反应的方法

对相关申请的交叉参考

本发明是于 2001 年 8 月 30 日递交的申请序号 No. 09/942839 的部分继续申请。

发明领域

本发明涉及一种与静态混合器耦合的整块催化反应器及其中气-液反应的改进。

发明背景

反应报导体和液体之间的工业规模的反应，如涉及不饱和有机化合物的氢化和具有参缩合官能团的那些反应经常是在搅拌釜反应器中使用细粉化的浆状催化剂进行的。这些浆相反应体系在化学过程的安全、可操作性和产率方向均存在问题。细粉化的催化剂经常是可自然的，并且在装料及过滤期间需要大量操作人员的作业。由于起动和停车的热循环性质，浆状体系增加副产品的形成，这可缩短催化剂的寿命及降低所需产品的产量。

在搅拌反应器中使用细粉催化剂的一种替代方案是使用固定床反应器。虽然这种反应器技术消除了大量作业和废物问题，但许多工程难题使固定床反应器技术难以应用于气体与液体有机化合物的反应。控制反应器中总的温度上升和温度梯度就是一个问题。第二个问题是在固定床填料反应器中，由于氢化所需的高流量引起明显的压降。第三个问题是液-气分布存在问题，因此常导致不好的转化率和局部浓度梯度。

整块催化反应器可代替固定床反应器，并且比通常的固定床反应器有许多优点。这类反应器的压降低，所以可在较高的气体和液体速度下运行。气体和液体的较高速度达到高的传质和混合，并且整块料的平行通道设计防止气体在液相中聚拢。

下列的专利和文章是对现有技术的描述，因为它们与气/液反应有关。

US 5763687 公开了用于芳香单硝基化合物制备的设备。该反应器包括含一个以上按顺序排列的扭曲板状部件的管，一个扭曲板状部件
的前边缘基本垂直于前一扭曲板状部件的后边缘。优选地该反应器包括管和其中无板状部件的中空管。

在 AICHE 杂志，41 卷第 3 期（1995 年 3 月）中，Patrick 等人公开了未涂层的堇青石的整块反应器，以及在测定停留时间分布及在设计气/液相反应中的应用。引入液体和气体向上流过整块反应器，反应气体穿过内孔玻璃烧结物。气体通过玻璃烧结物时产生的气泡通常大于整块料通道的宽度。

US 6005143 涉及氯化硝基芳族组合物即二硝基甲苯方法的改进，该方法是使用整块催化反应体系的反应器中用氯与二硝基甲苯接触。

概括地说，改进在于在呈柱塞流的整块催化反应器中二硝基甲苯连续、基本无溶剂、绝热的氢化为甲苯胺。

US 4428922 公开了一种在固定床催化氢化器中制造过氧化氢的方法，在固定床催化反应器中的反应之前利用静态混合器使氢与液体预混合。

US 4552748 中公开了一种生产过氧化氢的方法，它使工作溶液向上通过由有催化活性材料附着其上的平行通道组成的反应器。反应产物反应器的上部排出并再循环。

US 5688047 公开了有混合部件的静态混合器。它由管和绕管轴以 90°角旋转旋转的混合部件组成。

发明概述

本发明涉及一种由整块催化反应器和静态混合器组成的设备，反应器和静态混合器均有入口和出口，静态混合器的出口与整块催化反应器的入口相通。本发明还涉及在整块催化反应器中反应气与反应液之间发生反应的方法的改进。该方法的改进在于将反应气和反应液引入到静态混合器的入口，在其中混合反应气和反应液，通过静态混合器的出口将所得的混合的反应气和反应液排出到整块催化反应器的入口，然后使所得的反应气和反应液的混合物反应。当反应气和反应液的混合物向上通过整块催化反应器时，对二硝基甲苯的氢化有特别安全的优点。

该设备和方法的明显优点包括:

· 能提高在整块催化反应器中的反应气和反应液的传质；
· 能提供较短的反应剂的接触时间，因此使副产物生成最少，如果
出现高浓区，也会使反应剂、反应产物或副产物的降解最少；
・能控制在整块催化反应器中始终达到泰勒流动所必需的反应气的气泡大小；
・能在整块催化反应器的全部截面上提供泡沫状气/液混合物的基本均匀分布；
・能提高反应速率，由此提高生产率；
・能提高整块催化反应器的生产量和效率。

附图简述

图 1 为耦合到整块催化反应器上的静态混合器的截面图。

图 2 为表明各个混合部件相互啮合和相互交叉的波纹状和流型的静态混合器的等距图。

图 3 为表明反应气和反应液在整块催化反应器的毛细管中于各种条件下的流动状态的截面图。

发明详述

本发明的一个方面涉及利用整体催化反应器的气/液反应设备中的改进，特别是适合工业应用的设备，如直径为 2-8 英尺的设备。设备的改进在于将静态混合器的出口与整块催化反应器的入口相耦合。从工艺操作看，将反应气和反应液引入到静态混合器的入口，并向上通过混合器，经混合并由静态混合器的出口排出，然后引入整块催化反应器的入口。

反应气和反应液之间的反应在整块催化反应器内发生，其反应产物经整块催化反应器的出口排出。经常将含有未反应的气体和液体的一部分反应产物与进料反应气和反应液相混合，并再循环通过整块催化反应器。

试图在固定床反应器中使用整块催化剂的许多背景技术是利用向下流动。但已发现，这种流动方向能造成在某些流速下，特别是起动所要求的流速下的滞流和逆流。这种流动行为使向下流动的工艺不适合如二硝基甲苯转化为甲苯二胺的反应。反应器中的条件可造成失控反应。但是，使反应气和二硝基甲苯反应液通过静态反应器和整块反应器向上流动保证了来自静态混合器的稳定泡沫流动和通过反应器整块通道的稳定泰勒流动，由此使失控反应的机会最小。

静态混合器是已知的，并且通常由互成角度插入的平行板组成。
更具体而言，其由多个管壳段组成，它有轴向的流动的方向，管壳内载有静态刚性部件，这些部件在流动方向形成相互啮合和相互交叉的通道。这些通道界定从管壳入口到出口的曲折的路径。设计这种路径以使相互啮合和相互交叉的通道来分流行流体物流、重新排列流体物流和当该流体通过管壳时将这些物流组合。交替平行通道的交叉角度可变化，但通常该角度为 45-90 度。

一类静态混合器由有壁、轴和流向的管壳组成，该轴将管壳内部分成纵向延伸的第一和第二内壳区。混合部件包括至少两个混合区，该区之一位于一个壳区内。混合区的流向由平行的、以不平行壳轴的流向延伸的分隔开的板条界定。一旦流体与壁表面接触，它可向上流到下个平行板条，并以不平行于轴的相反流动导向。

界定通道的刚性部件的壁形状是可变的，一些是波纹形、格栅形或可为直边形。通道将液体和气体以径向向向外进入静态混合器，然后径向向内，这样在交叉点处这些流体与其它流体接触，并发生破碎。通常静态混合器由多个单元组成，这些区对其前一区通常有 45-90° 增量的绕纵向轴的旋转，如图 2 中指向箭头所示，以致当流体从一区进入另一区时，其流型发生改变。

这里使用的静态混合器是设计用来通过气泡的大小控制来实现反应气与反应液的分布，气泡直径大小为 0.1-15mm。为通道宽度或小孔水力学直径的 0.5-5 倍，优选为通道宽度的 1-3 倍。气泡的大小是用于整块催化剂反应器中，其中每平方英寸（cpi）的小孔数为 100-1200，优选为 200-600（每平方厘米的小孔数为 15.5-186，优选为 31-93）（小孔的水力学直径界定为由其湿润的周边所分的通道或小孔的截面积的 4 倍）。气泡大小控制主要由静态混合器中的通道设计和通过静态混合器的流体速度来决定。

气泡大小可使用出版的资料建立通过静态混合器的气体和液体流量的方程来预测。通常在该试验程序中使用空气和水，基于空气/水混合物的气泡大小测定可关联到在操作条件下反应气和反应液的气泡大小。另外，还有一些测定反应器中气泡大小的方法，如计算机层析 X 射线照相法或通过使用激光分析仪，为达到反应的均匀性，要利用气泡大小的测量来校准整块催化剂反应器。

在此描述的方法中使用的整块催化剂由无机多孔底板、金属底板或
改性的底板，即涂有催化金属的整块载体构成。改性可以是由碳或加热处理的网络聚合物得到的涂层。经常该整块料是基于长窄毛细管通道的蜂窝体，可为圆形、正方形、长方形或其它几何形状，由此气体和液体在层流流态下同通过道。

在这些所界定的通道中和在这些条件下的气体和液体的流动引起所需的“泰勒”流动，H₂气泡挤过液体。这种毛细管作用引起非常高的气-液和液-固的传质。气/液体系的泰勒流动是气泡具有基本均匀的大小并且由薄液膜所包围。

图 3 表示在不同的流态下气泡特性的差别。目的是产生由薄液膜所包围的基本均匀的气泡 (d)。其它图如 (a)、(b)、(c) 表明由变化的气泡大小，由大量液体包围的小气泡到由不足的反应液所包围的非常大的气泡如 (e)、(f)、(g) 和 (h)。

在混合气/液的表观速度为 0.1-2 m/s 和每平方英寸有 400 小孔 (每平方厘米有 62 小孔) 的整块催化反应器中有 50%气滞留量的情况下，在有效的整块催化反应器内的压降为 2 kPa/m-200 kPa/m。蜂窝状整块小孔壁的典型尺寸在板与间隔范围为 0.5-5 mm。另外，该整块的小孔可为每平方英寸 100-1200，优选为 200-600 (每平方厘米的小孔数为 15.5-186，优选为 31-93)。

适合于反应的催化金属明显取决于待实施的反应类型。例如，有机化合物的氢化利用浸渍在或直接涂在整块基板、改性基板或修补基面涂层上的催化金属。该催化金属包括周期表 VIb 族、VIIb 族、或 VIII 族和 lB 族的金属，并通常用于氢化反应。催化金属成分的实例包括钴、镍、钯、铂、铑、钌、铑、铱等。经常使用金属混合物，其一个实例是钯和铑的混合物。对浸渍有修补基面涂层的整块催化剂，催化金属的组成通常与修补基面涂层本身中的重量百分率一致。修补基面涂层可以整块料总量的 1-50%重涂。典型的催化剂金属承载量为修补基面涂层的 0.1-25 重量%，优选为 1-20 重量%。催化金属通常技术领域公认的化解方法引入到整块料中。以催化金属的盐溶液的早期湿润是将金属催化成分引入整块基板或改性整块料中的一种方法的实例。

在某些包括不混溶液相的氢化反应中，如基于无机或碳的整块基板可涂以网络聚合物膜，该膜起承载金属的作用。当存在有不混溶液相时，消除聚合物膜的碳表面的微孔对快反应速率和长的催化剂寿命是有利
的。在表面上的小孔和中等孔会通过孔被高分子量的副产物的堵塞而使催化剂去活。所以，碳整块料，涂碳的整块料或涂聚合物网络/碳的整块料应有非常低的表面积，以便活性最佳，即以 N₂ 的 BET 法测的比表面积约为 1-15 m²/g 整块催化剂的总表面积。为得到有低表面积的涂有聚合物的网络/碳的整块料，可将聚合物涂料溶液涂到壁表面上，并再低于通常的碳化温度下加热。聚合物溶液的实例包括糠醇和含其它添加剂如吡咯和聚乙二醇甲基醚的糠醇；含胺的环氧树脂；含锌的环氧树脂；含胺或其它多官能团的聚酯；油改性醇酸饱和的聚酯和不饱和聚酯；聚酰胺；聚酰亚胺；酚/甲醛；脲/甲醛；密胺/甲醛和其它。上述的程序可使市售的糠醇的低聚物或共聚物改性。

聚合物涂层的碳化是在较低温度下进行的，碳化温度为 250-350°C，而在现有技术中通常使用的为 550-900°C。

在整块催化反应器中可完成许多类型的反应，但主要的反应为氢化和氧化。可对各种各样的化合物进行氢化，如烯基芳族化合物、腈类、不饱和的有机化合物如不饱和的胺。有官能团的有机化合物可经由缩合反应氢化。优选的化合物为烯基芳族化合物，这些化合物包括烯基苯、烯基甲苯、烯基二甲苯、烯基苯等和卤化的烯基芳族化合物，其中卤素为 Cl、Br、I 或 F。

为便于理解静态混合器/整块催化反应器组合的操作，参看图 1。静态混合器 1 由许多区 3 组成，并耦合到整块催化反应器 4。反应气、反应液以及还可有的再循环经由入口管线 5、7 和 9 引入。三个流体在相交处稍经混合，并经管线 11 排出。此时混合物进入静态混合器的入口。当流体通过静态混合器时，以变换角度的流径导向，这样就通过多个区。如所看到的，初始的区域是绕来自下一级区如 3a（用初始区 3 和下一邻区 3a 之间的间隔表示）的流径的扭转取向。气和流的泡沫混合物经出口 13 排出（由静态混合器 1 的最后区 3 和整块催化反应器 4 之间的间隔表示），它有足够的宽度以使所得气/液泡沫以可靠的均匀分布进入整块催化反应器 4 的截面。均匀分布能使整块催化反应器 4 的所有区域达到一致的流体流动，由此实现比其它方式有更高的传质速率。在多个小孔 15 中发生反应。反应产物经由管线 17 从整块催化反应器 4 中排出，以回收产品及未反应的物料。
图 2 是有许多混合区 3 的静态混合器 1 的等距图。该流型使基本平行的通道 19 引导反应气和反应液的混合物通过每个区，当其以流向（如箭头 A 所示）沿静态混合器从入口到出口的纵轴进行时，在角度上首先径向向外，然后向内。在通道的交叉处，由于出现湍流，流体达到的混合程度比直流型所达到的要更高。为提高混合工艺，由箭头 B 所示，每个区在流径上均缠静态混合器 1 的绕轴旋转 45-约 90°，以致存在从一区到一区的变向流动。

下面的实施例用以说明本发明的各种优选实施方案，不用以限制本发明的范围。

实施例 1

在由静态混合器和整块催化剂组成的体系中二硝基甲苯的氢化

在进行二硝基甲苯的氢化中，使用由约 100 英寸（254cm）高和 1 英寸（2.54cm）直径的圆柱形整块反应床组成的反应器。该催化床是由市售的每平方英寸有 400 小孔（每平方厘米有 62 小孔）的堇青石整块料载体制成，它有正方形小孔，涂有 25%氧化铝修补基面涂层，催化剂金属承载量按修补基面涂层计为 20%的 Ni 和 1%的 Pd。其反应体系的装设类似于图 1，使用压缩机将过量的氢气再循环到反应器的入口。

氢的进料量过量于二硝基甲苯氢化所需的化学计算量。二硝基甲苯以熔融液体连续进料，不使用溶剂。二硝基甲苯进料和再循环氢均在混合“交合”处送入静态混合器人口处的再循环反应混合物中。

在此论证例中，所用的静态混合器是 Model No 1”L488，它由 8 种 SMVL 部件构成，每个为 1 英寸（2.54cm）长和 1 英寸（2.54cm）直径，由 Koch-Glitsch 公司制造。该 SMVL 静态混合器在短的管中完成完全的混合，并且其压力降最小。这种混合器是专设计用于低粘度的液/液混合和不相混溶液体的分散，它由堆叠的定向波纹板构成，形成大量交叉的流动通道。

从反应器体系中连续排出甲苯二胺和水的产物。下面运行的操作条件是选自得到泰勒流动的空气/水数据。在整块料的通道中的气体和液体的表观速度分别为 30-35 cm/sec。通常，二硝基甲苯（DNT）的入口浓度维持在 0.5-2 重量%，以通过整块床达到>90%的转化率，并限制反应混合物的绝热温度的上升。入口温度也调节到能达到这样的反应速率。

静态混合器的设计能提供所需的 1-3 mm 的氢气泡大小，使其均匀
穿过反应器截面，以达到为支持这样的剧烈反应所需的气-液传递速率。如果假设氢整体浓度为零，则最小的气-液传递系数 $K_{l,a}$ 为 1 sec^{-1}。实际上，氢整体浓度在这种操作中几乎不会为零，所以平均 $K_{l,a}$ 预计是 $2-5 \text{ sec}^{-1}$，这是优异的结果。这证明该静态混合器提供了必需的流动条件和 DNT 和氢气泡的分布，保持了工业上实用的反应速率。穿过静态混合器的压降通常小于 2 psig（磅/平方英寸表压）(13.79kPa)，穿过整个整块床的压降小于 15 psig (103.42kPa)，由此通过减少液体再循环泵和氢再循环压缩机所需的动力输入就再增加了这种方法的实用性。

每一进料物流均向上流过静态混合器和进入整块催化反应器。含产物和未反应物料的反应产物从反应器回收，在反应产物中的未反应成分再循环到静态混合器，然后通过反应器。下表给出代表性运行的条件。

<table>
<thead>
<tr>
<th>运行</th>
<th>平均再循环液体流量 (gph) 1</th>
<th>平均再循环氢流量 (acfh) 2</th>
<th>平均DNT物料流量 (grams/min)</th>
<th>反应器入口压力 (psig)</th>
<th>反应器入口压力 (kPa)</th>
<th>反应器出口温度 (°C)</th>
<th>反应器出口温度 (°C)</th>
<th>在线时间 (hr)</th>
<th>DNT平均转化率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>70</td>
<td>265</td>
<td>12</td>
<td>0.34</td>
<td>30</td>
<td>600</td>
<td>4238</td>
<td>136</td>
<td>147</td>
</tr>
<tr>
<td>2</td>
<td>65</td>
<td>246</td>
<td>10</td>
<td>0.28</td>
<td>45</td>
<td>600</td>
<td>4238</td>
<td>135</td>
<td>150</td>
</tr>
<tr>
<td>3</td>
<td>64</td>
<td>178</td>
<td>13</td>
<td>0.37</td>
<td>40</td>
<td>600</td>
<td>4238</td>
<td>132</td>
<td>147</td>
</tr>
</tbody>
</table>

1 gph 指加仑/时
2 acfh 指实际立方英尺/时

可以看出，在长的时间内都可得到 DNT 的优异转化率，同时没有过程漂移。

当该方法在无静态混合器的情况下操作时，在整块催化反应器中在起动时难以得到泰勒流动。观察到多次过程漂移，由此，这时该方法从安全观点和生产观点方面看是不满意的。
4 整块催化反应器

1 静态混合器

图 1